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Motivated by planetary-driven applications and experiments in non-spherical geometries,
we study compressible fluid modes in rotating rigid ellipsoids. Such modes are also
required for modal acoustic velocimetry (MAV), a promising non-invasive method to
track the velocity field components in laboratory experiments. To calculate them, we
develop a general spectral method in rigid triaxial ellipsoids. The description is based
on an expansion onto global polynomial vector elements, satisfying the non-penetration
condition on the boundary. Then, we investigate the diffusionless compressible modes
in rotating (and magnetised) rigid ellipsoids. The spectral description is successfully
benchmarked against three-dimensional finite-element computations and analytical pre-
dictions. A spectral convergence is obtained. Our results have direct implications for
MAV in experiments, for instance in the ZoRo experiment (gas-filled rigid spheroid). So
far, deformation and rotational effects have been theoretically considered separately, as
small perturbations of the solutions in non-rotating spheres. We carefully compare the
perturbation approach, in this illustrative geometry, to the polynomial solutions. We show
that second-order ellipticity effects are often present, even in weakly deformed ellipsoids.
Moreover, high-order effects due to rotation and/or ellipticity should be observed for
some acoustic modes in experimental conditions. Thus, perturbation theory should be
used with care in MAV. Instead, the spectral polynomial method paves the way for future
MAV applications in fluid experiments with rigid ellipsoids.

Key words: waves in rotating fluids, acoustics, geophysical and geological flows

1. Introduction

1.1. Planetary context

The dynamics of planetary fluid layers often defies our physical knowledge. A
fundamental understanding can be obtained with massive numerical simulations
(e.g. Schaeffer et al. 2017). The success of this approach is somewhat surprising,
considering the gap between the parameters of the simulations and the expected
planetary values. Realistic numerical simulations will remain for a long time inaccessible
to the computational power. Moreover, a long-term endeavour is to go beyond the
spherical geometry in these models. Indeed, planetary fluid bodies are closer to ellipsoids
than to spheres, for instance due to tidal effects (e.g. Chandrasekhar 1969; Nduka 1971).
However, simulations in deformed spheres are very challenging. Numerical methods
usually used in non-spherical geometries, such as finite elements (e.g. Cébron et al.
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2013), are not very efficient for this problem. Spectral numerical methods have been
developed in (weakly) non-spherical containers (e.g. Reese et al. 2006; Rieutord et al.
2016), but they rely on non-orthogonal spherical-like coordinates (Bonazzola et al. 1998)
that strongly complicate the numerics. Furthermore, accounting for density variations
(compressibility) is another computational burden. Thus, mainly incompressible flows
have been simulated in deformed geometries (e.g. Cébron et al. 2010; Favier et al. 2015).

To gain physical insight, we can develop reduced global models in ellipsoids. Reduced
models have proven useful to approach more realistic values in spherical convection (e.g.
Guervilly et al. 2019). In ellipsoids, a first step would be to investigate the global modes of
rotating compressible fluids. Indeed, the inertial modes (sustained by global rotation) play
a fundamental role in rotating flows (e.g. Zhang & Liao 2017, for incompressible flows).
They can be triggered by orbital forcings (Le Bars et al. 2015) and coupled nonlinearly to
yield flow instabilities (e.g. Kerswell 1993, 2002; Vantieghem et al. 2015). Thus, reduced
compressible models in non-spherical rotating domains are worth developing.

Developing such models was largely inhibited by the mathematical complexity
of the ellipsoidal system (e.g. Cartan 1922). Analytical expressions for the acous-
tic modes do exist in non-rotating spheroids (Chang 1971, 1972) and ellipsoids
(Willatzen & Lew Yan Voon 2004). Similarly, analytical solutions of the incompressible
inertial modes (Backus & Rieutord 2017) exist in spheroids (Zhang & Liao 2017), but
not in ellipsoids (except for a few, see Vantieghem 2014). Unfortunately, these analytical
solutions cannot be extended to account for additional ingredients, notably (i) global
rotation for the acoustic modes and (ii) compressibility for the inertial modes. In the
latter case, extensions towards compressible models have been attempted. Yet, they
were restricted to neutrally buoyant fluids, by considering specific isentropic (polytropic)
states within the anelastic approximation (Clausen & Tilgner 2014, in ellipsoids). A
consistent mathematical treatment of the acoustic and inertial modes may appear as a
prerequisite, to pave the way for future planetary-driven reduced models.

1.2. Experimental context

A complementary physical understanding can be obtained with experimental ana-
logues. Despite they lack some ingredients compared to simulations, experiments can
often probe more turbulent regimes (as measured by the Reynolds number). Motivated by
planetary-driven applications, experiments have been conducted in spherical geometries
(e.g. Kelley et al. 2007; Triana et al. 2014; Tigrine et al. 2019). Similarly, planetary-
driven ellipsoidal experiments have been built to mimic tidal deformations, for instance
with water (e.g. Noir et al. 2001, 2012; Grannan et al. 2016; Lemasquerier et al. 2017;
Le Reun et al. 2019) or the gas-filled spheroidal experiment ZoRo (Su et al. 2020). A
major difficulty in the experimental approach is to reconstruct, from a sparse set of
measurements, the velocity field within the fluid domain.

Conventional velocimetry methods, such as particle-imaging techniques, give often
partial information on the flow components. In order to sample larger portions of the
fluid domain, a large and flexible imaging apparatus is required. This is quite challenging
to develop for (rapidly) rotating experiments. The fluid must be also seeded with
neutrally buoyant tracer particles, acting as scatterers (of light or sound). Yet, buoyant
tracers can float, sink or be quickly centrifuged (especially in rapidly rotating gas-filled
experiments). Moreover, some methods work only in non-opaque fluids (for the part of
the light spectrum probed by the sensor), such as particle image velocimetry and laser
Doppler velocimetry, and alternatives to optical techniques must be employed for liquid
metal experiments (e.g. Kelley et al. 2007; Tigrine et al. 2019). Consequently, it is worth
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developing flexible imaging techniques for transparent or opaque fluids, with a large
sampling domain and using non-invasive sensors.
Modal acoustic velocimetry (MAV) does match these requirements. This technique

consists in the identification of the normal modes of oscillations of the fluid. Since the
acoustic modes are highly sensitive to the flow properties, the observed distribution
of acoustic resonant frequencies can feed an inverse problem, to gain a passive access
to the (hidden) dynamics. This technique is routinely used in helioseismology and
asteroseismology (e.g. Aerts et al. 2010), to remotely probe the interior conditions of
stars. Thus, there are strong motivations to use MAV as a complementary imaging
technique for rotating fluid experiments (Triana et al. 2014; Su et al. 2020). It is capable
of imaging remotely the entire medium on relatively short time scales (compared to
the flow time scale), since the global modes are sensitive to the properties of the whole
fluid domain. Moreover, only non-invasive sensors are required on the boundary of the
container. Consequently, MAV is a very promising technique. This would allow the
experimentalists to recover the three components of the (rather large-scale) flow, simply
by using non-invasive acoustic probes.

1.3. Modal acoustic velocimetry

MAV aims at providing flow reconstructions, by measuring an experimental acoustic
signal. Synthetic predictions of the acoustic signal are thus required, to determine the flow
that reproduces at best the experimental data. A high accuracy on the synthetic solutions
is desirable, to restrict the survey of the parameter space. Numerical computations
with local numerical methods (such as finite elements) could be used to determine the
(visco-thermal) acoustic resonances in any bounded geometry (e.g. Berggren et al. 2018;
Su et al. 2020). Yet, the computations are slow and often limited to a few solutions. Thus,
they cannot be efficiently coupled with inverse schemes (so far), thereby limiting their
practical use for MAV. Alternatively, the analytical theory of the acoustic modes has been
used, since analytic solutions are available in various idealised geometries. For instance,
Triana et al. (2014) used the spherical modes for MAV, to retrieve the mean azimuthal
velocity in a rotating spherical experiment. Despite this proof-of-concept validation, the
identification of the spherical acoustic modes in the experimental data is often difficult,
due to the azimuthal degeneracy of the spherical modes. Then, a misleading physical
identification would strongly affect the reconstruction of the velocity field. For this reason,
Su et al. (2020) excited the acoustic modes of a spheroid in the ZoRo experiment, in order
to (partially) lift the azimuthal degeneracy of the modes. For this experimental set-up,
the ellipsoidal acoustic modes should be employed.
So far, only small departures from the standard spherical solutions of the acoustic equa-

tion were considered with perturbation theory (to overcome the difficulty of the ellipsoidal
coordinates). Indeed, the angular eigenfrequency of a global mode is shifted by a small
amount when the cavity is squashed (e.g. Mehl 2007; Guianvarch et al. 2009). Similarly,
frequency shifts are expected due to global rotation (e.g. Dahlen et al. 1998), the velocity
field (e.g. Aerts et al. 2010) and diffusive effects (Moldover et al. 1986). Previous MAV
applications (Triana et al. 2014; Su et al. 2020) combined separate perturbation theories,
one for each effect, which have different mathematical expressions. A similar perturbation
framework has proven accurate enough in metrology, in which either (i) non-rotating and
slightly deformed spherical resonators (e.g. Moldover et al. 1986; Guianvarch et al. 2009)
or (ii) rotating gyroscopes (Bruneau et al. 1986; Ecotiere et al. 2004) were considered.
Undertaking such a (difficult) task may not be satisfactory in moderately deformed
ellipsoids.
The perturbation approach must be carefully assessed against consistent solutions in
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the experimental conditions. Indeed, possible cross-effects have been hitherto neglected,
such as the interplay between rotation and ellipticity. In typical experimental conditions,
the effective frequency resolution for MAV is 10−1− 1 Hz (for typical observational tem-
poral windows between 10 and 100 seconds, see Su et al. 2020). For most of the acoustic
modes that can be excited (with frequencies up to several kHz), even slight modelling
errors could be misleading for the velocity reconstruction. Therefore, perturbation theory
should be used with care (without any prior validation).

1.4. Motivations

In the present study, we focus on the theory and computations of the rotating com-
pressible modes. To simplify the physical problem, we consider full ellipsoids (no inner
core) with rigid boundaries, on which the flows satisfy the non-penetration condition.
This is a reasonable starting assumption for planetary-driven (reduced) models, which
also matches the geometry of many fluid experiments. Firstly, we aim at developing a
new theoretical description of the diffusionless modes in compressible and rotating rigid
ellipsoids. The diffusionless approximation filters out the thin boundary layers, which are
(often) unimportant for the bulk dynamics (Berggren et al. 2018). This assumption also
greatly simplifies the mathematical analysis. In ellipsoids, the acoustic (Chang 1971, 1972;
Willatzen & Lew Yan Voon 2004) and inertial (Vantieghem 2014; Backus & Rieutord
2017) modes are known to be smooth and differentiable. Thus, we can develop polynomial
approximations of the compressible modes in Cartesian coordinates. This will allow us to
overcome the mathematical complexity of both ellipsoidal coordinates (e.g. Cartan 1922)
and non-orthogonal coordinates (e.g. Bonazzola et al. 1998; Reese et al. 2006). Such a
path has been followed in the pioneering work of Lebovitz (1989). Yet, he only considered
ellipsoids with free-surface boundaries, which are not relevant for experiments.
Secondly, we will revisit MAV in rigid ellipsoids. Previous works have mainly employed

perturbation theory (Triana et al. 2014; Su et al. 2020), to deal with small departures
from non-rotating spherical containers. Perturbation calculations are often valid for most
planetary (Dahlen et al. 1998) and stellar applications (Lignières et al. 2006; Reese et al.
2006). Yet, the validity of perturbation theory remains elusive for rotating experiments
in (moderately) deformed spheres (e.g. Noir et al. 2001, 2012; Grannan et al. 2016;
Lemasquerier et al. 2017; Le Reun et al. 2019). This currently prevents us from using
perturbation theory for MAV in rigid ellipsoids.
To sum up, the present paper has a interdisciplinary twofold purpose. First, we aim

at introducing a new polynomial spectral method in rigid ellipsoids. Second, we will
apply it to solve the magneto-acoustic problem in rotating rigid ellipsoids (as a proof of
concept). The paper is organised as follows. We describe the full physical model in §2.
Then, we introduce in §3 the new polynomial spectral method, valid for any vector field
satisfying the non-penetration condition in rigid ellipsoids. Next, results for the magneto-
acoustic modes are presented and validated in §4 and §5. Finally, we end the paper with
a discussion and outline some perspectives in §6.

2. Description of the model

2.1. Assumptions

Taking into account all the physical ingredients in the mathematical model is un-
necessary for MAV. We build a forward model accounting only for the key physical
ingredients, namely adiabatic compressibility, rotation and the leading-order magnetic
field component. As depicted in figure 1, we consider a fluid-filled rigid ellipsoid, of semi-
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Figure 1. Sketch of the general problem. The unit Cartesian vectors are [1x,1y ,1z]. Left:
Front view of the fluid-filled ellipsoid with (dimensional) semi-axes [a∗, b∗, c∗]. Right: Top view
(equatorial slice). On the boundary, the velocity satisfies the non-penetration condition.

axes [a∗, b∗, c∗] and volume V = 4πa∗b∗c∗/3. The rigid ellipsoidal cavity is rotating with
the angular velocity Ω∗ = Ω∗

s 1Ω, where 1Ω is a unit vector with respect to an inertial
frame. In the following, we work exclusively in the rotating frame where the boundary
is steady and employ the Cartesian coordinates (x∗, y∗, z∗). In the rotating frame, the
ellipsoidal boundary ∂V is expressed by (x∗/a∗)2+(y∗/b∗)2+(z∗/c∗)2 = 1. Moreover, the
fluid can have a possible (steady) background mean flow U∗

0(r
∗) (such as a differential

rotation with respect to the solid-body rotation of the container, accompanied with a
meridional circulation due to viscous effects), with r∗ = (x∗, y∗, z∗)⊤ the position vector.
This mean flow is sub-sonic for experimental conditions (yielding ∇ ·U∗

0 = 0).
For the sake of the numerical validation, we assume that the fluid has a spatially

uniform dynamic (shear) viscosity η, bulk viscosity ηB and magnetic diffusivity νm. In the
theory, diffusive effects will be entirely neglected since they are often significant only in the
boundary layers (Berggren et al. 2018). We also discard non-adiabatic effects to consider
isentropic fluids, characterised in the reference state by the homogeneous background
density ρ∗0. Within our idealised framework, we neglect gravitational effects, as well as
the dynamical pressure generated by the background velocity. They are small in rotating
laboratory experiments (when the flow rotation is small compared to the speed of sound).
For the same reason, we also neglect centrifugal effects which are likely negligible for
moderate rotation (although they could be included within our framework). Hence, the
reference state has the background pressure P ∗

0 and the speed of sound C∗
0 =

√

K∗
0/ρ

∗
0,

with K∗
0 the isentropic bulk modulus, that are spatially uniform. For an isentropic gas, we

have K∗
0 = γP ∗

0 with γ the adiabatic index. The fluid is also pervaded by a background
magnetic field B∗

0(r
∗). The leading-order spatial component of the background magnetic

field is usually the (aligned) dipole in fluid experiments, such as in the Maryland spherical
Couette flow experiment (e.g. Kelley et al. 2007) or the Derviche Tourneur Sodium (DTS)
experiment (e.g. Tigrine et al. 2019). Thus, we only retain for the background magnetic
field its spatially uniform component, that is B∗

0 = B∗
0 1B with B∗

0 the strength of the
magnetic field and 1B its unit direction.
We expand the velocity v∗, the density ρ∗, the pressure P ∗ and the magnetic field B∗

as isentropic perturbations around the (steady) isentropic background state. This reads

v∗(r∗, t∗) = U∗
0(r

∗) + u∗
1(r

∗, t∗), (2.1a)

[ρ∗, P ∗,B∗] (r∗, t∗) = [ρ∗0, P
∗
0 ,B

∗
0] + [ρ∗1, p

∗
1, b

∗
1] (r

∗, t∗), (2.1b)

∇ ·U∗
0 = ∇ ·B∗

0 = ∇ · b∗1 = 0. (2.1c)

Then, linearising the governing equations around the background state leads to the
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Number Maryland DTS ZoRo Marseille

MS 6 0.6 6 8× 10−4
6 10−3 10−4

MΩ 6 8× 10−3
6 10−2

6 2× 10−1 ≪ 10−2

MA 6 2× 10−4 9× 10−5 − 4× 10−3 0 0

Le < ∞ 0.01 − 0.3 0 0

|Ro| 0.03 − 400 6 0.1 6 0.1 6 10−1

Ek > 10−8 > 10−7
> 10−6 > 10−6

Table 1. Typical values of the dimensionless numbers for laboratory experiments in
spherical-like domains. Maryland experiment: Kelley et al. (2007), Rieutord et al. (2012),
Triana et al. (2014) and Zimmerman et al. (2014). Derviche Tourneur Sodium (DTS)
experiment: Figueroa et al. (2013) and Tigrine et al. (2019). ZoRo experiment: Su et al.
(2020). Marseille ellipsoidal experiments: Grannan et al. (2016), Lemasquerier et al. (2017) and
Le Reun et al. (2019).

governing (dimensional) equations

∂u∗
1

∂t∗
+ 2Ω∗ × u∗

1 = −∇(p∗1/ρ
∗
0) +

1

ρ∗0µ0
(∇× b∗1)×B∗

0

− (U ∗
0 · ∇)u∗

1 − (u∗
1 · ∇)U∗

0 + ν f∗
v(u

∗
1), (2.2a)

∂b∗1
∂t∗

−∇× (U ∗
0 × b∗1) = ∇× (u∗

1 ×B∗
0) + νm ∇2b∗1, (2.2b)

∂ρ∗1
∂t∗

+U∗
0 · ∇ρ∗1 = −ρ∗0 ∇ · u∗

1, (2.2c)

with µ0 the magnetic permeability of the vacuum, ν = η/ρ∗0 the kinematic viscosity, the
viscous force

f∗
v(u

∗
1) = ∇2u∗

1 +

(

1

3
+

νB
ν

)

∇(∇ · u∗
1) (2.3)

and the bulk kinematic viscosity νB = ηB/ρ
∗
0. The governing equation for the pressure

is obtained by using the equation of state for an isentropic fluid. We get

∂p∗1
∂t∗

+U∗
0 · ∇p∗1 = −ρ∗0C

∗
0
2
∇ · u∗

1. (2.4)

Finally, equations (2.2) are supplemented with boundary conditions. The velocity satisfies
the non-penetration (Dirichlet) condition on the rigid ellipsoidal wall u∗

1 · 1n = 0,
where 1n is the unit vector normal to the boundary. In addition to the non-penetration
condition, diffusive and pressure boundary conditions will be enforced in the diffusive
numerical computations that will be used for the validation (see appendix A). However,
no additional boundary condition is required in the diffusionless theory.

2.2. Dimensionless variables

For the numerical convenience, we work in dimensionless variables. We use the semi-
major axis a∗ as length scale, a∗/C∗

0 as time scale, ρ∗0 as density scale and ρ∗0C
∗
0
2 as

pressure scale. We choose the typical amplitude B∗
0 of the dimensional background

magnetic field as magnetic scale. We also introduce the typical amplitude of the back-
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ground velocity field U∗
0 . The dimensionless fields are written without an asterisk, to

distinguish them from their dimensional counterparts. Then, equations (2.2)-(2.4) read
in dimensionless form

∂u1

∂t
+ 2MΩ 1Ω × u1 = −∇p1 +M2

A (∇× b1)× 1B (2.5a)

−MS [(U0 · ∇)u1 + (u1 · ∇)U0] +Re−1
S fv(u1),

∂p1
∂t

+MS (U 0 · ∇p1) = −∇ · u1, (2.5b)

∂b1
∂t

−MS ∇× (U 0 × b1) = ∇× (u1 × 1B) +Rm−1
S ∇2b1. (2.5c)

We have introduced in equations (2.5) the sonic, rotational and the Alfvénic Mach
dimensionless numbers

MS =
U∗
0

C∗
0

, MΩ =
a∗Ω∗

s

C∗
0

and MA =
V ∗
A

C∗
0

, (2.6a–c)

where V ∗
A = B∗

0/
√

ρ∗0µ0 is the Alfvén velocity. They compare the typical time scales for
the flow, rotation and the magnetic field with the sonic time scale. Note that MS can
be negative, if the background flow is retrograde compared to global rotation. We can
also define (for rotating flows only) the Rossby number Ro = MS/MΩ, which measures
the strength of the background mean flow compared to global rotation. The diffusive
effects are quantified by the sonic Reynolds and magnetic Reynolds numbers (based on
the speed of sound), defined as

ReS =
C∗

0a
∗

ν
and RmS =

C∗
0a

∗

νm
. (2.7a,b)

In the presence of global rotation, we can also introduce the Ekman number Ek =
ν/(Ω∗

sa
∗2). Finally, MA is related in rotating magnetohydrodynamics to the Lehnert

number Le = MA/MΩ. The typical values of these numbers in experiments are given in
table 1. Their magnitudes will allow us to simplify the theory of the compressible modes.
Finally, given the high accuracy of typical acoustic measurements (e.g. Su et al. 2020),
note that we must be able to resolve frequency variations as small as 10−4 − 10−3 in
dimensionless units.

2.3. Master wave-like equation

We are now in a position to build the wave-like equation of the rotating magneto-
acoustic modes in rigid ellipsoids. We leave aside diffusive and non-adiabatic effects.
Indeed, (rapidly) rotating fluid experiments are usually characterised by small diffusive
effects (except possibly in the thin boundary layers, see Berggren et al. 2018), that is
ReS ≫ 1 (or Ek ≪ 1 with rotation) in table 1. They can (often) be considered as
small perturbations of the diffusionless modes (e.g. Moldover et al. 1986). We can recast
diffusionless primitive equations (2.5) into a wave-like equation for the fluid particle
displacement vector ξ1(r, t). This is be a prerequisite to obtain the frequency shift of
the modes generated by the background mean flow (e.g. Aerts et al. 2010). The Eulerian
velocity perturbation is related to ξ1 by (e.g. Lynden-Bell & Ostriker 1967)

u1 =
∂ξ1
∂t

+ (U0 · ∇) ξ1 − (ξ1 · ∇)U0. (2.8)
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We also obtain from pressure and induction equations in dimensionless units (e.g.
Bernstein et al. 1958; Frieman & Rotenberg 1960)

p1 = −∇ · ξ1, b1 = ∇× (ξ1 × 1B). (2.9a,b)

Now, we substitute (2.8)-(2.9) into momentum equation (2.2a), yielding the (dimension-
less) master wave-like equation for the displacement vector

∂2ξ1
∂t2

+ C

(

∂ξ1
∂t

)

+K(ξ1) = 0, ξ1 · 1n = 0 on ∂V, (2.10)

with the linear operators

C(ξ1) = 2 1Ω × ξ1 + 2MS (U 0 · ∇) ξ1, (2.11a)

K(ξ1) = M2
S (U0 · ∇)2 ξ1 + 2MΩMS 1Ω × (U0 · ∇ξ1)−∇ [∇ · ξ1] (2.11b)

− ξ1 · ∇
[

2MΩMS 1Ω ×U0 +M2
S (U 0 · ∇)U0

]

−M2
A [∇×∇× (ξ1 × 1B)]× 1B. (2.11c)

Operator C is skew-Hermitian (Lynden-Bell & Ostriker 1967), whereas operator K is
Hermitian without considering our chosen background magnetic field. Finally, we seek
modal solutions

ξ1(r, t) = ξ(r) exp(λt), ξ · 1n = 0 on ∂V, (2.12)

where λ = σ + iω is the (complex-valued) eigenvalue with the decay (or growth) rate
σ ∈ R and the angular frequency ω ∈ R. Then, problem (2.11) reduces to the quadratic
eigenvalue problem

λ2ξ + λC(ξ) +K(ξ) = 0, ξ · 1n = 0 on ∂V. (2.13)

MAV consists in reconciling predictions obtained by solving (2.13) with the observed
acoustic spectrum, to retrieve the (unknown) background flow.

3. Polynomial spectral method

We introduce the mathematical result of the paper, that is the new polynomial spectral
method in rigid ellipsoids. We will apply it to solve magneto-acoustic problem (2.13).
Yet, a wide class of linear problems in (rigid) ellipsoids is readily amenable to the attack
presented below. For instance, the hydromagnetic modes (e.g. Vidal et al. 2019a) or
various orbitally driven instabilities (e.g. Kerswell 1993, 2002; Vantieghem et al. 2015;
Vidal & Cébron 2017) can be considered for incompressible fluids. Thus, the polynomial
method for compressible flows is worth presenting in general terms. In the rotating frame,
we consider the canonical linear problem for a vector field u bounded in a rigid ellipsoid

M

(

∂2u

∂t2

)

+ C

(

∂u

∂t

)

+K(u) = 0 in V, u · 1n = 0 on ∂V, (3.1)

where [M,C,K] are three differential operators. Problem (3.1) is equipped with the usual
inner product

〈u,v〉 =

∫

V

u†
· v dV, (3.2)

where † denotes the complex conjugate. We can reasonably approximate solutions of
(3.1) by using finite-dimensional functional spaces, made of polynomial elements which
are square integrable and infinitely differentiable. A similar approach has been pursed
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in the pioneering work of Lebovitz (1989) for free-surface flows. We present the spectral
decomposition for rigid ellipsoids in §3.1, its polynomial expansion in §3.2 and discuss
its application to boundary-value problem (3.1) in §3.3.

3.1. Spectral decomposition

Assuming that u is square integrable and (at least) two-times continuously differen-
tiable in (3.1), we expand u by using the Helmholtz-Hodge decomposition. This reads

u = ∇Φ+∇× Ψ , u · 1n = 0 on ∂V, (3.3)

with Φ the scalar potential and Ψ the vector potential. The two components ∇Φ and
∇ × Ψ are orthogonal with respect to inner product (3.2). The potentials are found by
solving the following problems

{

∇2Φ = ∇ · u in V,

∇Φ · 1n = 0 on ∂V,

{

∇× (∇× Ψ ) = ∇× u in V,

(∇× Ψ ) · 1n = 0 on ∂V.
(3.4)

Solutions of Neumann problem (3.4) for the scalar potential are usually written as the
sum of homogeneous and particular potentials Φ = Φu + Φw, such that

∇2Φu = 0, ∇2Φw = ∇ · u. (3.5a,b)

Non-trivial solutions Φu 6= 0 only exist when the normal component of u does not vanish
on some part of the boundary (Kellog 1953). Hence, we have Φu = 0 in rigid ellipsoids
(e.g. Backus & Rieutord 2017). Therefore, any vector u bounded in rigid ellipsoids lies
in the union of two orthogonal linear vector spaces V

⊕

W , such that

V : {e = ∇× Ψ , ∇ · e = 0, e · 1n = 0 on ∂V }, (3.6a)

W : {e = ∇Φw, e · 1n = 0 on ∂V }. (3.6b)

Note that, for ellipsoids with a free surface (not considered here), any vector lies instead
in the union of three orthogonal vector spaces (because Φu 6= 0, see Lebovitz 1989). The
associated decomposition for Φu has been employed in acoustics by Vidal et al. (2019b).

3.2. Polynomial vector spaces

We introduce the finite-dimensional space P [l, l], spanned by all Cartesian monomials
xiyjzk of degree i + j + k = l. Its dimension is dimP [l, l] = (l + 1)(l + 2)/2 (e.g.
Backus & Rieutord 2017). We denote P [0, n] the finite-dimensional space of all poly-
nomial scalars of degree i + j + k 6 n. We now define the finite-dimensional space
P [0, n] of all polynomial vectors for which each component, belonging to P [0, n], is
made of Cartesian monomials xiyjzk (of maximum degree i+j+k 6 n). Its dimension is
dimP [0, n] = (n+1)(n+2)(n+3)/2 (e.g. Lebovitz 1989; Backus & Rieutord 2017). It is
known that any two-times continuously differentiable field appearing in equation (3.1) can
be uniformly approximated by Cartesian polynomials belonging to P [0, n] (Weierstrass
approximation theorem). This polynomial decomposition has proven useful for free-
surface flows in astrophysics (e.g. Chandrasekhar 1969), and has been rediscovered in
elasticity (e.g. Visscher et al. 1991; Saviot & Murray 2009). However, these polynomial
elements do not naturally satisfy the rigid boundary condition (contrary to the ones
introduced below).
Instead, we restrict the vector space V

⊕

W to the finite-dimensional space P [0, n],
by considering basis elements in P [0, n] that satisfy the non-penetration condition. The
quest for a polynomial description of V

⊕

W hinges on the facts that (i) the ellipsoid
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is a smooth quadratic surface in Cartesian coordinates (1n is a polynomial vector) and
that (ii) some modes supported by equation (2.10) admit polynomial solutions (e.g.
Vantieghem 2014; Backus & Rieutord 2017). We define the restrictions of [V,W ] to
the finite-dimensional polynomial vector space P [0, n], denoted V [0, n] ⊂ P [0, n] and
W [0, n] ⊂ P [0, n]. We have dimV [0, n] < dimP [0, n] and dimW [0, n] < dimP [0, n].
We build polynomial basis vectors for V [0, n] and W [0, n], involving linear combinations
of Cartesian monomials xiyjzk (of maximum degree i+ j + k 6 n) that satisfy the non-
penetration condition, as follows.

3.2.1. Basis for V [0, n]

Divergenceless fields represented by the potential vector Ψ in decomposition (3.6a)
can be described by two scalar fields, denoted [A,B] in the following. Various descrip-
tions for these scalars have been be proposed, for instance based on different forms of
poloidal/toroidal-like decompositions (e.g. Gledzer & Ponomarev 1992; Wu & Roberts
2011; Ivers 2017). Instead, we define [A,B] as Clebsch (or Euler) scalars. Then, the
spectral decomposition for e ∈ V simplifies into

e = ∇× (A∇B) = ∇A×∇B. (3.7)

This decomposition has also been introduced to describe quasi-geostrophic motions,
almost invariant along the rotation axis (e.g. in spheres Labbé et al. 2015). Decomposition
(3.7) is of practical interest, since the non-penetration condition is automatically satisfied
if either A or B is constant on the boundary ∂V . Lebovitz (1989) found admissible
polynomial bases for the scalars [A,B] as follows.
We consider the linearly independent Cartesian monomials in P [0, n−1], that is xiyjzk

with i+ i+ k 6 n− 1. Their number is N2 = n(n+ 1)(n+ 2)/6. Among them, there are
N1 = n(n+1)/2 monomials that are independent of z, denoted gi. The other monomials,
denoted hi, contain z as factor. We index the set of these polynomials as

{gi} =
{

1, x, y, x2, xy, y2, . . . , xn−1, yn−1
}

, i ∈ [1, N1], (3.8a)

{hi} =
{

z, xz, yz, z2, . . . , zn−1
}

, i ∈ [N1 + 1, N2], (3.8b)

such that {pi} = {gi}
⋃

{hi} with i ∈ [1, N2]. Then, we define the three pairs of Clebsch
scalars (e.g. Lebovitz 1989)

{A = piF , B = x} with i ∈ [1, N2] ⇒ ei = ∇[piF ]× 1x, (3.9a)

{A = piF , B = y} with i ∈ [1, N2] ⇒ eN2+i = ∇[piF ]× 1y, (3.9b)

{A = giF , B = z} with i ∈ [1, N1] ⇒ e2N2+i= ∇[giF ]× 1z, (3.9c)

with the shape function F = 1 − (x/a)2 − (y/b)2 − (z/c)2. The enumeration of these
elements gives the dimension of V [0, n] (see also Backus & Rieutord 2017)

dimV [0, n] = N1 + 2N2 = n(n+ 1)(2n+ 7)/6. (3.10)

Hence, V [0, 0] is empty and the polynomial elements of V [0, n] are at least linear in
the Cartesian coordinates. Polynomial elements (3.9) are linearly independent (Lebovitz
1989). They are neither normalised nor (fully) orthogonal, but they can be orthonor-
malised with the (modified) Gram-Schmidt algorithm.

3.2.2. Basis for W [0, n]

In investigating the properties of the inertial modes, Cartan (1922) outlined an al-
gorithm to build the elements e = ∇Φw ∈ W [0, n] involving ellipsoidal harmonics.
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n = 2, φ = π/2 n = 3, φ = π/2

Figure 2. Meridional sections of Φw for the potential basis elements ∇Φw ∈ W [0, 3] in an
oblate spheroid (a = b = 1, c = 0.9). Each section is taken in a meridional plane containing the

z-axis, at the longitude φ measured from the long x-axis. Horizontal axis shows
√

x2 + y2 at the
longitude φ. Colour bar shows the scalar potential Φw. Solid grey lines are positive iso-contours,
whereas dashed grey lines represent negative iso-contours.

Yet, they admit simple explicit expressions in Cartesian coordinates. We introduce the
(non-normalised) normal gradient operator N , defined by

N = n · ∇ =
x

a2
∂

∂x
+

y

b2
∂

∂y
+

z

c2
∂

∂z
, (3.11)

with n = (x/a2, y/b2, z/c2)⊤. For a given monomial xiyjzk ∈ P [1, n+ 1], we have

N (xiyjzk) =

(

i

a2
+

j

b2
+

k

c2

)

xiyjzk. (3.12)

Since i+ j+ k > 1, we can obtain the inverse operator N−1 such that N−1N (xiyjzk) =
xiyjzk, yielding

N−1 =
1

(i/a2 + j/b2 + k/c2)2
N (3.13)

and N−1(xiyjzk) = xiyjzk / [i/a2 + j/b2 + k/c2] for each Cartesian monomial.
Any polynomial element e = ∇Φw ∈ W [0, n] is then expressed as a function of the

polynomial scalar potential Φw defined by

Φw = N−1(FΨw), F = 1− (x/a)2 − (y/b)2 − (z/c)2, (3.14)

with Ψw ∈ P [1, n− 1]. We have dimW [0, 0] = dimW [0, 1] = 0 and, for n > 2, the one
of P [1, n− 1]. Thus, we get

dimW [0, n] = n(n+ 1)(n+ 2)/6− 1. (3.15)

Elements e ∈ W [0, n] involve at least quadratic products in the Cartesian coordinates.
These elements are neither normalised nor orthogonal, but they can be orthonormalised
with the (modified) Gram-Schmidt algorithm. Two elements in W [0, 3] are illustrated
in figure 2.



12 J. Vidal, S. Su and D. Cébron

3.3. Method of weighted residuals

Equipped with the previous mathematical results, we develop the new global spectral
method in ellipsoids for generic boundary-value problem (3.1). We seek a trial solution
for the vector field u, projected onto the trial space V [0, n]

⊕

W [0, n] (by considering
polynomial vectors up to the truncation degree n). The trial solution has the form

u(r, t) =

N
∑

j=1

αj(t) ej (r), ej · 1n = 0 on ∂V, (3.16)

withN = dimV [0, n]+dimW [0, n],α = (α1, α2, . . . )
T the (complex-valued) modal coef-

ficients and {ej(r)} the real-valued (trial) elements in V [0, n]
⊕

W [0, n]. Any truncated
expansion (3.16) is not an exact solution of problem (3.1). The best examples are acoustic
modes, described by ∇Φw ∈ W with Φw solution of the scalar Helmholtz equation. They
are expressed in terms of separable transcendental functions, that do not admit exact
finite polynomial expressions (Chang 1971, 1972; Willatzen & Lew Yan Voon 2004). In
spheres, the solutions combine Bessel functions and spherical harmonics.
Then, we substitute expansion (3.16) in boundary-value problem (3.1). This leads to

a set of equations for the modal coefficients, depending on the position (x, y, z) in space.
The spatial dependence is removed by using the method of weighted residuals. To do so,
we define the residual R(u) of equation (3.1), which measures to what extent the trial
expansion is a solution of the original boundary-value problem. When the polynomial
truncation degree n is increased in expansion (3.16), the residual becomes smaller to
converge towards R(u) = 0 when the true solution u is approached. The latter condition
is approximated by projecting, with respect to inner product (3.2), the residual onto a set
of test functions {wi(r)}. Note that the choice of test functions is problem dependent.
We obtain a set of weighted residual integrals that are set to zero, that is 〈wi,R(u)〉 = 0.
This gives the matrix system for the modal coefficients

M
d2α

dt2
+C

dα

dt
+Kα = 0, (3.17)

with the three matrices [M ,C,K]. Their elements are given by

Mij =

∫

V

w
†
i ·M(ej) dV, Cij =

∫

V

w
†
i ·C(ej) dV, Kij =

∫

V

w
†
i ·K(ej) dV. (3.18a–c)

Finally, enforcing the (Dirichlet) non-penetration condition in problem (3.17) is not
necessary because the boundary condition is automatically satisfied by the basis elements.

4. Diffusionless magneto-acoustic modes

We are now in a position to solve the magneto-acoustic problem in rigid ellipsoids.
We survey illustrative numerical solutions of the eigenvalue problem when MS = 0.
The treatment of the physical situation MS 6= 0, that is required for MAV, is only
outlined in appendix B. Although our method can calculate magneto-acoustic modes of
arbitrary ellipsoids, we mostly consider spheres in this section (for the sake of simplicity).
The polynomial solutions will be also compared and cross-validated with finite-element
computations, by using the commercial software COMSOL (see appendix A). Numerical
applications related to MAV in ellipsoids will be undertaken in §5. We present the
numerical implementation in §4.1. Then, we separately investigate the solutions belonging
to the finite-dimensional spaces V [0, n] in §4.2 and W [0, n] in §4.3. The two spaces are
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combined to study the rotational compressible modes in §4.4 and the magneto-sonic
modes in §4.5.

4.1. Numerical implementation

We expand ξ onto the trial set of polynomial vectors {ej(r)} of maximum polynomial
degree n, as in expansion (3.16), and we apply the method of weighted residuals described
in §3.3. We choose the set of test functions {wi(r)} to be equal to the set of trial functions
{ei(r)} satisfying the boundary condition. Hence, our variational method is a Galerkin
procedure. Problem (2.13) then reduces to the finite-dimensional quadratic eigenvalue
problem (QEP) for α

(

λ2M + λC +K
)

α = 0, (4.1)

with the matrices [M ,C,K] obtained from operators (2.11). Their (real) elements are

Mij =

∫

V

ei · ej dV, Cij =

∫

V

ei · C(ej) dV, Kij =

∫

V

ei · K(ej) dV. (4.2a–c)

Since the set {ei(r)} is made of Cartesian monomials, volume integrals (4.2) can be
evaluated analytically in ellipsoids (see formula 50 in Lebovitz 1989).
We have implemented the polynomial algorithm within a bespoke numerical code.

The matrices [M ,C,K] are first computed symbolically, and then are converted to
Fortran subroutines (for fast matrix computations from Python with f2py). To reduce the
conditioning of the matrices, which affects the numerical accuracy, we have normalised
the basis elements with respect to inner product (3.2). This enhances the numerical
convergence of the eigenvalue solutions. Yet, we have not orthogonalised the basis
elements because the symbolic Gram-Schmidt algorithm is slow (for the large number of
elements we have considered). Moreover, it would introduce additional monomials in the
polynomial description of each basis element, thereby strongly reducing the numerical
efficiency of the Galerkin projections. We have used double-precision arithmetic in the
eigenvalue computations, which was found to be sufficient for the modes we are interested
in. We have always found that the eigenvalues are purely imaginary λ = iω (up to the
machine precision). This is expected in the diffusionless theory and confirmed by the
numerics. Thus, we do not discuss the real part of the eigenvalues in the following.
In practice, we convert QEP (4.1) into a generalised eigenvalue problem (GEP) of size

2N . This process is called linearisation (Tisseur & Meerbergen 2001). To do so, we recast
matrix quadratic problem (4.1) as

λ

(

I 0
0 M

)(

α

λα

)

=

(

0 I

−K −C

)(

α

λα

)

, (4.3)

where I is the identity matrix. An obvious difference with QEP (4.1) is that GEP (4.3)
has 2N eigenvalues (possibly degenerate), although we have only N unknowns in the
problem. However, because [M ,C,K] are real-valued matrices, the eigenvalues come in
eigen-pairs [λ,α] and [λ†,α†] (Tisseur & Meerbergen 2001). Hence, the effective number
of eigenvalues and eigenvectors reduces to N . The typical matrix structure for a rotating
and non-magnetic configuration is shown in figure 3. The matrices are (relatively) sparse
and with block structures. For instance, the matrix M has a structure directly stemming
from the orthogonality condition of the Helmholtz-Hodge decomposition. The matrix is
not diagonal, since we do not orthogonalise the basis elements. Additionally, we observe
that only the compressible space W [0, n] yields non-zero entries in the matrix K (when
MA = 0), as delimited by the dashed lines in figure 3. Although the matrices are sparse,
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Figure 3. Schematic structure (non-zero entries) of the sparse matrices [M ,C,K] of QEP
(4.1) with MS = 0, MA = 0 and 1Ω = 1z. Polynomial degree n = 10 with the dimensions of
the finite-dimensional spaces dimV [0, 10] = 495 and dimW [0, 10] = 219. Dashed (red) lines
illustrate the block structures associated with the coupling between the trial and test subspaces.
Upper left block: test and trial elements in V [0, 10]. Upper right block: test elements in V [0, 10]
and trial elements in W [0, 10]. Lower left block: test elements in W [0, 10] and trial elements
in V [0, 10]. Lower right block: test and trial elements in W [0, 10].
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Figure 4. Inertial modes described by the finite-dimensional space V [0, n]. (a) Spectrum, as a
function of MΩ , in rotating spheres at the polynomial degree n = 15. The angular frequency
scales linearly with the rotational Mach number with |ω|/MΩ < 2. Dashed (red) line shows
the upper bound 2MΩ , which is not an allowed eigenvalue (e.g. Backus & Rieutord 2017). (b)
Relative frequency histogram in spheres for n = 50 (45475 modes) and n = 55 (60060 modes).
The number of classes (of uniform length) is 40.

we have used a built-in direct solver for dense matrices based on the generalised Schur
decomposition (since we are interested in the full spectrum).

4.2. Incompressible modes V [0, n]

By considering the solenoidal space V [0, n] alone, the compressible term vanishes in
(2.11) to yield incompressible modes. Among them, the inertial modes play a fundamental
role in rotating flows (e.g. Le Bars et al. 2015; Zhang & Liao 2017). The inertial modes
of a given spatial complexity are exactly described by the finite-dimensional space
V [0, n] (Vantieghem 2014). Moreover, Backus & Rieutord (2017) and Ivers (2017) proved
mathematically that any solenoidal flow in rigid ellipsoids can be expanded onto a linear
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combination of inertial modes. This rigorously ensures the completeness of the polynomial
space V [0, n] in the limit n → ∞ (for square-integrable vector fields).
The spectrum of the inertial modes is illustrated in figure 4. The eigenvalue is purely

imaginary λ = iω, with an angular frequency ω which is bounded by |ω|/MΩ < 2 (e.g.
Greenspan 1968). In compressible units, the frequency grows linearly with MΩ as shown
in figure 4(a). Yet, the probability density function of the inertial modes, within the
interval |ω|/MΩ < 2, has not been reported yet. We show in figure 4(b) the (sampled)
probability density function, obtained by increasing the polynomial degree for values
as large as n 6 55. This suggests that the probability density function of the inertial
modes is nearly uniform in spheres. This behaviour starts emerging when considering
large enough polynomial degrees (n > 55).
Finally, various modes exist in the presence of magnetic fields. The hydrodynamic

modes have been already discussed in spheres (e.g. Malkus 1967; Friedlander 1987;
Zhang et al. 2003; Labbé et al. 2015), and do survive in ellipsoids (Vidal et al. 2019a).

4.3. Compressible modes W [0, n]

We seek compressible solutions ξ = ∇Φw ∈ W , by considering non-rotating and non-
magnetic configurations. Then, QEP (4.1) simply reduces to the Helmholtz equation with
a Neumann boundary condition, that is

λ2Φw = ∇2Φw, ∇Φw · 1n = 0 on ∂V, (4.4)

with λ = iω the eigenvalue and ω ∈ R the angular frequency. The decay rate is
rigorously zero for the non-penetration condition in the absence of diffusive effects
(Willatzen & Lew Yan Voon 2004). We could seek polynomial solutions of equation
(4.4) belonging to W [0, n], by directly applying the method of weighted residuals (see
Vidal et al. 2019b, but with a Dirichlet boundary condition on Φw). However, this
approach is less general than solving (4.1), because it cannot be consistently extended to
account for rotation (see appendix C). Nonetheless, discussing the solutions of equation
(4.4) is worthy of interest to validate the polynomial solutions against known analytical
solutions.
Analytical solutions of equation (4.4) can be obtained in spheroids (Chang 1971, 1972)

and ellipsoids (Willatzen & Lew Yan Voon 2004), by using separation of variables in ellip-
soidal coordinates. To benchmark the polynomial description, we consider axisymmetric
spheroids (a = b 6= c) for which the eigenfrequencies have been tabulated (only for a few
configurations in Chang 1971, 1972). They are characterised by a triplet (i, l,m) with i
an index characterising the radial-like complexity, l the meridional wavenumber (e.g. the
spherical harmonic degree in spheres) and m ∈ Z the azimuthal wavenumber (with an
azimuthal Fourier decomposition in exp(imφ)). Because of the symmetry of revolution,
the modes characterised by the same doublet (i, l) but with different m are degenerate,
that is, have the same angular frequency. For a given doublet (l,m), we denote ωi,l,m

the angular frequency of the ith spheroidal acoustic mode. This frequency is given by
the ith zero of the first derivative (with respect to the radial-like variable) of the prolate
(c > a) or oblate (a > c) spheroidal function of the first kind for a Neumann condition
on Φw. The solutions i = 1 are the fundamental modes, the ones with i = 2 the first
harmonics and so on. Contrary to the inertial modes in figure 4, the acoustic modes have
a spectrum with a non-uniform (discrete) distribution.
We show in table 2 the comparison between theoretical predictions and polynomial

solutions, for a few fundamental modes in spheroids. All the eigenvalues are imaginary,
that is λ = iω with ω ∈ R. The real part is numerically zero (up to the machine
precision, not shown). Then, we vary the truncation degree n to outline how the numerical
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a/c Theory n = 5 n = 10 n = 15 n = 20

(i, l, |m|) ωi,l,m ω ∆ω (%) ω ∆ω (%) ∆ω (%) ∆ω (%)

1 (1, 1, 0) 2.08158 2.08159 8× 10−4 2.08158 0 0 0
1 (1, 2, 0) 3.34209 3.34234 7× 10−3 3.34209 1× 10−8 5× 10−13 0
1 (1, 3, 0) 4.51410 4.60590 2× 100 4.51410 2× 10−7 0 0
1 (1, 4, 0) 5.64670 ∅ ∞ 5.64673 4× 10−4 3× 10−12 7× 10−13

1 (1, 5, 0) 6.75646 6.48753 4× 100 6.75652 1× 10−3 2× 10−8 1× 10−12

1 (1, 6, 0) 7.85108 ∅ ∞ 7.86149 1× 10−1 7× 10−8 1× 10−11

2 (1, 0, 0) 7.23768 7.24343 8× 10−2 7.23769 1× 10−4 6× 10−11 6× 10−11

2 (1, 1, 0) 3.91366 3.91366 3× 10−2 3.91254 3× 10−10 2× 10−10 2× 10−10

2 (1, 1, 1) 2.10698 2.10699 7× 10−2 2.10698 7× 10−10 7× 10−10 7× 10−10

2 (1, 2, 0) 3.98939 3.98939 4× 10−2 3.98799 2× 10−7 2× 10−10 2× 10−10

2 (1, 2, 1) 5.02171 5.02171 8× 10−2 5.01764 2× 10−6 1× 10−10 1× 10−10

2 (1, 2, 2) 3.39289 3.39289 7× 10−2 3.39264 1× 10−8 5× 10−10 5× 10−10

Table 2. Angular frequency ω of acoustic modes in spheroids (a = b). Comparison between
analytical predictions ωi,l,m (from Chang 1972) and polynomial solutions belonging to W [0, n]
(up to the truncation degree n = 20). The relative error ∆ω is given by expression (4.5). The
symbol ∅ means that the modes do not appear in the spectrum for this polynomial degree.

convergence is affected. We cannot expect the polynomial decomposition to be as efficient
as a separable spectral decomposition (for instance using spherical harmonics), which
diagonalises exactly Helmholtz equation (4.4). We compute the relative error (between
numerics and theory) on the angular frequency

∆ω = |ω − ωi,l,m|/ωi,l,m, (4.5)

as a function of the truncation degree n. Expression (4.5) gives a good proxy of the
convergence for eigenvalue computations (e.g. Valdettaro et al. 2007). We find that only
the first modes are approximatively described by the polynomial expansion at small
degrees (e.g. at n = 5 in spheres), with a relative error smaller than 10%. Modes with
higher spatial complexity are not captured at this polynomial degree, for instance the
spherical mode (1, 6, 0). Increasing n is required for the modes to appear in the spectrum
(here at n = 10). When n is further increased, we observe that the relative errors become
extremely small for this subset of modes. The azimuthal degeneracy of the modes is also
well recovered, up to the machine precision (when n is large enough, not shown).
Even if the polynomial description is not exact, polynomial solutions of (4.4) are

accurate when n is large enough. Its accuracy is rooted in the Taylor expansion of the
(known) analytical solutions. In spheres (a = c), spheroidal modes reduce to the textbook
solutions in spherical coordinates (r, θ, φ)

Φw(r, θ, φ) ∝ jl(rωi,l,m)Ym
l (θ, φ), (4.6)

with Ym
l (θ, φ) the spherical harmonic (of degree l and azimuthal order m) and the

associated spherical Bessel function jl(rωi,l,m). The latter admits a convergent series in
powers of r2 = x2 + y2 + z2 (e.g. §10 in Abramovitz & Stegun 1971). Solution (4.6) has
then the infinite polynomial expansion Φw ∝ rlYm

l T (r2), where rlYm
l is a homogeneous

Cartesian polynomial of degree l (i.e. a solid spherical harmonic) and T (r2) a power
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Figure 5. Spectral convergence of the polynomial solutions in W [0, n], as a function of the
truncation degree n. Relative error ∆ω between numerics ω and high-precision predictions ωi,l,m

in (a) spheres (a = b = c = 1) and (b) an oblate spheroid (a = b = 1, c = 0.5). Black dashed lines
show the spectral convergence ∆ω ∝ exp(−2.4n). We have used for ωi,l,m either high-precision
analytical predictions (Chang 1972) or high-resolution computations at n = 25.

series. Thus, the (almost) arbitrary accuracy of the polynomial description is equivalent
to vary the truncation in the power series T (r2). Similar expansions could be obtained
in ellipsoids (albeit often not explicitly), due to the Cartesian form of the ellipsoidal
harmonics (e.g. Dassios 2012).
As outlined in table 2, the convergence towards the expected analytical eigenvalues is

very fast for the modes with the largest spatial scales. We also quantify the convergence
of the eigenvalues with the spatial resolution in figure 5. We show the evolution of relative
error (4.5), as a function of the truncation degree n. The polynomial description strikingly
exhibits an exponential convergence, which is typical of accurate spectral methods (Boyd
2001). The errors decrease very fast, with the numerical scaling ∆ω ∝ exp(−2.4n), until
the computations are limited by the round-off errors of the eigenvalue solver (here around
10−12 − 10−13). The errors then depart from an exponential decay, to become almost
insensitive to the polynomial degree (as previously reported in table 2 for n = 20). This
plateau appears for large enough values of n (depending on the spatial complexity of
the modes). No better approximation to the eigenvalue can be obtained by increasing
further the truncation degree n with double-precision arithmetic. Yet, the numerical
accuracy could be increased with computations using quadruple precision (as considered
in Rieutord & Valdettaro 2018). Finally, the spectral polynomial method outperforms the
(standard) finite-element computations performed with COMSOL in terms of numerical
accuracy, as shown in appendix A. Indeed, the errors decrease much slower as a function
of the spatial resolution, following only a power-law scaling that is characteristic of finite-
element methods using piecewise continuous polynomials (Boyd 2001).
Therefore, we have shown that the (spectral) polynomial method is very efficient,

due to its spectral convergence. In the following, we have considered truncation degrees
n 6 20, which ensure an excellent convergence for all the modes we are interested in.

4.4. Rotational compressible modes

We reintroduce global rotation in the system, by assumingMΩ 6= 0 and 1Ω = 1z . When
the system is rotating, the acoustic modes cannot be sought separately from the inertial
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Figure 6. Rotating compressible modes in spheres (a = b = c = 1). Red crosses: polynomial
solutions W [0, 20] in (a) and V [0, 20]

⊕

W [0, 20] in (b). Empty (black) squares: diffusive
computations with COMSOL (separate m, ReS = 4× 106, νB/ν = 0.6), see details in appendix
A. Dashed black lines show the upper bound ω = 2MΩ for inertial modes. The experimental
range of parameters is MΩ 6 2× 10−1 (see table 1).

modes in the polynomial space W [0, n]. Indeed, the incompressible and compressible
spaces are now coupled through the Coriolis operator, as illustrated by the non-zero
coupled entries of the matrix C in figure 3. Thus, we must seek a priori solutions in
V [0, n]

⊕

W [0, n]. Yet, in the relevant regime MΩ ≪ 1 (see table 1), we may still expect
the acoustic modes to be mainly compressible (i.e. being mostly described by W [0, n]).

We first survey in figure 6 the whole spectrum in rotating spheres, computed by consid-
ering solely W [0, 20] in (a) and V [0, n]

⊕

W [0, 20] in (b). We have also superimposed
targeted diffusive computations performed with COMSOL (see appendix A). They are in
excellent agreement with the diffusionless polynomial solutions, thereby cross-validating
the general results. Several points of figure 6 are worth commenting. We have not shown
the range MΩ > 10, where we get three families of modes. Two of them are in good
agreement with a local analysis (not shown). The missing one results from the rotational
splitting of the acoustic modes, which exists only in bounded geometries. Yet, the results
for such large rotation rates are unlikely physical. Indeed, the centrifugal force has
been entirely neglected in the analysis, although it may affect some acoustic modes for
rapid rotation (Lignières et al. 2006; Reese et al. 2006). Moreover, the range MΩ > 1 is
unreachable in laboratory experiments (see table 1).

When MΩ 6 1, the two spectra obviously differ by the presence of the inertial modes,
associated with the space V [0, 20] in figure 6(b). Their frequency lies in the interval
|ω| < 2MΩ (Valette 1989a,b), as for incompressible fluids (e.g. Backus & Rieutord 2017).
They are only weakly affected by compressibility when MΩ 6 1 (not shown). By contrast,
the acoustic modes, located above the line |ω| > 2MΩ, are significantly affected by
rotation. The latter lifts the azimuthal degeneracy of the spherical acoustic modes. More
precisely, a non-rotating spherical solution ωi,l,m splits into 2l + 1 distinct frequencies
(Gough & Thompson 1990). For instance, the fundamental mode with l = 1 splits into
three branches (as observed), the second mode with l = 2 into five branches and so on.
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Figure 7. Angular frequency ω of non-rotating magneto-acoustic modes as a function of MA.
(a) Plane-wave analysis for the wavenumber k = (0.1, 1.0, 0.3)⊤. AW: Acoustic Waves. MW:
Magnetic (Alfvén) Waves. MAW: Magneto-Acoustic Waves. (b) Polynomial solutions in spheres
for V [0, 15]

⊕

W [0, 15]. Empty (black) circles: three-dimensional COMSOL diffusive solutions
for ReS = 103 and RmS = 10 (#DOF = 416 456).

This splitting is not predicted by a plane-wave analysis (not shown), such that Coriolis
effects only occur in bounded geometries.

4.5. Magneto-acoustic modes

We finally consider non-rotating magnetic configurations (MA 6= 0). We investigate
the regime MA ≪ 1, which is relevant for experiments (see table 1). Before solving
numerically the bounded problem in rigid ellipsoids, it is worth pointing out the proper-
ties of the various waves with an unbounded (local) analysis. To do so, we assume that
1B = 1z and MΩ = MS = 0. Then, we seek plane-wave solutions ξ ∝ exp(ik · r), with
k the (local) wave vector. The typical plane-wave spectrum is shown in figure 7(a). We
observe a change of regime, depending on the strength of the background magnetic field
(measured by MA). The transition occurs around MA|k| ≃ 1. In the strong field regime
(MA|k| > 1), we get three branches of magneto-acoustic waves. The fast branch is made
of magnetic (Alfvén) waves, with a dimensionless angular frequency |ω| ∝ MA. The slow
waves are almost pure acoustic waves, constrained to move along magnetic field lines (e.g.
Campos 1987). The intermediate branch represents hybrid magneto-acoustic waves. In
the weak field regime (MA|k| 6 1), these three branches coalesce to yield two branches.
The acoustic waves become the fast waves and the Alfvén waves the slow ones.
We illustrate in figure 7(b) the modal spectrum in non-rotating magnetised spheres, as

a function of MA. We have also compared our diffusionless polynomial modes with three-
dimensional (3-D) diffusive computations obtained with COMSOL. Computing magnetic
solutions with COMSOL is numerically challenging in three dimensions. Thus, because of
numerical constraints, we have fixed the diffusive numbers ReS = 103 and RmS = 10. We
have used 416 456 degrees of freedom for these computations. This yields a resolution of
approximately 50 points in each spatial direction. We refer the reader to appendix A for
additional details on the numerics. We find a broad agreement between the polynomial
solutions and the 3-D diffusive solutions (for both the Alfvén modes and the acoustic



20 J. Vidal, S. Su and D. Cébron

modes, see below). The discrepancies, usually smaller than 10−1, are due to the large
diffusive effects (absent in our diffusionless polynomial method) and to the lack of spectral
decomposition in the azimuthal direction (in the 3-D finite-element computations). We
have checked that we slowly approach the diffusionless solutions by increasing ReS and
RmS (not shown). Then, several points are worth commenting in figure 7(b). We obtain
two families of modes. On the one hand, the slow family (when MA 6 1) disappears by
considering only the compressible spaceW [0, n] (not shown), and their angular frequency
scales as ω ∝ MA. This clearly shows that these modes are the magnetic Alfvén modes,
mainly associated with the incompressible space V [0, n]. Their eigenfrequencies scale as
in the local theory (e.g. Campos 1987). On the other hand, the fast modes do survive
when we suppress the divergenceless space (not shown). They are acoustic modes, only
slightly perturbed by the magnetic field (when MA 6 1). Moreover, the magnetic field
lifts the azimuthal degeneracy of the acoustic part of the spectrum. This was also found
by Gough & Thompson (1990) with perturbation theory, but they considered different
background magnetic fields.
Therefore, we have recovered the two families of magneto-acoustic modes in this

regime, as predicted by the local theory. We do not study further the modes in rotating
magnetised spheres. Indeed, the properties of the incompressible modes should remain
largely valid for their compressible counterparts. The Alfvén modes have also been
observed and discussed in the experimental context (e.g. in rotating fluids Schmitt et al.
2008; Tigrine et al. 2019). Moreover, we will show that magnetic effects are negligible on
the acoustic spectrum, such that the interplay between rotation and magnetic field is not
worth investigating for MAV.

5. Acoustic splittings for MAV

We revisit the properties of the acoustic modes in relation to MAV for experiments.
The small values of MA in experiments (see table 1) suggest that magnetic fields would
have very tiny influence in experiments. We confirm this assumption in appendix B, such
that we discard magnetic effects in the following. We investigate quantitatively how the
ellipsoidal flattening and rotation along 1Ω = 1z alter the (initially degenerate) spherical
acoustic modes. Dimensionless variations as small as 10−4 − 10−3 can be measured in
air experiments (Su et al. 2020) and, thus, should be accurately computed. Similarly, we
leave aside the effects of a background flow by settingMS = 0. The general method is only
presented in appendix B. Quantitative results with MS 6= 0 are problem dependent and
beyond the scope of the present study. Applications for flow inversions will be provided
elsewhere, related to the ZoRo experiment (Su et al. 2020).
The full ellipsoid is a canonical situation, in which perturbation theory can be carefully

assessed against non-perturbative solutions (due to the existence of the polynomial
solutions). To quantify ellipticity effects, we introduce the polar flattening

ǫ = (a− c)/a. (5.1)

Oblate containers are characterised by 0 6 ǫ 6 1 and prolate ones by −1 6 ǫ 6 0.
We mainly focus on spheroidal geometries (i.e. a = b), to have a single deformation
parameter ǫ. Typical experimental values are ǫ = 0.05 in the ZoRo gas experiment
(Su et al. 2020), ǫ = 0.04 in precessing water experiments (e.g. Noir et al. 2001), ǫ 6 0.3
in librating water experiments (e.g. Lemasquerier et al. 2017; Le Reun et al. 2019) or
ǫ = 0.08 in tidal experiments (e.g. Grannan et al. 2016). So far, only small departures
from spherical solutions have been considered and validated (Mehl 2007; Su et al. 2020).
Yet, since the polar flattening can have quite large values, significant effects could have
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Figure 8. Ellipsoidal splitting of the first low-frequency acoustic modes in spheroids and triaxial
ellipsoids. Polynomial solutions belonging toW [0, 20]. Ellipsoidal geometries a = b = 1, c = 1−ǫ
in (a) and a = 1, b = 1+ ǫ, c = 1− ǫ in (b). Blue triangles: diffusionless COMSOL computations
(using the built-in acoustic scalar equation).

been discarded. Note that the domain of validity of perturbation computations has been
assessed in astrophysics up to ǫ 6 0.16 (Lignières et al. 2006; Reese et al. 2006), by
increasing global rotation (which is responsible for spheroidal shapes due to centrifugal
effects with a free-surface condition). Yet, these works cannot be used to disentangle easily
the effects due to the ellipticity and rotation in rigid ellipsoids. Indeed, the rotation rate
and the flattening are two independent parameters in experimental conditions. Hence,
their effects remain to be carefully evaluated for MAV.
We denote in the following ω(ǫ,MΩ) the angular eigenfrequency of the consistent

solutions (without approximation) and ω(0, 0) the ones of the acoustics modes in non-
rotating spheres (ǫ = 0,MΩ = 0). Then, ω(0, 0) is shifted by small amounts due to
flattening δǫ and rotation δΩ along 1Ω = 1z. In the perturbation framework, these
effects are often treated separately. If this assumption were consistent for experimental
conditions, we would obtain

ω(ǫ,MΩ) ≃ ω(0, 0) + δǫ + δΩ. (5.2)

The residual of expression (5.2), denoted δǫΩ, is due to any cross-effect between ellipticity
and rotation. The frequency shifts would be given by

δǫ = ω(ǫ, 0)− ω(0, 0), δΩ = ω(0,MΩ)− ω(0, 0). (5.3a,b)

We assess separately ellipticity effects δǫ in §5.1 and rotational ones δΩ in §5.2. They
are then combined in §5.3 to assess approximation (5.2), which neglects any possible
cross-effect δǫΩ between rotation and flattening.

5.1. Flattening effects

We investigate quantitatively the ellipticity splitting of the compressible modes be-
longing to W [0, n], to assess the validity of perturbation theory in ellipsoids. Elliptic-
ity effects are usually modelled with first-order perturbation theory (see in metrology
Guianvarch et al. 2009), but Mehl (2007) extended the theory up to the second order.
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Figure 9. Accidental degeneracy of acoustic modes due to flattening in spheroids
(a = b = 1 6= c). Acoustic angular frequency ω as a function of the polar flattening ǫ. Comparison
between polynomial solutions in W [0, 20] (squares) and finite-element computations (solid lines)
with COMSOL. Vertical dashed (magenta) line shows the polar flattening ǫ = 0.05 of the ZoRo
experiment (Su et al. 2020).

However, moderate ellipsoidal deformations are often encountered in fluid experiments,
for which the perturbation approximation may be inaccurate. The various modes given
in table 2 for spheroidal (axisymmetric) geometries have illustrated that an ellipsoidal
boundary lifts the azimuthal degeneracy in |m| of the spherical modes, for a given doublet
(i, l). Indeed, the degeneracy of the modes (1, 2, |m|), with |m| ∈ [1, 2, 3], is lifted as
the spherical cavity is squashed. Yet, the degeneracy of positive and negative m is not
removed in spheroids (not shown).

We show in figure 8(a) how ellipticity affects several low-frequency acoustic modes, as a
function of the polar flattening ǫ in spheroids. We clearly observe that the degeneracy of
the spherical modes (ǫ = 0) is lifted by ellipsoidal flattening. Yet, the different branches,
each associated with a given azimuthal number m in the spheroidal geometry, are not
modified in the same way. A naive first-order theory would predict that the frequency shift
is linear in ǫ. This is obviously not the case for some modes at moderate deformations
|ǫ| > 0.2. Some curves are closer to parabolas than to straight lines, such that they
could be fairly described by second-order perturbation theory (Mehl 2007). In the strong
deformation limit, the acoustic branches tend to diverge and crossings can occur between
branches associated with different azimuthal modes in the initial spherical geometry (e.g.
near ω = 4.5 at ǫ ≃ 0.4 in figure 8a). Finally, we illustrate some triaxial configurations in
figure 8(b) (for the first low-frequency modes), by assuming b = a(1+ ǫ) and c = a(1− ǫ)
with a = 1 (in dimensionless units). The curves are symmetric with respect to ǫ = 0,
since the acoustic problem is invariant under an exchange of b and c. As naively expected
for these small deformations (|ǫ| 6 0.05), the branches are close to straight lines, in
agreement with first-order theory for the ellipticity splitting.
We have shown that ellipticity effects do not affect similarly all the acoustic branches

in figure 8. The branches tend to diverge by increasing the flattening. Thus, accidental
degeneracies of acoustic modes (with initially distinct frequencies in spheres) can occur for
large deformations. Unexpectedly, accidental degeneracy also occurs for initially identical
branches, due to high-order ellipticity effects. This striking feature is clearly illustrated
in figure 9, for two low-frequency acoustic modes in spheroidal geometries. The m =
1 branches are straight lines, that is they are mainly affected by first-order ellipticity



Compressible fluid modes in rigid ellipsoids 23

ω = 7.4631, m = 0, φ = 0 ω = 7.4621, m = 1, φ = 0

Figure 10. Meridional sections of the acoustic pressure p1 ∝ −∇ · ξ of the modes near the
accidental degeneracies observed in figure 9. Polynomial solutions in W [0, 20]. Oblate spheroids
(a = b = 1) with ǫ = 0.05, as in the ZoRo experiment (Su et al. 2020). Each section is
taken in a meridional plane containing the z-axis, at the longitude φ measured from the long

x-axis. Horizontal axis shows
√

x2 + y2 at the longitude φ. Colour bar shows p1, with arbitrary
amplitudes and phase shifts. Solid grey lines are positive iso-contours, whereas dashed grey lines
represent negative iso-contours.

effects. However, the m = 0 modes undergo second-order effects (i.e. in ǫ2), such that
the m = 0 branches cross the m = 1 branches at small values of ǫ. This is not an
artefact of the polynomial description, since we also get this behaviour with the finite-
element computations in COMSOL. The numerical agreement is excellent, because we
can perform diffusionless computations without rotation in COMSOL (see appendix A).
Thus, figure 9 completely cross-validates the diffusionless results, which are recovered
by using the two methods. These points are not avoided crossings that may exist in
spheroidal geometries (Lignières et al. 2006), since each branch has its own azimuthal
symmetry. Moreover, it turns out that the crossing point in figure 9 (left panel) occurs
near ǫ ≃ 0.05, that is the spheroidal deformation of the ZoRo experiment (Su et al. 2020).

We illustrate in figure 10 the modes which are close to the accidental degeneracies
observed in figure 9 (left panel). We have represented the dimensionless acoustic pressure
p1 ∝ −∇·ξ. The two modes have large spatial scales, but different meridional structures
and azimuthal numbers (m = 0 and m = 1). Note that these modes do not undergo
avoided crossing. Indeed, they keep their own azimuthal (and longitudinal) structure from
each side of the crossing point (not shown). Finally, we point out that large-scale modes
are likely sensitive to the large-scale components of the background velocity field, which
are (a priori) easier to determine with MAV. Thus, a poor identification of these two
particular low-frequency modes in the experimental data would be certainly misleading
for the acoustic inversion.

This unexpected phenomenon clearly shows that an accurate description of the acoustic
modes is a prerequisite to any application of MAV (at least in moderately deformed
ellipsoids). In particular, if one would like still to use domain perturbation theory in
ellipsoids, we advocate to employ (at least) a second-order theory (Mehl 2007).
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Figure 11. Rotational splitting of acoustic modes in spheres. Comparison between polynomial
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triangles: COMSOL diffusive computations (separate m, ReS = 4 × 106, νB/ν = 0.6). The
experimental range of parameters is MΩ 6 2× 10−1 (see table 1).

5.2. Rotational splitting

We now focus on the frequency shift due to rotation δΩ in the absence of deformation.
Coming back to figure 6, we observe that the rotational shift seems to be accurately
described solely by the compressible space W [0, n] for small enough rotations. Indeed,
the curves seem poorly distinguishable when MΩ ≪ 10−1, whereas we do notice some
differences when MΩ > 10−1 (for the intermediate branch of the first mode). This
behaviour is confirmed in figure 11, in which we have superimposed the computations
with W [0, 20] and V [0, 20]

⊕

W [0, 20]. We illustrate only the two first modes, but
we have checked that this behaviour remains valid for modes with higher frequencies (if
their polynomial descriptions are well converged). The polynomial results are also in very
good agreement with the 3-D computations in COMSOL (even if the latter necessarily
include diffusion). This confirms the robustness of the results, even if the diffusive angular
frequencies are slightly smaller (in absolute value) than the diffusionless frequencies. This
is consistent with the diffusive theory (Moldover et al. 1986). Thus, acoustic modes could
be fairly described in the range MΩ ≪ 10−1 by considering solely the space W [0, n].
The frequency shift δΩ is often estimated by first-order perturbation theory (e.g.

Gough & Thompson 1990; Dahlen et al. 1998). Without centrifugal effects and when
MΩ ≪ 1, we may expect the acoustic frequencies to scale linearly with rotation (i.e.
δΩ ∝ MΩ). Observing linear or quadratic effects (δΩ ∝ M2

Ω) is not easy in figure 11,
due to the log-linear representation. To disentangle the two scalings, we show in figure
12 the evolution of |δΩ|/MΩ, as a function of MΩ in the range 0 6 MΩ 6 10−1. For
a dominant linear scaling, |δΩ|/MΩ should be roughly constant. We have illustrated
the observed behaviour for some low-frequency modes, which are representative of the
results. We do obtain a linear variation |δΩ| ∝ MΩ when MΩ 6 10−2, in agreement
with first-order theory. When MΩ 6 10−2, the typical error on the ratio |δΩ|/MΩ is
smaller than 10−3, yielding an upper-bound error on the frequency shift of 10−5. Then,
second-order Coriolis effects are already present when MΩ > 10−2. At MΩ = 10−1, the
typical error is 3× 10−2, yielding as typical estimate for the error on the frequency shift
3 × 10−3. Finally, we recover that the rotational shift is fairly described by considering
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space W [0, n] when MΩ ≪ 10−1. Moreover, high-order modes are less affected by the
Coriolis force (not shown), as found experimentally (Su et al. 2020) and in agreement
with astrophysical predictions (Reese et al. 2006). We thus expect small Coriolis effects
in the high-frequency regime.
Consequently, the linear approximation seems accurate enough for typical experimental

purposes when MΩ 6 10−2. However, the linear approximation may not be sufficient for
some large-scale modes and for large values of MΩ, which can be considered in gas
experiments (e.g. Su et al. 2020).

5.3. Interplay between rotation and flattening

We have shown that, for typical experimental conditions (see table 1), ellipsoidal
flattening is quickly responsible for second-order variations in ǫ, even for values as small
as ǫ 6 0.025 (see figure 9). In addition, second-order Coriolis effects in MΩ might be
also observed, notably in gas experiments (for which MΩ 6 2 × 10−1). This leads
us to naturally question the relevance of formal perturbation expansion (5.2), which
treats independently ellipticity and rotational effects. Indeed, this approach rules out
any possible cross-effect between rotation and flattening δǫΩ, which would scale as ǫMΩ

at leading order. These effects may not be vanishingly small for experimental conditions,
in which we can measure slight frequency changes of order 10−4 − 10−3 (Su et al. 2020).
Accurate estimates of δǫ and δΩ are required to assess generic formula (5.2). We have

shown that the polynomial method describes precisely δǫ and δΩ at any order. This is
strongly different in perturbation theory. For instance, δǫ is usually limited to the second
order in the deformation (Mehl 2007; Su et al. 2020). However, second-order ellipticity
effects are often not accurate enough (e.g. when ǫ = 0.3). We clearly illustrate this
point in figure 13. We have first determined the rotating spherical solutions ω(0,MΩ) in
V [0, 20]

⊕

W [0, 20]. Second, we have computed the frequency shift δǫ, in the absence
of rotation, with formula (5.3). Each acoustic branch, characterised here by a given
azimuthal number m, has its own frequency shift δǫ. We have only considered the second-
order ellipticity effects in δǫ, which would be obtained with perturbation theory. To
isolate these second-order effects, we have used a quadratic polynomial fit in powers
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(5.2), obtained by adding the frequency shift δǫ (due to ellipticity) and the rotating spherical
solutions ω(0,MΩ). Frequency shift δǫ for each branch has been computed with formula (5.3), by
using the non-rotating polynomial solutions shown in (a). Rotating spherical modes ω(0,MΩ)
computed in V [0, 20]

⊕

W [0, 20].

of ǫ (dashed line in figure 13a), to describe the polynomial solutions (when ǫ ≪ 0.1).
On the one hand, the fits are close to the true solutions when ǫ 6 0.1 (as naively
expected). On the other hand, the fitted curves are far from the true branches for the
upper acoustic branches when ǫ > 0.1. It becomes obvious that second-order theory is
largely inaccurate for the flattening ǫ = 0.3, even for the low-frequency modes. Computing
δǫ from the quadratic law yields large errors in formula (5.2), as observed in figure 13(a).
For the upper branches, the accurate estimates (containing all ellipticity effects) are
δǫ(ǫ, 0) = [0.4991, 0.7121], whereas the fitted values are δǫ(ǫ, 0) ≃ [0.5816, 0.6518]. These
discrepancies would be directly responsible for erroneous predictions for the acoustic
branches, as illustrated by the large offsets on the upper curves in figure 13(b).
Then, the goal is to evaluate the independence of ellipticity and Coriolis effects in

expression (5.3). We assume that δǫ contains all the effects due to ellipticity (without
approximation) in the absence of rotation, whereas δΩ accounts for all the Coriolis
effects (i.e. without the centrifugal effects, which have been entirely neglected) in the
absence of ellipsoidal deformation. We assess formula (5.2) in figure 14, by considering
two polar flattenings ǫ = 0.05 (e.g. Su et al. 2020) and ǫ = 0.3 (e.g. Grannan et al. 2016;
Lemasquerier et al. 2017). We have computed the frequency shift δǫ in the absence of
rotation with formula (5.3). Each acoustic branch, characterised here by a given azimuthal
numberm, has its own frequency shift δǫ. To avoid neglecting high-order ellipticity effects,
the frequency shift δǫ is computed for each branch from accurate computations of ω(ǫ, 0)
and ω(0, 0) in W [0, 20]. We present illustrative results for some low-frequency modes.
We observe in figure 14(a) that perturbation solutions (5.2) seem in good agree-

ment with the consistent solutions ω(ǫ,MΩ) when ǫ = 0.05. However, this is largely
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Figure 14. Combined effects of rotation and flattening on acoustic modes in spheroids. Angular
frequency ω as a function of MΩ . Red curves: non-perturbation solutions ω(ǫ,MΩ), computed
in V [0, 20]

⊕

W [0, 20]. Black squares: perturbation solutions (5.2), obtained by adding the
frequency shift δǫ (due to ellipticity) to the rotating spherical solutions ω(0,MΩ). Frequency
shift δǫ has been computed for each acoustic branch with formula (5.3), by using the non-rotating
solutions in W [0, 20]. Rotating spherical modes ω(0,MΩ) computed in V [0, 20]

⊕

W [0, 20].
Blue triangles: COMSOL diffusive computations (separate m, ReS = 4× 106, νB/ν = 0.6). The
experimental range of parameters is MΩ 6 2× 10−1 (see table 1).

a consequence of the chosen graphical representation. Quantitatively, we do obtain
small discrepancies between the two approaches. They are due to cross-effects δǫMΩ

in this figure, because the frequency shift δΩ contains any order of the Coriolis effects
(independently of the ellipticity). Note that the error amplitude is also mode-sensitive.
Their typical magnitude is δǫMΩ

≃ c1(MΩ) ǫMΩ, where the numerical prefactor is
c1(MΩ) 6 0.5 when MΩ 6 10−1. For instance, we get for the mode with m = ±1
at MΩ = 10−1 in figure 14(a) a frequency shift around 1 Hz (dimensional units), that
is a dimensionless error of 4 × 10−3 on the angular frequency (not shown). Hence, we
theoretically predict that cross-effects δǫΩ are indeed observable in experiments. The
situation is even much clearer for the ellipsoidal configuration ǫ = 0.3 illustrated in
figure 14(b). For instance, the upper curves around ω = 4.1 differ in angular frequency
by already 10−2 at MΩ = 0.1, which is one order of magnitude larger than for the lower
branches. The frequency shift is then typically 10−3 when MΩ ≃ 10−2 for the upper
branches and 10−4 for the lower ones in figure 14(b). Thus, we support that cross-effects
between ellipticity and rotation are observable given the experimental precision (at least
for some modes), even if they are discarded with perturbation theory (Su et al. 2020).

5.4. Experimental implications

Previous results have direct implications for experiments. As shown in appendix B,
magnetic splittings are far too small and can be safely ignored in the analysis. Yet,
ellipticity and Coriolis effects can be significant and must be considered with care. For
the ZoRo set-up (ǫ = 0.05), Su et al. (2020) conducted a preliminary experimental survey
with rotation, by using air at ambient temperature (C∗

0 ≃ 343 m/s). They confronted
their experimental observations to a mixed perturbation theory similar to equation (5.2),
taking into account second-order ellipticity effects and first-order Coriolis effects (without



28 J. Vidal, S. Su and D. Cébron
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Figure 15. Combined effects of rotation and ellipticity on acoustic modes in spheroids
(ǫ = 0.05). (a) Angular frequency ω as a function of MΩ . (b) Absolute splitting δmω between
the acoustic branches of azimuthal wavenumbers m and −m. Red curves: non-perturbation
solutions ω(ǫ,MΩ), computed from V [0, 20]

⊕

W [0, 20]. Dashed (black) curves: linear fit in
Mω, modelling both first-order Coriolis effects δΩ and cross-effects δǫΩ between ellipticity and
rotation. The experimental range of parameters is MΩ 6 2× 10−1 (see table 1).

ellipticity). They considered (dimensional) rotation rate frequencies Ω∗
s/(2π) 6 30 Hz,

that is MΩ 6 10−1 in dimensionless units. The quantitative results outlined in figure
14(a) show that cross-effects are observable at MΩ = 10−1. In particular, as also done
in astrophysics (e.g. Aerts et al. 2010), Su et al. (2020) measured the absolute acoustic
splitting δmω. The latter is the difference between the angular frequency of the acoustic
branches with azimuthal wavenumbers m and −m, that is δmω = |ω(m) − ω(−m)|.
Considering first-order perturbation theory for the Coriolis effects (without ellipticity),
they observed small differences with their experimental data for the |m| = 1 and |m| = 2
branches shown in figure 14(a), and these discrepancies do quantitatively agree with our
predictions for the cross-effects δǫΩ.
In addition, we also predict, for this experiment, that second-order Coriolis effects

should be observable in the experimental data for MΩ > 10−1. They are illustrated in
figure 15(a). Second-order Coriolis effects could be detected by directly measuring the
angular frequency ω of the modes. We have superimposed, on the exact solutions in figure
15(a), the linear fits (i.e. in MΩ) of ω that model both the first-order Coriolis effects and
cross-effects (because the latter scale as ǫMΩ). Second-order effects inMΩ, that is second-
order Coriolis effects at leading order, are responsible for the departures between the exact
and the fitted curves. Yet, we point out that second-order Coriolis are mainly filtered out
by measuring the absolute splitting δmω, as considered in Su et al. (2020). As shown in
figure 15(b), the splitting δmω obtained with the fitted curves nearly coincides with the
ones computed from the exact solutions. Indeed, by looking at the Taylor expansion in
MΩ of ω, the prefactor of the term in M2

Ω (i.e. the second-order Coriolis effects) has the
same sign and roughly the same amplitude between the two split branches with |m| (not
shown). Consequently, the second-order Coriolis effects are filtered out by considering
the absolute splitting δmω. However, they could be isolated from the cross-effects by
considering instead the sum of the acoustic branches (not shown). For these reasons, the
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Figure 16. Rotational splitting in the experimental range MΩ 6 2 × 10−2 of low-frequency
acoustic modes, for the spheroidal geometry of the ZoRo experiment (Su et al. 2020). Semi-axes
a = b = 1 and c = 0.95, yielding ǫ = 0.05. Red curves are the polynomial solutions belonging to
V [0, 20]

⊕

W [0, 20]. Blue squares: accidental degeneracies. Black triangles: COMSOL diffusive
computations (separate m, ReS = 4× 106, νB/ν = 0.6). The experimental range of parameters
is MΩ 6 2× 10−1 (see table 1).

spectral polynomial method should be preferred for future MAV applications in rigid
ellipsoids. This would avoid the cumbersome development of high-order perturbation
theory, to describe rotational and ellipticity effects.
In moderately deformed ellipsoids (e.g. Noir et al. 2001; Grannan et al. 2016;

Lemasquerier et al. 2017; Le Reun et al. 2019), the situation is even worse. The
illustrative comparison between figures 14 and 15 clearly demonstrates that second-order
domain perturbation theory (Mehl 2007) is not often sufficient to model ellipticity
effects. The predictions for some acoustic modes would be largely inaccurate and
would pollute the velocity reconstruction in MAV. Instead, the polynomial method is
perfectly suited to predict the resonant frequencies in the presence of global rotation
and any deformation. These examples confirm the relevance of the polynomial method
(compared to perturbation method) in acoustic studies of rigid ellipsoids. Indeed,
its accuracy outperforms perturbation theory to determine the acoustic modes. This
would prevent from introducing (avoidable) modelling errors, which may pollute the
interpretation of the experimental data in MAV.
In addition to figures 14(a) and 15, already computed for the ZoRo geometry, we

show in figure 16 theoretical acoustic spectra for some acoustic modes that could be
detected during the forthcoming experimental surveys with the ZoRo apparatus. In the
range MΩ ≪ 1, we predict accidental degeneracies for several acoustic branches (with
different azimuthal wavenumbers) due to global rotation in the flattened geometry (blue
squares). These crossings are worth tracking in the experimental data. Note that avoided
crossings may also occur, for high-frequency acoustic modes sharing the same azimuthal
symmetry (Lignières et al. 2006; Reese et al. 2006). The spatial complexity of two of
these degenerate modes is illustrated in figure 17. If these crossings were overlooked, this
would alter the results from MAV technique (which is sensitive to the large-scale modes).
Moreover, the reconstruction of the flow components with MAV is much harder in the
presence of accidental degeneracy of the acoustic modes. Indeed, the usual perturbation
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ω = 3.4464, m = 1, φ = π/2 ω = 3.4472, m = 0, φ = π/2

Figure 17. Meridional sections of the acoustic pressure p1 ∝ −∇ · ξ of the modes near the
accidental degeneracies observed in figure 14. Polynomial solutions in V [0, 20]

⊕

W [0, 20] for
MΩ = 0.05. Each section is taken in a meridional plane containing the z-axis, at the longitude φ
measured from the long x-axis. Horizontal axis shows

√

x2 + y2 at the longitude φ. Colour bar
shows p1, with arbitrary amplitudes and phase shifts. Solid grey lines are positive iso-contours,
whereas dashed grey lines represent negative iso-contours.

formula employed to take a background flow into account (e.g. Aerts et al. 2010) ought
to be modified in the presence of these degenerate cases (as explained in appendix B).

6. Conclusion

6.1. Summary

We have addressed the problem of compressible modes in rotating rigid ellipsoids.
We have conducted an interdisciplinary theoretical and numerical study, related to
planetary-driven flow experiments (Su et al. 2020). Indeed, the compressible modes could
be used in modal acoustic velocimetry, to reconstruct passively the three-dimensional
components of the (large-scale) velocity field in ellipsoidal experiments. To this end, an
accurate description of the resonant acoustic frequencies of the fluid cavity is required.
Indeed, perturbation theories are often mathematically involved (e.g. Moldover et al.
1986; Gough & Thompson 1990; Mehl 2007) and have also (very) restricted domains of
validity (see Reese et al. 2006, for astrophysical flows).
We have developed a new spectral method in rigid ellipsoids. It is valid for any vector

field, satisfying the non-penetration condition. This relies on the orthogonal expansion
onto a divergenceless vector space V and an irrotational vector space W . We have
constructed admissible square-integrable fields out of global Cartesian polynomials, which
are infinitely differentiable and exactly satisfy the non-penetration boundary condition.
We have emphasised the completeness of the orthogonal decomposition, ensuring that no
admissible field is suppressed. We have favoured a systematic exposure of the procedure,
since we believe this approach to be useful beyond experimental problems. Indeed, the
method only involves clever mathematics in Cartesian coordinates to attack physical
problems that are cumbersome to solve in ellipsoidal (e.g. Cartan 1922) or non-orthogonal
coordinates (e.g. Bonazzola et al. 1998). Then, we have applied this new method to com-
pute the magneto-acoustic modes. They are solution of a quadratic eigenvalue problem,



Compressible fluid modes in rigid ellipsoids 31

formulated for the fluid particle displacement vector. The numerical validation (against
finite-element computations) has shown that the polynomial spectral method has an
exponential convergence. This is a desirable property for accurate predictions in MAV,
which is sensitive to slight acoustic variations.
Finally, we have carefully assessed perturbation theory for MAV in ellipsoids, as em-

ployed in the preliminary experimental study of Su et al. (2020) with the ZoRo apparatus.
Indeed, the ellipsoidal configuration offers a canonical situation in which diffusionless
polynomial solutions exist to be used as benchmarks. We have investigated how global
rotation and the ellipsoidal flattening disturb the acoustic spectrum, since magnetic
effects were entirely negligible. They lift (even partially) the azimuthal degeneracy of
the acoustic modes, which exist in non-rotating spheres. We have shown that ellipticity
effects cannot be safely predicted by first-order perturbation theory (Guianvarch et al.
2009), even in weakly deformed contained. Indeed, second-order effects quickly appear by
increasing the polar flattening ǫ, even for values as small as ǫ = 0.05 as encountered in the
ZoRo experiment (Su et al. 2020). They are also responsible for accidental degeneracies of
some low-frequency acoustic modes for typical experimental deformations. Then, we have
investigated the frequency shift due to rotation, which is a (diffusionless) mechanism that
exists only in bounded geometries. For most experimental regimes, with small enough
fluid rotation rates compared to the speed of sound (i.e. MΩ ≪ 10−1), rotational effects
vary mostly linearly with the rotation rate. Yet, we have shown that second-order Coriolis
effects could be observed (for some modes) in more extreme experimental conditions,
in agreement with preliminary experimental results (Su et al. 2020). Similarly, we have
quantified the cross-effects between rotation and ellipticity for experimental conditions.
They appear to be negligible for (i) small rotations (typically MΩ ≃ 10−2) and (ii) small
enough deformations. However, we have shown that they are responsible for the observed
small variations between perturbation theory and the experimental observations reported
in Su et al. (2020), for rotation rates 10−2 6 MΩ 6 10−1.

6.2. Perspectives

Despite being rather idealised, full ellipsoids are simple analogues of planetary fluid
cores. They offer a rich flow dynamics, which can be simulated in fluid experiments
and could be probed with MAV. In addition to spheroidal geometries (e.g. Noir et al.
2001, 2012; Su et al. 2020), future experimental applications should cover further
triaxial geometries to mimic tidally deformed fluid cores (e.g. Grannan et al. 2016;
Lemasquerier et al. 2017; Le Reun et al. 2019). The triaxial geometry would naturally
lift the azimuthal degeneracy of the spheroidal acoustic modes. It would also introduce
additional accidental degeneracies, for instance due to cross-effects between rotation
and ellipticity. This would complicate further the interpretation of observed acoustic
frequencies. The comparison with the polynomial solutions has showed that the
perturbation framework (e.g. Su et al. 2020) is not always accurate enough to match the
experimental conditions in deformed geometries. Therefore, we hope the present study
will be an impetus in favour of the polynomial method for future applications of MAV
in full (triaxial) ellipsoids.
Additional ingredients would be worth including in the physical model, to improve the

accuracy of MAV. Since the full acoustic problem is rather complex, we have only con-
sidered without approximation the Coriolis and ellipticity effects in ellipsoids. However,
geometrical imperfections are hardly avoidable in experiments (Moldover et al. 1986;
Mehl 2007; Guianvarch et al. 2009). Small departures from ellipsoidal boundaries could
be modelled in our framework, by using domain perturbation theory (Lebovitz 1982). We
have also neglected all diffusive effects, which are usually small in experiments (as well
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as in celestial objects) except in the boundary layers (Berggren et al. 2018). However,
diffusive effects may be comparable in amplitude with the cross-effects between ellipticity
and rotation. Thus, it would be worth investigating how diffusion alters the acoustic
spectrum. Viscous and non-adiabatic effects at the boundary can be approximated with
perturbation theory in non-rotating spheres (Moldover et al. 1986). Hence, we could
estimate the diffusive effects in weakly deformed ellipsoids by using the diffusive spherical
solutions. Alternatively, we could directly solve, in non-rotating ellipsoids, the diffusive
scalar equation for the temperature (see equation 6.4.22 in Morse & Ingard 1986). We
would project it onto another polynomial space, satisfying the appropriate boundary
condition (see a closely related problem in Vidal et al. 2019b). Then, as a long-term
endeavour, the full acoustic spectrum could be synthetically reproduced and used for the
flow inversion (Moldover et al. 1986; Su et al. 2020).
Accounting for spatially varying background states appears also desirable in several

contexts. In acoustics, non-isentropic background states (as driven by thermal diffu-
sion in experiments) modify the acoustic spectrum. A first step has been achieved by
Koulakis et al. (2018). They found the analytical description of the spherical acoustic
modes with a parabolic temperature profile. Yet, their method cannot be extended
(a priori) to other profiles (without using perturbation theory), and also not in the
presence of an ellipsoidal boundary. The polynomial description provides a natural way
to investigate this problem, even in spherical geometry. Indeed, spectral decomposition
(3.3) and its polynomial description are not limited to spatially uniform background
states.
Similarly, we have entirely neglected the centrifugal effects. Because of this omis-

sion, we have not completely treated all rotational effects. More generally, centrifugal
effects have been poorly studied in experimentally driven studies, except for instance
in Horn & Aurnou (2018, 2019) and Menaut et al. (2019). Firstly, they modify the
shape of celestial fluid bodies (e.g. Chandrasekhar 1969; Rieutord et al. 2016). Secondly,
the centrifugal force could modify the frequencies of the acoustic modes. The gravest
modes would be largely unaffected by the centrifugal force (Ecotiere et al. 2004). Yet,
contrary to the Coriolis force, the effects of the centrifugal force may increase with the
radial-like complexity (Reese et al. 2006). The spatial structure of the high-frequency
acoustic modes may be also altered, with an equatorial concentration of the wave energy
(for astrophysical flows, see Lignières et al. 2006). Moreover, avoided crossing might be
also favoured for rapid rotation (e.g. Lignières et al. 2006; Reese et al. 2006). Thus, we
should strive including exactly centrifugal effects within the polynomial approach, by
considering a spatially varying background state and an effective gravitational force. For
all the aforementioned reasons, we advocate to use the polynomial method for future
applications of MAV in full ellipsoids. Finally, we also believe that the polynomial
method would hold out promise for accurate planetary-driven reduced models, to go
beyond the Boussinesq (e.g. Vidal et al. 2018) and anelastic (e.g. Clausen & Tilgner
2014) descriptions for the flow dynamics.
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Appendix A. Finite-element computations

For the numerical benchmarks, we have used the finite-element commercial code
COMSOL. The ellipsoidal domain is discretised by using an unstructured mesh with
tetrahedral elements. The mesh elements are the standard Lagrange elements for the
pressure and the velocity. We have solved in practice different versions of the governing
equations (2.5), depending on the presence of rotational or magnetic effects.

A.1. Non-magnetic configurations (MA = 0)

In non-rotating and non-magnetic cases (MΩ = MS = MA = 0), the governing
equations reduce to the standard (dimensionless) acoustic equation for the pressure

∂2p1
∂t2

= ∇2p1, ∇p1 · 1n = 0. (A 1)

Equation (A 1) is directly solved in COMSOL with a built-in eigenvalue solver, by using
either three-dimensional (3-D) computations or a Fourier decomposition exp(imφ) in the
azimuthal direction to separate the different m (in axisymmetric containers only). In
the latter case, we have extended the built-in implementation of (A 1) in COMSOL to
account for non-axisymmetric modes m 6= 0. We have used cubic Lagrange elements for
the computations. The numerical convergence is shown in figure 18(a), as a function of
the number of DOF (degrees of freedom). We recover the (slow) algebraic convergence
of finite-element computations, here with a −4.5 slope in log-log representation. The
convergence is much weaker than the exponential convergence of the spectral polynomial
method (compared to figure 5). We also obtain a −4.5 slope for the convergence of the
3-D computations, but the relative error is larger than for the 2-D computations (not
shown).
Acoustic equation (A 1) is only valid when MΩ = MS = MA = 0. In any other

case, we must go back to the primitive equations, which necessarily include diffusion
(e.g. viscosity) for the convergence of the numerical results. This is due to the piecewise
continuous polynomials used in the finite-element computations, which introduce numer-
ical diffusion polluting artificially the results. This is strongly different from our global
polynomial spectral method. The latter relies on infinitely differentiable polynomials,
probing accurately the diffusionless regime. We have solved the non-magnetic equations
(2.5a)-(2.5b) with the built-in adiabatic (and viscous) formulation of COMSOL. We have
also extended the COMSOL formulation to solve separately for non-axisymmetric modes
m 6= 0 (with a Fourier decomposition). On the rigid boundary, we prescribe the no-slip
condition u1 = 0. We show in figure 18(b) the typical numerical convergence of the
diffusive eigenvalue λ = σ + iω, with σ < 0 the diffusive decay rate and ω ∈ R the
angular frequency, as a function of the number of DOF. We have fixed the diffusion at
ReS = 4× 106 and νB/ν = 0.6 (for non-rotating computations). Note that the diffusive
frequencies ω are always smaller than the diffusionless ones, as expected theoretically (e.g.
Moldover et al. 1986). We also obtain an algebraic convergence. The angular frequency
ω converges faster than the decay rate σ towards the expected diffusive solutions (de-
termined by high-resolution computations). We have also varied the polynomial order.
High polynomial orders are more accurate for σ but, surprisingly, less accurate for ω.
Hence, we must choose the polynomial order to have the desired convergence of both ω
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Figure 18. Numerical convergence of the 2-D solutions (separate m) computed with COMSOL,

as a function of the number of DOF. Relative error ∆ω as a function of (#DOF)1/2, which is a
proxy of the number of unknown in a given spatial direction. (a) Solutions of acoustic equation
(A 1) in an oblate spheroid with a = b = 1 and c = 0.5. Dashed black lines show the algebraic
convergence (here with a −4.5 slope in log-log representation). The considered modes havem = 1
for ωi,l,m ∈ {5.4446, 7.5561, 8.3503} and m = 2 for ωi,l,m = 6.7743. (b) Diffusive non-rotating
acoustic modes, by solving the compressible Navier-Stokes equations with COMSOL (separate
m). Computations at ReS = 4 × 106 and ratio νB/ν = 0.6 in a sphere (isothermal boundary
at 20 ◦C). Solid lines show ∆ω and dashed lines the relative error on the decay rate ∆σ. The
reference solutions have been computed by using quintic elements for the both the velocity and
the pressure (P5-P5) and #DOF= 880644. Black triangles: elements P2-P1 (quadratic for the
velocity, linear for the pressure). Red circles: elements P3-P2 (cubic for the velocity, quadratic
for the pressure). Green squares: elements P4-P3 (quartic for the velocity, cubic for the pressure).

and σ. We have checked that the diffusive solutions approach the diffusionless ones when
the diffusion is reduced, by gradually increasing the numerical resolution (not shown).
In non-magnetic rotating cases, we have solved equations (2.5) with Lagrange P4-P3
elements (i.e. quartic for the velocity and cubic for the pressure).

A.2. Magnetic computations (MA 6= 0)

Lagrange elements are not suited to solve induction equation (2.5c). We employ
Nédélec’s elements for the magnetic field, which have been already validated for hy-
dromagnetic computations (e.g. Cébron et al. 2012). We have supplemented the built-in
adiabatic (and viscous) formulation of COMSOL with the induction equation. We have
performed only 3-D computations in this case (even in axisymmetric containers). We
assume that the rigid boundary is a perfect conductor, in which no magnetic field is
trapped. Hence, we consider the magnetic boundary conditions

b1 · 1n = 0 and (∇× b1)× 1n = 0 on ∂V. (A 2)

With perfectly conducting conditions (A 2), the magnetic boundary layer has weaker
effects than for finite values of the electrical conductivity (e.g. Roberts & Loper 1979).
Consequently, we can expect the diffusive magnetic computations to be closer to the
diffusionless theory. We have also replaced induction equation (2.5c) by the equation for
the magnetic vector potential b1 = ∇×Λ1. This formulation enforces the divergenceless
condition of the magnetic field in finite-element simulations (e.g Cébron et al. 2012).
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Then, the (dimensionless) induction equation reads

∂Λ1

∂t
−MS U0 ×Λ1 = u1 × 1B +Rm−1

S ∇2Λ1. (A 3)

To solve equation (A 3), the first magnetic condition in (A 2) directly translates into
Λ1 × 1n = 0 on the boundary, whereas the second is naturally satisfied by the chosen
Nédélec’s elements on the boundary. When a magnetic field was considered, we have
used quadratic Lagrange P2-P2 elements (quadratic for the velocity and the pressure),
combined with cubic Nédélec’s elements for the magnetic field. Finally, we have also
neglected the bulk viscosity (νB/ν = 0) in our magnetic computations.

Appendix B. Additional details on MAV

B.1. Magnetic shift

We quantify the frequency shift δB due to magnetic effects. We have already observed
in figure 7 that the magnetic field lifts the azimuthal degeneracy of the spherical acoustic
modes. The magnetic shift scales in M2

A (not shown), as expected from perturbation
theory (e.g. Gough & Thompson 1990, but for different magnetic fields). For our magnetic
field, the numerical prefactor in the scaling law δB ∝ M2

A is of order unity (at least
for the first low-frequency acoustic modes). This yields the raw estimate δB ≃ M2

A.
Typical experimental values are MA 6 5 × 10−3 (see table 1), leading to the upper
bound δB 6 10−5 (in dimensionless units).
In dimensional units, taking the ZoRo apparatus as a reference (Su et al. 2020), the

typical frequency resolution is 0.1− 1 Hz (for modes with a dimensional frequency f∗ =
ω∗/(2π) of a few kHz). With ambient air (C∗

0 ≃ 343 m/s), the frequency shift would be
as small as 10−3 Hz in dimensional units within the ZoRo geometry (radius a∗ = 0.2
m). The situation is not very favourable in liquid metals (in which the speed of sound
is higher). Therefore, we conclude that the frequency shift δB due to magnetic fields is
entirely negligible for experimental conditions.

B.2. Splitting due to a background velocity

We provide details on the method to calculate the effects of a background flow on the
acoustic eigenmodes when MS 6= 0 (and MA = 0 since magnetic effects are negligible).
We could solve directly problem (2.13) with the polynomial description. However, the
presence of a background flow U0 (with an arbitrary spatial complexity) may reduce
the numerical convergence of the polynomial solutions. Indeed, the terms involving the
background flow are responsible for a cascade on higher-order polynomial bases (unless
U0 is linear in the Cartesian coordinates). Moreover, flow instabilities would be certainly
triggered (e.g. Kerswell 1993, 2002; Vidal & Cébron 2017). In experimental conditions,
the large-scale background velocity is generally sub-sonic (MS ≪ 1), and also often
smaller than solid-body rotation (i.e. Ro = MS/MΩ 6 1). This suggests seeking the
solutions in powers of MS, to account for the effects of U0 on the acoustic spectrum only
as small perturbations. This reads in dimensionless form

[λ, ξ,C,K] ≃
[

λ(0), ξ(0),C(0),K(0)

]

+MS

[

λ(1), ξ(1),C(1),K(1)

]

, (B 1a)

C(0)(ξ(i)) = 2MΩ 1Ω × ξ(i), C(1)(ξ(i)) = 2 (U0 · ∇) ξ(i), (B 1b)

K(0)(ξ(i)) = −∇

[

∇ · ξ(i)

]

, (B 1c)

K(1)(ξ(i)) = 2MΩ 1Ω × (U0 · ∇) ξ(i) − 2MΩ ξ(i) · ∇ [1Ω ×U0] . (B 1d)
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The leading-order terms (i.e. MS = 0) have been considered in the main text. They
exactly account for the key physical ingredients, namely compressibility and global
rotation. The background flow is introduced at the next asymptotic order (MS ≪ 1).
For non-degenerate eigenvalues λ(0), the first-order correction λ(1) obeys a

variational principle given by the solvability condition of the system at the order
MS . Since the zeroth-order (infinite-dimensional) operators in (B 1) are Hermitian (e.g.
Lynden-Bell & Ostriker 1967), we get the variational principle in ellipsoids

λ(1)

∫

V

ξ
†

(0) ·
[

2λ(0) + C(0)

]

ξ(0) dV = −

∫

V

ξ
†

(0) ·
[

λ(0)C(1) +K(1)

]

ξ(0) dV. (B 2)

From principle (B 2), we recover formula (3.332) in Aerts et al. (2010) by considering
a spatially uniform density profile and perturbations of non-rotating solutions (i.e. by
setting 1Ω = 0 forMS = 0). Principle (B 2) can also be formulated as a finite-dimensional
problem within the framework of the spectral polynomial method. General problem (2.13)
is recast as a finite-dimensional QEP with the real-valued matrices [M ,C,K]. Then,
formal expansion (B 1) yields the finite-dimensional quantities

[λ,α,C,K] ≃
[

λ(0),α(0),C(0),K(0)

]

+MS

[

λ(1),α(1),C(1),K(1)

]

. (B 3)

At the leading asymptotic order (MS = 0), the unperturbed quantities [λ(0),α(0)] are
solution of the QEP given in the main text. At the next asymptotic order, the solvability
condition gives (e.g. formula 4.10 in Seyranian 1993)

λ(1) α
†

(0)

⊤
·
[

2λ(0)M +C(0)

]

α(0) = −α
†

(0)

⊤
·
[

λ(0)C(1) +K(1)

]

α(0). (B 4)

Formula (B 4) is the finite-dimensional analogue of variational principle (B 2).
However, mathematical complexities in perturbation theory occur for degenerate eigen-

values λ(0). Indeed, we have shown in the main text that many acoustic modes are
degenerate, that is, have the same angular frequency even in spheres or spheroids for
different azimuthal wavenumbers |m|. The degeneracy of the differential operator can be
often avoided in principle (B 2), by solving separately the eigenvalue problem for each
azimuthal wavenumber in axisymmetric containers. This strategy cannot be pursued
with the polynomial description, but the difficulties can be circumvented (e.g. Seyranian
1993). When the unperturbed eigenvalue λ(0) is degenerate, formula (B4) ought to be
modified. If λ(0) is a r−multiple root, then the solution α(0) can be written as a linear
combination of the set of r−degenerate modes {αj,(0)} with j = 1, 2, . . . , r. Then, the
solvability conditions for each degenerate mode αj,(0) give a linear system made of the
individual equations

α
†

j,(0)

⊤
·
[

λ(0)C(1) +K(1)

]

α(0) + λ(1) α
†

j,(0)

⊤
·
[

2λ(0)M +C(0)

]

α(0) = 0. (B 5)

This linear system admits r non-trivial solutions provided that the determinant vanishes.
The resulting condition is used to determine the r roots for the first-order correction λ(1).
We refer the reader to Seyranian (1993) for further details.

Appendix C. Extended Goldstein equations in rigid ellipsoids

The standard acoustic equation, which is only valid for potential flows (Pierce 1990),
cannot be used to determine any rotational effect. Acousticians have attempted to
extend the acoustic equation, to account for vortical perturbations (Goldstein 1978) and
vortical mean flows U∗

0 (Bergliaffa et al. 2004). The resulting equations bear the name
of (extended) Goldstein equations (Bensalah et al. 2018). They have for unknown the



Compressible fluid modes in rigid ellipsoids 37

velocity perturbation, written as u∗
1 = ∇Φ∗

1 + ζ∗
1 where ζ∗

1 is a vortical hydrodynamic
contribution. This is motivated by the Clebsch representation, but does not depend on
it (Bergliaffa et al. 2004). Then, the dimensional equations read

d

dt∗

(

1

C∗
0
2

dΦ∗
1

dt∗

)

=
1

ρ∗0
∇ · (ρ∗0 [∇Φ∗

1 + ζ∗
1]) , (C 1a)

dζ∗
1

dt∗
+ (ζ∗

1 · ∇)U∗
0 = ∇Φ∗

1 × (∇×U∗
0), (C 1b)

with d/dt∗ = ∂/∂t∗ + (U∗
0 · ∇) the material derivative along the background flow.

Bergliaffa et al. (2004) correctly obtained the hybridisation of acoustic waves with the
Coriolis waves in an unbounded medium, in agreement with the plane-wave analysis of
the primitive equations (not shown).
We may naively apply extended Goldstein equations (C 1) to compute the rotational

splitting, but this approach is not consistent in rigid ellipsoids. This comes from the
description of ζ∗

1. In unbounded fluids, we can expand ζ∗
1 by using the Clebsch represen-

tation, such that ∇ · ζ∗
1 6= 0. Yet, the Clebsch representation is not as powerful as the

Helmholtz-Hodge decomposition in bounded geometries. This decomposition may not
(i) exist globally and (ii) satisfy the non-penetration boundary condition. From general
decomposition (3.3) in rigid ellipsoids, u∗

1 lies in the union V
⊕

W , that is the sum of
a (divergenceless) vortical space and an irrotational space with a non-zero divergence
(see §3.1). Hence, we necessarily get ∇ · ζ∗

1 = 0 in rigid ellipsoids. Then, equation
(C 1b) becomes uncoupled (when ρ∗0 is homogeneous) and equation (C 1a) reduces to the
standard acoustic equation (only valid for potential flows). This shows that equations
(C 1) cannot be used in rigid ellipsoids (with homogeneous background density profiles)
to compute the acoustic modes in the presence of global rotation.
Finally, extended Goldstein equations (C 1) may not be inconsistent in any bounded

geometry. For instance, their relevance remains to be assessed in ellipsoids with free-
surface boundary conditions. Indeed, the relevant spectral decomposition is the sum of
three vector spaces U

⊕

V
⊕

W such that space U is spanned by divergenceless scalar
potentials (Lebovitz 1989). This would keep the coupling between the two equations
(C 1), such that rotational effects may be described by the Goldstein equations.
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Aurnou, J. M. 2017 Libration-driven flows in ellipsoidal shells. J. Geophys. Res. 122 (9),
1926–1950.

Lignières, F, Rieutord, M & Reese, D 2006 Acoustic oscillations of rapidly rotating
polytropic stars-I. Effects of the centrifugal distortion. Astron. Astrophys. 455 (2), 607–
620.

Lynden-Bell, D. & Ostriker, J. P. 1967 On the stability of differentially rotating bodies.
Mon. Not. R. Astron. Soc. 136 (3), 293–310.

Malkus, W. V. R. 1967 Hydromagnetic planetary waves. J. Fluid Mech. 28 (4), 793–802.
Mehl, J. B. 2007 Acoustic eigenvalues of a quasispherical resonator: second order shape

perturbation theory for arbitrary modes. J. Res. Natl Inst. Stan. 112 (3), 163–173.
Menaut, R., Corre, Y., Huguet, L., Le Reun, T., Alboussière, T., Bergman, M.,

Deguen, R., Labrosse, S. & Moulin, M. 2019 Experimental study of convection in
the compressible regime. Phys. Rev. Fluids 4 (3), 033502.

Moldover, M. R., Mehl, J. B. & Greenspan, M. 1986 Gas-filled spherical resonators: Theory
and experiment. J. Acoust. Soc. Am. 79 (2), 253–272.

Morse, P. M. & Ingard, K. U. 1986 Theoretical Acoustics. Princeton University Press.
Nduka, A. 1971 The Roche problem in an eccentric orbit. Astrophys. J. 170, 131–142.
Noir, J., Brito, D., Aldridge, K. & Cardin, P. 2001 Experimental evidence of inertial

waves in a precessing spheroidal cavity. Geophys. Res. Lett. 28 (19), 3785–3788.
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Visscher, W. M., Migliori, A., Bell, T. M. & Reinert, R. A. 1991 On the normal modes
of free vibration of inhomogeneous and anisotropic elastic objects. J. Acoust. Soc. Am.
90 (4), 2154–2162.

Willatzen, M. & Lew Yan Voon, L. C. 2004 Eigenmodes of triaxial ellipsoidal acoustical
cavities with mixed boundary conditions. J. Acoust. Soc. Am. 116 (6), 3279–3283.

Wu, C.-C. & Roberts, P. H. 2011 High order instabilities of the Poincaré solution for
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