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On the number of edges of comparability and
incomparability graphs

Daniel Parrochia

IRPHIL - Université Jean Moulin - Lyon 3 (France)

Abstract. Since the 1990s, as we know, comparability and incomparability graphs
find use in experimental sciences, particularly in chemistry and physical chemistry as
well as in statistical physics, to characterize molecular properties, order isomers or
specify the topology of certain structures such as chemical structures. In this mostly
historical article, readable by a non-specialist, we recall first some basic notions of
graph theory. Then, we define the notions of comparability and incomparability
graphs of a poset, summarize the recent advances on the question and compute the
number of edges of these graphs, using in particular Boolean representation of posets.
We also give a special method in the case of Boolean lattices.

Key words. Graphs, complementary graphs, partial orders, lattices, Boolean lat-
tices, comparability and incomparability graphs.

1 Introduction

For the past thirty years or more, advances in experimental sciences have shown the
importance of graph theory and the interest of studying particular graphs such as
interval graphs, comparability graphs (see [Gilmore 64]; [Olariu 92]), and incompara-
bility graphs which, like interval graphs, have applications in mathematical chemistry
(see [Dehmer 14]), physical chemistry (see [Todeschini 02]) or statistical physics (see
[Zhu 04]). We find indeed applications in the study of molecular properties (see
[Bonchev 901]:[Bonchev 902]) electronic spectra of condensed benzenoid hydrocar-
bons (see [Bonchev 83], in the ordering of isomers (see [Bonchev 84]), in the recording
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of invariant vertexes and topological indices of chemical graphs based on information
of distances (see [Balaban 91]), also in chemoinformatics and molecular biology (see
[Bajorath 04]). In this article, after having recalled some elements of the vocabulary
of graph theory, we review the history of some studies and offer some thoughts on
the number of edges of incomparability graphs.

2 Some recalls on Graphs

Definition 2.1 (graph, multigraph, p-graph). A graph G(X,U), with X a set of
vertices and U a set of edges (or arcs) which connect them (see [Berge 70], 3), is the
pair made up:

1. By a set X = {x1, x2, ..., xn} where the xi are “vertices”;

2. By a family U = {u1, u2, ..., um} where the uj are elements of the Cartesian
product:

X ×X = {(x, y) | x ∈ X, y ∈ Y }.

When two vertices are connected by more than one edge, we speak of multigraph
and, more precisely, if (x, y) occurs p times in G, then G(X,U) is a p -graph.

Definition 2.2. A multigraph G(X,U) is a simple graph if:

1. It has no loop;

2. Between 2 vertices, there is never more than one arc (or edge) to connect them.

Definition 2.3 (adjacency matrix of a graph). We recall that the adjacency matrix
of a graph is a matrix Mi,j(i = 1, ..., n; j = 1, ..., n) with coefficients 0 or 1, where
each row corresponds to a vertex of G, where each column corresponds to a vertex
of G and where:

Mij =

{
1 if and only if (i, j) ∈ U ;

0 otherwise.

In all this article, we are dealing with undirected simple graphs.

Among the graphs, some present regularities: for example, the same “degree”, that
is to say the same number of edges or arcs pertaining to each vertex. They are
called "regular" graphs. Others are not like that: they are "irregular", even "highly
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irregular" and are today the object of numerous studies and of many conjectures (see
for example [Chartland 16], 1-16).

We will leave aside this question here to focus on complementarity graphs (a question
often neglected in graph theory1). We will go on by studying the comparability and
incomparability graphs on some ordered structures.

3 Complementarity graphs

Definition 3.1 (Complementary graph of a simple graph). (See [Gondran 79], 4)
Given a simple graph G = [X,U ], the complementary graph G′ = [X,U ] has the
same set of vertices as G and as edges, the complementary edges of those of U . We
have:

(i, j) ∈ U ⇒ (i, j) /∈ U ;

(i, j) /∈ U ⇒ (i, j) ∈ U.

Fig. 1 shows a simple graph G and its complementary graph G.

a	 	         b

c	 	          d

e

b	 	               c

d	 	             a                               e

G	 	 	 	 	 	 	 	 	 G

Figure 1: Graph G and its complementary G

As we can see, the complementary G of the graph G is disconnected. In general,
as we know, the complementary graph of a disconnected graph is connected but the

1We have to note that certain books, however reputed to be "bibles" in graph theory, devoted
very few lines to these questions, and in particular to comparability and incomparability graphs,
the properties of which are often left to prove to the reader (see [Diestel 06], 127, 136 and 242).
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converse is not true.

Definition 3.2 (Complementary Matrix of a simple graph). We call complementary
matrix of a simple graph G the matrix M ′ associated to the complementary graph
G of G.

Proposition 3.1. The complementary matrix is obtained as the difference between
the inverse matrix M of the adjacency matrix of the graph G and the unit matrix In
if G has n vertices.

Proof. Consider M , the matrix where the 1s of M have been changed into 0s, and
conversely, the 0s have been changed into 1s. A consequence is necessarily that M
ia a matrix of a loop graph because the 0s of the diagonal of M have been replaced
by 1s, which means that a is in relation to itself, b in relation to itself, etc. If we
want to obtain as complement of G a simple graph G without loops, we need to find
a matrix M ′ with zero diagonal. In other words, we must subtract 1s from 1s on the
diagonal of M and, for that, we must ask:

M ′ = M − In,

where In is the identity matrix with n rows and n columns, whose diagonal terms
are all equal to 1 and non-diagonal terms equal to 0.

Knowing the number of edges of G[X,U ], it is easy to calculate the number of edges
of its complementary graph.

Proposition 3.2. If |X| = n, |U | =
(
n
2

)
− |U |.

Proof. To each edge of a graph corresponds a pair of vertices. So the total number
of all possible edges of a graph is the total number of all possible combinations of
2 elements taken from n, say

(
n
2

)
= N . To get the cardinal of U , it suffices to

subtract from this number N the cardinal |U | of the set of edges of G[X,U ], since
|U |+ |U | = N =

(
n
2

)
.
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4 Order relation, ordered set

Definition 4.1. (Order relation - see [Kaufmann 78], 5-7) A binary internal relation
≤ on a nonempty set E is an order relation if for all x, y and z elements of E, we
have:

1. x ≤ x (reflexivity);

2. (x ≤ y and y ≤ x)⇒ x = y (antisymmetry);

3. (x ≤ y and y ≤ z)⇒ x ≤ z (transitivity).

If we replace ≤ by <, then the relation becomes a "strict order" relation. In this
case, it is irreflexive. It reads "x is less than y", or "y is greater than x" and we
have:

x < y if and only if x ≤ y and x 6= y.

Recall that some order relations are total, i.e. two elements of the set E are always
comparable, in other words, for all x, y of E:

x ≤ y or y ≤ x.

We then say that ≤ is a relation of “total order”, and that the set E is totally ordered
by this relation.

Definition 4.2 (Ordered set - see [Harzheim 05]). An ordered set is a set provided
with an order relation.

Definition 4.3 (Partial order - partially ordered set (or poset)). An order relation
on E is said to be “partial” if it is not total, and E is then a partially ordered set (or
poset).

Definition 4.4 (Negation of an order relation). The negation of a binary relation
R defined on a set E is the relation associated with the complementary graph of the
relation R in E×E. It is usually written��R. In other words, two elements are related
by ��R if and only if they are not related by R.

To say that an order is total is to say that its negation is the strict reverse order.
This means there is an equivalence for an order 6 between:

• 6 is total;
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• x 66 y ⇐⇒ y < x.

On the other hand, as soon as there are two distinct elements not comparable within
an order, the negation of the order relation cannot be an order (strict or not), because
it is not antisymmetric. The negation of a non-total order is therefore never an
order.

5 Graphs associated with a partially ordered set

Definition 5.1 (Comparable and incomparable elements). Let P be a partially
ordered set, endowed with the relation <, reflexive, antisymmetric, transitive. We
say that two elements x and y of P are comparable if x < y or y < x (we can also
replace < by ≤). Otherwise, that is to say when two elements of P are incomparable,
we have between them a relation || called “relation of incomparability”, reflexive,
symmetric and transitive.

Definition 5.2 (Comparability and incomparability graphs). When P is a partially
ordered set (poset), we can thus associate to P two graphs. One is called comparabil-
ity graph of P and the other incomparability graph of P . These two graphs have the
elements of P as a set of vertices. In the comparability graph, two distinct elements
x and y of P are adjacent when they are comparable in P . Likewise, x and y are
adjacent in the incomparability graph when they are incomparable in P .

We will focus more specifically on the latter case. Before that, let us introduce the
following definitions:

Definition 5.3 (Clique). A clique C in an undirected simple graph G = (X,U) is
a subset of the vertices, C ⊆ X, such that every two distinct vertices are adjacent.
This is equivalent to the condition that the subgraph of G induced by C is a complete
graph.

Definition 5.4 (Coloring a graph). The coloring of the vertices (resp. edges) of a
graph G = (X,U) corresponds to the assignment of a color to each of its vertices
(resp. edges) so that two adjacent vertices (resp. edges) do not carry the same color.

Definition 5.5 (Chromatic number of a graph). A graph is said to be p-chromatic
if its vertices admit coloring in p colors. We call chromatic number χ(G) (resp.
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chromatic index q(G)) the minimum number of distinct colors needed to color the
vertices (resp. edges) of the graph G.

Definition 5.6 (Perfect graph - see [Berge 84]). A perfect graph is a graph in which
the chromatic number of every induced subgraph equals the size of the largest clique
of that subgraph (i.e the clique that has the maximum number of vertices – or "clique
number"). Equivalently, stated in symbolic terms, an arbitrary graph G = (X,U) is
perfect if and only if :

for all C ⊆ X we have χ(G[C]) = ω(G[C]).

In 1950, Dilworth (see [Dilworth 50]) was able to prove that incomparability graphs
were perfect graphs, so that the chromatic number of an incomparability graph is
equal to its number of cliques (an analogous result for the comparability graphs had
previously been proved by Erdös and Szekeres (see [Erdös 35])). In 1967, Gallai (see
[Gallai 67]) gave a characterization of incomparability graphs in terms of minimal
induced prohibited subgraphs. We also know that the incomparability graphs can
be recognized in a polynomial time (see [Golumbic 80]). In 1983, Golumbic, Rotem
and Urrutia (see [Golumbic 83] and Lov’asz (see [Lov’asz 83]) proved that any in-
comparability graph was also a string graph (on all of this, see [Fox 12]). But this
does not allow us to precise the structure of these graphs. We will show that, in
some cases, we can directly compute the number of edges of their incomparability
associated graphs.

It will be found in Fig. 2 an example of poset (A), its comparability graph (B) and
its incomparability graph (C).

6 Complementarity graph and incomparability graph
of a poset

Let P a poset and D(X,U) the Hasse diagram of P . The set of edges U is formed
by the explicit order relations in P , that is:

U = {(x, y) ∈ X | x ≤ y}.

Let now G(P ) the comparability graph of the poset P . Let E be the set of edges of
G(P ). E is formed by all the ordered pairs of elements of P , and we have :

E = {(x, y) ∈ P | x ≤ y}.
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Figure 2: Poset, comparability graph, incomparability graph

Hence we can deduce that E − U is the set of non-explicit order relations between
the elements of P .

Let now D(X,U) the complementary graph of D(X,U), the Hasse diagram of P .
We can now deduce the following proposition:

Proposition 6.1. The number N of edges of I(P ), the incomparability graph of P ,
is given by the difference between the cardinal of U and the cardinal of the set of
non-explicit order relations between the elements of P . We have:

N = |U | − |E − U | = |U |+ |U | − |E| =
(
n

2

)
− |E|.

In other words, knowing the number of edges of the comparability graph of a poset
P , we can get easily the number of edges of its incomparability graph. And, of
course, conversely, knowing the number of edges N of the incomparability graph of
a poset P , we can get easily the number of edges of its comparability graph, since
|E| =

(
n
2

)
−N .

Examples

In the case of the poset of Fig. 2, we have U = 6, |U | = 9, |E| = 10. Hence
|E − U | = 10 − 6 = 4 and N = |U | − |E − U | = 9 − 4 = 5. We obtain this result
more quickly by simply writing N =

(
6
2

)
− 10 = 15− 10 = 5.
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7 Boolean representation of a poset

In fact, we can calculate in a very simple way the number of edges of a poset in-
comparability graph. There are indeed Boolean representations of posets (which can
also be applied to lattices, simplicial complexes and matroids (see [Rhodes 15]))2.
We just define the Boolean matrix M(P ) = mxu of a poset P by setting:

mxu =

{
0 if x ≥ u;

1 otherwise.

Then we have just to compute in the matrix the 0s which are not on the diagonal.
By this method, we get directly the cardinal of the comparability graph of P . Hence
we can easily deduce the cardinal of its incomparabilty graph. In the case of the
poset of Fig. 2, the matrix is given in table 1:

mxu =

a b c d e f
a 0 1 1 1 1 1
b 1 0 1 1 1 1
c 0 0 0 1 1 1
d 1 0 1 0 1 1
e 0 0 1 0 0 1
f 0 0 1 0 0 0

Table 1: Comparability matrix of P

Of course we cannot permute the 0s and the 1s of this matrix to get the matrix of
the incomparability graph: this one has not the same number of vertices. Besides,
it would make no sense to do so. The following example will suffice to show it: Let
T = {0, a, b, 1} with 0 ≤ a, b ≤ 1. Since we do not have a ≥ b (as a and b are
incomparable), mab = mba = 1. But by passing to the matrix Mc complementary to
M , we necessarily obtain mab = mba = 0, which means that we have both a ≥ b and

2There is an alternative possibility: following Stanley (see [Stanley 70], [Stanley 88],
[Stanley 04]) and more recent searchers (see [Wu-Shizen 12]), we shall say that the incidence matrix
mP , which encodes full information about the poset P , is the indicator function of < and may be
described as follows :

mP =

{
1 if x < y;
0 otherwise.

.
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b ≥ a. But this results in a = b, which is wrong. So, a problem could be: how to
get directly the number of edges of an incomparability graph I(P ), without knowing
the number of edges of the comparability graph of the poset P . We will see that, in
the case of Boolean lattices, this is perfectly possible.

8 Case of lattices

As we know (see [Birkhoff 40]), a lattice (T,≤) is a partially ordered set (poset) in
which every element has one and the same supremum (least upper bound) and one
and the same infimum (greatest lower bound ). Fig. 3 gives a typical example.

f

a

d      e

b         c

Figure 3: A classic example of a lattice

Suppose we want to know explicitely the matrix of the incomparability graph of this
lattice and how it is connected to the matrix of its complementary graph. We could
proceed as follows: we draw the adjacency matrix of the Hasse diagram of the lattice,
then the matrix of its complementarity graph. The matrix of the incomparability
graph can be deduced very easily.

The adjacency matrix M(T ) of the Hasse diagram of T , the lattice of Fig. 3 is given
in Table 2.

The matrix Mc(T ), complementary to M(T ), appears in Table 3.

Fig. 4 shows the complementary graph (A) and the incomparability graph (B) of
the lattice T . As we can see, the incomparability graph of T has 6 vertices and only
3 edges.

Table 4 gives the matrix M ′(T ) of the incomparability graph of T :
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M (T ) =

a b c d e f
a 0 1 1 0 0 0
b 1 0 0 1 0 0
c 1 0 0 1 1 0
d 0 1 1 0 0 1
e 0 0 1 0 0 1
f 0 0 0 1 1 0

Table 2: Adjacency matrix of T

Mc(T ) =

a b c d e f
a 0 0 0 1 1 1
b 0 0 1 0 1 1
c 0 1 0 0 0 1
d 1 0 0 0 1 0
e 1 1 0 1 0 0
f 1 1 1 0 0 0

Table 3: Adjacency matrix of the complement of T

Note that M ′(T ) can be obtained from Mc(T ) by deleting the first and last row, and
the first and last column.

We may observe that two non-isomorphic lattices can have the same incomparability
graph (see Fig. 5).

As Wasadikar and Survase (see [Wasadikar 12] point out, there are many papers that
interlink lattice theory and graph theory. Filipov (see [Filipov 80]) was undoubtedly
one of the first to study the comparability graphs of partially ordered sets by defining
the adjacency between two elements of a poset by the comparability relation: a and
b are adjacent if a ≤ b or b ≤ a. In the same order of ideas, Duffus and Rival (see
[Duffus 77]) define the overlap graph of a poset by the overlap relation: a and b
are adjacent if a ≺ b or b ≺ a. Articles by Gedenova (see [Gedenova 80]), Bollobas
and Rival (see [Bollobas 79]) discuss the properties of overlap graphs derived from
lattices. In [Nimborkar 10], Nimbhorkar, Wasadikar and Pawar introduced graphs
on a lattice L with 0, and defined adjacency of two elements x, y ∈ L by the relation:
x ∧ y = 0. More recently, Bostjan Bresar et.al. (see [Bresar 08]) have themselves
introduced cover graphs which are incomparability graphs of posets. In particular,
they defined a graph in which the set of edges is the union of the set of edges of the
cover graph and of the corresponding incomparability graph. In short, a lot of works
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  e       b

 f                c

   d                   a

  d	 	         e                       b

  c

Figure 4: Complementary graph (A) and incomparability graph (B) of the Hasse
diagram of the lattice T

M’(T ) =

b c d e
b 0 1 0 1
c 1 0 0 0
d 0 0 0 1
e 1 0 1 0

Table 4: Adjacency matrix of the incomparability graph of T

have focused on these questions since the 1980s.

In their paper, Wasadikar and Survase draw all graphs with a number of edges n ≤ 4
which are incomparability graphs associated with lattices and give some simple prop-
erties of these graphs without relating them to particular lattices. On the contrary,
we will show that certain types of lattices make it possible to define additional prop-
erties, in particular Boolean lattices, which make it possible to compute directly the
number of edges of the incomparability graph associated with them.

8.1 Case of Boolean lattices

As we know, Boolean structures (in conjunction with order theory) are of particular
importance (see [Ponasse 79]; [Rhodes 15]) in many fields. The Boolean lattices Tn
are of the form {0, 1}n. Consider for example the lattice T3, isomorphic to {0, 1}3,
shown in Fig. 6.

The adjacency matrix of the associated graph is that of Table 5.

The complementarity matrix of the graph associated to T3 is represented on Table
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A	 	 	 	 	 B	 	 	 	 	 	  C	

Figure 5: Non-isomorphic A and B lattices having the same incomparability graph
C

0

a                              cb

c	 	 	     a

1

b

Figure 6: Hasse diagram of T3

6.

Hence the associated graph, which can take several configurations (see Fig. 7).

We can go to the incomparability graph as before, by removing the vertices which
are in an order relation (in this case, 0 and 1), as well as the related edges. The
graph being regular of degree 4, there would in principle be 8 edges to remove, but
0 and 1 being connected by an order relation, they have one edge in common. We
must therefore remove 8 - 1 = 7 edges. Since the complementary graph of T3 has 8
vertices and 16 edges, the incomparability graph will therefore have 6 vertices and
16 - 7 = 9 edges (see Fig. 8).

At the matrix level, this amounts to removing the first and the last row, as well as
the first and the last column ofMc(T3) and replacing this matrix by a matrixM ′(T3)
with 6 rows and 6 columns (see Table 7).

13



M(T3) =

0 a c b̄ b c̄ ā 1
0 0 1 1 0 1 0 0 0
a 1 0 0 1 0 1 0 0
c 1 0 0 1 0 0 1 0
b̄ 0 1 1 0 0 0 0 1
b 1 0 0 0 0 1 1 0
c̄ 0 1 0 0 1 0 0 1
ā 0 0 1 0 1 0 0 1
1 0 0 0 1 0 1 1 0

Table 5: Adjacency matrix of T3

Mc(T3) =

0 a c b̄ b c̄ ā 1
0 0 0 0 1 0 1 1 1
a 0 0 1 0 1 0 1 1
c 0 1 0 0 1 1 0 1
b̄ 1 0 0 0 1 1 1 0
b 0 1 1 1 0 0 0 1
c̄ 1 0 1 1 0 0 1 0
ā 1 1 0 1 0 1 0 0
1 1 1 1 0 1 0 0 0

Table 6: Adjacency matrix of the complementary graph of T3

8.2 Generalization: Boolean lattices as n-cubes

In the case of Boolean lattices Tn, the Hasse diagrams associated with the Tn are
n-cubes. So we may observe that it is possible to directly compute the edges of
Boolean lattice incomparability graphs, without using the previous method or the
comparability graph boolean representation.

Proposition 8.1. It is well known that the number |U | of edges of a n-cube with 2n

vertices is given by the formula:

|U | = n× 2n−1.

Proposition 8.2. The number |U ′| of edges of the incomparability graph of a Boolean
lattice Tn with n vertices is obtained by subtracting from the cardinal |U | (number of
edges of the complementary graph of Tn), the total sum of the n-faces (n ≥ 2) of the
corresponding n-cube.
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a                   1

  c                                                    b

  b              c

 c             a

0   b

 b

 c                      a

 1

Figure 7: Complementary graph of T3
b

b

     a                                              c

    a            c

Figure 8: Incomparability graph of T3

Proof. Let Tn be a Boolean lattice with 2n elements, and |U | the number of edges of
its complementary graph. To find the number |U ′| of edges of the incomparability
graph of Tn, we must remove from the graph G(X,U), complementary to Tn, the
ordered pairs of non-adjacent vertices in Tn. These ones are in bijection with the
successive n-faces of the n-cube associated with Tn. Let k be the dimension of the
faces. Given a fixed n, for each value of k, the number of these faces is Nn,k = 2n−k(n

k

)
(see [Coxeter 73], 122; [Sommerville 29], 29). We then have:

|U ′| = |U | −
∑

Nn,k.

Some special formulas for computing the number of faces of a n-cube:

- 2-sided: n(n− 1)2n−3;
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M’(T3) =

a c b̄ b c̄ ā
a 0 1 0 1 0 1
c 1 0 0 1 1 0
b̄ 0 0 0 1 1 1
b 1 1 1 0 0 0
c̄ 0 1 1 0 0 1
ā 1 0 1 0 1 0

Table 7: Adjacency matrix of the incomparability graph of T3

- 3-sides: n(n− 1)n−2
3

2n−4;

- 4-faces: n(n− 1)(n− 2)n−3
3

2n−7;

In the general case, it suffices to calculate Nn,k.

Examples:

For the lattice T3 (3-cube), we have, by the above formulas, 6 2-faces and 1 3-face,
which gives 6+ 1 = 7. As |U | = 16, we check that we get |U ′| = 16− 7 = 9.

For the lattice T4 (4-cube), we have, by the same formulas, 24 2-faces, 8 3-faces
and 1 4-faces, which gives 24 + 8 + 1 = 33. Knowing that here |U | = 88, we get
|U ′| = 88− 33 = 55.

For the lattice T5 (5-cube), we would obtain: 80 2-faces, 40 3-faces, 10 4-faces and 1
5-face, which gives: 80 + 40 + 10 + 1 = 131. Knowing that here |U | = 416, we get
|U ′| = 416− 131 = 285.

Finally, for the lattice T6 (6-cube), we would obtain: 240 2-faces, 160 3-faces, 60
4-faces and 12 5-faces and 1 6-faces, which gives: 240 + 160 + 60 + 12 + 1 = 473.
Knowing that here |U | = 1824, we get |U ′| = 1824− 473 = 1351.

Here is (see Table 8) a summary of the characteristics of the Tn, the complementary
graphs and the corresponding incomparability graphs (appear successively in the
matrix, the lattices Tn, the corresponding product Boolean sets Bn, the number of
vertices |X| of the associated graphs, the number of edges |U ], the number of edges
U of the complementary graphs, finally, the number of vertices |X ′| and the number
of edges U ′ of the corresponding incomparability graphs.

Note finally that we can always get the number of edges of a comparability graph in
another way. If we call V the number of edges corresponding to non explicit order
relations in a poset P , it is clear that the number of edges |E| of the comparability
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Tn Bn |X| |U | |U | |X ′| |U ′|
T2 {0, 1}2 4 4 2 2 1
T3 {0, 1}3 8 12 16 6 9
T4 {0, 1}4 16 32 88 14 55
T5 {0, 1}5 32 80 416 30 285
T6 {0, 1}6 64 192 1824 62 1351

Table 8: Characteristics of some lattices, complementarity graphs and incompara-
bility graphs

graph of P is:
|E| = |U |+ |V |.

And we have also, of course (see prop. 6.1):

|U |+ |V | =
(
n

2

)
−N.
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