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Abstract

We recently defined a property of Morse shellability (and tileability) of finite
simplicial complexes which extends the classical one and its relations with discrete
Morse theory. We now prove that the product of two Morse tileable or shellable
simplicial complexes carries Morse tileable or shellable triangulations under some
tameness condition, and that any tiling or shelling becomes tame after one barycentric
subdivision. We deduce that any finite product of closed manifolds of dimensions
less than four carries Morse shellable triangulations whose critical and h-vectors are
palindromic. We also prove that the h-vector of a Morse tiling is always palindromic
in dimension less than four or in the case of an h-tiling, provided its critical vector
is palindromic.

Keywords : simplicial complex, shellable complex, h-vector, tilings, discrete Morse
theory, triangulation.

Mathematics subject classification 2020: 57Q70, 55U10, 52C22, 05E45.

1 Introduction

Recall that the face vector of a finite n-dimensional simplicial complex K encodes the
number of simplices it contains in each dimension, that is its number of vertices, edges
and so on, see §2.1. When K is the boundary of a convex polytope for example, it has
been (strikingly) understood by L.J. Billera, C.W. Lee and R. P. Stanley what this face
vector can be, confirming an earlier conjecture of P. McMullen, see [1, 22, 8, 24]. The
answer is expressed in terms of its h-vector h(K) = (h0(K), . . . , hn+1(K)), which is a
linear recombination of its face vector, see §2.1, and turns out to coincide with the list of
Betti numbers of the toric variety X(K) associated to the convex polytope. In particular,
Poincar duality in X(K) implies that hj(K) = hn+1−j(K) for every j ∈ {0, . . . , n + 1}, a
result which also follows directly from the Dehn-Sommerville relations, see [15, 14, 11, 24]
or also Theorem 1.1 of [18]. We will declare such a vector to be palindromic, see Definition
3.1. In general, it is unclear how to understand h-vectors, except at least for shellable
complexes, see §8.3 of [24]. We introduced in [17] a notion of tiling of simplicial complexes
and when such a tiling τ exists, e.g. for shellable complexes, defined its h-vector h(τ) =
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(h0(τ), . . . , hn+1(τ)) to be the number of tiles of each type used by τ , see §2.2. A tile
here, or basic tile, is just a simplex deprived of several of its codimension one faces, whose
number is called its order, so that closed and open simplices are particular ones, of minimal
and maximal order respectively, see Definition 2.2. By Theorem 4.9 and Corollary 4.10
of [17], two h-tilings τ and τ ′ of a simplicial complex K have same h-vector provided
h0(τ) = h0(τ ′) and when moreover the latter equals one, this h-vector coincides with the
h-vector of K. These results thus sometimes provide a geometric meaning of h-vectors but
also provide a larger class of vectors of interest, for h0(τ) need not be one. If among the
closed manifolds, only the spheres carry shellable triangulations [12, 23], we do not know
which ones carry h-tileable triangulations. We however prove the following, see Corollary
3.13.

Theorem 1.1. The product of a sphere and a torus of any dimensions carries h-tileable
triangulations.

Definitely, a closed manifold of even dimension and negative Euler characteristic has
no h-tileable triangulations though, see Lemma 2.9.

Influenced by the discrete Morse theory of R. Forman [6, 7], we enlarged in [19] the
collection of tiles in each dimension by allowing a unique face of higher codimension to be
removed from a simplex, thus introducing Morse tiles, see Definition 2.4. These include a
collection of critical tiles of any index and led to properties of Morse tileable and shellable
complexes, see §2.2. Among basic tiles, closed and open simplices are the only critical
ones, of minimal and maximal indices respectively. We proved that any triangulation on a
closed surface is Morse shellable and that any closed three-manifold carries Morse shellable
triangulations, see Theorems 1.3 and 1.4 of [19]. Moreover, Morse tilings carry compatible
discrete vector fields and in the case of Morse shellings, these are gradient vector fields of
discrete Morse functions whose critical points are in one-to-one correspondence with the
critical tiles of the tiling, preserving the index, see Theorem 1.2 of [19]. We now prove, see
Corollary 3.9.

Theorem 1.2. Any finite product of closed manifolds of dimensions less than four carries
Morse shellable triangulations.

Recall that H. Bruggesser and P. Mani proved that the boundary of every convex
polytope is shellable, while some triangulations on spheres are not, see [3, 13, 24]. We do
not know any closed triangulated manifold which is not Morse tileable or shellable. We
encode the number of critical tiles of each index used by an n-dimensional Morse tiling τ
in a critical vector c(τ) = (c0(τ), . . . , cn(τ)) and likewise, the number of tiles of each order
it uses in an h-vector h(τ) = (h0(τ), . . . , hn+1(τ)), as in the case of h-tilings, see §2.2. We
then prove, see Corollary 3.3 and Theorem 3.5.

Theorem 1.3. The h-vector of an h-tiling on a closed triangulated manifold is palindromic
iff its c-vector is. Likewise, the h-vector of a Morse tiling on a closed triangulated manifold
of dimension less than four is palindromic iff its c-vector is.
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The tilings given by Theorems 1.1 and 1.2 can be chosen to have palindromic h-vectors
as well. Does there exist a Morse tiling on a closed triangulated manifold which has palin-
dromic c-vector but non palindromic h-vector? It would also be of interest to get Theorem
1.2 in any dimension. In dimension three, it has been obtained in [19] by successive attach-
ments of triangulated handles equipped with Morse shellings. We now prove the existence
of such shellings on every handle, see Corollary 3.17.

Theorem 1.4. For every 0 ≤ k ≤ n, the handle
◦
∆k ×∆n−k carries Morse shellable

triangulations using a unique critical tile, of index k.

The core of the paper actually aims at proving that the product of two Morse tileable
or shellable simplicial complexes carries Morse tileable or shellable triangulations. We
first prove this result for single Morse tiles, see Theorem 3.14 of which Theorem 1.4 is a
special case, and then observe a duality phenomenon which makes it possible to get the
palindromic property, see Theorem 3.16. We then prove the result in general under some
tameness condition on the tilings, see §2.3, to get.

Theorem 1.5. Let K1 and K2 be finite simplicial complexes equipped with tame Morse
tilings (resp. shellings) τ1 and τ2. Then, K1 × K2 carries tame Morse tileable (resp.
shellable) primitive triangulations. Moreover, if τ1, τ2 are pure dimensional, these Morse
tilings have palindromic h-vectors provided h(τ1) and h(τ2) are palindromic.

The critical vector of such tilings on K1×K2 is a product of the ones of τ1 and τ2 while
τ1, τ2 are always pure dimensional in the case of triangulated manifolds, see Lemma 2.6
and Theorem 3.8. Theorem 1.5 suffices to deduce Theorems 1.1 and 1.2, for the tilings or
shellings on each factor can be chosen to be tame and it has a counterpart which produces
h-tilings as well, see Theorem 3.10. In fact, any Morse tiling or shelling becomes tame after
a single barycentric subdivision, see Proposition 2.14. We finally provide many examples
of Morse shellings throughout the paper, see in particular §5.4.

We recall in section 2 the classical notions of face and h-vectors of simplicial complexes,
the notions of tilings and shellings defined in [17, 19] and we introduce the tameness condi-
tion needed to get Theorem 1.5. We then formulate our main results in section 3, devoting
§3.1 to the palindromic property and Theorem 1.3, §3.2 to Theorem 1.5 and §3.3 to the
special case of single tiles and Theorem 1.4. We study in §4 the cartesian products of two
simplices together with the shellings of its staircase triangulations. This makes it possible
to prove the main results in §§5 and 6.

Acknowledgement: This work was partially supported by the ANR project MI-
CROLOCAL (ANR-15CE40-0007-01).
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2 Preliminaries

2.1 Simplicial complexes

Let n be a non-negative integer. An n-simplex is the convex hull of n + 1 points affinely
independent in some real affine space. A face of a simplex is the convex hull of a subset of
its vertices and we call it a facet when it has codimension one in the simplex. The standard
n-simplex is the convex hull of the standard basis of Rn+1. It will be denoted by ∆[n], or
sometimes just by ∆n, fixing an identification between its vertices and the set of integers
[n] = {0, . . . , n}. Likewise, for every subset J of {0, . . . , n}, we will denote by ∆J the face
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of ∆[n] whose vertices belong to J . A total order on the vertices of any simplex prescribes
then an affine isomorphism with the standard simplex of the corresponding dimension.

A finite simplicial complex K is a finite collection of simplices which contains all faces
of its simplices and such that the intersection of any two simplices in this collection is a face
of each of them, see [16, 5]. The dimension of such a complex is the maximal dimension of
its simplices and it is said to be pure n-dimensional if all the simplices that are maximal
with respect to the inclusion are of dimension n. Such a simplicial complex K inherits a
topology and the underlying topological space is usually denoted by |K|, see [16, 5]. When
it gets homeomorphic to some manifold, any such homeomorphism is called a triangulation
of the manifold.

The face vector or f -vector of an n-dimensional finite simplicial complex K is the
vector f(K) = (f−1(K), f0(K), . . . , fn(K)), where for every j ∈ {0, . . . , n}, fj(K) denotes
the number of j-simplices of K while f−1(K) = 1 counts the empty set. Likewise, the h-
vector h(K) = (h0(K), . . . , hn+1(K)) of K is defined by the relation

∑n+1
i=0 hi(K)Xn+1−i =∑n+1

i=0 fi−1(K)(X − 1)n+1−i, see [15, 21, 8, 24].

Example 2.1. The boundary of a simplex is homeorphic to a sphere. Its h-vector equals
(1, . . . , 1).

Let us finally recall that a finite simplicial complex is said to be shellable iff there
exists an order σ1, . . . , σN of its maximal simplices such that for every i ∈ {2, . . . , N},
σi ∩

(
∪N−1
j=1 σj

)
is non-empty of pure dimension dim σi − 1, see [12, 24] for instance. This

means that the simplices σ1, . . . , σN are not proper faces of any other simplex in K and
that any simplex in σi ∩

(
∪N−1
j=1 σj

)
is a face of a (dimσi − 1)-dimensional one in this

intersection. It is convenient for us to allow this intersection for being empty, so that a
shelling for us need not be connected, see Remark 2.16 of [19] and §2.2.

2.2 Morse shellings

We now recall the notions of tilings and shellings introduced in [17, 19].

Definition 2.2. A basic tile of dimension n and order k ∈ {0, . . . , n+ 1} is an n-simplex
deprived of k of its facets.

Two basic tiles of same dimension and order are isomorphic to each other via some affine
isomorphism. We denote by T nk = ∆[n] \ ∪k−1

j=0∆[n]\{j} the standard basic tile of dimension
n and order k, compare [17].

Example 2.3. 1) The open (resp. closed) n-simplex is the basic tile of dimension n and
order n+ 1 (resp. 0).

2) Figure 1 depicts the four isomorphism classes of basic tiles in dimension two.

Definition 2.4 (Definition 2.4 of [19]). A Morse tile of dimension n and order k ∈
{0, . . . , n + 1} is an n-simplex σ deprived of k of its facets together with, if k ≥ 1, a
possibly empty face µ of higher codimension. The simplex σ (resp. σ deprived of the k
facets) is called the underlying simplex (resp. basic tile), while µ is called its Morse face.
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Figure 1: The basic tiles in dimension two.

When k ≥ 1, the dimension of µ ranges between k − 1 and n − 2 and the underlying
basic tile has a unique face of dimension k − 1, see [19]. Any basic tile is Morse and a
Morse tile is said to be critical of index k iff it is of order k and its Morse face has minimal
dimension k− 1, while a closed simplex is critical of index zero. The other Morse tiles are
said to be regular. We sometimes denote by Cn

k (resp. T n,lk ) a n-dimensional critical tile
of index k (resp. a n-dimensional Morse tile of order k with l-dimensional Morse face), so
that Cn

k = T n,k−1
k . They are all isomorphic to each other via some affine isomorphism.

Definition 2.5 (Definition 2.8 of [19]). A subset S of the underlying topological space |K|
of a finite simplicial complex K is said to be Morse tileable iff it admits a partition by
Morse tiles such that for every j ≥ 0, the union of tiles of dimension ≥ j is closed in S.
Such a partition τ is called a Morse tiling and the closure of S in K is called the underlying
simplicial complex.

When the tiling uses only basic tiles, it is called an h-tiling, see [17, 19]. Of special
interest is the case S = S where a finite simplicial complex is Morse tiled, but Definition 2.5

is more general and includes sets such as the triangulated handles
◦
∆k ×∆n−k of Theorem

1.4. The dimension of a tileable subset is the dimension of the underlying simplicial
complex, that is the maximal dimension of the tiles in any Morse tiling. When all tiles
have same dimension, the tiling is said to be pure dimensional. This is always the case on
compact triangulated manifolds. Indeed,

Lemma 2.6. Any Morse tiling on a compact connected triangulated manifold is pure di-
mensional.

Proof. Let n be the dimension of the triangulated manifold K and let τ be any Morse tiling
on K. Then, the n-dimensional tiles of τ cover all open n-dimensional simplices of K and
by Definition 2.5, their union is closed in K, so that it contains all closed n-dimensional
simplices of K as well. Since K is a compact connected triangulated manifold, the latter
is K itself.

Definition 2.7. The h-vector (resp. c-vector) of a n-dimensional Morse tiling τ is the
vector h(τ) = (h0(τ), . . . , hn+1(τ)) (resp. c(τ) = (c0(τ), . . . , cn(τ))) whose entries hk(τ),
k ∈ {0, . . . , n + 1} (resp. ck(τ), k ∈ {0, . . . , n}), are the number of tiles of order k (resp.
critical tiles of index k) used by τ .
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In particular, h0(τ) = c0(τ) and hn+1(τ) = cn(τ). Recall that the h-vector h(τK) of
any h-tiling τK of a finite simplicial complex K coincides with the h-vector of K as soon
as h0(τK) = 1 and in any cases, two h-tilings τK and τ ′K of K have same h-vector as soon
as h0(τK) = h0(τ ′K), by Theorem 4.9 and Corollary 4.10 of [17].

Example 2.8. The boundary of an n-simplex admits h-tilings using exactly one (n − 1)-
dimensional tile of each order.

The c-vector, or critical vector, of a Morse tiling encodes the Euler characteristic of the
tiled simplicial complex. Indeed,

Lemma 2.9. Let K be an n-dimensional finite simplicial complex equipped with a Morse
tiling τK. Then, its Euler characteristic satisfies χ(K) =

∑n
k=0(−1)kck(τK).

Proof. Let us equip the underlying topological space |K| with its structure of cellular
complex given by open simplices and compute χ(K) as the alternate sum of the dimensions
of its cellular chain complexes. By Lemma 2.5 of [19], the contribution of each regular Morse
tile to this count vanishes while a critical tile of index k contributes as (−1)k. Hence the
result.

We finally recall the definition of Morse shellability given in [19].

Definition 2.10 (Definition 2.14 of [19]). A subset S of the underlying topological space
|K| of a finite simplicial complex K is said to be Morse shellable iff it admits a Morse
tiling together with a filtration ∅ ⊂ S1 ⊂ · · · ⊂ SN = S of Morse tiled subsets such that for
every i ∈ {2, . . . , N}, Si \ Si−1 is a single tile of the tiling.

A Morse tiled subset of S is a union of tiles which is closed in S, see Definition 9 of
[19]. When the tiling uses only basic tiles, this notion of Morse shelling coincides with
the classical notion of shelling, without the non-emptyness assumption though, see §2.1,
Theorem 2.15 and Remark 2.16 of [19]. A finite simplicial complex, when equipped with a
Morse tiling, carries discrete vector fields which are compatible with the tiling and in the
case of a Morse shelling, any of these is the gradient vector field of a discrete Morse function
in the sense of R. Forman [6], whose critical points are in one-to-one correspondence,
preserving the index, with the critical tiles of the tiling, see Theorem 1.2 of [19]. The Betti
numbers of a Morse shelled finite simplicial complex thus get bounded from above by the
number of critical tiles of the corresponding index of the shelling, see Corollary 1.5 of [19].

2.3 Tame Morse shellings

In order to get a Morse shelling on the product of two Morse shelled complexes, we need
the shellings to satisfy some tameness condition which we now introduce.

Proposition 2.11. Let K be a finite simplicial complex whose edges are oriented. Then,
the following properties are equivalent:
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1. There is no triangle in K whose boundary is an oriented one-cycle.

2. For every simplex of K, the relation ”x ≤ y iff x = y or the edge between x and y is
oriented from x to y” defines a total order on its vertices.

Moreover, under these conditions, the inclusion of faces define increasing maps, that is
they preserve the order on the vertices.

Proof. The second condition implies the first one by transitivity. Indeed, if x, y, z denote
the three vertices of a triangle θ and if the edges are oriented from x to y and from y to
z, then by transitivity of the order, x ≤ z, so that the edge between x and z cannot be
oriented from z to x, it would imply x = z by antisymmetry and this order wouldn’t be
total. Conversely, let σ be any simplex of K, the relation defined in the second property
is reflexive by definition and antisymmetric since two different vertices x, y are joined by
a unique edge so that x ≤ y and y ≤ x cannot happen unless x = y. Now the transitivity
follows from the first property. Indeed, if x, y and z are three different vertices of σ, then
we may assume that the edge between x and y is oriented from x to y and that the edge
between y and z is oriented from y to z. Let θ be the face with vertices x, y, z. By the first
property, the edge between x and z has to be oriented from x to z. Hence the transitivity.
This order relation is then total since any two vertices of σ are connected by an edge.

Example 2.12. 1) If the vertices of a finite simplicial complex are totally ordered, then
this order induces an orientation on every edge, from the minimal vertex to the maximal
one, and the conditions of Proposition 2.11 get satisfied.

2) The boundary ∂θ of a triangle θ satisfies the properties of Proposition 2.11 what-
ever the orientations on its edges are, since it contains no two-simplex. However, θ itself
equipped with such orientations need not satisfy these properties.

The first part of Example 2.12 shows that it is always possible to orient the one-skeleton
of a finite simplicial complex K in order to define in a compatible way a total order on
the vertices of each of its simplices, turning it into an ordered simplicial complex in the
sense of Definition II.8.7 of [5]. When K is equipped with a Morse tiling, we would like in
addition that for every Morse tile with underlying simplex σ and non-empty Morse face µ,
the vertices of µ are the maximal ones among the ones of σ. Recall that the link Lkσ(µ)
of µ in σ is by definition the convex hull of the vertices of σ \ µ. We thus would like that
the edges between Lkσ(µ) and µ are oriented from Lkσ(µ) to µ, see Figure 2.

Definition 2.13. The tiling of a Morse tiled set S is said to be tame iff there exists an
orientation on the one-skeleton of the underlying simplicial complex K which satisfies the
following order and tameness conditions.

1. There is no triangle in K whose boundary is an oriented one-cycle.

2. For every Morse tile with underlying simplex σ and non-empty Morse face µ, the
edges between Lkσ(µ) and µ are oriented from Lkσ(µ) to µ.

8



Figure 2: A Morse face µ in a three-simplex.

Every h-tiling is tame by the first part of Example 2.12, since the second condition of
Definition 2.13 is then empty and the first one satisfied. In fact, the order condition in
Definition 2.13 provides a structure of ordered simplicial complex onK given by Proposition
2.11, see Definition II.8.7 of [5], while the tameness condition requires some compatibility
between this structure and the tiling.

The tameness property gets satisfied by any Morse tiling after one barycentric subdi-
vision for example.

Proposition 2.14. The first barycentric subdivision of any Morse tiled (resp. shelled) set
carries tame Morse tilings (resp. tame Morse shellings) containing the same number of
critical tiles with the same indices.

Proof. Let S be a Morse tiled (resp. Morse shelled) set and let K be its underlying
simplicial complex. By Corollary 2.21 of [19], the first barycentric subdivision Sd(S) of
S carries Morse tilings (resp. shellings) having the same number of critical tiles with the
same indices. Its underlying simplicial complex is Sd(K). Now, the one-skeleton of the
latter is canonically oriented. Indeed, its vertices are by definition the barycenters σ̂ of the
simplices σ of K while an edge connects two vertices σ̂ and τ̂ iff σ is a face of τ or vice-versa,
see [16]. Let us orient such an edge from σ̂ to τ̂ iff τ is a face of σ. The order condition of
Definition 2.13 gets satisfied by this order on the one-skeleton of Sd(K). We have to prove
that the tameness condition gets satisfied as well. Let T ′ be a Morse tile of Sd(S) with
underlying simplex σ′ and non-empty Morse face µ′. By construction, there exists a Morse
tile T of S, with underlying simplex σ and non-empty Morse face µ such that σ′ ⊂ Sd(σ)
and µ′ = Sd(µ) ∩ σ′, see [19]. There exists then a maximal flag σ0 ⊂ σ1 ⊂ · · · ⊂ σn = σ
such that the vertices of σ′ are the barycenters σ̂i of σi, i ∈ {0, . . . , n}, where n denotes the
dimension of T ′. By maximal flag we mean that for every 0 ≤ i ≤ n, dim σi = i and for
every 0 ≤ i < j ≤ n, σi is a face of σj. Now such a vertex σ̂j belongs to µ′ iff σj is a face
of µ and this then implies that σ̂i ∈ µ′ for all i ≥ j, since then σi ⊂ σj. The vertices of σ′

that belong to the Morse face µ′ are thus the maximal ones with respect to this canonical
order. Hence the result.

We may finally provide a criterium which ensures that a Morse tiling is tame.
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Proposition 2.15. A Morse tiling is tame if σ ∩ µ′ = σ′ ∩ µ for every tiles T, T ′ with
underlying simplices σ, σ′ and non-empty Morse faces µ, µ′.

For example, the condition in Proposition 2.15 gets satisfied if all tiles with non-empty
Morse faces have disjoint underlying simplices.

Proof. Let K be the underlying simplicial complex of such a Morse tiled set S and let L
be the union of all Morse faces of its tiles. Let us fix a total order on the vertices of L and
a total order on the vertices of K \L. Then, all edges of K whose vertices are both in L or
both outside L get oriented by these total orders from the minimal vertex to the maximal
one. We finally orient the edges between K \L and L from K \L to L. These orientations
satisfy the properties of Proposition 2.11, compare Example 2.12. Moreover, every tile T
with underlying simplex σ and non-empty Morse face µ satisfies σ ∩ L = µ by hypothesis
and its edges between Lkσ(µ) and µ are oriented from Lkσ(µ) to µ by construction, so that
the tiling is indeed tame by definition.

3 Main results

3.1 Palindromic vectors

Let n be a non-negative integer, the involution k ∈ {0, . . . , n} 7→ n−k ∈ {0, . . . , n} induces
the automorphism v = (v0, . . . , vn) ∈ Rn 7→ v̌ = (vn, . . . , v0) ∈ Rn.

Definition 3.1. A vector v of Rn is said to be palindromic iff v̌ = v.

For example, the real Betti numbers of closed connected oriented manifolds define
palindromic vectors by Poincar duality, see [16, 2]. The h-vectors of convex polytopes are
palindromic as well, see [15, 22, 8, 24]. We are going to prove that h-vectors of Morse
tilings are likewise often palindromic.

Theorem 3.2. Let K be an n-dimensional simplicial complex homeomorphic to a closed
manifold and equipped with an h-tiling τ . Then,

1. If n is odd, the h-vector of τ is palindromic.

2. If n is even, for every i ∈ {0, . . . , n+ 1},

hi(τ)− hn+1−i(τ) = (−1)i
(
n+ 1

i

)
(h0(τ)− hn+1(τ)).

Proof. By Theorem 4.9 of [17], the h-vector of τ satisfies
∑n+1

i=0 hi(τ)Xn+1−i =
∑n+1

i=0 fi−1(K)(X−
1)n+1−i provided one sets f−1(K) = h0(τ). By Theorem 2.1 of [14], the Dehn-Sommerville
relations can be expressed by the relation RK(−1−X) = (−1)n+1RK(X), where RK(X) =
X
∑n

i=0 fi(X)X i − χ(K)X, see also Theorem 1.1 of [18]. Finally, we know from Lemma
2.9 that the Euler characteristic of K satisfies χ(K) = h0(τ) + (−1)nhn+1(τ), since the
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only critical tiles of an h-tiling are the open and closed simplices. We deduce that
RK(X) =

∑n+1
i=0 hi(τ)X i(X + 1)n+1−i − h0(τ) − χ(K)X, so that Macdonald’s result [14]

becomes

n+1∑
i=0

(
hi(τ)− hn+1−i(τ)

)
X i(X + 1)n+1−i −

(
h0(τ)− hn+1(τ)

)
= 0 if n is even and

n+1∑
i=0

(
hi(τ)− hn+1−i(τ)

)
X i(X + 1)n+1−i −

(
h0(τ)− hn+1(τ)

)
(1 + 2X) = 0 if n is odd.

If n is odd, the Euler characteristic of a closed n-dimensional manifold vanishes from
Poincar duality, see [16] for example, so that h0(τ) = hn+1(τ). We thus deduce in this case
that h(τ) is palindromic. If n is even, we observe that 1 =

∑n+1
i=0 (−1)i

(
n+1
i

)
X i(X+ 1)n+1−i

and get the result, since the monomials (X i(X+1)n+1−i)i∈{0,...,n+1} are linearly independant
over R.

Corollary 3.3. The h-vector of any h-tiling on a simplicial complex homeomorphic to a
closed manifold is palindromic iff its c-vector is palindromic.

Proof. The h-tiling τ of a simplicial complex homeomorphic to a closed n-dimensional
manifold only contains n-dimensional tiles by Lemma 2.6 and the singular ones are the
open and closed simplices by definition. Thus, if h(τ) is palindromic, h0(τ) = hn+1(τ),
so that c0(τ) = cn(τ) which means that c(τ) is palindromic as well. Converserly, if c(τ)
is palindromic, then c0(τ) = cn(τ), so that h0(τ) = hn+1(τ) and the result follows from
Theorem 3.2.

Example 3.4. 1) The boundary of a (n+1)-simplex is shellable and the associated h-tiling
uses one n-dimensional basic tile of each order. Its h-vector (1, . . . , 1) is thus palindromic.

2) The boundary of a triangle is also tiled by three one-dimensional tile of order one,
see Figure 3. The associated h-vector (0, 3, 0) is palindromic.

Figure 3: The non-shellable tiling on ∂∆2.

3) The cylinder ∆1 × ∂∆2 has a triangulation tiled by six basic tiles of order one,
obtained by gluing three copies of the square ∆1 × T 1

1 pictured in Figure 4. By caping this
cylinder with two open triangles, we get an h-tiled triangulation on the two-sphere for which
neither the h-vector (0, 6, 0, 2) nor the critical vector (0, 0, 2) are palindromic.

11



Figure 4: An h-tiling on ∆1 × T 1
1 .

Example 3.4 exhibits in particular an h-tiling with non-palindromic h-vector on the
triangulated two-sphere. Does there exist such h-tilings on the other even-dimensional
spheres?

In the case of Morse tilings, we observe.

Theorem 3.5. Let K be an n-dimensional simplicial complex homeomorphic to a closed
manifold of dimension at most three and equipped with a Morse tiling τ . Then, the following
three conditions are equivalent.

1. The tiling τ uses as many open simplices as closed simplices.

2. The c-vector of τ is palindromic.

3. The h-vector of τ is palindromic.

Proof. The implications 2 ⇒ 1 and 3 ⇒ 1 hold true in any dimension, while 1 ⇒ 2
is obvious in dimension at most two and follows from Lemma 2.9 in dimension three,
since the Euler characteristic of K then vanishes from Poincar duality, see [16]. Let us
thus assume that 1 holds true and prove the implication 1 ⇒ 3. By the simplest Dehn-
Sommerville relation, every (n− 1)-simplex σ of K is the face of exactly two n-simplices.
The interiors of these two simplices are covered by two tiles of the tiling and the open

face
◦
σ is a facet of one of them and a missing facet of the other since the tiling defines a

partition of K. It follows that the total number of facets of the tiles of τ coincides with
the total number of missing facets of these tiles. By 1, the contributions to these totals of
the tiles of order 0 and n+ 1 coincide. If n = 3, the same holds true for tiles of order two
since they have both two facets and two missing facets. In dimension two (resp. three),
we deduce that τ uses as many tiles of order one as tiles of order two (resp. three), so that
h(τ) is palindromic.

Example 3.6. The octahedron carries a Morse tiling with non palindromic c-vector and
h-vector. It is obtained by patching the two tiled squares pictured in Figure 5, so that its
h-vector (resp. c-vector) equals (1, 4, 1, 2) (resp. (1, 1, 2)).

The tiling given by Example 3.6 contains two critical tiles of indices one and two which
could be replaced by two regular tiles of order two to produce a tiling with palindromic
h-vector. Such examples with non-palindromic h-vectors and c-vectors can be obtained in a
similar way in higher dimensions. But we do not know any Morse tiled closed triangulated
manifold with palindromic critical vector and non-palindromic h-vector.

12



Figure 5: A Morse tiling on the octahedron.

3.2 Tilings of products

Recall that the product of two simplicial complexes is not a simplicial complex, it is a poly-
hedral complex whose cells are products of two simplices. Such a product can nevertheless
be triangulated in such a way that each product of two simplices becomes the union of
simplices of the underlying affine space, see §II.8 of [5], [9, 20] and §4.3. We are going to
consider such triangulations, which are primitive in the sense of Definition 3.7 and in fact
associated to staircases, see §4.1 and [9].

Definition 3.7. A primitive triangulation of a polyhedral complex is a triangulation having
the same set of vertices.

Our main result is the following Theorem 3.8, where we denote by uv the graded product
of a vector u = (u0, . . . , un) of Rn+1 with a vector v = (v0, . . . , vm) of Rm+1, that is the
product of the corresponding polynomials, so that uv = (w0, . . . , wn+m) where for every
k ∈ {0, . . . , n+m}, wk =

∑k
j=0 ujvk−j.

Theorem 3.8. Let S1 and S2 be two Morse tiled (resp. shelled) sets with tame tilings (resp.
shellings) τ1 and τ2. Then, S1 × S2 carries tame Morse tileable (resp. shellable) primitive
triangulations with critical vector c(τ1)c(τ2). Moreover, if τ1, τ2 are pure dimensional, their
h-vector is palindromic provided h(τ1) and h(τ2) are.

By triangulation of S1 × S2 we mean triangulations on the product of the underlying
simplicial complexes. We do not guarantee Morse tileability for all primitive triangulations
on this product, the ones for which we do by Theorem 3.8 are given by the tameness of
the tilings, see §6.1. Let us also recall that all h-tilings are pure dimensional in the case of
triangulated manifolds by Lemma 2.6. We deduce Theorem 1.2, namely.

Corollary 3.9. Every finite product of closed manifolds of dimensions less than four car-
ries triangulations which admit tame Morse shellings with palindromic c-vectors and h-
vectors.

Proof. By Theorem 1.4 of [19], every closed connected manifold of dimension less than four
carries a Morse shellable triangulation which can moreover be chosen in such a way that
the Morse shelling uses a unique critical tile of index 0 and a unique critical tile of maximal
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index, for there exists a Morse function on this manifold having a single minimum and a
single maximum, see [4]. By Proposition 2.14, such a Morse shelling becomes tame after
one barycentric subdivision and it keeps the property to use only one closed and one open
simplex. By Theorem 3.5, its critical and h-vector are then palindromic. The result now
follows by finite induction from Theorem 3.8.

When one of the tilings τ1, τ2 uses only regular tiles, the tilings given by Theorem 3.8
share the same property since c(τ1)c(τ2) then vanishes. However, it is not supposed to be
an h-tiling even if τ1 and τ2 are, for c(τ1)c(τ2) has more than two non-vanishing entries in
general. The following variant of Theorem 3.8 fills this gap.

Theorem 3.10. Let S1, S2 be two h-tiled sets and let the one-skeleton of their underlying
simplicial complexes K1, K2 be equipped with orientations given by Proposition 2.11. Then,
the tiling of S1 × S2 given by Theorem 3.8 is an h-tiling provided that if S1 (resp. S2)
contains a tile which has been deprived both of its facet not containing the biggest vertex
and its facet not containing the least vertex, then every tile of S2 (resp. S1) has been
deprived either of its facet not containing the biggest vertex or of its facet not containing
the least vertex.

Recall that the total orders on the vertices of the simplices of K1 and K2 are given by
Proposition 2.11. If the h-tiling of S1 (resp. S2) contains an open simplex, then the h-tiling
of S2 (resp. of S1) has in particular to be regular for Theorem 3.10 to apply. Now, if S2

is the non-shellable tiling of ∂∆2 given in the second part of Example 3.4, then Theorem
3.10 applies whatever S1 is. We may compute the h-vector of S1 × S2 in this case.

Theorem 3.11. Let S be an h-tiled set of pure dimension n. Then, S × ∂∆2 carries
primitive triangulations which admit h-tilings τ such that h0(τ) = hn+2(τ) = 0 and for
every j ∈ {1, . . . , n+ 1}, hj(τ) = jhj(S) + (n+ 2− j)hj−1(S).

In Theorem 3.11 again, h(τ) is then palindromic as soon as h(S) is, or provided S is
homeomorphic to a closed manifold by Corollary 3.3, since c(τ) is palindromic. This result
implies Theorem 1.1, showing that the product of a sphere and a torus of any dimensions
carries h-tileable triangulations. More precisely, we deduce the following Corollary 3.13.

Definition 3.12. A walk of length m from the integer a to b is a sequence wn,m =(
wn,m(i)

)
i∈{n,...,n+m} such that wn,m(n) = a, wn,m(n+m) = b and for every i ∈ {n, . . . , n+

m−1}, either wn,m(i+1) = wn,m(i) or wn,m(i+1) = wn,m(i)+1. The weight of such a walk
is the product p(wn,m) = Πn+m−1

i=n pi(wn,m), where pi(wn,m) = wn,m(i) if wn,m(i+1) = wn,m(i)
and pi(wn,m) = i+ 1− wn,m(i) if wn,m(i+ 1) = wn,m(i) + 1.

Corollary 3.13. For every n ≥ 0 and m ≥ 1, the product ∂∆n+1 × (∂∆2)m carries
primitive triangulations which admit h-tilings using no critical tile. Moreover, the h-vector
of such an h-tiling τ is palindromic and satisfies, for every k ∈ {0, . . . , n+m+1}, hk(τ) =∑

wn,m
p(wn,m), where the sum is taken over all walks of length m from an element of

{0, . . . , n+ 1} to k.
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Proof. Let us equip ∂∆n+1 with the shelling given in the first part of Example 3.4, which
uses one tile of each order k ∈ {0, . . . , n + 1}. The result follows by induction on m, by
successive applications of Theorem 3.11. Indeed, when m = 1, if k ∈ {0, n+2}, the walk is
unique and its weight vanishes. If k belongs to {1, . . . , n+ 1}, there are two walks leading
to k, namely (k, k) and (k−1, k). The weight of the first one is k by Definition 3.12 and the
weight of the second one is n+2−k. By Theorem 3.11, hk(∂∆n+1×∂∆2) = k+(n+2−k)
coincides with the sum of these walks. Let us now assume that the result is proven up
to the rank m and let us prove it for m + 1. Again, for k = 0 or n + m + 2, the walk
leading to k is unique and its weight vanishes. When k belongs to {1, . . . , n + m + 1},
a walk wn,m+1 leading to k restricts either to a walk wn,m leading to k or to a walk
wn,m leading to k − 1 while conversely, any such walk extends uniquely to a walk wn,m+1

leading to k. Moreover, by Definition 3.12, in the first case, p(wn,m+1) = p(wn,m)k and
in the second, p(wn,m+1) = p(wn,m)(n + m + 2 − k), while by the induction hypothesis,∑

wn,m
p(wn,m) = hk(∂∆n+1 × (∂∆2)m) (resp.

∑
wn,m

p(wn,m) = hk−1(∂∆n+1 × (∂∆2)m)) in

the first case (resp. in the second case). The result now follows from Theorem 3.11 with
S = ∂∆n+1 × (∂∆2)m, the palindromic property being ensured by Corollary 3.3.

The h-vector hn,m of the h-tilings given by Corollary 3.13 has its own interest. By
Theorem 4.9 of [17], it does not depend on the choice of the tiling but differs from the
h-vector of the underlying primitive triangulation, see Corollary 4.10 of [17]. What is the
asymptotic of hn,m as m grows to +∞? More precisely, what is the limit, as m grows to
+∞, of the probability measure

1∑n+m+1
k=0 hn,mk

n+m+1∑
k=0

hn,mk δ 2k−n−m−1
n+m+1

,

where δx denotes the Dirac measure at x ∈ R?
We also do not know which closed manifolds carry h-tileable triangulations. They have

non-negative Euler characteristic by Lemma 2.9.

3.3 Tilings of handles and duality

The sets S1, S2 in Theorems 3.8 and 3.10 may just consist of single tiles. In fact, these
results follow from this special case to which we devote this section.

Theorem 3.14. Let T1 and T2 be two basic tiles, one of which being regular. Then, T1×T2

carries shellable primitive triangulations using only regular tiles in their shelling. If T1 and
T2 are Morse tiles, then T1 × T2 carries Morse shellable primitive triangulations using a
critical tile iff both T1 and T2 are critical and this critical tile is then unique of index the sum
of the indices of T1 and T2. Moreover, all these shellings are tame and pure dimensional.

These triangulations and shellings given by Theorem 3.14 are inherited from particular
total orders on the vertices of the underlying simplices of T1 and T2, see §5.2.4. They all
have same h-vector and satisfy the following duality property.
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Definition 3.15. Let σ be an n-simplex and σ0, . . . , σn be its facets. For every J ⊂
{0, . . . , n}, the basic tiles T = σ \

⋃
j∈J σj and qT = σ \

⋃
j∈{0,...,n}\J σj are said to be dual

to each other.

Theorem 3.16. Let T1, qT1 (resp. T2, qT2) be two Morse tiles whose underlying basic tiles

are dual to each other. Then, the Morse shellings on T1 × T2 (resp. qT1 × qT2) given by

Theorem 3.14 all have same h-vector and satisfy h( qT1 × qT2) = qh(T1 × T2).

In Theorem 3.16, qh(T1 × T2) denotes the image of the h-vector h(T1 × T2) under the
palindromic automorphism defined in §3.1.

Theorem 3.14 provides in particular Morse shellings on every handle, whatever its index

is, where by handle of index k and dimension n, we mean the product
◦
∆k ×∆n−k as defined

in [19]. Such a Morse shelling has already been obtained in index 1 and n−1, see Corollary
3.17 of [19].

Corollary 3.17. For every 0 ≤ k ≤ n, the handle
◦
∆k ×∆n−k carries Morse shellable

primitive triangulations using a unique critical tile, of index k. �

Recall that Theorem 1.4 of [19], which provides Morse shelled triangulations on every
closed three-manifold, has been obtained by successive attachments of such Morse shelled
triangulated handles. We end this section by giving other remarkable shellings given by
Theorem 3.14.

Corollary 3.18. For every m,n > 0, T nn ×∆m (resp. T n1 ×
◦
∆m) carries shellable primitive

triangulations using basic tiles which are all isomorphic to each other, of order n (resp. of
order m+ 1).

Recall that T nn (resp. T n1 ) denotes a basic tile of dimension n and order n (resp. order
one), see §2.2.

Corollary 3.19. Let T1 (resp T2) be a Morse tile of odd dimension n (resp. m) and of
order m+1

2
(resp. n+1

2
). Then, T1×T2 carries Morse shellable primitive triangulations with

palindromic h-vector. Moreover, if the tiles are basic, these Morse shellings can be chosen
to be shellings.

Proof. Theorem 3.14 provides a Morse shelled triangulation on T1× T2 and even a shelled
triangulation if these tiles are basic, since they are regular. By hypothesis, the basic
tile underlying T1 is isomorphic to its dual and likewise, the basic tile underlying T2 is
isomorphic to its dual. The h-vectors of T1 × T2 and qT1 × qT2 thus coincide, while they are
dual to each other by Theorem 3.16. They must then be palindromic.

4 Cartesian product of two simplices

The cartesian product of two simplices is a structure of simplicial complex on their product
which is inherited from total orders on their vertices, see Definition II.8.8 of [5]. We study
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these primitive triangulations in this section, whose simplices are associated to staircases,
together with their shellings, see §4.3. The Cayley trick helps to visualize them, via the
mixed decompositions induced on one of the simplices, see §4.2 and [20, 10].

4.1 Staircases

Let m,n be two non-negative integers. We denote by C(n,m) the set of increasing -not
strictly increasing- functions f : {0, . . . , n} → {0, . . . ,m} such that f(n) = m and by
N(n,m) its cardinality. We recall that.

Lemma 4.1. For every m,n ≥ 0, N(n,m) =
(
n+m
n

)
.

Proof. To every f ∈ C(n,m) we may associate f̃ : k ∈ {0, . . . , n} 7→ f(k)+k ∈ {0, . . . ,m+
n}. This correspondence between C(n,m) and the set of strictly increasing functions
{0, . . . , n} → {0, . . . ,m + n} such that f(n) = m + n is bijective. Moreover, the image of
such a function is a subset of {0, . . . ,m + n} containing m + n and of cardinality n + 1
while every subset sharing these properties defines a strictly increasing map {0, . . . , n} →
{0, . . . ,m+ n} such that f(n) = m+ n. The result follows.

The space C(n,m) is equipped with the involution f ∈ C(n,m) 7→ f̌ ∈ C(n,m),
where for every j ∈ {0, . . . , n − 1}, f̌(j) = m − f(n − 1 − j) and f̌(n) = m. Also, the
lexicographic order on the n-tuples of integers induces a total order on C(n,m), so that for
every f, g ∈ C(n,m), f ≤ g iff (f(0), . . . , f(n − 1)) ≤ (g(0), . . . , g(n − 1)). The minimum
of C(n,m) is thus a function which vanishes on {0, . . . , n − 1} while its maximum is the
constant function equal to m.

Likewise, we denote by I(n,m) the set of collections I = (Ij)j∈{0,...,n} of intervals Ij =
{i ∈ {0, . . . ,m} | bI(j) ≤ i ≤ eI(j)} which cover {0, . . . ,m} and satisfy eI(j) = bI(j + 1)
for every 0 ≤ j < n. In particular, bI(0) = 0 and eI(n) = m. This space of staircases, see
§7.3.D of [9], is equipped with the involution I = (Ij)j∈{0,...,n} 7→ Ǐ = (Ǐj)j∈{0,...,n}, where for
every j ∈ {0, . . . , n}, Ǐj = {m−eI(n−j), . . . ,m−bI(n−j)}, so that bǏ(j) = m−eI(n−j) and
eǏ(j) = m− bI(n− j). This space also inherits a total order from the lexicographic order,
so that for every I, J ∈ I(n,m), I ≤ J iff (eI(0), . . . , eI(n− 1)) ≤ (eJ(0), . . . , eJ(n− 1)).

These spaces of functions and staircases are in bijective correspondence. Namely, for
every f ∈ C(n,m), let us denote by If the element of I(n,m) such that eIf = f .

Lemma 4.2. The maps f ∈ C(n,m) 7→ If ∈ I(n,m) and I ∈ I(n,m) 7→ eI ∈ C(n,m)
are bijective, Z/2Z-equivariant, order preserving and inverse one with respect to the other.

Proof. The maps are order preserving and inverse one with respect to the other by def-
inition. They are thus bijective as well. Now, let f ∈ C(n,m), we have to check

that I f̌ = qIf . For every j ∈ {0, . . . , n}, eI f̌ (j) = f̌(j) = m − f(n − 1 − j) while
e

|If
(j) = m− bIf (n− j) = m− eIf (n− 1− j) = m− f(n− 1− j). Hence the result.

Let us finally observe that exchanging the roles of n and m defines an involution
I(n,m)→ I(m,n).
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Lemma 4.3. For every I ∈ I(n,m) and every i ∈ {0, . . . ,m}, set Ji = {j ∈ {0, . . . , n} | i ∈
Ij}. Then, J = (Ji)i∈{0,...,m} belongs to I(m,n) and the correspondence I ∈ I(n,m) 7→ J ∈
I(m,n) is bijective.

Proof. Let I ∈ I(n,m) and i ∈ {0, . . . ,m}. We denote by bJ(i) (resp. eJ(i)) the least
(resp. greatest) element of Ji. If j ∈ {bJ(i), . . . , eJ(i)}, then bI(j) ≤ bI(eJ(i)) ≤ i and
eI(j) ≥ eI(bJ(i)) ≥ i, so that bI(j) ≤ i ≤ eI(j), that is i ∈ Ij. We deduce that Ji is the
interval {bJ(i), . . . , eJ(i)}. Moreover, bJ(0) = 0 and eJ(m) = n by definition. Finally, if
j ∈ Ji, then either i = eI(j) and j + 1 = bI(j + 1) ∈ Ji provided j < n, or i < eI(j)
and j = eJ(i). It follows that if i < m, bJ(i + 1) = eJ(i) so that J ∈ J(m,n). Now,
this correspondence I ∈ I(n,m) 7→ J ∈ I(m,n) is bijective. The preimage of an element
J = (Ji)i∈{0,...,m} is the staircase (Ij)j∈{0,...,n} defined in a similar way, namely for every
j ∈ {0, . . . , n}, Ij = {i ∈ {0, . . . ,m} | j ∈ Ji}. Indeed, we check likewise that I ∈ I(n,m)
and for every (j, i) ∈ {0, . . . , n}×{0, . . . ,m}, the conditions i ∈ Ij and j ∈ Ji are equivalent
to each other, so that the maps are inverse one to another.

4.2 Mixed decompositions of the simplex

Let us recall that ∆[m] denotes the standard m-simplex whose vertices are labelled by the
integers 0, . . . ,m. Every m-simplex whose vertices are totally ordered becomes canonically
isomorphic to ∆[m]. Likewise, for every subset J of {0, . . . ,m}, we denote by ∆J the face
of ∆[m] whose vertices belong to J .

Let then I ∈ I(n,m) and α = (α0, . . . , αn) ∈ Rn+1
+ be such that α0 + · · ·+ αn = 1. We

set
∆I,α = {α0x0 + · · ·+ αnxn ∈ ∆[m] | ∀j ∈ {0, . . . , n}, xj ∈ ∆Ij}.

When all the αj’s equal 1
n+1

, this cell ∆I,α is thus the rescaled Minkowski sum ∆I0+· · ·+∆In .
Likewise, for every j ∈ {0, . . . , n}, we denote by TIj the basic tile ∆Ij \∆Ij\{eI(j)} with

the convention that ∆∅ = ∅ and set

TI,α = {α0x0 + · · ·+ αnxn ∈ ∆[m] | ∀j ∈ {0, . . . , n− 1}, xj ∈ TIj and xn ∈ ∆In}.

Example 4.4. 1) If m = n = 2 and α = (1
3
, 1

3
, 1

3
), then I(2, 2) consists of six stair-

cases which, once labelled in the increasing order, are I1 = ({0}, {0}, {0, 1, 2}), I2 =
({0}, {0, 1}, {1, 2}), I3 = ({0}, {0, 1, 2}, {2}), I4 = ({0, 1}, {1}, {1, 2}), I5 = ({0, 1}, {1, 2}, {2})
and I6 = ({0, 1, 2}, {2}, {2}). The six cells

(
∆IN ,α

)
N∈{1,...,6} provide a mixed decomposi-

tion of the triangle ∆[2] and the family
(
TIN ,α

)
N∈{1,...,6} provides a partition of the latter,

depicted in Figure 6.

2) If n = 1, m = 3 and α = (1
2
, 1

2
), then I(1, 3) consists of four staircases which,

once labelled in the increasing order, are I1 = ({0}, {0, 1, 2, 3}), I2 = ({0, 1}, {1, 2, 3}),
I3 = ({0, 1, 2}, {2, 3}) and I4 = ({0, 1, 2, 3}, {3}). The corresponding cells

(
∆IN ,α

)
N∈{1,...,4}

are depicted in Figure 7 and provide a mixed decomposition of the simplex ∆[3], while the
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Figure 6: A mixed decomposition of the two-simplex.

Figure 7: The four cells when n = 1 and m = 3.

family
(
TIN ,α

)
N∈{1,...,4} provides a partition of the latter, depicted in Figure 8.

3) If n = 2, m = 3 and α = (1
3
, 1

3
, 1

3
), then I(2, 3) consists of ten staircases labelled

in the increasing order by (IN)N∈{1,...,10}. The ten cells
(
∆IN ,α

)
N∈{1,...,10} provide a mixed

decomposition of the simplex ∆[3] and the family
(
TIN ,α

)
N∈{1,...,10} provides a partition of

the latter, depicted in Figure 9.

The phenomenon observed in Example 4.4 is general, compare [20].

Theorem 4.5. Let m,n be two non-negative integers and let α = (α0, . . . , αn) ∈ (R∗+)n+1 be
such that α0+· · ·+αn = 1. Then, the Minkowski cells

(
∆I,α

)
I∈I(n,m)

provide a mixed decom-

position of the simplex ∆[m] and the family
(
TI,α

)
I∈I(n,m)

provides a partition of the latter.

Moreover, if we label the staircases of I(n,m) in increasing order by (IN)N∈{1,...,N(n,m)},
then for every N ∈ {1, . . . , N(n,m)}, the unions ∪Nk=1∆Ik,α and ∪Nk=1TIk,α coincide and
filtrate ∆[m]. Finally, the intersection of two cells ∆I,α and ∆I′,α, I, I ′ ∈ I(n,m), is the
face

∑n
j=0 αj∆Ij∩I′j .
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Figure 8: A mixed decomposition of the three-simplex.

Figure 9: Another mixed decomposition of the three-simplex.

Proof. Let us identify each point of the simplex ∆[m] with its barycentric coordinates in
the basis given by its vertices, so that ∆[m] = {(λ0, . . . , λm) ∈ Rm+1

+ |λ0 + · · · + λm = 1}.
Then, for every I = (Ij)j∈{0,...,n} ∈ I(n,m),

∆I,α =

λ = (λi) ∈ ∆[m]

∣∣∣∣∣∣ ∀j ∈ {0, . . . , n},
eI(j)−1∑
i=0

λi ≤
j∑
l=0

αl ≤
eI(j)∑
i=0

λi

 (1)

Indeed, let x ∈ ∆I,α, so that x = α0x0 + · · · + αnxn with xj ∈ ∆Ij , j ∈ {0, . . . , n}, and

let us denote the barycentric coordinates of xj by (λji )i∈Ij . The barycentric coordinates
(λi)i∈{0,...,m} of x then satisfy, for every i ∈ {0, . . . ,m}, λi =

∑n
l=0 αlλ

l
i. Let j ∈ {0, . . . , n},

we deduce that

eI(j)∑
i=0

λi =

eI(j)∑
i=0

n∑
l=0

αlλ
l
i ≥

j∑
l=0

αl

eI(j)∑
i=0

λli =

j∑
l=0

αl,
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since {0, . . . , eI(j)} contains Il if l ≤ j. Likewise,

j∑
l=0

αl =

j∑
l=0

αl
( eI(j)∑
i=0

λli
)

=

eI(j)∑
i=0

( j∑
l=0

αlλ
l
i

)
≥

eI(j)−1∑
i=0

( j∑
l=0

αlλ
l
i

)
=

eI(j)−1∑
i=0

λi,

since Il ∩ {0, . . . , eI(j)− 1} = ∅ if l > j.

Conversely, if λ = (λi)i∈{0,...,m} satisfies, for every j ∈ {0, . . . , n},
∑eI(j)−1

i=0 λi ≤
∑j

l=0 αl ≤∑eI(j)
i=0 λi, we set λ0

i = λi
α0

if i < eI(0), λ0
i = 0 if i > eI(0) and λ0

eI(0) = 1 −
∑eI(0)−1

i=0 λ0
i .

Then, by induction on j, we set

λji =
λi −

∑j−1
l=0 αlλ

l
i

αj
if i < eI(j), λ

j
i = 0 if i > eI(j) and λjeI(j) = 1−

eI(j)−1∑
i=0

λji . (2)

These coefficients are all non-negative and if we denote by xj the point with barycentric
coordinates (λji )i∈Ij , we get x = α0x0 + · · · + αnxn by construction. The equality (1) is
proved.

Now, for every N ∈ {1, . . . , N(n,m)}, let us denote by LN the union ∪Nk=1∆Ik,α. Let
λ = (λi)i∈{0,...,m} ∈ ∆[m] and for every j ∈ {0, . . . , n−1}, let f(j) be the least integer e such

that
∑e

i=0 λi ≥
∑j

l=0 αl, so that
∑j

l=0 αl >
∑f(j)−1

i=0 λi. We set f(n) = m. Then, λ ∈ ∆If ,α

by (1) while if I < If , λ /∈ ∆I,α by definition of the lexicographic order. In particular,
the cells (∆I,α)I∈I(n,m) cover ∆[m]. Let N ∈ {1, . . . , N(n,m)} be such that If = IN , we

deduce that ∆IN ,α ∩ LN−1 = {λ = (λi)i∈{0,...,m} ∈ ∆IN ,α | ∃j ∈ {0, . . . , n − 1},
∑j

l=0 αl =∑e
IN

(j)−1

i=0 λi}. Let then λ = (λi)i∈{0,...,m} ∈ ∆IN ,α ∩ LN−1 and j ∈ {0, . . . , n − 1} be

such that
∑j

l=0 αl =
∑e

IN
(j)−1

i=0 λi. Since αj 6= 0, this forces eIN (j − 1) < eIN (j). Then,
denoting by x the point of ∆[m] with barycentric coordinates λ and writing it as before x =
α0x0 + · · ·+αnxn, where xl has barycentric coordinates (λli)i∈INl , l ∈ {0, . . . , n}, this forces

λje
IN

(j) = 0. Indeed, by (2),
∑e

IN
(j)−1

i=0 λji = 1
αj

(∑e
IN

(j)−1

i=0 λi −
∑j−1

l=0 αl(
∑e

IN
(j)−1

i=0 λli)
)

=

1
αj

(∑e
IN

(j)−1

i=0 λi−
∑j−1

l=0 αl
)

=
αj

αj
= 1. We conclude that xj belongs to the facet ∆INj \{eIN (j)}

of ∆INj
. Conversely, if xj belongs to the facet ∆INj \{eIN (j)} of ∆INj

, then eIN (j−1) < eIN (j)

and the preceding computation shows that
∑e

IN
(j)−1

i=0 λi =
∑j

l=0 αl since
∑e

IN
(j)−1

i=0 λji = 1.
We deduce that for every N ∈ {2, . . . , N(n,m)}, LN \ LN−1 = TIN ,α.

Let us finally prove that the intersection of two cells is a common face of them. Let
then I = (Ij)j∈{0,...,n} and I ′ = (I ′j)j∈{0,...,n} be two staircases of I(n,m). For every j ∈
{0, . . . , n}, let xj ∈ ∆Ij ∩ ∆I′j

. Then,
∑n

j=0 αjxj ∈ ∆I,α ∩ ∆I′,α and we have to prove
that the intersection is reduced to this face. Let x be a point in this intersection and let
λ = (λi)i∈{0,...,m} be its barycentric coordinates. For every j ∈ {0, . . . , n},

∑eI(j)−1
i=0 λi ≤∑j

l=0 αl ≤
∑eI(j)

i=0 λi and
∑eI′ (j)−1

i=0 λi ≤
∑j

l=0 αl ≤
∑eI′ (j)

i=0 λi by (1). We may write x =
α0x0 + · · ·+αnxn and x = α0x

′
0 + · · ·+αnx

′
n, where for every j ∈ {0, . . . , n}, xj ∈ ∆Ij and

x′j ∈ ∆I′j
have barycentric coordinates given by (2). Let j ∈ {0, . . . , n}. If eI(j) < eI′(j)

and vice versa if eI′(j) < eI(j), we deduce that
∑j

l=0 αl =
∑eI(j)

i=0 λi =
∑eI′ (j)−1

i=0 λi, so that
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λi = 0 if eI(j) < i < eI′(j) and x′j belongs to the facet ∆I′j\{eI′ (j)} of ∆I′j
by what we proved

above. By induction on j, the formula (2) defining the barycentric coordinates of xj and x′j
give then the same numbers, so that xj = x′j ∈ ∆Ij ∩∆I′j

for every j ∈ {0, . . . , n}. Hence
the result.

4.3 Staircases triangulations

The mixed decompositions given by Theorem 4.5 provide in fact primitive triangulations
of the product of two simplices via the Cayley trick, see [9, 10, 20], inducing the cartesian
product structure of [5]. Indeed, the Cayley trick makes it possible to switch from triangu-
lations to mixed decompositions by associating to every maximal simplex of a primitively
triangulated product of simplices ∆×∆′ its intersection with the fiber {b} ×∆′, where b
denotes the barycenter of ∆. We are going to use this correspondence.

For every staircase I ∈ I(n,m), let ∆I be the convex hull in ∆[n] × ∆[m] of the faces
({j} × ∆Ij)j∈{0,...,n} and let TI be the convex hull of the tiles ({j} × TIj)j∈{0,...,n−1} and
{n} ×∆In .

Corollary 4.6. For every non-negative integers m,n, the ordered collection of (m + n)-
simplices (∆I)I∈I(n,m) provides a shelled primitive triangulation of the product ∆[n]×∆[m].
The ordered collection of tiles (TI)I∈I(n,m) provides the associated h-tiling.

Corollary 4.6 corresponds to the case in Theorem 3.14 where both tiles are critical of
vanishing index.

Proof. We prove the result by induction on n. If n = 0, there is nothing to prove, the set
I(0,m) consists of a single staircase I0 and ∆I0 = TI0 coincides with the simplex {0}×∆[m].
Let us assume the result proven up to the rank n− 1 and let us prove it for n. For every
j ∈ {0, . . . , n}, the vertices of the facet ∆[n]\{j} inherit a total order and by the induction
hypothesis, the product ∆[n]\{j} × ∆[m] inherits a triangulation with maximal simplices
(∆Ĩ)Ĩ∈I(n−1,m). If I ∈ I(n,m), the intersection of ∆I with ∆[n]\{j} × ∆[m] is a face of
codimension #Ij−1 in this triangulation by definition, since it is included in a simplex ∆Ĩ

for some Ĩ ∈ I(n−1,m) and even coincides with this simplex if #Ij = 1. Likewise, for every
j 6= k ∈ {0, . . . , n}, the vertices of the face ∆[n]\{j,k} inherit a total order and the product
∆[n]\{j,k} ×∆[m] inherits by the induction hypothesis a triangulation which coincides from
what we just saw with the trace of the triangulations of ∆[n]\{j}×∆[m] and ∆[n]\{k}×∆[m].
Hence, we get from the induction hypothesis a triangulation on ∂∆[n] × ∆[m]. Now, the
interior points to ∆[n] are determined by their barycentric coordinates α = (α0, . . . , αn) ∈
(R∗+)n+1, α0 + · · · + αn = 1, in the affine basis given by its vertices. For every staircase
I ∈ I(n,m), the intersection ∆I ∩ ({α} × ∆[m]) coincides with ∆I,α by definition. From
Theorem 3.14 follows thus by induction that the collection of simplices (∆I)I∈I(n,m) defines
a primitive triangulation of the product ∆[n] ×∆[m] and that the intersection of two such
simplices ∆I ∩∆J is the convex hull of the vertices of ({j} ×∆Ij∩Jj)j∈{0,...,n} they have in
common.
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Let us now label the straicases in the increasing order by (IN)N∈{1...,N(n,m)} so that the
unions ∪Nk=1∆Ik , N ∈ {1 . . . , N(n,m)}, filtrate ∆[n] ×∆[m]. Let N ∈ {1 . . . , N(n,m)}, we
are going to prove that ∪Nk=1∆Ik \ ∪N−1

k=1 ∆Ik is the tile TIN . Let I ∈ I(n,m) be such that
I < IN . By definition of the lexicographic order, there exists j ∈ {0, . . . , n− 1} such that
#INj > 1 and eI(j) < eIN (j), since eI is increasing. If eI(j) = eIN (j)−1 and eI(l) = eIN (l)
for l 6= j, then ∆I contains all vertices of ∆IN but (j, eIN (j)) so that ∆I ∩∆IN is the facet
of ∆IN not containing (j, eIN (j)). Otherwise, ∆I contains a subset of these vertices of ∆IN .
Since TIN is the tile ∆IN deprived precisely of all those facets not containing (j, eIN (j)) for
all j ∈ {0, . . . , n− 1} such that #Ij > 1, we deduce the result.

Let us finally observe that the lexicographic order on the pairs (j, i) ∈ {0, . . . , n} ×
{0, . . . ,m} induces a total order on the vertices of ∆I for all I ∈ I(n,m). If (j1, i1) and
(j2, i2) are two vertices of ∆I , then, by definition of staircases, (j1, i1) ≤ (j2, i2) with
respect to this order iff j1 ≤ j2 and i1 ≤ i2. The product ∆[n] × ∆[m] equipped with the
triangulation (∆I)I∈I(n,m) given by Corollary 4.6 is thus the cartesian product of ∆[n] and
∆[m] in the sense of Definition II.8.8 of [5].

4.4 The palindromic automorphism

Let P be the automorphism of ∆[n] × ∆[m] induced by reversing the total orders of the
vertices of both simplices, so that for every (j, i) ∈ {0, . . . , n} × {0, . . . ,m}, P(j, i) =
(n− j,m− i).

Lemma 4.7. For every non-negative integers m,n, the automorphism P preserves the
triangulation (∆I)I∈I(n,m) of ∆[n]×∆[m] and satisfies, for every I ∈ I(n,m), P(∆I) = ∆Ǐ .

Proof. Let I ∈ I(n,m), it is enough to prove that P maps the vertices of ∆I on those
of ∆Ǐ . Now, if j ∈ {0, . . . , n} and if i ∈ Ij, P(j, i) = (n − j,m − i) by definition while
Ǐn−j = {m− eI(j), . . . ,m− bI(j)} by definition, so that m− i ∈ Ǐn−j if i ∈ Ij.

However, the automorphism P does not preserve the h-tiling (TI)I∈I(n,m) of ∆[n]×∆[m] in
general, so that (P(TI))I∈I(n,m) provides another shelling of the triangulation (∆I)I∈I(n,m).
We may also exchange the factors ∆[n] and ∆[m] to get from Corollary 4.6 a triangulation
(∆J)J∈I(m,n) on the product ∆[m] ×∆[n] together with a pair of shellings (TJ)J∈I(m,n) and
(P(TJ))J∈I(m,n).

Lemma 4.8. The involution E : (x, y) ∈ ∆[n]×∆[m] 7→ (y, x) ∈ ∆[m]×∆[n] commutes with
the action of P and defines an isomorphism between the simplicial complexes (∆I)I∈I(n,m)

and (∆J)J∈I(m,n) which maps the shelling (TI)I∈I(n,m) onto the shelling (P(TJ))J∈I(m,n).
Moreover, it preserves the order on the vertices of all simplices ∆I , I ∈ I(n,m).

Proof. Let us identify x ∈ ∆[n] (resp. y ∈ ∆[m]) with its barycentric coordinates (αj)j∈{0,...,n}
(resp. (λi)i∈{0,...,m}) in the affine basis given by the vertices of ∆[n] (resp. ∆[m]), so
that αj ≥ 0 (resp. λi ≥ 0) and

∑n
j=0 αj = 1 (resp.

∑m
i=0 λi = 1 ). Then, P ◦
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E
(
(αj)j∈{0,...,n}, (λi)i∈{0,...,m}

)
=
(
(λm−i)i∈{0,...,m}, (αn−j)j∈{0,...,n}

)
= E◦P

(
(αj)j∈{0,...,n}, (λi)i∈{0,...,m}

)
,

hence the first part of the lemma.
Let now I ∈ I(n,m) and ∆I be the associated simplex in the triangulated ∆[m] ×∆[n].

Its vertices are the pairs (j, i) ∈ {0, . . . , n}×{0, . . . ,m} such that i ∈ Ij. The image E(∆I)
is thus the simplex of ∆[m] ×∆[n] with vertices (i, j) ∈ {0, . . . ,m} × {0, . . . , n} such that
i ∈ Ij. The conditions i ∈ Ij and j ∈ Ji are equivalent to each other, where J is the image
of I under the involution I ∈ I(n,m) 7→ J ∈ J(m,n) given by Lemma 4.3. We deduce
that E(∆I) = ∆J , so that E defines a Z/2Z-equivariant simplicial isomorphism between
the complexes (∆I)I∈I(n,m) and (∆J)J∈I(m,n). Moreover, if (j1, i1) ≤ (j2, i2) are vertices
of ∆I , then j1 ≤ j2 and i1 ≤ i2 by definition of staircases, so that (i1, j1) ≤ (i2, j2) and
E|∆I

: ∆I → ∆J preserves the order on the vertices.
Let us finally prove that P ◦ E maps the tiling (TI)I∈I(n,m) onto (TJ)J∈I(m,n). Let

I ∈ I(n,m). By definition, TI is the simplex ∆I with vertices {(j, i) ∈ {0, . . . , n} ×
{0, . . . ,m} | i ∈ Ij} deprived, for every j < n such that bI(j) 6= eI(j), of the facet not con-
taining the vertex (j, eI(j)). From the preceding part, the involution E maps ∆I onto the
simplex ∆J , J ∈ J(m,n), and the vertices {(j, eI(j)) ∈ {0, . . . , n−1}×{1, . . . ,m} | bI(j) <
eI(j)} onto the vertices {(i, bJ(i)) ∈ {1, . . . ,m} × {0, . . . , n − 1} | bJ(i) < eJ(i)}. The
involution P ◦ E thus maps ∆I onto ∆

qJ and the vertices {(j, eI(j)) ∈ {0, . . . , n − 1} ×
{1, . . . ,m} | bI(j) < eI(j)} onto the vertices {(i, eJ(i)) ∈ {0, . . . ,m−1}×{1, . . . , n} | bJ(i) <
eJ(i)}, so that P ◦ E(TI) = T

qJ . Hence the result.

5 Shellings on products of two tiles

5.1 Preliminaries

The proofs of Theorems 3.14 and 3.16 are based on the following Propositions 5.1 and 5.3.

Proposition 5.1. Let m,n ≥ 0, I ∈ I(n,m) and J = {b(J), . . . , e(J)} be an interval of
{0, . . . ,m}. Then, the intersection of the tile TI with ∆[n] ×∆[m]\J is:

1. empty if there exists j ∈ {0, . . . , n− 1} such that bI(j) 6= eI(j) and eI(j) ∈ J .

2. the convex hull of the tiles ({l}×TIl)l∈{0,...,n−1}\{j}, {n}×∆In and {j}×TIj\J if there
exists j ∈ {0, . . . , n − 1} such that J ⊂ Ij \ {bI(j), eI(j)} and the convex hull of the
tiles ({j} × TIj)j∈{0,...,n−1} and {n} ×∆In\J if J ⊂ In \ {bI(n)}.

3. the convex hull of the tiles ({l} × TIl)l∈{j+1,...,n−1}, {n} × ∆In and {j} × TIj\J if
b(J) = 0 and there exists j ∈ {0, . . . , n− 1} such that J ⊂ Ij \ {eI(j)} and restricts
to {n} ×∆In\J if b(J) = 0 and J ⊂ In.

Remark 5.2. In particular, the face TI ∩ (∆[n] × ∆[m]\J) is empty in the case 1. of
Proposition 5.1, of codimension #J in the case 2. and of codimension #J + j − 1 in the
case 3.
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Proof. In the case 1., the intersection of ∆[n]×∆[m]\J with the simplex ∆I is included in the
facet of ∆I which does not contain the vertex (j, eI(j)). Since j < n, TI is already deprived
of this facet by definition and we get 1. In the case 2., ∆[n]×∆[m]\J contains all the vertices
of ∆I except those with coordinates (j, i) with i ∈ J . This product intersects thus ∆I along
a face of codimension #J , convex hull of {j}×∆Ij\J and the simplices ({l}×∆Il)l 6=j. We
deduce part 2. after intersecting TI with this face. Finally, if J ⊂ Ij and b(J) = 0, then
Il = {0} if l < j by definition. It follows that the intersection of ∆[n] × ∆[m]\J with the
simplex ∆I is the convex hull of {j} × ∆Ij\J and the faces ({l} × ∆Il)l>j. We deduce 3.
after intersecting TI with this face.

Proposition 5.3. Let m,n ≥ 0, I ∈ I(n,m) and J be a subset of {0, . . . , n}. Then, the
intersection of the tile TI with ∆[n]\J ×∆[m] is:

1. empty if there exists j ∈ J \ {n} such that bI(j) 6= eI(j).

2. the convex hull of the tiles ({j} × TIj)j∈{0,...,n−1}\J together with {n} ×∆In if n /∈ J
otherwise.

Remark 5.4. In particular, the face TI ∩ (∆[n]\J × ∆[m]) is of codimension at least #J
when nonempty.

Proof. In the case 1., the intersection of ∆[n]\J ×∆[m] with the simplex ∆I is included in
the facet of ∆I which does not contain the vertex (j, eI(j)). Since j < n, TI has been
deprived of this facet by definition and we get 1. The case 2. follows from the definition
of TI .

5.2 Proof of Theorem 3.14

Let us denote by σ1, σ2 the underlying simplices of T1 and T2 and by n, m their respective
dimensions. Let us also choose total orders on the vertices of σ1 and σ2 in such a way that
if T1 (resp. T2) has been deprived of a Morse face, then the vertices of this face are the
greatest of σ1 (resp. σ2). These orders induce isomorphisms between σ1 (resp. σ2) and ∆[n]

(resp. ∆[m]), so that σ1 × σ2 inherits the triangulation (∆I)I∈I(n,m) given by Corollary 4.6
together with the shelling (TI)I∈I(n,m). The palindromic automorphism P given by Lemma
4.7 induces then an isomorphism of the simplicial complex σ1 × σ2. We are going to prove
the following alternative. Either, for every I ∈ I(n,m), TI ∩ (T1 × T2) is a Morse tile
and the collection

(
TI ∩ (T1 × T2)

)
I∈I(n,m)

provides a Morse shelling of T1 × T2 as claimed

by Theorem 3.14 ; or, for every I ∈ I(n,m), P(TI) ∩ (T1 × T2) is a Morse tile and the
collection

(
P(TI)∩ (T1×T2)

)
I∈I(n,m)

provides the Morse shelling claimed by Theorem 3.14.

Hence, the trace with T1×T2 of one of the two h-tilings (TI)I∈I(n,m) and (P(TI))I∈I(n,m) of
σ1 × σ2 provides the Morse shelling we are looking for. However, the total orders chosen
on the vertices of σ1 and σ2 have to satisfy the previous condition for this result to hold
true. To get the first part of Theorem 3.14, where T1 and T2 are basic, one of them being
regular, and where we want a true shelling of T1 × T2, that is using only basic tiles, we
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need an additional condition on these orders to be satisfied, namely Condition h of §5.2.4.
In what follows, we are going to consider separately the case where T1 and T2 are both
basic, the case where they are both Morse non-basic and the mixed case, one being basic,
the other one being Morse non-basic. Let us recall that the lexicographic order on the
pairs (j, i) ∈ {0, . . . , n} × {0, . . . ,m} induces a total order on the vertices of ∆I for every
I ∈ I(n,m), so that the total orders on the vertices of σ1 and σ2 induce total orders on
the vertices of all simplices of the complex σ1 × σ2.

5.2.1 The case of two basic tiles

If both tiles are basic, the chosen order on the vertices of σ1 (resp. σ2) induces an iso-
morphism between T1 (resp. T2) and ∆[n] \∪j∈J1∆[n]\{j} (resp. ∆[m] \∪i∈J2∆[m]\{i}), where
#J1 (resp. #J2) is the order of T1 (resp. T2). If one of these tiles is in addition regular, in
order to get a shelling of T1×T2 using only regular basic tiles, we need to assume that the
total orders have been chosen in such a way that if {0, n} ⊂ J1, then {0,m} ∩ J2 6= ∅ and
vice versa, that if {0,m} ⊂ J2, then {0, n}∩J1 6= ∅, see Condition h of §5.2.4. In this case,
applying the involution T1×T2 → T2×T1 which exchanges the roles of T1 and T2, we may
assume that if n ∈ J1, then m ∈ J2 and that if 0 ∈ J2, then 0 ∈ J1. If we do not assume
this additional Condition h on the total orders, then, even with this possibility to apply
the involution T1 × T2 → T2 × T1, we can only assume that one of these two properties
holds true, either that if n ∈ J1, then m ∈ J2, or that if 0 ∈ J2, then 0 ∈ J1, but not both.
The following proof then provides a Morse shelling on T1 × T2, but not a true shelling in
general, so that we need the additional Condition h to get the first part of Theorem 3.14.

From Proposition 5.1 we know that for every I ∈ I(n,m) and every i ∈ J2 \ {0},
TI ∩

(
∆[n] × ∆[m]\{i}

)
is either empty, or of codimension one in TI , see Remark 5.2. If

0 ∈ J2, then either #I0 > 1 and TI ∩
(
∆[n] × ∆{1,...,m}

)
is of codimension one in TI ,

or #I0 = 1 and this intersection is included in the facet TI ∩
(
∆{1,...,n} × ∆[m]

)
, so that

TI ∩
(
∆[n]× T2

)
is a basic tile since we assumed that 0 ∈ J2 implies 0 ∈ J1. Likewise, from

Proposition 5.3 we know that for every I ∈ I(n,m) and every j ∈ J1, TI∩
(
∆[n]\{j}×∆[m]

)
is

either empty, or of codimension one in TI , with the exception of j = n if #In > 1, but then
the intersection is included in the facet TI ∩

(
∆[n]×∆{0,...,m−1}

)
since we also assumed that

n ∈ J1 implies m ∈ J2. We then deduce that for every I ∈ I(n,m), TI ∩ (T1×T2) is a basic
tile. Moreover, by definition, the order of TI equals n −#{j ∈ {0, . . . , n − 1} |#Ij = 1},
so that the order of TI ∩ (T1 × T2) equals

n−#{j ∈ {0, . . . , n− 1} \ J1 |#Ij = 1}+ #{i ∈ J2 | i /∈ bI({1, . . . , n})} (3)

plus one in case n ∈ J1 and #In = 1. Since one of the tiles T1, T2 is regular, we deduce from
Propositions 5.1 and 5.3 the upper and lower bounds 0 < Ord(TI ∩ (T1 × T2)) ≤ m + n,
for the term (n − #{j ∈ {0, . . . , n − 1} \ J1 |#Ij = 1}) vanishes only if In = {0, . . . ,m}
and in this case the second term in (3) does not vanish by hypothesis. Moreover, the
last two terms equal m + 1 only if I0 = {0, . . . ,m} and J2 = {0, . . . ,m} but in this case
the first term in (3) is less than n by hypothesis, for J1 cannot be {0, . . . , n}. Hence,
the shelled triangulation of ∆[n] ×∆[m] given by Corollary 4.6 induces a shelled primitive
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triangulation of T1 × T2 using only regular basic tiles. The first part of Theorem 3.14 is
proven. When Condition h of §5.2.4 is not satisfied, we may still assume, applying the
involution E : T1 × T2 → T2 × T1 if necessary, that if n ∈ J1, then m ∈ J2. If 0 ∈ J2 but
0 /∈ J1, then for every I ∈ I(n,m), ∆I ∩

(
∆[n] ×∆{1,...,m}

)
is a face of codimension greater

than one as soon as #I0 = 1 and its vertices are the greatest of ∆I . The tile TI ∩ (T1×T2)
is then Morse and we get a Morse shelling

(
TI ∩ (T1×T2)

)
I∈I(n,m)

which is tame. If n ∈ J1

and m /∈ J2, we apply the involution E to the tame Morse shelling
(
TJ ∩ (T2×T1)

)
J∈I(m,n)

we just obtained to deduce from Lemma 4.8 that the collection
(
P(TI)∩ (T1×T2)

)
I∈I(n,m)

defines a tame Morse shelling on T1 × T2.
If T1 and T2 are open simplices, so that J1 = {0, . . . , n} and J2 = {0, . . . ,m}, then

again, by Propositions 5.1 and 5.3, for every I ∈ I(n,m), every i ∈ J2 \ {0} and every
j ∈ J1 \ {n}, TI ∩

(
∆[n] × ∆[m]\{i}

)
and TI ∩

(
∆[n]\{j} × ∆[m]

)
are of codimension one in

TI when non-empty. Moreover, TI ∩
(
∆[n] × ∆{1,...,m}

)
(resp. TI ∩

(
∆{0,...,n−1} × ∆[m]

)
)

is either of codimension one in TI if #I0 > 1 (resp. #In = 1), or included in the facet
TI ∩

(
∆{1,...,n} × ∆[m]

)
(resp. TI ∩

(
∆[n] × ∆{0,...,m−1}

)
) which is removed from TI . Thus,

the shelled triangulation of ∆[n] ×∆[m] given by Corollary 4.6 induces a shelled primitive
triangulation of T1×T2 also in this case and (3) remains valid. It remains to check that this
h-tiling uses a unique critical tile, of index m+n. But as before, Ord(TI∩(T1×T2)) > 0 for
every I ∈ I(n,m) while Ord(TI ∩ (T1 × T2)) = n+m+ 1 forces I0 = {0, . . . ,m}. However
now, J1 = {0, . . . , n} and J2 = {0, . . . ,m}, so that this staircase provides a critical tile of
index m+ n, namely an open simplex.

If on the contrary T1 is a closed simplex and T2 an open one, then for every I ∈ I(n,m),
TI \ ∪mi=1

(
∆[n] ×∆[m]\{i}

)
is a basic tile of order m by Proposition 5.1 and TI ∩ (T1 × T2)

is a basic tile of order m+ 1 if #I0 6= 1 and a Morse tile of order m otherwise, the Morse
face being of codimension #b−1

I (0). The only critical tile of the Morse tiling of T1 × T2 is
thus the tile TI ∩ (T1×T2) with In = {0, . . . ,m} and Ij = {0} if j < n. Its index equals m.
Moreover, for all non-basic tile TI ∩ (T1 × T2) of the tiling, I ∈ I(n,m), the vertices of the
Morse face TI ∩

(
∆[n] ×∆{1,...,m}

)
are the greatest of ∆I with respect to the lexicographic

order on {0, . . . , n} × {0, . . . ,m}, so that the Morse shelling is tame. If T2 is a closed
simplex and T1 an open one, we apply the exchange involution E : T2 × T1 → T1 × T2 to
the Morse shelling

(
TJ ∩ (T2 × T1)

)
J∈I(m,n)

we just obtained, to deduce from Lemma 4.8

that the collection
(
P(TI) ∩ (T1 × T2)

)
I∈I(n,m)

defines a tame Morse shelling on T1 × T2.

5.2.2 The case of two non-basic tiles

If both T1 and T2 are Morse and not basic, then the chosen orders on the vertices of
σ1 and σ2 induce isomorphisms between them and ∆[n] \

(
∪j∈J1 ∆[n]\{j} ∪ ∆{k1,...,n}

)
and

∆[m] \
(
∪i∈J2 ∆[m]\{i} ∪ ∆{k2,...,m}

)
respectively, where 1 < k1 ≤ n, 1 < k2 ≤ m, J1 ⊂

{k1, . . . , n} and J2 ⊂ {k2, . . . ,m}. Applying the involution E : T1 × T2 → T2 × T1

which exchanges the roles of T1 and T2 if necessary, we may assume that if n ∈ J1, then
m ∈ J2, see Lemma 4.8. In this case, we deduce from §5.2.1 that for every I ∈ I(n,m),
TI \

(
∪j∈J1 (∆[n]\{j} × ∆[m]) ∪i∈J2 (∆[n] × ∆[m]\{i})

)
is a basic tile of order n − #{j ∈
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{0, . . . , n − 1} \ J1 |#Ij = 1} + #{i ∈ J2 | i /∈ bI({1, . . . , n})} plus one in case n ∈ J1

and #In = 1, see (3). But from Proposition 5.3 we know that TI ∩
(
∆{k1,...,n} × ∆[m]

)
is

empty if there exists j ∈ {0, . . . , k1− 1} such that #Ij 6= 1 while in the opposite case, this
intersection contains TI ∩

(
∆[n]×∆{k2,...,m}

)
by Proposition 5.1 and is of codimension k1 in

TI . In this second case, TI ∩ (T1×T2) is Morse and regular, since its order is not more than
m+n−k1−k2 + 2. Moreover, the vertices of the Morse face are the greatest of ∆I . In the
first case, we know from Proposition 5.1 that TI ∩

(
∆[n]×∆{k2,...,m}

)
is empty if there exists

j ∈ {0, . . . , n} such that #Ij 6= 1 and eI(j) < k2 and of codimension k+k2 otherwise, where
k denotes the least integer such that #Ik 6= 1. The tile TI ∩ (T1 × T2) is then again Morse
and it is singular iff k = k1 − 1, Ik = {0, . . . ,m}, J1 = {k1, . . . , n} and J2 = {k2, . . . ,m},
since its order is bounded from above by m+n−k1−k2 +2 with equality, when k = k1−1,
only in this case. Moreover, the vertices of the Morse face are the greatest of ∆I . Hence,
the product T1×T2 inherits the Morse shelled primitive triangulation

(
TI∩(T1×T2)

)
I∈I(n,m)

which uses a unique critical tile, of index m+ n− k1 − k2 + 2, iff T1 and T2 are critical of
indices n − k1 + 1 and m − k2 + 1 respectively. In the case that n ∈ J1, but m /∈ J2, we
apply the involution E to the tame Morse shelling

(
TJ ∩ (T2×T1)

)
J∈I(m,n)

we just obtained

and deduce from Lemma 4.8 that the collection
(
P(TI)∩ (T1× T2)

)
I∈I(n,m)

defines a tame

Morse shelling on T1 × T2. Theorem 3.14 is thus proven in the case of non basic tiles.

5.2.3 The mixed case of one basic and one non basic tiles

In the mixed case, we may assume that T1 is Morse and T2 basic, applying the involution
E : T1×T2 → T2×T1 if necessary. Then the chosen orders on the vertices of the underlying
simplices σ1 and σ2 induce isomorphisms between them and ∆[n]\

(
∪j∈J1 ∆[n]\{j}∪∆{k1,...,n}

)
and ∆[m] \ ∪i∈J2∆[m]\{i} respectively, where 1 < k1 ≤ n, J1 ⊂ {k1, . . . , n} and J2 ⊂
{0, . . . ,m}. We first assume that if n ∈ J1, then m ∈ J2. In this case, we deduce from
§5.2.1 that for every I ∈ I(n,m), TI \

(
∪j∈J1 (∆[n]\{j}×∆[m])∪i∈J2\{0} (∆[n]×∆[m]\{i})

)
is a

basic tile of order n−#{j ∈ {0, . . . , n−1}\J1 |#Ij = 1}+#{i ∈ J2\{0} | i /∈ bI({1, . . . , n})}
plus one in case n ∈ J1 and #In = 1, see (3). But from Proposition 5.3 we know that
TI ∩

(
∆{k1,...,n}×∆[m]

)
is empty if there exists j ∈ {0, . . . , k1−1} such that #Ij 6= 1 and in

the opposite case, this intersection contains TI ∩
(
∆[n] ×∆{1,...,m}

)
by Proposition 5.1 and

is of codimension k1 in TI . In this second case, TI ∩ (T1× T2) is Morse, since if n ∈ J1 and
#In 6= 1, then TI ∩

(
∆{0,...,n−1} ×∆[m]

)
is contained in the facet TI ∩

(
∆[n] ×∆{0,...,m−1}

)
which is removed by hypothesis. This tile is moreover regular, since its order is not more
than m+n−k1, and the vertices of the Morse face are the greatest of ∆I . In the first case,
we know from Proposition 5.1 that TI∩

(
∆[n]×∆{1,...,m}

)
is of codimension k+1, k being the

least integer less than k1 such that #Ik 6= 1. The tile TI∩(T1×T2) is then again Morse and
it is singular iff k = k1 − 1, Ik = {0, . . . ,m}, J1 = {k1, . . . , n} and J2 = {0, . . . ,m}, since
its order is bounded from above by m + n − k with equality only in this case. Moreover,
the vertices of the Morse face are the greatest of ∆I . Hence, the product T1 × T2 inherits
the tame Morse shelled primitive triangulation

(
TI ∩ (T1×T2)

)
I∈I(n,m)

which uses a unique

critical tile, of index m+ n− k1 + 1, iff T1 and T2 are critical, of indices n− k1 + 1 and m
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respectively. If now n ∈ J1, but m /∈ J2, we apply the exchange involution E. We deduce
from (3) that for every I ∈ I(m,n), TI \

(
∪i∈J2 (∆[m]\{i}×∆[n])∪j∈J1 (∆[m]×∆[n]\{j})

)
is a

basic tile of order m−#{i ∈ {0, . . . ,m−1}\J2 |#Ii = 1}+#{j ∈ J1 | j /∈ bI({1, . . . ,m})}.
From Proposition 5.1 we know that TI ∩ (∆[m] × ∆{k1,...,n}) is empty if there exists i ∈
{0, . . . ,m − 1} such that bI(i) 6= eI(i) < k1 and otherwise, it is of codimension k + k1 in
TI , where k denotes the least integer such that #Ik 6= 1. Moreover, the vertices of the
Morse face are the greatest of ∆I . We deduce that TI ∩ (T2× T1) is Morse and its order is
bounded from above by m+ n+ 1− k− k1, with equality only if J1 = {k1, . . . , n}, J2 = ∅
and Im = {0, . . . , n}. The collection

(
TI ∩ (T2 × T1)

)
I∈I(m,n)

thus defines a tame Morse

shelling of T2 × T1 which contains a unique critical tile, of index n + 1 − k1 iff T1 and T2

are both critical, of indices n + 1 − k1 and 0 respectively. By Lemma 4.8, the collection(
P(TI)∩ (T1× T2)

)
I∈I(n,m)

then defines the tame Morse shelling on T1× T2 we are looking

for. Hence the result.

5.2.4 Remarks on the proof of Theorem 3.14

1) The shelling of T1×T2 is inherited from the shelling of σ1×σ2 given by Corollary 4.6, via
the choice of total orders on the vertices of the underlying simplices σ1 and σ2. When T1 and
T2 are both basic, these orders fix isomorphisms between T1, T2 and ∆[n] \ ∪j∈J1∆[n]\{j},
∆[m] \ ∪i∈J2∆[m]\{i} respectively, where n = dimσ1, m = dimσ2, J1 ⊂ {0, . . . , n} and
J2 ⊂ {0, . . . ,m}. In order to get h-tilings on T1 × T2, we need to assume the

Condition h : If {0, n} ⊂ J1, then {0,m} ∩ J2 6= ∅ and vice versa, if {0,m} ⊂ J2, then
{0, n} ∩ J1 6= ∅.

Indeed, for example, neither the shelling (TI)I∈I(n,m), nor the shelling
(
P(TI)

)
I∈I(n,m)

induces an h-tiling on ∆[n] \
(
(∆{0,...,n−1} ×∆[m]) ∪ (∆{1,...,n} ×∆[m])

)
in general.

2) Likewise, when T1 or T2 is not basic, we need to assume the

Condition M : If T1 (resp. T2) is a Morse tile which is not basic, then the vertices of
its Morse face are the greatest among those of σ1 (resp. of σ2).

Indeed, for example, neither the shelling (TI)I∈I(n,m), nor the shelling
(
P(TI)

)
I∈I(n,m)

induces a Morse tiling on
(
∆[n] \ (∆{0,...,n−1} ∪∆{n−1,n})

)
×
(
∆[m] \ (∆{1,...,m} ∪∆{0,1})

)
in

general.

3) Finally, even if these Conditions h or M are satisfied, the shelling (TI)I∈I(n,m) of ∆[n]×
∆[m] given by Corollary 4.6 need not induce a shelling on T1 × T2, it has been sometimes
necessary to apply the palindromic isomorphism P to (TI)I∈I(n,m), which amounts to reverse
the total orders of the vertices of σ1 and σ2. The latter does not affect the triangulation
(∆I)I∈I(n,m) given by Corollary 4.6.
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5.3 Proof of Theorem 3.16

Let us first prove that we may assume the tiles to be basic.

Proposition 5.5. Let T1, T2 be two Morse tiles with underlying basic tiles T ′1, T
′
2. Then,

the Morse shellings of T1 × T2 and T ′1 × T ′2 given by Theorem 3.14 have same h-vector.

Proof. If T1 (resp. T2) is a Morse tile which is not basic, we denote by σ1 (resp. σ2)
its underlying simplex and by τ1 (resp. τ2) its Morse face. The Morse shelling given by
Theorem 3.14 is inherited from a total order on the vertices of σ1 (resp. σ2) such that the
ones of τ1 (resp. τ2) are the greatest, see Condition M in §5.2.4. The product σ1 × σ2

inherits then a triangulation (∆I)I∈I(n,m) and a shelling (TI)I∈I(n,m) given by Corollary
4.6. We know from Proposition 5.3 (resp. Proposition 5.1) that for every I ∈ I(n,m),
the intersection of TI with τ1 × σ2 (resp. σ1 × τ2) is either empty, or of codimension
at least equal to the one of τ1 in σ1 (resp. τ2 in σ2). This intersection thus does not
contribute to the order of TI ∩ (T1 × T2). Thus, if the tame Morse shellling of T1 × T2

given by Theorem 3.14 is
(
TI ∩ (T1 × T2)

)
I∈I(n,m)

, then the Morse shelling of T ′1 × T ′2
given by Theorem 3.14 is

(
TI ∩ (T ′1 × T ′2)

)
I∈I(n,m)

and has the same h-vector. Otherwise,

Theorem 3.14 provides the Morse shellling
(
P(TI) ∩ (T1 × T2)

)
I∈I(n,m)

, which is the image

of
(
TJ∩(T2×T1)

)
J∈I(m,n)

, under the exchange involution by Lemma 4.8, so that it provides

the Morse shellling
(
P(TI)∩ (T ′1×T ′2)

)
I∈I(n,m)

on T ′1×T ′2 as well, which has same h-vector

as
(
P(TI) ∩ (T1 × T2)

)
I∈I(n,m)

. Hence the result.

Let us now prove that all Morse tilings of a product T1 × T2 given by Theorem 3.14
have same h-vector. By Proposition 5.5 we may assume the tiles to be basic.

Proposition 5.6. Let T1, T2 be two basic tiles. Then, all Morse shellings of T1 × T2 given
by Theorem 3.14 have same h-vector.

Proof. We may assume that T1 = ∆[n] \ ∪j∈J1∆[n]\{j} and T2 = ∆[m] \ ∪i∈J2∆[m]\{i}, where
J1 ⊂ {0, . . . , n} and J2 ⊂ {0, . . . ,m}. We have to assume in addition that if n ∈ J1,
then m ∈ J2. This can be done after possibly applying the involution E : T1 × T2 →
T2 × T1 which exchanges the roles of T1 and T2. The tiles of the Morse tiling given by
Theorem 3.14 are then the

(
TI ∩ (T1 × T2)

)
I∈I(n,m)

and we are going to prove that for

every k ∈ {0, . . . ,m+n+ 1}, the number of tiles of order k in this collection only depends
on #J1 and #J2. This implies the result, for applying the exchange involution E or not
does not affect the h-vector as well. We proceed by induction on the dimensions n,m.
For every j1 ∈ J1 \ {0, n} (resp. i2 ∈ J2 \ {0,m}), let us compare the h-vectors of the
tilings of T1 × T2 and T ′1 × T2 (resp. T1 × T ′2), where T ′1 = ∆[n] \ ∪j∈J1\{j1}∆[n]\{j} (resp.
T ′2 = ∆[m] \ ∪i∈J2\{i2}∆[m]\{i}). Let I ∈ I(n,m). From Proposition 5.3 (resp. Proposition
5.1) we know that the intersection of ∆[n]\{j1} × ∆[m] (resp. ∆[n] × ∆[m]\{i2}) with TI is
empty if #Ij1 > 1 (resp. if i2 ∈ bI({1, . . . , n})) and is of codimension one otherwise. In
the first case, j1 (resp. i2) does not contribute to the order of TI ∩ (T1 × T2), so that this
order coincides with the one of TI ∩ (T ′1 × T2) (resp. TI ∩ (T1 × T ′2)) and in the second

30



case, its contribution equals one, so that Ord(TI ∩ (T1 × T2)) = Ord(TI ∩ (T ′1 × T2)) + 1
(resp. Ord(TI ∩ (T1×T2)) = Ord(TI ∩ (T1×T ′2)) + 1). The staircases I ∈ I(n,m) for which
#Ij1 = 1 (resp. i2 /∈ bI({1, . . . , n})) are in bijective correspondence with the staircases
Ĩ ∈ I(n−1,m) (resp. Ĩ ∈ I(n,m−1)), this correspondence Forj1 (resp. Fori2) being induced
by the inclusion {0, . . . , n} \ {j1} → {0, . . . , n} (resp. {0, . . . ,m} \ {i2} → {0, . . . ,m}).
But if Ĩ = Forj1(I) (resp. Ĩ = Fori2(I)) with #Ij1 = 1 (resp. i2 /∈ bI({1, . . . , n}))
and if T̃1 = ∆[n]\{j1} \ ∪j∈J1\{j1}∆[n]\{j,j1} (resp. T̃2 = ∆[m]\{i2} \ ∪i∈J2\{i2}∆[m]\{i,i2}), then

Ord(TI ∩ (T ′1×T2)) = Ord(TĨ ∩ (T̃1×T2)) (resp. Ord(TI ∩ (T1×T ′2)) = Ord(TĨ ∩ (T1× T̃2)))
by Proposition 5.3 (resp. Proposition 5.1). We deduce the relation

h(T1 × T2) = h(T ′1 × T2)− h(T̃1 × T2)[0] + h(T̃1 × T2)[1], (4)

where for every v = (v0, . . . , vm+n) ∈ Zm+n+1, v[0] = (v0, . . . , vm+n, 0) ∈ Zm+n+2 and
v[1] = (0, v0, . . . , vm+n) ∈ Zm+n+2. Likewise,

h(T1 × T2) = h(T1 × T ′2)− h(T1 × T̃2)[0] + h(T1 × T̃2)[1]. (5)

By deleting one after the other the elements of J1 \ {0, n} and J2 \ {0,m}, we then express
the h-vector of T1 × T2 in terms of the h-vector of product of tiles of dimensions ≤ n and
≤ m having lower order, and this expression does not depend on the specific position of
the elements in J1 \{0, n} and J2 \{0,m}, it only depends on the number of such elements.
We can likewise delete n ∈ J1 if m ∈ J2 and 0 ∈ J2 if 0 ∈ J1, the formula (4) being valid
in this case and we may also delete 0 ∈ J1 if 0 /∈ J2 and m ∈ J2 if n /∈ J1, in the same
way as before. The only delicate case is the case where 0 ∈ J2 but 0 /∈ J1 since we have
applied the exchange involution T1 × T2 → T2 × T1 in order to make sure that m ∈ J2 if
n ∈ J1. In such a case, the tiling of T1 × T2 is Morse and not an h-tiling. Let I ∈ I(n,m).
The intersection of ∆[n] × ∆{1,...,m} with TI is no longer empty if #I0 = 1, but it is of
codimension greater than one in TI , so that it is a Morse face which does not contribute
to the order of TI ∩ (T1 × T2). If #I0 > 1, it is of codimension one and contributes as
one to the order of TI ∩ (T1 × T2). If we delete 0 ∈ J2, we thus again get, in the same

way, the formula (5), even if the natures of the tilings of T1× T2, T1× T ′2 and T1× T̃2 now
differ. We thus deduce by applying inductively finitely many times (4), (5) an expression
of h(T1×T2) in terms of the h-vectors of the product of closed simplices of dimensions ≤ n
and ≤ m and this expression only depends on the cardinalities of J1 and J2. Moreover,
the h-vectors of the tilings (TI)I∈I(n,m) or (P(TI))I∈I(n,m) given by Corollary 4.6 coincide
and only depend on the dimension n,m of the closed simplices. The result follows.

Remark 5.7. The formulas (4), (5) make it possible to compute by induction the h-vector
given by Theorem 3.14 in terms of the h-vectors given by Corollary 4.6. Moreover, the
latter can be computed using a similar induction or by computing the face vector of the
cartesian product of two simplices, but we do not detail these computations here.

It remains to prove the formula given in Theorem 3.16 and thanks to Proposition 5.5,
it is enough to prove it for basic tiles.
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Proposition 5.8. Let T1, T2 be two basic tiles and qT1, qT2 be their dual ones. Then, all
Morse shellings of T1×T2 and qT1× qT2 given by Theorem 3.14 satisfy h( qT1× qT2) = qh(T1×T2).

Proof. Let n,m (resp. k, l) be the dimensions (resp. orders) of T1 and T2. Let us choose

total orders on the vertices of T1, T2 (resp. qT1, qT2) in order to obtain isomorphisms with
∆[n]\∪k−1

j=0∆[n]\{j} and ∆[m]\∪l−1
i=0∆[m]\{i} (resp. ∆[n]\∪n−kj=0 ∆[n]\{j} and ∆[m]\∪m−li=0 ∆[m]\{i}).

From (3), we know that for every I ∈ I(n,m),

Ord
(
TI∩(T1×T2)

)
= n−#{j ∈ {k, . . . , n−1} |#Ij = 1}+#{i ∈ {0, . . . , l−1} | i /∈ bI({1, . . . , n})}

plus one in case k = n+ 1 and #In = 1. Likewise, by definition of Ǐ and (3),

Ord
(
TǏ∩( qT1×qT2)

)
= n−#{j ∈ {1, . . . , k−1} |#Ij = 1}+#{i ∈ {l, . . . ,m} | i /∈ eI({0, . . . , n−1})}

plus one in case k = 0 and #I0 = 1. By adding these quantities, whatever the value of k
is, we get

Ord
(
TI ∩ (T1 × T2)

)
+ Ord

(
TǏ ∩ ( qT1 × qT2)

)
= 2n+m+ 1−#{j ∈ {1, . . . , n− 1} |#Ij = 1} −#eI({0, . . . , n− 1}),

since eI(j) = bI(j + 1) for every j ∈ {0, . . . , n − 1} by definition, see §4.1. Moreover,
since eI is increasing, #eI({0, . . . , n − 1}) = n −#{j ∈ {1, . . . , n − 1} |#Ij = 1}, so that

Ord
(
TI ∩ (T1 × T2)

)
+ Ord

(
TǏ ∩ ( qT1 × qT2)

)
= m+ n+ 1.

Theorem 3.14 now follows from Propositions 5.5, 5.6 and 5.8.

5.4 Proof of Corollary 3.18 and further examples

1) Corollary 3.17 is a special case of Theorem 3.14 which produces Morse shellings on
handles of any dimension and index. Figure 10 provides some examples of such shellings,
depicted using the associated mixed decompositions of the simplex ∆[m], see §4.2.

In general, we may check that the Morse shelling of the handle
◦
∆n ×∆m given by

Theorem 3.14 uses one critical tile of index n,
(
m+n−1
n−1

)
basic tiles of order n + 1 and for

every l ∈ {2, . . . ,m},
(
m+n−l
n−1

)
Morse tiles isomorphic to Tm+n,m+n−l

n . Likewise, the handle

∆n×
◦
∆m is tiled by one critical tile of index m,

(
m+n−1

n

)
basic tiles of order m+ 1 and for

every l ∈ {m, . . . ,m+ n− 2},
(

l
l+1−m

)
Morse tiles isomorphic to Tm+n,l

m . We do not detail
these computations here.

2) Corollary 3.18 provides other special cases of shellings given by Theorem 3.14, namely
h-tilings whose tiles are all isomorphic to each other. Let us prove now this corollary.

Proof of Corollary 3.18. Let T1 = ∆[n] \ ∪n−1
j=0 ∆[n]\{j} and T2 = ∆[m]. The shelled triangu-

lation of T1 × T2 given by Theorem 3.14 uses the tiles
(
TI ∩ (T1 × T2)

)
I∈I(n,m)

. From (3),

we know that for every I ∈ I(n,m), Ord
(
TI ∩ (T1× T2)

)
= n. Moreover, these tiles are all
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Figure 10: Morse shellings on handles.

basic, so that the first part of Corollary 3.18 is proved. Likewise, let T ′1 = ∆[n] \∆{1,...,n}
and T ′2 = ∆[m] \ ∪mi=0∆[m]\{i}. From (3), we know that for every I ∈ I(n,m),

Ord
(
TI ∩ (T ′1 × T ′2)

)
= n−#{j ∈ {1, . . . , n− 1} |#Ij = 1}+ #{i ∈ [m] | i /∈ bI({1, . . . , n})}
= #eI({0, . . . , n− 1}) +m+ 1−#eI({0, . . . , n− 1})
= m+ 1.

Again, all these tiles are basic, hence the result.

In the same way, ∆[n]×Tmm (resp.
◦
∆n ×Tm1 ) inherits a shelled triangulation whose tiles

are all isomorphic to each other, of order m (resp. of order n+ 1).

3) We have observed in §5.3 that the symmetry given by Theorem 3.16 is induced by
the involution I ∈ I(n,m) 7→ Ǐ ∈ I(n,m). This symmetry appears on the examples given
by Figures 11, 12, 13 and 14.
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Figure 11: The symmetry observed on some tilings, with n = 4.

6 Tilings on products of two complexes

6.1 Proof of Theorems 3.8 and 3.10

Let K and L be the simplicial complexes underlying S1 and S2. Let us equip their edges
with orientations given by Definition 2.13, the tilings of S1 and S2 being tame by hypothesis.
Then, the vertices of every simplex σ of K and θ of L inherit a total order given by
Proposition 2.11, so that σ × θ gets equipped with a staircase triangulation given by
Corollary 4.6. Moreover, the face inclusions preserve these orders by Proposition 2.11,
so that the staircase triangulations on these products glue together to define a primitive
triangulation on K×L, compare Lemma II.8.9 of [5]. If τ1 and τ2 are shelled, the tiles of τ1

get labelled T1, . . . , TN1 and the tiles of τ2 labelled T ′1, . . . , T
′
N2

. Let us label the underlying
simplices σ1, . . . , σN1 and θ1, . . . , θN2 , they shell K and L respectively. The products σk×θl
get then ordered by the lexicographic order on pairs (k, l) ∈ {1, . . . , N1}×{1, . . . , N2}. By
Corollary 4.6, the triangulation of each product σk × θl is itself shelled, providing an order
on its maximal simplices (∆

(k,l)
I )I∈I(n,m), where n denotes the dimension of σk and m the

dimension of θl. The lexicographic order on triplets (k, l, I) ∈ {1, . . . , N1} × {1, . . . , N2} ×
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Figure 12: The symmetry observed on more tilings, with n = 4.

I(n,m) induces then a shelling on the triangulated product K × L. We have here used a
slight abuse of notation since the dimension n (resp. m) depends on k (resp. l) in general.
Now, S1×S2 is partitionned by the products Tk×T ′l , (k, l) ∈ {1, . . . , N1}×{1, . . . , N2}, and
by Theorem 3.14, these products, equipped with the preceding triangulation, are Morse
shellable. Indeed, the tilings of S1 and S2 being tame, we know from Definition 2.13 that
Condition M of §5.2.4 is satisfied and this guaranties the Morse shellability of Tk × T ′l .
Again, the lexicographic order on triplets (k, l, I) ∈ {1, . . . , N1} × {1, . . . , N2} × I(n,m)
induces a Morse shelling on the triangulated product S1 × S2. Moreover, this shelling is
tame since the ones of Tk × T ′l are by Theorem 3.14.

By Theorem 3.14, the critical tiles of S1×S2 are then in bijective correspondence with
the products Tk×T ′l of a critical tile Tk of S1 and a critical tile T ′l of S2, their indices being
the sum of the index of Tk with the index of T ′l . The c-vector of S1×S2 is thus the product
c(S1)c(S2) by definition. Finally, if the tiles of S1 (resp. of S2) all have same dimension n
(resp. m) and if h(S1) and h(S2) are palindromic, then, we may group the tiles of S1 (resp.
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Figure 13: The symmetry observed on more tilings, with n = 4.

of S2) by pairs of tiles of order j and n+ 1− j (resp. i and m+ 1− i), 0 ≤ j < n+1
2

(resp.
0 ≤ i < m+1

2
), leaving alone the tiles of order n+1

2
(resp. m+1

2
) in case n (resp. m) is odd.

The products Tk × T ′l , (k, l) ∈ {1, . . . , N1} × {1, . . . , N2}, are then grouped by quadruples,
pairs or left alone depending on the cases, but Theorem 3.16 ensures that the contribution
of each group to the h-vector of S1×S2 is palindromic. Adding together the contributions
of all these groups, we deduce Theorem 3.8. Now, under the hypothesis of Theorem 3.10,
for every (k, l) ∈ {1, . . . , N1}×{1, . . . , N2}, Condition h of §5.2.4 gets satisfied by the total
orders on the vertices of Tk and T ′l , so that the shelling

(
TI ∩ (Tk × T ′l )

)
I∈I(n,m)

given by

Theorem 3.14 uses only basic tiles, which proves Theorem 3.10. �

6.2 Proof of Theorem 3.11

The simplicial complex ∂∆2 can be equipped with the h-tiling using three tiles of dimension
and order one, see Example 3.4. We may orient each edge in such a way that it goes
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Figure 14: The symmetry observed on more tilings, with n = 4.

towards the remaining vertex of each tile. Let K be the simplicial complex underlying S.
We choose a total order on its vertices. The conditions of Theorem 3.10 are then satisfied
so that S × ∂∆2 inherits an h-tiled primitive triangulation whose h-vector is moreover
palindromic provided h(S) is. For every tile T1 of S and T2 of ∂∆2, the orders chosen on
vertices provide an isomorphism between T1×T2 and (∆[n] \∪j∈J1∆[n]\{j})× (∆{0,1} \∆{0}),
where n is the dimension of T1. For every I ∈ I(n, 1), only one interval Ij0 is not a singleton,
j0 ∈ {0, . . . , n}, and the tile TI∩(∆[n]×T2) is of order one. Thus, the tile TI∩(T1×T2) is of
order #J1 if j0 ∈ J1 and of order #J1+1 otherwise, see (3). The tiling

(
TI∩(T1×T2)

)
I∈I(n,1)

uses then Ord(T1) basic tiles of order Ord(T1) and dim(T1) + 1 − Ord(T1) basic tiles of
order Ord(T1) + 1. Theorem 3.11 follows.
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Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille
Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France

welschinger@math.univ-lyon1.fr.

39


