
HAL Id: hal-02972596
https://hal.science/hal-02972596

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guaranteed Set-Membership State Estimation of an
Octorotor’s Position for Radar Applications

Dory Merhy, Cristina Stoica Maniu, Teodoro Alamo, Eduardo Fernandez
Camacho, Sofiane Ben Chabane, Thomas Chevet, Maria Makarov, Israël

Hinostroza

To cite this version:
Dory Merhy, Cristina Stoica Maniu, Teodoro Alamo, Eduardo Fernandez Camacho, Sofiane Ben Cha-
bane, et al.. Guaranteed Set-Membership State Estimation of an Octorotor’s Position for Radar Ap-
plications. International Journal of Control, 2020, �10.1080/00207179.2020.1825796�. �hal-02972596�

https://hal.science/hal-02972596
https://hal.archives-ouvertes.fr


Guaranteed Set-Membership State Estimation of an Octorotor’s

Position for Radar Applications

Dory Merhya, Cristina Stoica Maniua, Teodoro Alamob, Eduardo F. Camachob,
Sofiane Ben Chabanec, Thomas Cheveta, Maria Makarova and Israel Hinostrozad
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ABSTRACT
In the context of state estimation of dynamical systems subject to bounded pertur-
bations and measurement noises, this paper proposes an application of a guaranteed
ellipsoidal-based set-membership state estimation technique to estimate the linear
position of an octorotor used for radar applications. The size of the ellipsoidal set
containing the real state is minimized at each sample time taking into account the
measurements performed by the drone’s sensors. Three case studies highlight the
efficiency of the estimation technique in finding guaranteed bounds for the octoro-
tor’s linear position. The computed guaranteed bounds in the linear trajectory are
exploited to find the maximum operating frequency of the radar, a necessary infor-
mation in radar applications.

KEYWORDS
Set-membership state estimation, linear systems, UAVs, ellipsoidal set, radar
application

1. Introduction

State estimation is a major aspect in any process control. Based on available mea-
surements and system knowledge, state estimates can be used for control purposes.
Numerous state estimation techniques have been developed throughout the years fol-
lowing two main directions: the stochastic approach and the deterministic approach.
The Kalman filter (Kalman, 1960) is a standard method for stochastic state estima-
tion. Nonetheless, the stochastic approach relies on assumptions about noise prop-
erties (e.g. Gaussian distribution of perturbations and measurement noises), which
could be difficult to verify in practice. Alternatively, the deterministic state estimation
approach (Bertsekas & Rhodes, 1971; Fogel & Huang, 1982) using either interval ob-
servers (Pourasghar, Puig, & Ocampo-Martinez, 2016) or set-membership1 estimation
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techniques (Schweppe, 1968) deals with unknown but bounded disturbances. In set-
membership state estimation, various convex2 sets are mainly used: zonotopes (Alamo,
Bravo, & Camacho, 2005; Combastel, 2003; Le, Stoica, Alamo, Camacho, & Dumur,
2013); polytopes (Walter & Piet-Lahanier, 1989) and ellipsoids (Chernousko, 1994;
Daryin & Kurzhanski, 2012; Daryin, Kurzhanski, & Vostrikov, 2006; Durieu, Walter,
& Polyak, 2001; Kurzhanski & Vályi, 1996; Polyak, Nazin, Durieu, & Walter, 2004).
Due to their simplicity, ellipsoids are widely used in the state estimation literature,
while polytopes and zonotopes are used when better accuracy is needed (Puig, 2010;
Wang, Puig, Cembrano, & Alamo, 2016). A mixed set-membership state estimation
technique combining both zonotopic and ellipsoidal sets is proposed in Ben Chabane,
Stoica Maniu, Camacho, Alamo, and Dumur (2016).

In general, it cannot be assumed which approach, either stochastic or deterministic,
is better for state estimation. In Merhy, Stoica Maniu, Alamo, Camacho, and Ben Cha-
bane (2017), a comparison in terms of accuracy and complexity between a guaranteed
ellipsoidal set-membership state estimation technique and the classic Kalman filter
has been made, illustrating the high accuracy that the ellipsoidal method provides. In
the same context, a zonotopic Kalman filter has been proposed by Combastel (2015)
to benefit from both approaches. In addition, a zonotopic constrained Kalman filter
proposed by Merhy, Alamo, Stoica Maniu, and Camacho (2018) where the zonotope is
particularly the envelope of the set of constraints applied on the system state at each
time instant. Despite the theoretical development of deterministic approaches, there is
an obvious gap between theory and practice, and thus the need to apply more accurate
recent state estimation techniques on real systems. In this context, the wide use of Un-
manned Aerial Vehicles (UAVs) in resource monitoring (Laliberte & Rango, 2009), oil
and gas (Hausamann, Zirnig, Schreier, & Strobl, 2005), mapping (Nex & Remondino,
2014) or even for emergencies like forest fire surveillance (Casbeer, Beard, McLain, Li,
& Mehra, 2005) attracted more research attention from the scientific community. More
specifically, studies related to the need of an accurate knowledge of linear and angular
positions of drones are often conducted (Kingston & Beard, 2004). In this context,
several approaches have been adopted for the state estimation of a drone. The linear
Kalman filter, as well as its extensions to non-linear systems have been widely used
in industry to estimate the position of UAVs (De Marina, Pereda, Giron-Sierra, & Es-
pinosa, 2012; Kada, Munawar, Shaikh, Hussaini, & Al-Saggaf, 2016; Teixeira, Tôrres,
Iscold, & Aguirre, 2011). Alternatively, attempts have been made to bridge the gap
between set-membership state estimation theory and practice. For instance, a Zono-
topic Extended Kalman Filter (ZEKF) applied to a quadrotor helicopter is presented
in Wang and Puig (2016). Moreover, in Garcia, Raffo, Ortega, and Rubio (2015), the
results of an interval arithmetics-based estimation technique applied to a quadrotor
are compared with the results of a set-membership state estimation technique based on
zonotopes. With the proliferation of moderately low cost UAVs, radar-based techniques
can be tested on small drones. However, perturbations might cause the deviation of
the drones from their planned trajectories leading to an erroneous formation of radar
images. Thereby, the use of set-membership state-estimation approaches arises from
the need of guaranteed estimates of the system state in the presence of bounded mea-

paper, we focus on set-membership state estimation techniques from the control systems point of view.
2There exist techniques leading to non-convex sets (e.g. based on Taylor models (Paulen, Villanueva, &

Chachuat, 2016) or polynomial methods (Streif et al., 2013)) mainly used for parameters estimation, which

are beyond the scope of this paper. A brief overview of the set-based parameter estimation methods for
nonlinear systems can be found in Chachuat et al. (2015). In addition, stochastic adaptive parameter estimation

algorithms were developed (Bhotto & Antoniou, 2011; Lima & Diniz, 2010; Werner, Apolinário Jr, & Diniz,
2007; Werner & Diniz, 2001).
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surement noises and perturbations. In order to take advantage of its high accuracy,
a guaranteed ellipsoidal set-membership state estimation technique (Ben Chabane,
2015) is applied in this paper on an octorotor. The goal is to guarantee the drone’s
position when bounded perturbations and measurement noises are considered. Using
ellipsoidal representations, the proposed technique computes the set of states that are
consistent with the model in a first phase and with the measurements in a second
phase such that the system’s real state is guaranteed to belong to this set. The ad-
vantage of this method lies in the trade-off between its good accuracy and reduced
complexity (Ben Chabane, 2015) compared to other techniques in the literature. In-
deed, the proposed ellipsoidal state estimation method offers better accuracy than the
P -radius based zonotopic state estimation technique (Le et al., 2013) and the three
ellipsoidal-based state estimation techniques presented in Ben Chabane, Stoica Maniu,
Alamo, Camacho, and Dumur (2014). Using the radar system embedded in the UAV,
as well as the estimated coordinates of the drone, an image reconstruction application
is exposed to value the efficiency of the set-membership state estimation technique.
Furthermore, the relative distance separating the drone from the target is guaranteed
to be inside the computed bounds. The relative error done by the estimation leads to
the calculation of the operating frequency of the radar. The contribution of this paper
is twofold: (i) an extension of a guaranteed ellipsoidal state estimation technique to
take possible control signals into consideration; (ii) an application of the method to
the position estimation of an octorotor used for radar applications.

As an experimental platform, the Mikrokopter ARF Okto-XL drone (Fig. 1) is
used in this paper. The higher payload capacity and the motor redundancy make this
octorotor more advantageous over traditional quadrotor aircraft for radar applications.
In this context, the UAV is equipped with radar sensors in order to scan large areas and
provide high resolution images, thus there is a need for an accurate estimation of the
drone’s position (i.e. the radar’s position) and guaranteed limits for perturbations. The
challenge of this estimation problem resides in the model complexity and the possible
uncertainties coming from various sources (e.g. measurement noises, perturbations).
Previously, a linear Kalman filter and an extended Kalman filter have been designed
for the state estimation of the considered octorotor. Then, the proposed filters have
been tested on a radar imaging simulator (Chevet, Makarov, Stoica Maniu, Hinostroza,
& Tarascon, 2017).

The remainder of the paper is organized as follows. Section 2 briefly recalls the
drone’s dynamical model. The ellipsoidal set-membership state estimation technique
and its advantages are briefly presented in Section 3. The principles of Synthetic
Aperture Radar and its applications are shown in Section 4. In Section 5, simulation
results are reported illustrating the technique’s performance. Finally, in Section 6,
conclusion and further developments are proposed.
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Figure 1. Mikrokopter ARF representation and the associated drone’s frame R

Notation. The following symbols a, a and A are used to designate a scalar, a
vector and a matrix, respectively. The set {x ∈ R : a ≤ x ≤ b} defines an interval. A
box ([a1, b1], . . . , [an, bn])> is an interval vector. A unitary interval is denoted by B =
[−1, 1]. A box composed of n unitary intervals is a unitary box Bn in Rn. The identity
matrix of size n is denoted by In, while the zero matrix of the same size is denoted by
0n. The symbol A> designates the transpose of the A matrix. The symbol ‖p‖ denotes
the Euclidean norm of the vector p. A symmetric matrix M = M> ∈ Rn×n is called a
positive definite matrix, denoted by M � 0, if z>Mz > 0, for all vector z ∈ Rn\{0n}.
A strip is defined by the following set S(y,d, σ) = {x ∈ Rn : |y − d>x| ≤ σ}, where
y ∈ R, d ∈ Rn and σ ∈ R∗+.

2. Octorotor modeling

The Mikrokopter ARF Okto-XL (Fig. 1) is equipped with an inertial measurement
unit (IMU), an altimeter, a GPS and a magnetometer. The drone’s microcontroller
provides fused and filtered data on its position coordinates (both linear and angular).
The measurement data are transfered to the PC through the microcontroller’s serial
port for off-line data processing.

The octorotor’s motion in a state-space representation can be obtained using twelve
states: the drone’s position in the Earth’s frame x, y and z (see Fig. 1), the drone’s
orientation in the Earth’s frame φ, θ and ψ, its speed in the same frame Vx, Vy and
Vz, and its rotational speed in its own frame ωx, ωy and ωz. This leads to the following
state vector x = [x y z φ θ ψ Vx Vy Vz ωx ωy ωz]

>. The nonlinear dynamical
model of the drone used to simulate its behavior is presented in Makarov et al. (2015).
However, while this nonlinear model can be useful to evaluate the drone performances
in simulation, a simplified linear model Makarov et al. (2015), (Bergman and Ekström
(2014), Hoffmann and Waslander (2007)) will be used for the development of linear
control laws based on estimation techniques. The model is linearized around the static
hovering equilibrium with null translational and rotational velocities and null roll,
pitch and yaw angles. The linear general state-space equation can be denoted by

ẋ(t) = Asx(t) + Bsu(t), (1)

with the state vector x ∈ R12, the control vector u =
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[
FRx FRy FRz τRx τRy τRz

]> ∈ R6, where FRx , FRy and FRz are the compo-

nents of the resulting propeller’s force and τRx , τRy and τRz are the components of the
resulting propeller’s torque expressed in the drone’s frame denoted by the superscript
R. The matrices As ∈ R12×12 and Bs ∈ R12×6 are provided in Makarov et al. (2015).
The thrust force and drag torque generated by the i-th propeller are assumed to be
proportional to the squared propeller’s speed Ωi, with i = {1, 2, . . . , 8}. The new
reduced control vector in this case can be expressed as linear combination of the
rotational speeds of the motor Ωi denoted by the matrix Mu, leading to u(t) = MuΩ,

with Ω =
[
Ω1 Ω2 . . . Ω8

]>
. In order to avoid high computation complexity of the

ellipsoidal state estimation method, the 12-state linearized model is decoupled into
three double integrator subsystems detailed below.

Continuous-time subsystem 1 (altitude and yaw dynamics dynamics) – It
describes the altitude dynamics expressed by the altitude z and the velocity Vz of the
drone on this axis as well as the movement of the drone around the vertical axis that
changes the direction the drone is pointing to

ż(t) = Vz(t),

ψ̇(t) = ωz(t),

V̇z(t) =
1

m
FRz (t),

ω̇z(t) =
1

Izz
τRz (t).

(2)

with m the octorotor’s mass and Izz the UAV’s inertia component around the z-axis.
Continuous-time subsystem 2 (roll and pitch dynamics) – It describes the

movement of the drone around the roll axis (front-to-back) and the pitch (side-to-side)
axis 

φ̇(t) = ωx(t),

θ̇(t) = ωy(t),

ω̇x(t) =
1

Ixx
τRx (t),

ω̇y(t) =
1

Iyy
τRy (t),

(3)

with Ixx and Iyy the UAV’s inertia components around the x-axis and the y-axis,
respectively.

Continuous-time subsystem 3 (longitudinal dynamics) – It refers to the
motion of the drone across the longitudinal axis denoted by the linear coordinates (x
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and y) with the corresponding velocities on the two axes (Vx and Vy, respectively)

ẋ(t) = Vx(t),

ẏ(t) = Vy(t),

V̇x(t) =
1

m
FRx (t),

V̇y(t) =
1

m
FRy (t).

(4)

However, simplifying conditions should be met for the obtained decoupled model
to hold. Indeed, the rotational angles (i.e. roll, pitch and yaw) should be as small as
possible and maintained as close as possible to zero. To quantify this constraint, the
change in these angles should not exceed 0.2618rad or 15◦ (Abdolhosseini, Zhang, &
Rabbath, 2013).

The subsystems 1 and 2 describe the angular behavior of the drone, in addition to
its altitude, while the subsystem 3 describes the linear movement on both of the x-axis
and the y-axis. These subsystems are then discretized with a sampling period Te which
is equal to the highest of all sensors sampling periods. This leads to the state-space
representations (5), (6) and (7).

Discretized subsystem 1


zk+1

ψk+1

Vzk+1

ωzk+1

 = A


zk
ψk
Vzk
ωzk

+


0 0
0 0
Te

m 0

0 Te

Izz

[FRzkτRzk

]
+ E1wk,

[
zk
ψk

]
= C


zk
ψk
Vzk
ωzk

+ F1wk.

(5)

Discretized subsystem 2


φk+1

θk+1

ωxk+1

ωyk+1

 = A


φk
θk
ωxk

ωyk

+


0 0
0 0
Te

Ixx
0

0 Te

Iyy

[τRxk

τRyk

]
+ E2wk,

[
φk
θ

]
= C


φk
θk
ωxk

ωyk

+ F2wk.

(6)
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Discretized subsystem 3


xk+1

yk+1

Vxk+1

Vyk+1

 = A


xk
yk
Vxk

Vyk

+


0 0
0 0
Te

m 0

0 Te

m

[FRxk

FRyk

]
+ E3wk,

[
xk
yk

]
= C


xk
yk
Vxk

Vyk

+ F3wk.

(7)

The same matrices A =

[
I2 TeI2

02 I2

]
and C =

[
I2 02

]
are obtained for the three

subsystems. The perturbations and the measurement noises are considered to be mod-
eled by the vector wk which is bounded by the unitary box B6 and the matrices
Ei = εi ·

[
I4 04×2

]
, Fi = γi ·

[
04 I4×2

]
, for i ∈ {1, 2, 3}. The scalars εi and γi

represent the accuracy precision provided by the sensors information.
In the following, this octorotor is the application platform for a guaranteed ellip-

soidal set-membership state estimation technique presented in the next section.

3. Guaranteed ellipsoidal set-membership state estimation method

This section briefly describes the ellipsoidal guaranteed state estimation technique
(Ben Chabane, 2015) based on the minimization of the radius of the ellipsoidal es-
timation at each sample time k by solving an optimization problem. Consider the
following discrete-time Linear Time Invariant (LTI) system{

x̃k+1 = Ax̃k + Bũk + Ewk,
ỹk = Cx̃k + Fwk,

(8)

where x̃k ∈ Rnx is the state vector of the system, ũk ∈ Rnu is the input vector,
ỹk ∈ Rny is the measured output vector, and the vector wk ∈ Bnx+ny contains the
unknown but bounded state perturbations and measurement noises, at sample time
k. The matrices A, B, C, E and F have the appropriate dimensions. The reader will
notice that the discretized subsystems (5), (6) and (7) of the octorotor are written in
the form (8).

Considering that at time instant k the state x̃k belongs to an ellipsoidal set, the
main goal is to provide a guaranteed ellipsoidal set-membership estimation for the
state x̃k+1, taking into consideration bounded perturbations and measurement noises
(Ben Chabane, 2015). For the ellipsoidal method to be implemented, the initial state
is assumed to belong to the ellipsoid

E(P0, x̄0, ρ0) = {x̃0 ∈ Rnx : (x̃0 − x̄0)>P0(x̃0 − x̄0) ≤ ρ0}, (9)

with P0 = P>0 � 0 being the shape matrix, x̄0 the center and the so-called radius
ρ0 (Ben Chabane, Stoica Maniu, Alamo, Camacho, & Dumur, 2014). Similar to the
Kalman filter, the algorithm works in a two-step process
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• First, the prediction step in which a set offering a bound for the uncertain tra-
jectory of the system is calculated (the blue ellipsoid X̄k+1 in Fig. 2);
• Then, the correction step in which the guaranteed state estimation set at time
k+ 1 (the red set X̂k+1 in Fig. 2) is computed as an outer approximation of the
intersection (the grey set in Fig. 2) between the predicted state set X̄k+1 and
the measurement strip Xỹk

(in green in Fig. 2).

Assuming the prior knowledge of x̃k belonging to the ellipsoidal set X̂k, the predicted
state set is given by X̄k+1 ⊆ AX̂k ∪Bũk ∪ EBnx+ny . This set offers a bound for the
uncertain trajectory of the system (8) such that x̃k+1 ∈ X̄k+1. This step is followed
by the computation of the intersection set between the prediction X̄k+1 and the state
calculated with respect to the measurements Xỹk

which can be represented by the
green strip (Fig. 2). Exhaustively, the grey part (see Fig. 2) is given by X̄k+1

⋂
Xỹk

.
Nevertheless, the exact state estimation set that contains x̃k+1 has in general an
arbitrary shape, thus the need of outer-approximating it by an ellipsoid for simplicity
reasons (X̂k+1 in Fig. 2). The algorithm is repeated at each iteration step in order to
decrease the size of the guaranteed ellipsoidal state estimation set depicted in red in
Fig. 2.

Figure 2. Illustration of the ellipsoidal state-estimation method

Notice that this technique can also be applied on linear time varying systems with
interval uncertainties (Ben Chabane, 2015). Even though it is considered to be an
important advantage of this method, this characteristic will not be tested in this work.
Additionally, the theorems formulating the full solution to this problem are detailed
in (Ben Chabane, 2015).

The detailed study considered in Theorem 5.4 of (Ben Chabane, 2015) does not
include the input ũk of the system, which is similar to B = 0. Hence, the present
paper deals with the general case when control inputs are considered. Indeed, the
system state x̃k+1 is guaranteed to belong to the ellipsoid E(Pk+1, x̄k+1, ρk+1), with
Pk+1 = P>k+1 � 0, if: (i) at time k the state x̃k belongs to the ellipsoid E(Pk, x̄k, ρk)
and (ii) there exist a matrix Yk+1 ∈ Rnx×ny , a matrix Gk+1 ∈ Rnx×nx , a vector
gk+1 ∈ Rnx and the strictly positive scalars βk+1 > 0, ρk+1 > 0 such that the following
Linear Matrix Inequality (LMI) is satisfied

min
βk+1,Yk+1,Pk+1,Gk+1,gk+1,ρk+1

ρk+1

subject to

 βk+1Pk 0 A>Pk+1 −C>Y>k+1

0 ρk+1 − βk+1ρk τ>k+1
Pk+1A−Yk+1C τ k+1 Pk+1

 � 0,

ρk+1 ≤ βρk + σ,
0 < β < 1,

(10)
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for allwk belonging to the vertices set3 of the box Bnx+ny , with the matrix Yk = PkLk,
the vector τ k+1 = (Pk+1A −Yk+1C −Gk+1)x̄k + (Pk+1E −Yk+1F)wk+1 − gk+1 +

B(ũk−ūk) and the nominal estimated state x̄k+1 = P−1
k+1(Gk+1x̄k+Yk+1ỹk+gk+1)+

Būk, where ūk is the nominal control signal.
The proof of this result is similar to the proof provided by (Ben Chabane (2015),

page 111) with the additional terms Būk in τk+1 and x̄k+1. Indeed, denoting by
z̃k = x̃k − x̄k the error between the real state and the nominal estimated state at
time k, the goal is to prove the following expression, based on the results proposed in
Ben Chabane (2015)

z̃>k Pkz̃k ≤ ρk ⇒ z̃>k+1Pk+1z̃k+1 ≤ ρk+1.

At the time instant k + 1, the following expression is found

z̃k+1 = (A−Lk+1C)z̃k + (A−Lk+1C)x̄k + (E−Lk+1F)ωk −P−1
k+1(Gk+1x̄k + gk+1),

highlighting that the evolution of the error z̃k+1 is related to the eigenvalues of the
matrix A− Lk+1C. In addition, the computation of the matrix Gk+1 and the vector
gk+1 guarantees a faster convergence of the error z̃k+1 to zero. In this context, the
observer (which is similar to the structure of the Luenberger observer) is stable since
z̃k converges to zero at each time instant.

Besides minimizing the size of the estimation set by solving the LMI problem (10),
this method also reduces the conservativeness of the estimation by allowing the adjust-
ment of the ellipsoid shape. Indeed, considering the matrix Pk+1 as a decision variable
can modify the shape of the ellipsoid at time instant k + 1 compared to the ellipsoid
at the previous time instant.

Furthermore, the estimation accuracy can be improved by considering additional
quadratic constraints on the output measurements ỹk+1 = Cx̃k+1 + Fwk+1 and on
the perturbations at time instant k+1 such thatw>k+1Tiwk+1 ≤ 1, with i = 1, . . . , nx+

ny, Ti = eie
>
i and Inx+ny

=
[
e1 . . . enx+ny

]
. The updated method, improves the

accuracy of the estimation by decreasing the size of the ellipsoid X̂ k+1 at each iteration.
In this context, considering the ellipsoidal state estimation set E(Pk+1, x̄k+1, ρk+1)
obtained by solving the previous LMI (10), an updated set E ′(P′k+1, x̄

′
k+1, ρ

′
k+1) can

be found if the following Linear Matrix Inequality (similar to Ben Chabane (2015),
page 118) is satisfied

min
ρ′k+1,P

′
k+1,bk+1,H,θ,µi,α,γ

α

subject to

3Decoupling the 12-state octorotor model into 3 subsystems (5)-(7) allows us to reduce the number of LMI

constraints in (10) from 23(nx+ny) to 3 · 2nx+ny .
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η1 η>2 P′k+1

η2 η3 −
nx+ny∑
i=1

µi −b>k+1

P′k+1 −bk+1 P′k+1

 � 0,

P′k+1 � 0,

F>HF <
nx+ny∑
i=1

µiTi,

θ ≥ 0,
θ < 1,
ρ′k+1 > θρk+1,
µi ≥ 0, i = 1, . . . , nx + ny,
γ > 0,

(11)

with

bk+1 = P′k+1x̄
′
k+1,

η1 = θPk+1 + C>HC,

η2 = −θx̄>k+1Pk+1 − ỹ>k+1HC + ū>k B>C>HC,

η3 = ρ′k+1 − θρk+1 + θ‖x̄k+1‖2Pk+1
+ ‖ỹk+1‖2H + ‖CBūk‖2 − 2ū>k B>C>Hỹk+1.

The proof of this result is similar to Ben Chabane (2015), with the additional terms
related to the control signal in η2 and η3.

Exhaustively, supposing that x̃k+1 ∈ E(Pk+1, x̄k+1, ρk+1), the expression (11) offers
an improved ellipsoidal state estimation set E ′(P′k+1, x̄

′
k+1, ρ

′
k+1). Due to the fact that

this estimation method changes both the shape and the radius at each iteration k,
the computational complexity can be high even though it offers a very good accuracy
estimation wise.

The LMI optimization problems (10)-(11) are solved using the mincx solver of the
Matlab Robust Control Toolbox. This solver is based on the iterative interior point
method (Nesterov & Nemirovski, 1994) technique, solving at each iteration a least
square problem. Thus, the computational complexity of the ellipsoidal state estimation
method can be approximated to O(o2.75l1.5), with o the number of decision variables
and l the number of constraints (Vandenberghe & Boyd, 1994) in the worst case
scenario. For the optimization problem (10), it should be noted that o = nx(1.5nx +
ny + 1.5) + 4 and l = 2nx+ny + 3, while for the improved method represented by the
optimization problem (11), o = nx(0.5nx+2.5)+ny(0.5ny+1.5)+4 and l = nx+ny+6
which highlights the fact that the improved method offers better accuracy but with
higher complexity. This accuracy is further exploited in a radar application which is
detailed in the next section.

4. Application to the design of SAR sensor

Synthetic Aperture Radar (SAR) has been proposed in the fifties to provide images
of large areas with high resolution (Carrara, Goodman, & Majewski, 1995). Since
then, airplanes and satellites have been the main carriers of SAR sensors (Moreira
et al., 2013). In recent years, due to reduction in their cost and weight, SAR sensors
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are being mounted and tested on small UAVs (Gonzalez-Partida, Almorox-Gonzalez,
Burgos-Garcia, & Dorta-Naranjo, 2008; Yan, Guo, Wang, & Liu, 2008; Zaugg, Hudson,
& Long, 2006). Moreover, SAR images are formed using the phase evolution resulted
from comparing (e.g. via match filtering) a SAR transmitted pulse signal (i.e. typically
thousands of pulses per second, hence the term pulse repetition frequency – PRF)
with the received scattered signal of the illuminated scatterers of the scene under
study (Carrara et al., 1995; Moreira et al., 2013). This is done while the SAR sensor is
moving. A popular operating mode for SAR is stripmap (side-looking), where ideally
the SAR antenna points to a fixed direction (as illustrated in Fig. 3) and the sensor is
assumed to move in a perfect linear trajectory with a constant speed and orientation,
which is not the case for the small UAV used in this work. Indeed, even under the best
circumstances, perturbations will cause the drone’s path to deviate from its assumed
coordinates. As a result, errors might occur in the formation of SAR images if the
deviation (e.g. the difference between the ideal and the real UAV’s position) is not
accurately taken into account. Errors on the estimation of the position of the SAR
sensor (hence, UAV) lead to errors on the relative distance Dr between the SAR sensor
and the scatterer (see Fig. 3), which involve a phase error φe in the SAR data as shown
in the next equation

φe =
4πδDf0

c0
, (12)

where δD is the error on the estimation of the relative distance Dr ∈ [Dmin, Dmax],
f0 is the working frequency and c0 is the light speed in free-space (equation adapted
from Carrara et al. (1995), page 225) where the working wavelength has been replaced
by

λ =
f0

c0
. (13)

Figure 3. Representation of the drone and the scatterer

In this work, the drone’s linear position is estimated using the ellipsoidal state
estimation technique detailed in Section 3. This method offers guaranteed estimation
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bounds for the coordinates at each iteration. Thus, the relative distance Dr between
the drone and the scatterer can be calculated and bounded by a maximal Dmax and
minimal Dmin bounds. For instance, the estimation error of the drone’s position on
both axes induces a relative distance error between the UAV and the scatterer.

The next two figures present examples of SAR images with an accurately estimated
UAV position (Fig. 4) and with an erroneous estimated UAV position (Fig. 5) The
SAR parameters for these examples are detailed in Table 1. As the Fig. 5 shows, due
to phase errors, the position of a single scatterer at 50m range and 2m azimuth with
respect to the scanned region can be mistaken as being three scatterers.

Table 1. SAR parameters

PRF 2kHz
Bandwidth 200MHz
Operating frequency 5GHz
Scatterer position

Azimuth 2m
Ground range 50m
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Figure 4. SAR image obtained in the ideal case allowing to correctly identify the scatterer position
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Figure 5. SAR image obtained with an erroneous estimated position

It is common to use signal processing autofocus techniques to compensate these
phase errors as long as they are inferior to about 60rad (Carrara et al., 1995). There-
fore, according to (12), knowing the maximum error amplitude in the position estima-
tion of the UAV will let us know the maximum working frequency of the SAR sensor.
Reciprocally, if the working frequency of the SAR sensor is imposed, this will specify
the maximum acceptable error (in terms of guaranteed bounds) of the position esti-
mation of the UAV to obtain SAR images with acceptable performance. In the next
section, we will use the guaranteed ellipsoidal state estimation technique to estimate
the position of the UAV where the SAR sensors are mounted. This step is followed by
the computation of the maximum allowed error amplitude in estimation, in the goal
of obtaining the suitable frequencies for which the SAR sensor can operate.

5. Simulation results

The three discretized subsystems (5)-(7) presented in Section 2 are fully controllable
and observable. Considering the presence of state perturbations and measurement
noises, the complete numerical discrete-time model of the octorotor can be obtained
with the drone parameters shown in Table 2 including payload. The sampling period
Te = 0.1s is the highest of all sensors sampling period. An accuracy of ± 1m is assumed
for both the GPS and the altimeter, and an accuracy of ± 0.01rad is considered for
the gyroscope. Based on this information on the bounds of measurement noises and
perturbations, the matrices F1 = F3 =

[
04 I4×2

]
and F2 = 0.01 ·

[
04 I4×2

]
are

chosen. For simplification, the state perturbations can be chosen as follows E1 = E2 =
E3 = 10−3 ·

[
I4 04×2

]
. The drone’s behavior was simulated using a Matlab/Simulink

simulator implementing the non-linear model. Additionally, a linear quadratic integral
(LQI) controller, detailed in Makarov et al. (2015) for this UAV is used for nominal
input computations. These nominal control inputs are then fed into the linear designed
system (5)-(7).
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Table 2. Drone parameters

Total mass m 3.69kg
Inertia components
Ixx 0.0869kg·m2

Iyy 0.0873kg·m2

Izz 0.1683kg·m2

Two reference trajectories have been tested in the simulation

• A circular trajectory in which the drone rotates around its z-axis at a constant
tangential speed;
• A linear trajectory back and forth on the x-axis at a linear constant speed which

allows the drone to scan the selected area and process the estimated positions
for the radar application.

The circular trajectory is used to validate the ellipsoidal set-membership estimation
technique, whereas the aim of the linear trajectory is to estimate the components of
the state vector and test them in a radar imaging application. More precisely, the
goal is to calculate the frequencies for which the radar can operate; thus the need to
compute the distance between the drone (i.e. the radar) and the target at each sample
time. The guaranteed bounds for the relative distance provided by the set-membership
state estimation technique are used to find the error on the estimation and the working
frequency afterwards. The drone is initially, on the floor in an equilibrium state. The
rotor’s generated thrust compensates the weight. The estimation results have been
obtained with an Intel Core i7 processor-3770 3.40 GHz. The entire flight duration for
both trajectories is 235s. Both trajectories correspond first to a take-off to an altitude
of 50m. The results for the take-off of the drone are the same for both movements
regardless of the trajectory type. Figure 6 presents the guaranteed estimation bounds
(blue dashed lines) of the altitude z, calculated using the technique previously detailed
in Section 3. It can be seen that the real state (the red dots represented at each time
instant in Fig. 6) is guaranteed to remain inside the estimated bounds (see the zoom
of Fig. 6), despite the presence of perturbations and measurement noises. The velocity
on the z-axis is shown in Fig. 7.
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Figure 6. Estimation bounds of the altitude z
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Figure 7. Drone’s velocity on z-axis

In the next sections, the set-membership state estimation technique is validated
through two different trajectories: a circular trajectory, and a linear trajectory suitable
for the radar application.

5.1. Case 1: Circular Trajectory

After the take-off, the drone moves in a circular trajectory as shown in Fig. 8.
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Figure 8. Circular reference trajectory

Figures 9 and 11 show the bounds of x and y, respectively computed as detailed
in (7) applying the ellipsoidal set-membership state estimation method for 2350 iter-
ations. The real state is represented by red dots and it is found inside the estimated
bounds. Notice that at t = 0, the position of the drone is (x0, y0) = (0, 0) and the
velocity on both axes is equal to 0. The velocity of the drone varies between −2m/s
and 2m/s as shown in Fig. 10 and Fig. 12.
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Figure 10. Drone’s velocity on x-axis
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Figure 12. Drone’s velocity on y-axis

5.2. Case 2: Linear Trajectory applied to SAR

After the take-off, the reference trajectory shown is composed of a movement on the
x-axis from x = 0 to x = 250m and then back to x = 0 at a constant speed of 2.5m/s,
which is a relevant trajectory for the drone in a radar application. While the drone
is moving, the radar scans a region where the potential target is expected. In details,
the drone takes off from the initial starting point to reach a certain altitude. Then,
it goes in an outward movement along the x-axis where it can scan a certain region
before returning to its stopping point. These movements are represented in Fig. 13.
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Figure 13. linear proposed trajectory
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Figure 14 shows the estimation done on the drone’s movement, along the x-axis. A
part of the figure has been zoomed in order to better exhibit the position on the x-
axis which is guaranteed inside the estimation bounds. The UAV keeps moving forward
with a constant speed until it reaches its destination (x = 250m), this is when it moves
in the opposite direction to reach the stopping point (Fig. 13) with the same speed
as Fig. 15 shows. By the end, the drone would have scanned the area, and identified
the targets, this is why the final velocity is equal to zero. It should be noticed that no
movement is made on the y-axis, however (as shown in Fig. 16), the real y position is
found between the upper and lower bounds (blue dashed curve in Fig. 16) estimated
by the ellipsoidal technique.
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Figure 15. Drone’s velocity on x-axis
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While moving in its planned linear trajectory, the drone images a scatterer during
8s (which corresponds to 20m for a nominal speed of 2.5m/s) in stripmap mode. An
extreme case is considered here where the scatterer is at 50m range and 10m azimuth
with respect to the scanned region (see Table 3).

Table 3. SAR parameters

PRF 2kHz
Scatterer position

Azimuth 10m
Ground range 50m

Using the bounds found for the coordinates of the drone, the maximal, real and
minimal distances between the scatterer and UAV are calculated at each iteration.
Afterwards, |Dmin −Dr| and |Dmax −Dr| are plotted in Fig. 17, where δD is equal
to max(δmax, δmin). Since phase errors can be effectively compensated by autofocus
techniques up to 60rad, and using (12) in Section 4 with δD ≈ 2m, the maximum
operating frequency of the SAR sensor has to be less than 600MHz (very high frequency
VHF and ultra high frequency UHF applications).

20



410 420 430 440 450 460 470 480 490

50

51

52

53

54

55

56

57

max

min

Figure 17. Distance errors

6. Conclusion

This paper illustrated an application of an ellipsoidal guaranteed set-membership state
estimation technique to an octorotor’s attitude and position used for radar applica-
tions. The considered technique minimizes an ellipsoidal set in the presence of bounded
perturbations and measurement noises in order to improve the estimation accuracy at
each sample time. The computed bounds are used in the context of radar applications
to find the operating frequency of the synthetic aperture radar.

Future work consists on combining deterministic and stochastic approaches in a
new state estimation technique that would improve performance. Other interesting
perspectives are to consider model uncertainties, to extend the state estimation pro-
cedure for fault detection (e.g. actuator/sensor faults) or to extend the guaranteed
ellipsoidal state estimation method for non-linear models. Finally, experimental tests
will be considered to validate the methods on the UAV.
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