
HAL Id: hal-02972654
https://hal.science/hal-02972654v1

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Greedy Algorithm for Sequence
Recommendation

Idir Benouaret, Sihem Amer-Yahia, Senjuti Basu Roy

To cite this version:
Idir Benouaret, Sihem Amer-Yahia, Senjuti Basu Roy. An Efficient Greedy Algorithm for Sequence
Recommendation. Database and Expert Systems Applications, 2020, Linz, Austria. �10.1007/978-3-
030-27615-7�. �hal-02972654�

https://hal.science/hal-02972654v1
https://hal.archives-ouvertes.fr

An Efficient Greedy Algorithm for Sequence
Recommendation

Idir Benouaret1, Sihem Amer-Yahia1, and Senjuti Basu Roy2

1 CNRS, Univ. Grenoble Alpes, France
2 New Jersey Institute of Technology, Newark, NJ, USA

{idir.benouaret, sihem.amer-yahia}@univ-grenoble-alpes.fr
senjuti.basuroy@njit.edu

Abstract. Recommending a sequence of items that maximizes some
objective function arises in many real-world applications. In this paper,
we consider a utility function over sequences of items where sequential
dependencies between items are modeled using a directed graph. We
propose EdGe, an efficient greedy algorithm for this problem and we
demonstrate its effectiveness on both synthetic and real datasets. We
show that EdGe achieves comparable recommendation precision to the
state-of-the-art related work OMEGA, and in considerably less time.
This work opens several new directions that we discuss at the end of the
paper.

Keywords: Sequence Recommendation · Submodular Maximization ·
Algorithms.

1 Introduction

Recommender Systems are models and algorithms that provide suggestions for
items that are most likely to be of interest to a particular user [11]. Tradi-
tional recommendation systems are usually classified in two main categories.
Collaborative Filtering approaches [13], which consists of learning users’ prefer-
ences according to similar users and Content-based approaches, which consists of
matching users’ preferences with item features [8]. In their simplest form, recom-
mender systems predict the most suitable items based on the user’s preferences,
and often return them as a ranked list. However, there are many applications
where the order in which items should be consumed, and hence recommended,
plays an important role in the satisfaction of the user. In that case, the set of
recommended items should not be considered as a set of alternatives. Rather,
they should form a sequence of items to be consumed in a “good” order. Typical
examples include the recommendation of a sequence of music tracks [3], learning
courses [7, 18], or points of interest (POIs) in a city [16].

While various existing efforts address the problem of recommending packages
of items, e.g., [1, 17], they do not account for sequential dependencies and ordered
preferences that might exist between items. In this paper, we are interested in
developing a framework to recommend to a user u a sequence of at most k items

2 Idir Benouaret , Sihem Amer-Yahia, and Senjuti Basu Roy

that maximizes a given utility function f . The function f should capture both
the utility of selecting k items individually, and the utility of providing them in
a given order σ1 → σ2, ...,→ σk. For instance, a sequence containing a museum
visit followed by sauna visit could have a higher utility than the inverse sequence.
When dealing with sequences of items, the search space becomes exponential in
the length of the recommended sequences. Submodular set functions constitute
a category of widely used utility functions in recommender systems [5]. Such
functions have been used to solve a submodular optimization problem that finds
a subset of k items whose aggregated utility is maximized. The greedy algorithm
that selects at each step the next item which maximizes a submodular monotone
function has been shown to enjoy a (1 − e−1)- approximation guarantee [6].
Recently, Tschiatschek et al. [15] considered the sequence selection problem
using an expressive class of utility functions over sequences, which generalizes
the class of submodular functions and captures ordered preferences among items.
They encoded these ordered preferences in a directed acyclic graph (DAG) over
items, where a directed edge between two items models that, in addition to
selecting the two items, there is an additional utility when selecting the ”tail”
item before selecting the ”head” item that preserves their order. To the best of
our knowledge, [15] is the only work that considers this submodular sequence
recommendation problem, we will thus follow their problem formulation. The
authors proposed OMEGA, an algorithm that exploits the DAG property of the
underlying utility graph. For each set of items, its ordering can be computed by
first finding a topological ordering of the graph and then sorting the set of items
according to that. At each subsequent step, an edge is selected to maximize the
given utility function according to the sequence of items induced by the selected
edge at each step. However, the full sorting at each step coupled with computing
the topological ordering of the graph leads to a high computational runtime. For
example, selecting a sequence of 10 over 1000 items takes about 4 minutes in
our settings.

In this paper, we propose EdGe, an Edge-based Greedy sequence recommen-
dation algorithm that extends the classical greedy algorithm proposed in [6], but
instead of selecting at each step the item (node) with a maximum gain, it se-
lects the next valid edge with a maximum gain according to the edges that are
selected so far. EdGe takes as input a directed graph of items and a submodular
monotone function, and returns a sequence of length at most k. EdGe greatly
improves the complexity of OMEGA [15]. The worst-case computational com-
plexity of EdGe is O(m · k), where m is the number of edges in the graph and
k is the length of the recommended sequence.

Our experiments on both synthetic and real datasets verify the performance
of EdGe in terms of response time and recommendation precision.

2 Problem Formulation

We now formally define the problem of recommending a sequence of items fol-
lowing the formulation in [15]. Let V = {v1, v2, ..., vn} be the set of n items that

An Efficient Greedy Algorithm for Sequence Recommendation 3

are available for recommendation. Our goal is to provide a user u with a sequence
recommendation of length at most k, from the set of possible items, where the or-
der in which items are recommended is important. Let Σ = {(σ1, σ2, ..., σk)|k ≤
n, σ1, σ2, ..., σk ∈ V,∀i, j ∈ [k] : i 6= j ⇒ σi 6= σj} be the set of all possible se-
quences of items without repetitions, that can be selected from the set of items
V. We denote by |σ| the length of the sequence σ ∈ Σ, and for two sequences
σ, π ∈ Σ, let σ ⊕ π be their concatenation.

Ordered preferences are modeled using a set of edges E , which represents
that there is a utility when selecting items in a certain order, as it is illustrated
in Figure 1.

Fig. 1. An example of sequential dependencies between three Harry potter movies
represented by a directed graph. Intuitively the order of watching these movies affects
the satisfaction of the user. For example, watching Harry Potter and the Chamber
of Secrets before watching Harry Potter and the Prisoner of Azkaban has a higher
utility than watching them in the opposite order. Self-loops represent the utility of
recommending an item individually.

More formally, an edge eij models the utility of selecting item vj after item
vi. A self-loop edge eii models the utility of selecting item vi individually. Hence,
our model takes as input a directed graph G = (V, E) whose nodes correspond
to the set of items and whose edges correspond to the utilities of selecting items
in a certain order. We define the utility function f for a sequence σ:

f(σ) = h(edges(σ)) (1)

where h(.) is a set-valued function and the function edges(σ) maps the se-
quence of items σ to a set of induced edges according to the graph G. More
formally edges(σ) = ∪j∈[|σ|]{(σi, σj) | (σi, σj) ∈ E , i ≤ j}.

We assume that h(E) is a non-negative monotone submodular set function
over the edges E , i.e, h : 2E → R+∗. Intuitively, submodularity describes the set
of functions that satisfy a diminishing returns property. This property guarantees
that the marginal gain of an edge e ∈ E is greater in the context of some set of

4 Idir Benouaret , Sihem Amer-Yahia, and Senjuti Basu Roy

edges A compared to a larger set of edges B ⊇ A. formally h(A∪ {e}− h(A)) ≥
h(B ∪ {e}) − h(B) for all sets A,B s.t. A ⊆ B ⊆ E\{e}. Particularly, in our
experiments (Section 4), we use a probabilistic coverage function. Intuitively,
the utility of a set of edges E is large if the nodes nodes(E) are well covered.

h(E) =
∑

j∈nodes(E)

[1−
∏

(i,j)∈E

(1− wi,j)] (2)

where wi,j is the utility associated with edge (i, j) and nodes(E) is the set
of items that are induced by the set of edges E.

Our recommendation task is to select a sequence σ of at most k unique items
that will maximize f . This can be formalized as the following maximization
problem:

maxσ∈Σ,|σ|≤kf(σ) (3)

The search space for optimal solutions is exponentially larger for sequences
in terms of k. In particular, there are

(|V|
k

)
subsets of items of size k but k!

(|V|
k

)
sequences of items of length k.

3 The EdGe Algorithm

In this paper, we develop EdGe, an Edge-based Greedy sequence recommenda-
tion algorithm, which takes as input a directed graph and outputs a sequence
of at most k items. EdGe essentially extends the classical greedy algorithm
proposed in [6], but instead of selecting at each step the item (node) with a
maximum gain, it selects the next valid edge with a maximum gain according to
the edges that are selected so far. More formally, we select at each step the edge
e with the maximal obtained gain, i.e. the edge e maximizing h(edges(σ) ∪ e),
according to the sequence of items σ that is selected so far.

EdGe (pseudo-code in Algorithm 1), takes as input a directed graph G =
(V, E), a maximum length k of the sequence to be recommended, a submodular
monotone function h(.) over the set of edges E . EdGe outputs a sequence of
items of length at most k. EdGe starts with the empty sequence σ (line 1). At
each step, it computes the set of valid edges C (line 3). An edge e is said to
be valid if it preserves the order of the recommended sequence so far, i.e., its
endpoint node is not already in the sequence σ, which preserves the order of
the corresponding sequence according to the topological ordering of the graph
G, and if adding the items induced by this edge to the actual sequence does not
violate the maximum cardinality k. If the set C is not empty, EdGe selects the
edge eij with the maximum gain (line 6). Note that the computation of h() is
incremental. It is not recomputed from scratch at every iteration. If the selected
edge is a self-loop, EdGe appends a single node vj to the sequence σ, if the
start point of the selected edge is already in the sequence σ, it also appends the
single node vj (line 7,8). Finally, if the selected edge eij induces two different
items i and j and item i does not appear in the sequence σ, it appends node vi

An Efficient Greedy Algorithm for Sequence Recommendation 5

followed by node vj to the sequence σ (line 10). The algorithm stops when it is
not possible to select any further edge to grow the sequence σ (line 4).

Our algorithm does not need full sorting at each step compared to OMEGA
[15]. It does a pseudo-sort while computing the set of valid edges and grows the
set of selected edges, i.e., it discards all edges whose endpoints nodes are already
in the selected sequence so far, to ensure that the recommended sequences will
always be sorted according to the topological ordering of the graph.

Algorithm 1: Edge-based Greedy Sequence Algorithm (EdGe)

Input: a directed graph G = (V, E), a maximum length of the sequence k, a
submodular monotone function h(.) over the set of edges E

Output: Recommended sequence with cardinality at most k
1 σ ← ∅
2 while |σ| ≤ k do
3 C ← {eij ∈ E , |nodes(edges(σ) ∪ eij)| ≤ k & vj /∈ σ}
4 if C = ∅ then
5 break

6 eij ← argmaxe∈C h(edges(σ) ∪ e)
7 if (i = j) ∨ (vi ∈ σ) then
8 σ ← σ ⊕ vj

9 else
10 σ ← σ ⊕ (vi ⊕ vj)

11 return σ

3.1 Comparison with OMEGA Algorithm

In previous work on recommending item sequences [15], an algorithm (OMEGA)
was proposed. OMEGA iteratively and greedily extends a set of edges E with the
corresponding sequence of items σ. The algorithm is based on the assumption
that the graph G is a DAG (directed acyclic graph). At each step, OMEGA
selects an edge and reorders the sequence of items induced by the edges selected
so far according to the topological ordering of the DAG graph G. OMEGA has
a runtime complexity of O(m+n+k∆m(k · log(k))). Where m is the number of
edges in the graph, n the number of nodes and ∆ = min(∆in, ∆out), where ∆in,
∆out are the indegree and outdegree of the graph. The first term (n+m) is the
runtime complexity for computing a topological sort of the graph. In the second
term, k∆ results from the fact that for a sequence of length k, the algorithm can
select at most k∆ edges, and the factor k · log(k) is the complexity for sorting
the sequence according to the topological ordering induced by the graph.

The bottleneck of the OMEGA algorithm is that at each step where an edge
is selected to greedily extend the set of edges and the corresponding set of items
, the algorithm requires a full reordering of the corresponding items that are

6 Idir Benouaret , Sihem Amer-Yahia, and Senjuti Basu Roy

induced by all the selected edges so far according to the topological ordering of
the input graph.

Our EdGe algorithm builds on the same approach of greedily selecting and
extending a set of edges and the corresponding sequence of items. But without
the requirement of reordering the sequence at each step. Instead, our approach
considers only those candidate edges that are not violating the ordering of the
greedily selected sequence. At each iteration, we heuristically discard all edges
having their endpoints nodes in the selected sequence so far. This process in-
sures that the final recommended sequence will always be sorted according to
the topological ordering of the graph. Furthermore, our EdGe algorithm has
the advantage that it does not require the graph G to be a DAG, as it does
not compute an ordering of the graph. This may be beneficial if we consider
application scenarios where it is possible to recommend the same item multiple
times in the sequence.

3.2 Runtime Complexity

The computational complexity of EdGe is O(m · k), where m is the number
of edges in the graph and k is the maximum length of the recommended se-
quence. Indeed, selecting the set of valid edges C and retrieving the edge with
the maximum gain requires at worse to loop through all the m edges in the
graph. This has to be done at most k times since k is the maximum length
of the recommended sequence. This complexity is better than OMEGA’s [15]
whose computational complexity is O(m+ n+ k∆m(k · log(k))).

4 Experiments

We run experiments on synthetic and real datasets to study the performance of
EdGe in terms of response time, achieved value of the objective function and
recommendation precision. Our implementation is in Python 3.7.0 and is running
on a 2.7 GHz Intel Core i7 machine with a 16 GB main memory, running OS X
10.13.6.

Table 1. Experimental parameters (default values in bold)

Description Parameter Values

Number of nodes n 10, 50, 1000, 5000, 10000

Maximum outdegree ∆out 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Sequence length k 1, 5, 10, 25, 50, 75, 100

4.1 Synthetic Datasets

For this experiment, we follow the same setting as in [15]. We create the input
graph G as follows: let A be the adjacency matrix of G, i.e. Aij = 1 if there

An Efficient Greedy Algorithm for Sequence Recommendation 7

Fig. 2. varying sequence length k Fig. 3. varying outdegree ∆out

Fig. 4. varying number of nodes n

exists an edge from item i to item j. For every i ∈ [n] we select a subset of size
min(∆out, n− i) uniformly at random from [i+ 1, n] and set the corresponding
entries of the matrix A to 1. This construction process of the graph G ensures
a desired maximum outdegree ∆out. It also guarantees that the input graph is
a DAG which lets us compare EdGe with OMEGA [15]. We assign every edge
of G a utility value that is independently drawn from a uniform distribution in
U(0, 1). We then use those utilities to define the submodular function h(.) as
follows:

h(E) =
∑

j∈nodes(E)

[1−
∏

(i,j)∈E

(1− wi,j)] (4)

where wi,j is the utility associated with edge (i, j) and nodes(E) is the set
of items that are induced by the set of edges E.

In the following, we report the values of the objective function for solutions
computed by EdGe and by OMEGA. We also use as a baseline a random se-
lection of k items. In each setting, we compare the objective values for different
possible combinations of the parameters: k (sequence length), n (number of
nodes) and ∆out (maximum outdegree). Table 1 summarizes those parameters.

8 Idir Benouaret , Sihem Amer-Yahia, and Senjuti Basu Roy

Fig. 5. varying sequence length k Fig. 6. varying outdegree ∆out

Fig. 7. varying number of nodes n

In each run, we vary one parameter and set the others to their default values
which are written in bold.

Results are shown in Figures 2, 3 and 4. For varying the length sequence
k, the maximum outdegree ∆out and the number of nodes n, we can observe
that EdGe performs very closely to OMEGA according to the achieved value of
the objective function f , while being much faster. Results on runtime according
to each setting are reported in Figures 5, 6 and 7. We notice that EdGe runs
approximatively 3 times faster than OMEGA when k = 100, and 4 times faster
when n = 10, 000

4.2 Real Datasets

Datasets and Setup We use two real datasets in our experiments: Movielens
1M 3 and a dataset extracted from Foursquare [19]. The Movielens 1M dataset
contains 1, 000, 209 ratings of 6, 040 users for 3, 706 movies. Every rating takes
a value in {1, ..., 5} and has a timestamp associated with it. For the Foursquare

3 http://grouplens.org/datasets/movielens/1m/

An Efficient Greedy Algorithm for Sequence Recommendation 9

dataset, in order to make our setup realistic, we choose POIs from a single
city: “New York”. We excluded POIs that were visited by fewer than 20 users,
and excluded users that visited less than 20 POIs. We end up with a dataset
having 840 users and 4, 750 POIs. Each POI is associated to a category, including
restaurants, bars, parks, etc.

In this experiment, for both datasets, we seek to predict the sequence of
items consumed by single users. i.e., sequences of rated movies in the case of
Movielens and sequence of visited POIs in the case of Foursquare. In line with
the conducted experiments for OMEGA [15], the input data is viewed as a set
of sequences, one per user. We used the provided timestamps to create per-user
sequences. The data is randomly split into training DTrain and testing DTest
where |DTest| = 500 for Movielens and |DTest| = 200 for Foursquare. In both
cases, we use randomly selected users for our tests. Our task is to recommend a
sequence of items to a test user not present in the training data given a few past
consumed items of that user. Formally, for a test user u let σ = (σ1, σ2, ..., σm) be
the sequence of items consumed by the user u. Then, given the first half of these
items, i.e. σprevious = (σ1, σ2, ..., σl), where l = m

2 , our goal is to make predictions
about which other items the user consumed later, i.e. σleft = (σl+1, σl+2, ..., σm).

Given the length k of the recommended sequence for each user in the training
set, Prec@k is the number of correct prediction at k averaged over the test set:

Prec@k =
1

k.|DTest|
.
∑

σ∈DTest

|nodes(σleft) ∩ Pk(σprevious)| (5)

where, Pk(σprevious) is the predicted sequence of items.

Baseline For both datasets, we compare the results of EdGe to OMEGA [15].
For a fair comparison, we conduct the experiments using the same input graph
model that is shown in Figure 8. In this graph, solid nodes represent the items
in σprevious = (σ1, σ2, ..., σl), empty nodes represent the candidate items. We
model the dependencies between the last z items in σprevious and the items that
can be selected, where z = {1, 2, 5} (for example, z = 2 means that the 2 last
items in σprevious are considered). Note that, the input graph is test instance
dependent, i.e., we construct one graph per test user.

The value associated with an edge linking item i to item j noted as pj|i is
estimated as the conditional probability that a user consumes j given that she
has consumed i before. These conditional probabilities are estimated using the
training data. The value associated with every self-loop edge (i, i) corresponds
to the empirical frequency pi of item i (which is also conveniently noted as pi|i).
These conditional probabilities are then used for estimating the utility function:

h(E) =
∑

j∈nodes(E)

1−
∏

(i,j)∈E

(1− pj|i)

 (6)

10 Idir Benouaret , Sihem Amer-Yahia, and Senjuti Basu Roy

Fig. 8. Input graph [15]. Solid nodes represent the items in σprevious = (σ1, σ2, ..., σl),
empty nodes represent the items that can be recommended.

Table 2. MovieLens: OMEGA vs EdGe for Precision (Prec@k)

z=1 z=2 z=5

OMEGA EdGe OMEGA EdGe OMEGA EdGe

k=1 0.346 0.346 0.37 0.37 0.38 0.38

k=2 0.331 0.331 0.359 0.349 0.374 0.345

k=3 0.3166 0.3166 0.346 0.3406 0.3699 0.3330

k=4 0.3045 0.3045 0.3385 0.327 0.3665 0.324

k=5 0.2916 0.2916 0.3304 0.316 0.3712 0.314

Table 3. Foursquare: OMEGA vs EdGe for Precision (Prec@k)

z=1 z=2 z=5

OMEGA EdGe OMEGA EdGe OMEGA EdGe

k=1 0.426 0.426 0.513 0.513 0.70 0.70

k=2 0.42 0.416 0.518 0.49 0.683 0.678

k=3 0.404 0.398 0.496 0.474 0.688 0.667

k=4 0.382 0.38 0.481 0.472 0.665 0.658

k=5 0.372 0.37 0.478 0.47 0.641 0.637

Table 4. MovileLens: OMEGA vs EdGe (average runtime in milliseconds)

z=1 z=2 z=5

OMEGA EdGe OMEGA EdGe OMEGA EdGe

k=1 72.3 55.26 106.16 79.5 207.04 151.9

k=2 170.6 116.64 263 171.74 541.32 334.54

k=3 306.32 192.44 514.04 284.62 1087.2 569.24

k=4 484.02 304.62 836.88 442.14 1894.6 861.14

k=5 729.3 410.7 1240.04 620.88 3030.26 1253.44

Results Recommendation precision for EdGe and OMEGA is reported in Ta-
ble 2 for MovieLens and Table 3 for Foursquare. We vary k, the length of the

An Efficient Greedy Algorithm for Sequence Recommendation 11

Table 5. Foursquare: OMEGA vs EdGe (average runtime in milliseconds)

z=1 z=2 z=5

OMEGA EdGe OMEGA EdGe OMEGA EdGe

k=1 90.9 56.5 133.15 79.65 258.95 147.35

k=2 226.05 115.15 356.3 167.95 718.1 328.15

k=3 417.3 198.15 699.35 286.35 1454.35 579.1

k=4 677 294.8 1121.75 439.2 2474.4 907.1

k=5 977.25 424.9 1653.9 661.45 3778.75 1285.55

predicted sequences and z the length of the user’s history considered for con-
structing the input graph. For both experiments, we observe that EdGe performs
very closely to OMEGA and equally for some settings. We also notice that the
precision increases with increasing z, indicating that considering a longer history
of user interactions is beneficial. We also observe that EdGe is much faster than
OMEGA, especially when increasing the length of the recommended sequences.
Results on the average runtime per user are reported in Table 4 for MovieLens
and in Table 5 for Foursquare.

5 Related Work

In [12], the authors propose an interactive itinerary planning for ranking travel
packages. However, in this work the order of visiting POIs is mainly due to the
POI visit and transit times induced by the recommended itinerary. The util-
ity of selecting POIs in a certain order is neglected and the system does not
take into account ordered preferences. Some existing works address the problem
of package recommendations [1, 17]. However, in such works, authors assign a
utility for sets of items but not for sequences, i.e., sequential dependencies are
neglected. Another research area which deals with the problem of selecting se-
quences is sequential pattern mining. This problem was introduced by Agrawal
and Srikant [14]. Sequential pattern mining is the task of finding all frequent
subsequences in a sequence database. Numerous algorithms have been designed
to discover sequential patterns in sequence databases, such as FPGrowth [2],
Spade [21] and Prefixspan [9]. However, these works do not take into account
user preferences and output the same subsequences for every user which leads
to a lack of personalization.

Another related research area is next basket recommendation [10, 20] which
has gained much attention especially in e-commerce scenarios. Two different ap-
proaches were used to tackle this problem, the well-known collaborative filtering
(CF) models such as Matrix factorization (MF) [4] which capture user’s general
interests but have a lack to consider sequential behaviors, and Markov chain
models which extract sequential features from the history on users’ interactions
and then predict next purchase, but have lack to consider general preferences
of the user. Rendle et al [10] combined the well-known collaborative filtering
(CF) using Matrix factorization (MF) [4] and Markov chain models which ex-

12 Idir Benouaret , Sihem Amer-Yahia, and Senjuti Basu Roy

tract sequential features from the history on users’ interactions to account for
both users’ interests and sequential features in order to generate ranking lists.
However, these works are different from the one we proposed in this paper. They
don’t formalize the optimization problem of recommending a sequence of items
by modeling the sequential dependencies with a graph data model.

Another related work is the recommendation with prerequisites on items,
which was studied in [7]. Authors addressed the problem of recommending the
best set of k items when there is an inherent ordering between items expressed as
prerequisites. Various prerequisite structures were studied and several heuristic
approximation algorithms were developed to solve the problem. However, the
problem is formulated as a set recommendation problem rather than a sequential
recommendation problem.

Our formalization of sequence recommendation builds on the one proposed
recently in [15]. We show that our algorithm, EdGe produces recommendations
that are as good and has much better runtime complexity and response time.

6 Conclusion

We set out to solve the sequence recommendation problem. We proposed a sub-
modular maximization formulation that is based on marginal edge utility, and
developed an efficient greedy algorithm to find the best sequence to recommend.
We validated our results on synthetic and real datasets and showed that EdGe,
our Edge-based Greedy sequence recommendation algorithm, returns recommen-
dation with high accuracy in little time. This work opens several directions. Our
immediate improvement is to study the addition of constraints to the objective
function including constraints on the type of items to consider and on the types
of transitions between items. Additionally, we would like to examine how to si-
multaneously recommend sequences to multiple users. We also plan to test our
solutions on other real datasets acquired from industry partners.

References

1. Amer-Yahia, S., Bonchi, F., Castillo, C., Feuerstein, E., Mendez-Diaz, I., Zabala,
P.: Composite retrieval of diverse and complementary bundles. IEEE Transactions
on Knowledge and Data Engineering 26(11), 2662–2675 (2014)

2. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate gen-
eration: A frequent-pattern tree approach. Data mining and knowledge discovery
8(1), 53–87 (2004)

3. Hariri, N., Mobasher, B., Burke, R.: Context-aware music recommenda-
tion based on latenttopic sequential patterns. In: Proceedings of the Sixth
ACM Conference on Recommender Systems. pp. 131–138. RecSys ’12,
ACM, New York, NY, USA (2012). https://doi.org/10.1145/2365952.2365979,
http://doi.acm.org/10.1145/2365952.2365979

4. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer (8), 30–37 (2009)

An Efficient Greedy Algorithm for Sequence Recommendation 13

5. Krause, A., Golovin, D.: Submodular Function Maximization, p. 71–104. Cam-
bridge University Press (2014). https://doi.org/10.1017/CBO9781139177801.004

6. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming 14(1), 265–
294 (1978)

7. Parameswaran, A., Venetis, P., Garcia-Molina, H.: Recommendation systems with
complex constraints: A course recommendation perspective. ACM Transactions on
Information Systems (TOIS) 29(4), 20 (2011)

8. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: The adap-
tive web, pp. 325–341. Springer (2007)

9. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.C.: Mining sequential patterns by pattern-growth: The prefixspan approach.
IEEE Transactions on knowledge and data engineering 16(11), 1424–1440 (2004)

10. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
markov chains for next-basket recommendation. In: Proceedings of the 19th in-
ternational conference on World wide web. pp. 811–820. ACM (2010)

11. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and chal-
lenges. In: Recommender systems handbook, pp. 1–34. Springer (2015)

12. Roy, S.B., Das, G., Amer-Yahia, S., Yu, C.: Interactive itinerary planning. In:
Data Engineering (ICDE), 2011 IEEE 27th International Conference on. pp. 15–
26. IEEE (2011)

13. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recom-
mender systems. In: The adaptive web, pp. 291–324. Springer (2007)

14. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: International Conference on Extending Database Tech-
nology. pp. 1–17. Springer (1996)

15. Tschiatschek, S., Singla, A., Krause, A.: Selecting sequences of items via submod-
ular maximization. In: AAAI. pp. 2667–2673 (2017)

16. Wörndl, W., Hefele, A., Herzog, D.: Recommending a sequence of interesting places
for tourist trips. Information Technology & Tourism 17(1), 31–54 (2017)

17. Xie, M., Lakshmanan, L.V., Wood, P.T.: Breaking out of the box of recommenda-
tions: from items to packages. In: Proceedings of the fourth ACM conference on
Recommender systems. pp. 151–158. ACM (2010)

18. Xu, J., Xing, T., Van Der Schaar, M.: Personalized course sequence recommenda-
tions. IEEE Transactions on Signal Processing 64(20), 5340–5352 (2016)

19. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by
leveraging user spatial temporal characteristics in lbsns. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 45(1), 129–142 (2015)

20. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next
basket recommendation. In: Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval. pp. 729–732.
ACM (2016)

21. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine
learning 42(1-2), 31–60 (2001)

