
HAL Id: hal-02972603
https://hal.science/hal-02972603v1

Submitted on 8 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bi-Objective Approach for Product Recommendations
Idir Benouaret, Sihem Amer-Yahia, Christiane Kamdem-Kengne, Jalil

Chagraoui

To cite this version:
Idir Benouaret, Sihem Amer-Yahia, Christiane Kamdem-Kengne, Jalil Chagraoui. A Bi-Objective
Approach for Product Recommendations. 2019 IEEE International Conference on Big Data (Big
Data), Dec 2019, Los Angeles, France. pp.2159-2168, �10.1109/BigData47090.2019.9006503�. �hal-
02972603�

https://hal.science/hal-02972603v1
https://hal.archives-ouvertes.fr

A Bi-Objective Approach for Product
Recommendations

1st Idir Benouaret, 2nd Sihem Amer-Yahia
Univ. Grenoble Alpes

Grenoble, France
firstname.lastname@univ-grenoble-alpes.fr

3rd Christiane Kamdem-Kengne, 4th Jalil Chagraoui
TOTAL

Paris, France
firstname.lastname@total.com

Abstract—We propose a bi-objective formulation for product
recommendations. Our formulation goes beyond traditional rec-
ommendations by capturing two conflicting objectives: utility that
serves customers’ interests, and profit margin, a business-oriented
goal. To satisfy the needs of our business partners, we formulate
a new problem, namely generating a result containing all sets of k
products such that there does not exist any other set of k products
that dominates the returned sets, i.e., whose cumulative values for
each objective is higher than a set of k products in the result.
We study properties of k-Pareto sets that enable us to reduce
the number of candidates, as well as the number of dominance
tests between candidate sets. We develop a dynamic programming
algorithm that leverages those properties to prune the space of
solutions. We generalize traditional measures of recommendation
accuracy to be applicable to sets of k products. Our experiments
on a large set of real customer transactions validate the need for
a bi-objective optimization to reconcile customer and business
interests, and the scalability of our solution.

Index Terms—Recommendation , Customer Margin, Bi-
Objective Optimization

I. INTRODUCTION

Product recommendation is traditionally seen as finding
products a user is most likely to purchase. This goal relies
on the assumption that prediction accuracy approximates well
recommendation effectiveness. In practice however, several
other factors are considered when designing recommendations.
In particular, the business impact of recommendations in terms
of revenue loss and gain, plays a major role in determining
which products to recommend to which customers. In this
paper, we investigate a new way of formulating recommenda-
tions as an optimization problem that tackles two objectives at
once: one customer-centric and one business-oriented. Product
recommendation is formulated as the optimization of utility
and margin, two conflicting goals.

Product managers play an important role in the Retail indus-
try. They are the ones who understand customer interests for a
product, a collection of products, or a product categories. They
spend time and effort experimenting with various customer
utility formulas and studying the profit margin of individual
products, defined as a percentage of the selling price. Those
values are used to enforce business rules in product recom-
mendation. A common rule is to recommend to a customer

products that are of high utility to that customer, and generate
a high profit margin. Existing recommendation approaches in
the literature are mostly concerned with maximizing utility,
a measure that is considered a good proxy for predicting
the products a customer is most likely going to purchase,
and hence increase recommendation accuracy. Augmenting
existing recommendation approaches with the ability to also
account for profit margins is a non-obvious question due to
conflicts between the two objectives. Products with a high
profit margin are not necessarily the ones customers want the
most, and vice versa. It is therefore important for product
managers to automate the process of finding candidate rec-
ommendations to customers among all possible combinations
of products that collectively have a high utility and a high
profit margin.

Our first contribution is a formalization. With two con-
flicting objectives at hand, customer utility and product profit
margin, we face a bi-objective optimization (maximization in
our case) problem. This problem is well-studied in research
in the case where the goal is to return one set of items such
that there does not exist any other item whose value for each
objective is higher. In other terms, all dominating items are
returned. In this paper, we are facing a different question:
product managers would like to generate all sets of k items
such that there does not exist any other set of k items whose
cumulative values for each objective is higher than a set in the
result. In other terms, we are looking to compute all sets of
k products that are not dominated by any other set of size k,
which we refer to as k-Pareto sets.

Our second contribution is computational. There are
two ways to address a bi-objective optimization problem:
scalarization and pareto-based approaches. The first solves
a single objective function formed as a linear combination
of utility and profit margin (our two objectives). While this
is a good baseline, in practice, it may miss several solutions.
The second formulation suffers from a high computational cost
induced by the fact that generating all candidate sets is prac-
tically infeasible. Hence our solution generates dynamically
the candidate sets in a progressive way and exploits pruning
opportunities. More precisely, our algorithm relies on dynamic
programming which takes one product at a time as input, and

978-1-7281-0858-2/19/$31.00 ©2019 IEEE

generates candidate sets containing that product, and repeats
the process for other products. Therefore, the only question
that remains to be solved is how to avoid generating all
candidate sets. We study properties of k-Pareto sets that enable
us to reduce the number of candidates, as well as the number
of dominance tests between candidate sets. Our algorithm
uses those properties to prune all non-Pareto products that
are dominated by at least k products and all candidate sets
that contain any product i but does not contain all products
dominated by i.

Our third contribution is empirical. Our dataset is pro-
vided by our project partners at TOTAL1 and represents the
purchase data of customers owning a loyalty. It contains about
30 million unique receipts, generated by 425, 406 customers
at 3, 463 gas stations in France, over 28 months (from January
2017 to April 2019). We first justify the need for a bi-
objective optimization approach by comparing the accuracy of
the recommendations it generates to the ones generated with
scalarization. We study the accuracy of our recommendations
in terms of precision and profit margin, and show that our
algorithm generates recommendations offering different trade-
offs between those two objectives. We discuss how that can
be beneficial to our business partners in choosing the best
recommendation alternative. In particular, we also study the
effect of product prices on the overall accuracy and interpret
the impact of price on precision and profit margin. Finally, we
validate the necessity of our pruning strategies to ensure good
response times.

We briefly summarize our contributions.
• To match real needs in retail, we propose a new bi-

objective formulation of product recommendations that
maximizes both customer utility and product margin. Our
formulation returns all sets of k products, none of which
is dominated by other sets of k products.

• We explore two solutions for our problem: scalarization
and pareto-based. We study properties of the space of
solutions and devise new pruning strategies applicable to
our new formulation.

• We conduct experiments with a real dataset that justify
the need for a bi-objective optimization approach for
recommendations, and validate our pruning strategies.

Section II introduces our data model and problem formula-
tion. Section III discusses strategies for solving our problem.
Section IV presents our algorithm. Experiments are reported
in Section V. The related work is provided in Section VI and
we conclude in Section VII.

II. MODEL AND PROBLEM

Let U = {u1, u2, ..., um} be the set of customers and I =
{i1, i2, ..., in} be the set of products. For a given customer
u, Hu ⊆ I denotes the purchase history of u, i.e. the set of
products purchased by u.

1TOTAL S.A. is a French multinational integrated oil and gas company
founded in 1924 and one of the seven ”supermajor” oil companies in the
world

Our dataset represents customers owning a loyalty card
and who purchased products at different gas stations that are
geographically distributed in France. The complete dataset
contains over 30 million unique receipts generated at 3, 463
gas stations. The set of customers C contains over 425, 406
million unique records. Each customer has demographic at-
tributes such as age, location, gender and membership status.
The set of products I contains over 16, 891 entries that belong
to one of 54 categories including gas, lubricants, car wash,
hot drinks, and sweets.

We note XXX the purchase matrix of the m customers in U
over the n products in I, where each column corresponds to
a product, and each row corresponds to a customer. An entry
xu,i in the purchase matrix contains a boolean value (0 or
1), where xu,i = 1 means that product i was purchased by
customer u (0 means the opposite).

A. Optimization objectives

Following our discussion with product managers and an-
alysts at our business partner, we identified the need to
account for the following two criteria when designing product
recommendations:
• Suggesting products with a high value (i.e., products with

high interest for the customer)
• Improvement of margin gain (Products with a high gen-

erated revenue)
Our goal is to recommend products with the highest utility

to a customer and that generate the highest margin. Intuitively
a good product recommendation has to satisfy two criteria: that
the product has a high chance to be of interest to the target
customer, thus increasing the probability that the customer
effectively purchases the product; that the product has to
generate a high margin. For example, our analysts stated
that coffee products are among the products that generate a
high margin, but it would not be useful to recommend those
products to a customer who is not a coffee drinker, which
justifies the need to account for both objectives.

1) Utility: Following [1] and [2], we use association rules
to estimate the utility of a product for a customer. To target
a customer u with relevant recommendations we need to
measure the utility of a product i with respect to a customer u
that has not already bought i, we note this utility Utility(u, i).
To do that we leverage the purchase history of our customers.
We rely on association rules mining using bigram rules to
compute an association matrix AAA. The matrix AAA is computed
from the purchase matrixXXX , where each entry aj,l corresponds
to the confidence of the association rule j → l.

aj,l = confidence(j → l) =
XT
•jX•l

||X•j ||1
, ||X•j ||1 =

n∑
i=1

|xi| (1)

Given a product i and a customer u, intuitively the estimated
utility Utility(u, i) is high if the association rules between
products j ∈ Hu in the purchase history of customer u and
the target product i, i.e., j → i, have high confidence values.
More formally: Utility(u, i) =

∑Hu

j confidence(j → i)

2) Margin: In addition to recommend products with a high
utility to a given customer u, we need also to account for
the profit margin that is generated by these products. For a
given product i, its margin Margin(i) is calculated as follows:
Margin(i) = β × sp(i)

where sp(i) is the selling price of product i. β is a value
between 0 and 1 that depends on the product category and the
station where it is purchased.

3) Station and customer-specific margin: In practice, β
depends on the attractiveness of a product category at a station.
The gas stations visited by our customers are classified into
one of three types: COCO (Company owned, Company oper-
ated), CODO (Company owned, Dealer operated) and DODO
(Dealer owned, Dealer operated). Station types differ mainly
in the customers they attract and the overall revenue they
generate. Additionally, the margin of a product also depends
on the behavior of the customer. Each customer has different
purchasing habits and visits different types of stations. To
reflect that, we revisit the profit margin of a product i and
define it as a weighted sum, where each term is determined
by a station specific value of β and the frequency of visits of
a customer u in each station type:

Margin(u, i) = (F COCO
u ×βCOCO+F CODO

u ×βCODO+F DODO
u ×βDODO)×sp(i)

(2)

where F COCO
u , F CODO

u , F DODO
u correspond to the frequency the

customer visits to station types COCO, CODO and DODO
respectively.

As an example, for a coffee product for which we assume
that its selling price is 2 euros, we have βCOCO = 0.8,
βCODO = 0.3 and βDODO = 0.3. Given two customers u
and v with F COCO

u = 0.6, F CODO
u = 0.4, F DODO

u = 0 and
F COCO
v = 0, F CODO

v = 0.5, F DODO
v = 0.5, respectively, we will

have: Margin(u, i) = 1.2 and Margin(v, i) = 0.6.

B. Product recommendation problem
Product managers at our business partner expressed the

need for generating alternative recommendations for their
customers. As a result, we set out to solve the following
problem: find all sets of k products, each of which maxi-
mizes both customer utility and generated margin. Therefore,
we formalize our recommendation problem as a bi-objective
optimization problem.

Given a target customer u with her purchase history Hu,
the set of all available products I, an integer constant k, our
problem is to select all sets S ⊆ I, such that each set S
satisfies:
• Utility(u, S) is maximized;
• Margin(u, S) is maximized;
• |S| = k
• S ∩Hu = ∅
where

Utility(u, S) =
∑
i∈S

Utility(u, i)

Margin(u, S) =
∑
i∈S

Margin(u, i)

TABLE I: A dataset with 6 products and corresponding values
for utility and margin

Product Utility Margin
i1 0.4 0.4
i2 0.1 0.5
i3 0.5 0.2
i4 0.3 0.4
i5 0.3 0.3
i6 0.3 0.2

The output is k-sets of product recommendations, where
each set S satisfies the above conditions.

III. APPROACHES FOR SOLVING A BI-OBJECTIVE PROBLEM

A. Transforming our problem into a single objective optimiza-
tion

The main challenge in designing an algorithm for our
problem is its bi-objective nature. If optimizing one objec-
tive leads to an optimized value for the second objective,
the problem becomes single-objective. Another approach is
scalarization which combines the two objectives into a single
one with a weighted linear combination. Another popular
method is ε-constraints [3] (thresholding), where one objective
is optimized and the other is constrained. For example, in our
setting, we could maximize utility subject to the constraint
that margin is above a threshold ε. Another popular method
we can use is Multi-Level Optimization [4]. The principle of
this approach is to consider a single objective at a time. For
example, in our setting, we could maximize utility and then
among the returned set of recommendations, choose the ones
with the maximum margin.

All the methods we describe work well in practice in
the case where the objectives are not conflicting. When all
objectives are independent and conflicting, none of the above
methods are possible. As we will see in our experiments
(Section V-E1), our two objectives are conflicting which
justifies the need for a bi-objective optimization.

B. Addressing the two objectives at once

When dealing with more than one objective to optimize,
there may be many incomparable k sets of products. As an
example, consider the dataset in Table I with 6 products. Each
product is associated with utility and margin scores for a given
customer u. If we are about to choose between two items
i1 and i2 with Utility(u, i1) = 0.4, Margin(u, i1) = 0.4
and Utility(u, i2) = 0.1, Margin(u, i2) = 0.5, we notice
that each product has its own characteristics: the first one
has a higher margin and the second one has a higher utility,
thus i1 and i2 are incomparable. Another product i5 with
Utility(u, i5) = 0.3, Margin(u, i5) = 0.3 has no advantage
compared to i1, in this case we say that i5 is dominated by
i1 and that i1 dominates i5. In our example stated in Table
I, as we prefer higher values for both utility and margin,
products i1, i2 and i3 are the best choices because they are
not dominated by any other product, while products i4, i5 and
i6 are all inferior choices because they are dominated by i1.
We refer to i1, i2 and i3 as Pareto products.

TABLE II: 3-Pareto sets
Set of Products Sum of Utilities Sum of Margins
{i1, i2, i3} 1 1.1
{i1, i2, i4} 0.8 1.3
{i1, i3, i4} 1.2 1
{i1, i4, i5} 1 1.1

Algorithms that retrieve the set of Pareto solutions have
received a lot of attention in the research community [5],
[6]. However such methods are only suitable for applications
where the user has to choose only a single option among all
available ones. In our case, a product manager looking to
recommend products may receive a set of k non-dominated
products, and needs to choose one such set.

In our case, we intend to target a customer with multiple
sets of k products. Thus, conventional methods for Pareto
set computation are inadequate to address our problem. The
reason is that our setting requires to analyze not just individual
products of a dataset but also combinations of k products. Let
us go back to our example in Table I, it is not clear how to
answer the following question: Our product manager wants to
target a customer with 3 products. Which set of 3 products is
the best choice? to answer this common question, there is a
need to analyze sets of 3 products. Thus, we need to revisit
the notion of dominance relation between sets of products by
comparing their aggregated values on individual optimization
objectives. In our scenario we use the sum Σ as the aggregation
function over sets.

Consider again the dataset in Table I. Our concern was to
retrieve sets of 3 products whose sums of utility and sums
of margins are not worse than any other set of 3 products.
After examining all possible combinations (20 different sets),
we obtain in Table II 4 sets of 3 products each that are not
dominated by any other set of 3 products.

We refer to these sets as 3-Pareto sets of the dataset, where
3 indicates the number of products in each set. More generally,
given a constant factor k specifying the number of products
in each set, our problem is to find all k-Pareto sets. i.e., those
solutions that are not dominated by any other solutions.

The main challenge in developing an algorithm for re-
trieving all k-Pareto sets is to overcome its computational
complexity. For instance, for n products, there can be

(
n
k

)
different candidate sets. A naive solution is to retrieve all

(
n
k

)
candidates sets, compute the aggregated values for each set,
and then using any traditional algorithm to identify all the
non dominated sets. It is obvious that such an approach cannot
work in practice. Therefore, to address this challenge, we need
to develop an algorithm that enables pruning of the search
space so that we do not explore all possible combinations of
products.

We study the properties of k-Pareto sets that enable us
to reduce the number of generated candidates, as well as
the number of dominance tests between candidate sets. As a
preliminary step, we begin by presenting formal definitions
and the notations that we use. Table III summarizes our
notations.

Definition 3.1: (Dominance)
Product i dominates product j, if i has a greater or equivalent
value for at least one objective and has a strictly greater value
for the other objective.

From now on, we will write i � j to mean that product i
dominates product j. We will also write i � j to mean that
product i does not dominate product j.

Definition 3.2: (Pareto product)
A product i is a Pareto product, if there exists no other product
j that dominates it, i.e., j � i.

Given the set of products I, we define the set of Pareto
products of I as follows:

P(I) = {i ∈ I|∀j ∈ I, j � i}

To compare between two sets of products, we extend the
notion of the dominance relation between two sets of the same
size, i.e., containing the same number of products. We define
the dominance relation between two sets using the aggregated
sum of their corresponding values for our both objectives
(utility and margin).

Now let us formally define set dominance. We refer to a
subset of I containing k products with Sk, and write Ck(I)
the set of all sets of k products in I:

Ck(I) = {Sk|Sk ⊆ I, |Sk| = k}

We define the dominance relation Sk � S′k between two
k-sets Sk and S′k as follows:

Definition 3.3: (Set dominance)
Let us suppose Sk = {i1, ..., ik} and S′k = {j1, ..., jk}. We
say that Sk dominates S′k and write Sk � S′k if Sk has a
greater aggregated value for one of our objectives and has a
strictly greater aggregated value for the other objective. More
formally,∑

i∈Sk
Utility(u, i) ≥

∑
i′∈S′

k
Utility(u, i′) and∑

i∈Sk
Margin(u, i) >

∑
i′∈S′

k
Margin(u, i′).

Or
∑

i∈Sk
Utility(u, i) >

∑
i′∈S′

k
Utility(u, i′) and∑

i∈Sk
Margin(u, i) ≥

∑
i′∈S′

k
Margin(u, i′)

We also write Sk � S′k to mean that Sk does not dominate
S′k

Definition 3.4: (k-Pareto set)
A set of products Sk is a k-Pareto set, if there exists no other
set of products S′k such that S′k � Sk

Then given the set of products I, we define the set of all
k-Pareto sets as follows:

Pk(I) = {Sk ∈ Ck(I)|∀S′k ∈ Ck(I), S′k � Sk}

C. Properties of k-Pareto sets

Since we cannot compute all k-Pareto sets in polynomial
space and time, we propose to examine specific properties of
k-Pareto sets that can help us to consider fewer input products
and also consider fewer intermediate candidate sets.

TABLE III: Summary of our notations
Notation Meaning
u customer
i, j products
I set of all products
S k set of k products
C k set of all sets of k products
P k k-Pareto set
P(I) Pareto set of I
Pk(I) set of all k-Pareto sets of I

Since a k-Pareto set represents a set of k “good” products as
a whole, it is likely to be a combination of k Pareto products.
A naive algorithm that computes the set of all Pareto products
P(I) and check for combinations of k products of P(I)
to retrieve the set of k-Pareto sets does not work. Indeed,
Observation III-C.1 shows that a set of k Pareto products does
not necessarily form a k-Pareto set.

Observation III-C.1: Suppose a set of k Pareto products
Sk ⊂ P(I). Then it is possible to have Sk 6∈ Pk(I)

Proof : Consider a customer u and a set of 4 products
I = {i1, i2, i3, i4}. Let us note for a product i: i = (x, y) to
mean that Utility(u, i) = x and Margin(u, i) = y. Then,
let’s consider i1 = (0.1, 0.5), i2 = (0.2, 0.3), i3 = (0.3, 0.2)
and i4 = (0.5, 0.1). We notice from this example that all
products are not dominated, but we see that {i1, i4} dominates
{i2, i3}.

We now prove the contrapositive of Observation III-C.1.
Observation III-C.2: Suppose a k-Pareto set Sk ∈ Pk(I).

Then it is possible to have Sk 6⊂ P(I)
Proof : Consider again the example in Tables I and II.

i4 and i5 are both non Pareto products, but {i1, i4, i5} is a
3-Pareto set.

Hence, according to these two observations, to compute k-
Pareto sets we need not only to consider Pareto products but
also non-Pareto products. But do these observations mean that
we have to treat all non-Pareto products in the same way? Can
we safely prune a portion of candidate sets?

D. Pruning candidate sets

We now present our strategy for pruning the search space
that enables us to consider fewer candidates sets. Lemma
III-D.1 demonstrates that a k-Pareto set may contain a non-
Pareto product i, but if so, then it has to contain all the products
that are dominating i.

Lemma III-D.1:
Suppose a k-Pareto set Sk ∈ Pk(I), and suppose a product

i ∈ Sk. If there exists a product j ∈ I such that j � i, then
we must have j ∈ Sk.

Proof : We prove lemma III-D.1 by contradiction. Let us
suppose Sk = {i1, i2, ..., ik} and that j 6∈ Sk. Without loss of
generality, let’s assume that i = ik. So, if there exists a product
j ∈ I such that j � i, it’s obvious that with replacing i by j
in Sk we will end up with a set dominating the original one.
i.e., (Sk − {i}) ∪ {j} � Sk, this contradicts the assumption
that Sk is a k-Pareto set.

Thus, Lemma III-D.1 is at the basis of the pruning strategy
that we use to generate less candidate sets. Given a product
i, we safely prune all candidate sets containing i and not
containing products dominating i.

E. Pruning input products

We now present a strategy that enables us pruning the input
products even before starting to search for the set of k-Pareto
sets. Indeed, Lemma III-E.1 demonstrates that we can safely
prune all non-Pareto products in the original input I, that are
dominated by at least k products.

Lemma III-E.1:
Suppose a product i ∈ I that is dominated by k other prod-

ucts. This implies that there exists no k-Pareto set Sk ∈ Pk(I)
such that i ∈ Sk

Proof : We also prove Lemma III-E.1 by contradiction. Let
us assume that Sk ∈ Pk(I) is a k-Pareto set, and that Sk

contains a product i that is dominated by k other products.
Then, using Lemma III-D.1, Sk has also to contain all those
k products that are dominating i. This obviously violates the
cardinality size k for Sk, since it has to contain at the same
time the product i and also the k products dominating i,
which contradicts the assumption that |Sk| = k.

An interesting result from Lemma III-E.1 is that we can
safely discard all products in I that are dominated by at least
k other products, which can significantly reduce the number
of products to consider for retrieving the set of all k-Pareto
sets in I.

IV. ALGORITHM

The biggest challenge in designing an algorithm to solve
our problem is computational. We need to deal with the
exponential space complexity. Generating all candidate sets is
practically infeasible. For a set of products with size n = 1000,
if we want to retrieve a recommendation set of size k = 4,
there might be

(
1000
4

)
= 41417124750 candidate sets of the

specified size. Lemmas III-D.1 and III-E.1 in the previous
section, form the basis of the algorithm we develop to retrieve
all k-Pareto sets. Given a customer u and the set of products
I, we exploit Lemma III-E.1 to discard all the products that
are dominated by k or more products. Then we consider only
those candidate sets that satisfy the condition stated in Lemma
III-D.1.

Our solution does not generate all candidate sets at once,
rather it generates dynamically the candidate sets in a progres-
sive way and exploits pruning opportunities. More precisely,
our algorithm relies on dynamic programming which takes a
product i and generates candidate sets containing i and repeats
the process for other products. Our algorithm is based on the
following intuition. Let us assume that we have a subset of
products L ⊂ I such that |L| ≥ k and containing a product i.
Thus, to compute Pk(L) we can compute it from Pk(L−{i})
and Pk−1(L−{i}). Let us consider a k-Pareto set Sk in Pk(L),
Then we may encounter two possibilities, we may either have
i ∈ Sk or i 6∈ Sk.

Proposition 4.1: Suppose that i 6∈ Sk. This implies that Sk

must be in Pk(L − {i})
Proof : We prove this proposition by contradiction. Let us

assume that Sk 6∈ Pk(L − {i}). Then there must exist a k-
Pareto set S′k ∈ Pk(L−{i}) that dominates Sk. Thus we face
two cases: (1) S′k ∈ Pk(L), since S′k � Sk it contradicts that
Sk is a k-Pareto set in Pk(L). (2) S′k 6∈ Pk(L), then there
exists another k-Pareto set S′′k ∈ Pk(L) that dominates S′k,
thus, we have S′′k � S′k � Sk which contradicts that Sk is a
k-Pareto set in Pk(L). Hence the proof.

Proposition 4.2: Suppose now that i ∈ Sk. This implies that
the set (Sk − {i}) must be in Pk−1(L − {i})

Proof : We also prove this proposition by contradiction.
Let us assume that (Sk − {i}) 6∈ Pk−1(L − {i}). Then there
exists a (k − 1)-Pareto set Sk−1 that dominates (Sk − {i}),
i.e., Sk−1 � Sk − {i}. Thus, the union of product i on both
sides gives Sk−1 ∪ {i} � Sk, which contradicts the fact that
Sk is a k-Pareto set.

Algorithm 1: INPUT PRUNING

Input: a user u, a set of products I, a maximum size
of recommended sets k

Output: a set of products I ′ ⊂ I containing only
products that are not dominated by at least k
products, a Dominance Hashmap D
materializing for each product the set of
products dominating it

1 I ′ ← []
2 foreach product i ∈ I do
3 Compute Utility(u, i)
4 Compute Margin(u, i)

5 L ← Desc Sort(I,Utility(u, i) + Margin(u, i))
6 for x = 1 to size(L) do
7 i← L[x]
8 D[i]← ∅
9 I ′.append(i)

10 for y = 1 to x-1 do
11 if size(D[i]) ≥ k then
12 remove i from I ′ // prune i
13 break

14 j ← L[y]
15 if j dominates i then
16 D[i].add(j)

17 return I ′ , D

Therefore, an important result of these two propositions is
that given a set of products L and a single product i /∈ L
that we are considering, in order to compute Pk(L + {i}),
we only have to consider those sets which are k-Pareto sets
in Pk(L) (according to Proposition 4.1) and new candidate
sets obtained from Pk−1(L) by growing the set with product
i (according to Proposition 4.2). In the latter case, we exploit
Lemma III-D.1 to generate only candidate sets from Pk−1(L)

that are containing all the products dominating i, other sets can
be safely pruned. In this way, we generate a minimal number
of intermediate candidate sets.

Algorithm 2: Pareto (k, In): Dynamic programming
algorithm for retrieving the set of k-Pareto sets

Input: a user u, a set of products In = {i1, ..., in}, a
maximum size of recommended sets k, a
dominance hashmap D

Output: Pn
k : the set of all k-pareto sets

1 if Pn
k is already computed then

2 return Pn
k

3 if k < n then
4 Pn−1

k ← PARETO (k, In−1)
5 Cand← Pn−1

k

6 else
7 Cand← ∅
8 if k == 1 then
9 Cand′ ← {{in}}

10 else
11 Cand′ ← ∅
12 Pn−1

k−1 ← PARETO (k − 1, In−1)

13 foreach Set S ∈ Pn−1
k−1 do

14 if D[in] ⊆ S then
15 S′ ← S ∪ {in}
16 Cand′ ← Cand′ ∪ {S′}

17 Candnk = Cand ∪ Cand′
18 foreach set S ∈ Candnk do
19 if S is not dominated by any other set in Candnk

then
20 Pn

k .add(S)

21 return Pn
k

We design a strategy in two stages. Algorithm 1 is called
to prune the set of products before searching for k-Pareto
sets. It is also used to materialize a hashmap associating a
product with the set of products dominating it. The algorithm
first computes for each product the corresponding utility and
margin, then we sort the product according to the sum of
utility and margin for each product. This is an optimization
that avoids unnecessary dominance checks. When products are
sorted in this way, we make sure that a product can only be
dominated by products that appear before in the sorted list. The
algorithm returns the list of products that are not dominated
by k or more products, in addition it also returns a dominance
Hashmap which associates to each product the set of products
dominating it. The list of input products and the associated
Hashmap are then fed to Algorithm 2.

Algorithm 2 computes the set of all k-Pareto products. It is a
dynamic programing approach that takes one product at a time
and generates the set of candidates following Propositions 4.1
and 4.2. Pn

k denotes the set of k-Pareto sets for the first
n products. Thus, to compute Pn

k we recursively compute

TABLE IV: Summary of the characteristics of our dataset
Our dataset

Domain retail, gas and oil industry
Time span January 2017 –>April 2019
Number of customers 425, 406
Number of products 16, 891
Number of purchases 2, 822, 310
Sparsity 99.96 %

Cand = Pn−1
k which is the set of k-Pareto sets for the first

n− 1 products, and Cand′ = Pn−1
k−1 the k − 1-Pareto sets for

the first n−1 products, we grow these sets with in to generate
new candidates of size k by exploiting Lemma III-D.1 (lines
13-16). The algorithm returns the set of all k-Pareto sets for
the target customer u.

V. EXPERIMENTS

We conduct several experiments whose purpose is to exam-
ine the behavior of our algorithm and the solutions it finds.
Our implementation is in Python 3.7.0 and is running on a
2.7 GHz Intel Core i7 machine with a 16 GB main memory,
running OS X 10.13.6.

A. Summary of results

Our results can be summarized as follows. We first jus-
tify the need for a bi-objective optimization approach by
comparing the accuracy of the recommendations it generates
to the ones generated with scalarization. We then study the
accuracy of our recommendations, namely their precision
and profit margin, and show that our algorithm can generate
recommendation alternatives offering different tradeoffs that
can further be beneficial to our business partner. We then study
the effect of product prices on the overall accuracy. Finally,
we validate the necessity of our pruning strategies to ensure
good response times.

B. Dataset

Our dataset, provided by our business partners, represents
customers who own a loyal card and who purchase products
at different gas stations that are geographically distributed in
France. It contains the purchase history of those customers
for a period of approximatively 28 months, from January
2017 to April 2019. Each transaction record is associated to
a customer, a product and a timestamp. the dataset contains
425, 406 different customers and 16, 891 different products.
Each product is associated with a category such as car wash,
lubricants, hots drinks, coffee, etc. Table IV shows a summary
of the characteristics of the dataset.

C. Experimental protocol

The widely used strategy for evaluating accuracy of rec-
ommendations in offline experiments splits the dataset into
training and test sets. The test set is used to simulate future
transactions (ratings, clicks, purchases, etc) and it usually
contains a fraction of transactions. The remaining interactions
are kept in the training set and are fed to the recommenda-
tion algorithm which usually outputs a list of top-k product
recommendations. The accuracy of recommendations is then

evaluated on the test set. The split ratio between the training
and test sets is usually chosen to be 80/20.

In our experiments we refined the splitting by leveraging the
timestamps of purchases with a chronological split, inspired
from existing work [7], [8]. The availability of timestamps in
the purchase records enables us to attempt a more realistic
experiment. We hence train our algorithm on past purchases
and test the results on future purchases. This setting is illus-
trated in Figure 1 that contains an example of a timestamped
dataset. We split the dataset according to a given point in time
(the vertical line in the figure), which acts as our “present” (the
time we apply our algorithm). Past purchases which are located
to the left of the split point are used for training, whereas
future purchases located on the right side are used for testing.
Customers on the right side of the split point, with purchase
histories timestamped only in the “future” are discarded, while
“past customers” appearing on the left side of the split point
are kept in the training phase. In particular for our dataset, we
used purchase records from January 2017 to December 2018
for training and records from January 2019 to April 2019 for
testing.

As it is often practiced in the literature of recommender
systems for retail datasets [9], we also discard “cold start”
customers having a purchase history below a certain threshold.
In our experiments, we only keep those customers with at least
10 past purchases.

Fig. 1: Training and test sets in a timestamped dataset

D. Evaluation measures

Our goal is to evaluate the effectiveness of our recommen-
dations with respect to recommendation accuracy and also the
generated profit margin. We use two evaluation measures, the
first one is Precision and the second is the average margin.

Precision is the most widely used recommendation measure
to assess the accuracy of recommendations [10]. A recom-
mendation algorithm outputs a sorted list of top-k products
given the purchase history of a customer. Precision indicates
the proportion of relevant recommended products from the
total number of products in the final recommended list (i.e.
k), which is defined as:

precu@k =
card(Su@k ∩ testu)

k

where, given a customer u, Su@k is the set of top-k
recommendations and testu is the target test set of customer
u that contains the products purchased in the test set.

The second evaluation measure is used to quantify the
average profit margins generated by the top-k recommended
products. We define it as follows:

marginu@k =

∑
i∈Su@kMargin(u, i)

k

where, given a customer u, Su@k is the set of top-k
recommendations.

The value k is chosen by our business partners.
To compute the final performance values for both measures,

we average the results over all the customers present in the
test set. The final precision score is given by:

prec@k =

∑
u∈testU

precu@k

|testU |

and similarly, the final margin score is given by:

margin@k =

∑
u∈testU

marginu@k

|testU |

where testU is the set of customers present in the test set
of customers U .

E. Detailed results

In this section we run our experiments and report detailed
results. We first start by reporting the results of scalarization.
We then examine more thoroughly the behavior of our bi-
objective algorithm.

1) Scalarization: To show the effectiveness of our work,
and the need to account for a bi-objective optimization, we
investigate the use of scalarization to transform our setting into
a single objective optimization problem by optimizing a new
objective function. In this function, a parameter λ is used to
combine the two optimization dimensions: utility and margin.
The objective function is written as: (1−λ)×Utility(u, i) +
λ ×Margin(u, i) and λ is in the range [0, 1]. In our exper-
iment, The values of λ are drawn from {0, 0.3, 0.5, 0.7, 1},
and for each value, we compute the average precision@5 and
margin@5 over all test customers. We chose k = 5 because
customers usually purchase a small number of products in
a single visit to a gas station, thus 5 recommendations are a
reasonable choice according to our business partners. We have
a total of 4, 589 test customers. Test customers are those that
have at least 5 purchases in the test set (data from January
2019 to April 2019) and who also have at least 10 purchases
in the training set (data from January 2017 to December 2018).
Unless otherwise stated, this is the number of customers we
have in the remainder of the experiments.

Results are shown in Figure 2 for Precision and Figure 3
for margin. As we increase λ, the weight given to precision
decreases and its value decreases accordingly. On the other
hand, higher values of λ shift the weight to margin thereby

Fig. 2: Average precision for different values of λ

Fig. 3: Average profit margin for different values of λ

increasing its value. Note that the highest precision value
is 40% which is reasonable given the high sparsity of our
purchase matrix. These results confirm the conflicting nature
of our two objectives and the need for an algorithm optimizing
both objectives at once.

2) Our Approach: Our algorithm can return multiple opti-
mal tradeoff solutions for one customer in only one run, while
traditional recommender algorithms output only one solution.
In this way, our algorithm provides multiple alternatives to
product managers at our business partner, offering different
tradeoffs between recommendation utility and generated profit
margins. Based on the concept of Pareto dominance, no
solution is better or worse than another as each solution
presents a different tradeoff. Table V contains an example of
different 5-Pareto sets that are generated by our algorithm for a
random customer. The table reports the aggregated utilities and
margins of each 5-Pareto set. The example clearly indicates
that the algorithm cannot select one best recommendation
set from the returned k-Pareto sets. Therefore, to compute
the accuracy of all sets, we need to aggregate precision and
margin of different k-Pareto sets generated for a customer.

In the following experiments, we report three different ways
of aggregating precision and margin in different k-Pareto
sets. Each test customer receives a different number of k-
Pareto sets. For instance, for k = 5, the number of solutions
ranges from 16 to 49. We first aggregate precision and margin

TABLE V: An example of 5-Pareto sets generated for a
random customer

Recommended set of products utility margin
{i1, i2, i3, i4, i5} 1.79 23.11
{i1, i4, i5, i6, i7} 2.41 18.64
{i1, i2, i3, i5, i8} 1.36 24.53
{i2, i3, i5, i9, i10} 0.46 26.76
{i2, i3, i7, i10, i11} 0.04 37.44

for each test customer and then average over all 4, 589 test
customers. The first aggregation, referred to as AV G computes
the average precision and average margin over all the k-
Pareto sets. The second, referred to as Max utility selects the
recommendation set that offers the highest precision value, and
computes the associated average margin. The third and last,
Max margin, selects the recommendation set that offers the
highest margin value, and computes the associated average
precision.

Fig. 4: Average precision over test customers: Prec@k

Fig. 5: Average profit margin over test customers

The results in Figures 4 and 5 and show that Max utility
achieves the highest precision values but at the same time
the worst margins. Max margin which essentially recom-
mends expensive products achieves high values for generated
margins at the cost of very low precision, independently of
the size of the recommendation sets k. AV G shows that
when considering all recommendation sets, we achieve a good
balance between precision and margin. These results show that
our algorithm can return different recommendation alterna-
tives for each customer, which may be beneficial in helping

products managers choose the best final recommendation that
will increase the profit margin without a significant loss in
recommendation precision.

To study the effect of product prices on our optimization, we
run additional experiments where we control the distribution
of product prices in the training set. We created two separate
datasets in which we only keep the cheapest products in
the first one and the most expensive products in the second
one. Figures 6b, 6a, 7b and 7a, report the values of preci-
sion and margin for different aggregation functions (AVG ,
Max utility , Max margin) for our test customers using both
sampled datasets. The results are consistent with the original
dataset. The higher precision values observed on the dataset
with the cheapest products can be explained by the low impact
of price on utility (Figure 6b). Interestingly, precision in this
case attains higher values (close to 90% for Max utility) than
for the full dataset (around 70% for Max utility).

The lower precision values for the dataset with the most
expensive products (close to 60% in Figure 7b) is justified by
the preference of the algorithm on maximizing profit margin.
This experiment suggests the need to involve product managers
in choosing the best k-Pareto set for different customers
according to their spending habits. This step can also be
automated in the future to better strike a balance between
utility and profit margin while also accounting for customers’
expectation in terms of product price.

(a) (b)

Fig. 6: Average margin (a) and precision (b) over test cus-
tomers where price of products is low: prec@k

(a) (b)

Fig. 7: Average margin (a) and precision (b) over test cus-
tomers where price of products is high: prec@k

TABLE VI: Execution time in seconds for different values of
k, averaged over 10 randomly selected customers

Our algorithm Exhaustive algorithm
k=2 0.02 0.12
k=3 0.16 9.99
k=4 1.18 128.17
k=5 4.93 481.45

F. Response time

The purpose of this last experiment is to validate the
effectiveness of our pruning strategies. We compare our bi-
objective algorithm with an exhaustive (naive) approach that
generates all possible candidate sets. This is only possible after
applying Algorithm 1 for pruning products dominated by more
than k products.

Table VI reports the average running time in seconds for
our bi-objective algorithm and the exhaustive approach. We
can notice that our algorithm runs much faster, since it does
not generate all possible candidate sets and thus computes only
necessary dominance tests, thanks to our pruning strategies.

VI. RELATED WORK

We summarize two research areas that are related to our
work.
Multi-objective optimization. A number of approaches have
been developed to solve multi-objective problems [11], [12].
We examined the applicability of scalarization in our case
(Section III-A). Another approach is multi-level optimiza-
tion [4] which relies on a meaningful hierarchy between
objectives. Since our objectives are independent and conflict-
ing, multi-level optimization does not apply. Another popular
method is ε-constraints [13] where one objective is optimized
and others are constrained. This formulation could be used
in our context in the case where a specific profit amount is
desired and products must be chosen accordingly. Another
category of works, focus on computing the pareto-frontier of
the solution space [14], [15]. However, the problem we tackle
is more complex since we are interested in returning multiple
sets of k products. Indeed, we showed that computing the
pareto-frontier and then check for combinations of k products
is suboptimal.
Recommendation systems. Our work is obviously related
to the rich area of recommendations [16], where the focus
has mostly been on optimizing utility only. Few works have
been proposed to also optimize the generated margin. [17]
proposes a simple profit-aware recommendation system, where
products are ranked in decreasing order of expected profit.
[18] proposes a re-ranking based algorithm that takes as input
a sorted recommendation list and re-ranks it according to the
generated revenues. This is akin to multi-level optimization
[4], which is suboptimal when the objectives are conflicting.

VII. CONCLUSION

In this paper, we formalized recommendation as a bi-
objective optimization problem that maximizes customer util-
ity and profit margin. We designed a dynamic programming

algorithm that exploits properties of the solution space to
prune unqualifying results. Our experiments on real retail
datasets examine the balance between customer-centric and
business-oriented goals and assess the ability of our algorithm
to return accurate and profit-making recommendations. Our
immediate work is to extend our formulation to the design
of customer-centric promotional offers that take into account
both customers’ spending habits and business-oriented targets.

REFERENCES

[1] C. Kim and J. Kim, “A recommendation algorithm using multi-level
association rules,” in Proceedings IEEE/WIC International Conference
on Web Intelligence (WI 2003). IEEE, 2003, pp. 524–527.

[2] B. Sarwar, G. Karypis, J. Konstan, J. Riedl et al., “Analysis of recom-
mendation algorithms for e-commerce,” in EC, 2000, pp. 158–167.

[3] C. H. Papadimitriou and M. Yannakakis, “On the approximability of
trade-offs and optimal access of web sources,” in Proceedings 41st
Annual Symposium on Foundations of Computer Science. IEEE, 2000,
pp. 86–92.

[4] A. Migdalas, P. M. Pardalos, and P. Värbrand, Multilevel optimization:
algorithms and applications. Springer Science & Business Media, 2013,
vol. 20.

[5] I. Bartolini, P. Ciaccia, and M. Patella, “Salsa: computing the skyline
without scanning the whole sky,” in Proceedings of the 15th ACM
international conference on Information and knowledge management.
ACM, 2006, pp. 405–414.

[6] ——, “Efficient sort-based skyline evaluation,” ACM Transactions on
Database Systems (TODS), vol. 33, no. 4, p. 31, 2008.

[7] D. Paraschakis, B. J. Nilsson, and J. Holländer, “Comparative evaluation
of top-n recommenders in e-commerce: An industrial perspective,” in
2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2015, pp. 1024–1031.

[8] B. Pradel, S. Sean, J. Delporte, S. Guérif, C. Rouveirol, N. Usunier,
F. Fogelman-Soulié, and F. Dufau-Joel, “A case study in a recommender
system based on purchase data,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2011, pp. 377–385.

[9] A. Said, A. Bellogın, and A. De Vries, “A top-n recommender system
evaluation protocol inspired by deployed systems,” in LSRS Workshop
at ACM RecSys. Citeseer, 2013.

[10] H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, “A new user similarity
model to improve the accuracy of collaborative filtering,” Knowledge-
Based Systems, vol. 56, pp. 156–166, 2014.

[11] I. Trummer and C. Koch, “Approximation schemes for many-objective
query optimization,” in Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data. ACM, 2014.

[12] G. Tsaggouris and C. Zaroliagis, “Multiobjective optimization: Improved
fptas for shortest paths and non-linear objectives with applications,”
Theory of Computing Systems, vol. 45, no. 1, pp. 162–186, 2009.

[13] C. H. Papadimitriou and M. Yannakakis, “On the approximability of
trade-offs and optimal access of web sources,” in FOCS, 2000.

[14] M. T. Ribeiro, N. Ziviani, E. S. D. Moura, I. Hata, A. Lacerda, and
A. Veloso, “Multiobjective pareto-efficient approaches for recommender
systems,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 5, no. 4, p. 53, 2015.

[15] M. Rodriguez, C. Posse, and E. Zhang, “Multiple objective optimization
in recommender systems,” in Proceedings of the sixth ACM conference
on Recommender systems. ACM, 2012, pp. 11–18.

[16] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. New
York, NY, USA: Cambridge University Press, 2011.

[17] L.-S. Chen, F.-H. Hsu, M.-C. Chen, and Y.-C. Hsu, “Developing
recommender systems with the consideration of product profitability for
sellers,” Information Sciences, vol. 178, no. 4, pp. 1032–1048, 2008.

[18] A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub, and
I. Netanely, “Movie recommender system for profit maximization,” in
Proceedings of the 7th ACM conference on Recommender systems.
ACM, 2013, pp. 121–128.

