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In the context of state estimation of dynamical systems subject to bounded perturbations and measurement noises, this paper proposes an application of a guaranteed ellipsoidal-based set-membership state estimation technique to estimate the linear position of an octorotor used for radar applications. The size of the ellipsoidal set containing the real state is minimized at each sample time taking into account the measurements performed by the drone's sensors. Three case studies highlight the efficiency of the estimation technique in finding guaranteed bounds for the octorotor's linear position. The computed guaranteed bounds in the linear trajectory are exploited to find the maximum operating frequency of the radar, a necessary information in radar applications.

Introduction

State estimation is a major aspect in any process control. Based on available measurements and system knowledge, state estimates can be used for control purposes. Numerous state estimation techniques have been developed throughout the years following two main directions: the stochastic approach and the deterministic approach. The Kalman filter [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]) is a standard method for stochastic state estimation. Nonetheless, the stochastic approach relies on assumptions about noise properties (e.g. Gaussian distribution of perturbations and measurement noises), which could be difficult to verify in practice. Alternatively, the deterministic state estimation approach [START_REF] Bertsekas | Recursive state estimation for a set-membership description of uncertainty[END_REF][START_REF] Fogel | On the value of information in system identification-bounded noise case[END_REF] using either interval observers [START_REF] Pourasghar | Comparison of set-membership and interval observer approaches for state estimation of uncertain systems[END_REF] or set-membership 1 estimation techniques [START_REF] Schweppe | Recursive state estimation: Unknown but bounded errors and system inputs[END_REF]) deals with unknown but bounded disturbances. In setmembership state estimation, various convex 2 sets are mainly used: zonotopes [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF][START_REF] Combastel | A state bounding observer based on zonotopes[END_REF][START_REF] Le | Zonotopic guaranteed state estimation for uncertain systems[END_REF]; polytopes [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded-error models[END_REF]) and ellipsoids [START_REF] Chernousko | State estimation for dynamic systems[END_REF][START_REF] Daryin | Estimation of reachability sets for large-scale uncertain systems: from theory to computation[END_REF][START_REF] Daryin | Reachability approaches and ellipsoidal techniques for closed-loop control of oscillating systems under uncertainty[END_REF][START_REF] Durieu | Multi-Input Multi-Output ellipsoidal state bounding[END_REF][START_REF] Kurzhanski | Ellipsoidal calculus for estimation and control[END_REF][START_REF] Polyak | Ellipsoidal parameter or state estimation under model uncertainty[END_REF]. Due to their simplicity, ellipsoids are widely used in the state estimation literature, while polytopes and zonotopes are used when better accuracy is needed [START_REF] Puig | Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies[END_REF][START_REF] Wang | Guaranteed state estimation and fault detection based on zonotopes for differential-algebraic-equation systems[END_REF]. A mixed set-membership state estimation technique combining both zonotopic and ellipsoidal sets is proposed in Ben Chabane, Stoica Maniu, Camacho, [START_REF] Ben Chabane | Fault detection using set-membership estimation based on multiple model systems[END_REF].

In general, it cannot be assumed which approach, either stochastic or deterministic, is better for state estimation. In [START_REF] Merhy | Comparison between two state estimation techniques for linear systems[END_REF], a comparison in terms of accuracy and complexity between a guaranteed ellipsoidal set-membership state estimation technique and the classic Kalman filter has been made, illustrating the high accuracy that the ellipsoidal method provides. In the same context, a zonotopic Kalman filter has been proposed by [START_REF] Combastel | Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence[END_REF] to benefit from both approaches. In addition, a zonotopic constrained Kalman filter proposed by [START_REF] Merhy | Zonotopic constrained Kalman filter based on a dual formulation[END_REF] where the zonotope is particularly the envelope of the set of constraints applied on the system state at each time instant. Despite the theoretical development of deterministic approaches, there is an obvious gap between theory and practice, and thus the need to apply more accurate recent state estimation techniques on real systems. In this context, the wide use of Unmanned Aerial Vehicles (UAVs) in resource monitoring [START_REF] Laliberte | Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery[END_REF], oil and gas [START_REF] Hausamann | Monitoring of gas pipelines -A civil UAV application[END_REF], mapping [START_REF] Nex | UAV for 3D mapping applications: A review[END_REF] or even for emergencies like forest fire surveillance [START_REF] Casbeer | Forest fire monitoring with multiple small UAVs[END_REF] attracted more research attention from the scientific community. More specifically, studies related to the need of an accurate knowledge of linear and angular positions of drones are often conducted [START_REF] Kingston | Real-time attitude and position estimation for small UAVs using low-cost sensors[END_REF]. In this context, several approaches have been adopted for the state estimation of a drone. The linear Kalman filter, as well as its extensions to non-linear systems have been widely used in industry to estimate the position of UAVs [START_REF] De Marina | UAV attitude estimation using unscented Kalman filter and TRIAD[END_REF][START_REF] Kada | UAV attitude estimation using nonlinear filtering and low-cost mems sensors[END_REF][START_REF] Teixeira | Flight path reconstruction-A comparison of nonlinear Kalman filter and smoother algorithms[END_REF]. Alternatively, attempts have been made to bridge the gap between set-membership state estimation theory and practice. For instance, a Zonotopic Extended Kalman Filter (ZEKF) applied to a quadrotor helicopter is presented in Wang and Puig (2016). Moreover, in [START_REF] Garcia | Guaranteed quadrotor position estimation based on GPS refreshing measurements[END_REF], the results of an interval arithmetics-based estimation technique applied to a quadrotor are compared with the results of a set-membership state estimation technique based on zonotopes. With the proliferation of moderately low cost UAVs, radar-based techniques can be tested on small drones. However, perturbations might cause the deviation of the drones from their planned trajectories leading to an erroneous formation of radar images. Thereby, the use of set-membership state-estimation approaches arises from the need of guaranteed estimates of the system state in the presence of bounded meapaper, we focus on set-membership state estimation techniques from the control systems point of view.

2 There exist techniques leading to non-convex sets (e.g. based on Taylor models [START_REF] Paulen | Guaranteed parameter estimation of non-linear dynamic systems using high-order bounding techniques with domain and cputime reduction strategies[END_REF] or polynomial methods [START_REF] Streif | Robustness analysis, prediction and estimation for uncertain biochemical networks[END_REF]) mainly used for parameters estimation, which are beyond the scope of this paper. A brief overview of the set-based parameter estimation methods for nonlinear systems can be found in [START_REF] Chachuat | Set-theoretic approaches in analysis, estimation and control of nonlinear systems[END_REF]. In addition, stochastic adaptive parameter estimation algorithms were developed [START_REF] Bhotto | Robust set-membership affine-projection adaptivefiltering algorithm[END_REF][START_REF] Lima | Steady-state analysis of the set-membership affine projection algorithm[END_REF][START_REF] Werner | Set-membership proportionate affine projection algorithms[END_REF][START_REF] Werner | Set-membership affine projection algorithm[END_REF].

surement noises and perturbations. In order to take advantage of its high accuracy, a guaranteed ellipsoidal set-membership state estimation technique [START_REF] Ben Chabane | Fault detection techniques based on set-membership state estimation for uncertain systems[END_REF] is applied in this paper on an octorotor. The goal is to guarantee the drone's position when bounded perturbations and measurement noises are considered. Using ellipsoidal representations, the proposed technique computes the set of states that are consistent with the model in a first phase and with the measurements in a second phase such that the system's real state is guaranteed to belong to this set. The advantage of this method lies in the trade-off between its good accuracy and reduced complexity [START_REF] Ben Chabane | Fault detection techniques based on set-membership state estimation for uncertain systems[END_REF] compared to other techniques in the literature. Indeed, the proposed ellipsoidal state estimation method offers better accuracy than the P -radius based zonotopic state estimation technique [START_REF] Le | Zonotopic guaranteed state estimation for uncertain systems[END_REF] and the three ellipsoidal-based state estimation techniques presented in Ben Chabane, Stoica Maniu, Alamo, Camacho, and Dumur (2014). Using the radar system embedded in the UAV, as well as the estimated coordinates of the drone, an image reconstruction application is exposed to value the efficiency of the set-membership state estimation technique. Furthermore, the relative distance separating the drone from the target is guaranteed to be inside the computed bounds. The relative error done by the estimation leads to the calculation of the operating frequency of the radar. The contribution of this paper is twofold: (i ) an extension of a guaranteed ellipsoidal state estimation technique to take possible control signals into consideration; (ii ) an application of the method to the position estimation of an octorotor used for radar applications.

As an experimental platform, the Mikrokopter ARF Okto-XL drone (Fig. 1) is used in this paper. The higher payload capacity and the motor redundancy make this octorotor more advantageous over traditional quadrotor aircraft for radar applications. In this context, the UAV is equipped with radar sensors in order to scan large areas and provide high resolution images, thus there is a need for an accurate estimation of the drone's position (i.e. the radar's position) and guaranteed limits for perturbations. The challenge of this estimation problem resides in the model complexity and the possible uncertainties coming from various sources (e.g. measurement noises, perturbations). Previously, a linear Kalman filter and an extended Kalman filter have been designed for the state estimation of the considered octorotor. Then, the proposed filters have been tested on a radar imaging simulator [START_REF] Chevet | State estimation of an octorotor with unknown inputs[END_REF].

The remainder of the paper is organized as follows. Section 2 briefly recalls the drone's dynamical model. The ellipsoidal set-membership state estimation technique and its advantages are briefly presented in Section 3. The principles of Synthetic Aperture Radar and its applications are shown in Section 4. In Section 5, simulation results are reported illustrating the technique's performance. Finally, in Section 6, conclusion and further developments are proposed. 

Octorotor modeling

The Mikrokopter ARF Okto-XL (Fig. 1) is equipped with an inertial measurement unit (IMU), an altimeter, a GPS and a magnetometer. The drone's microcontroller provides fused and filtered data on its position coordinates (both linear and angular).

The measurement data are transfered to the PC through the microcontroller's serial port for off-line data processing. The octorotor's motion in a state-space representation can be obtained using twelve states: the drone's position in the Earth's frame x, y and z (see Fig. 1), the drone's orientation in the Earth's frame φ, θ and ψ, its speed in the same frame V x , V y and V z , and its rotational speed in its own frame ω x , ω y and ω z . This leads to the following state vector

x = [x y z φ θ ψ V x V y V z ω x ω y ω z ] .
The nonlinear dynamical model of the drone used to simulate its behavior is presented in [START_REF] Makarov | Octorotor UAVs for radar applications: modeling and analysis for control design[END_REF]. However, while this nonlinear model can be useful to evaluate the drone performances in simulation, a simplified linear model [START_REF] Makarov | Octorotor UAVs for radar applications: modeling and analysis for control design[END_REF], [START_REF] Bergman | Modeling, estimation and attitude control of an octorotor using PID and L 1 adaptive control techniques[END_REF], [START_REF] Hoffmann | Quadrotor helicopter flight dynamics and control: Theory and experiment[END_REF]) will be used for the development of linear control laws based on estimation techniques. The model is linearized around the static hovering equilibrium with null translational and rotational velocities and null roll, pitch and yaw angles. The linear general state-space equation can be denoted by

ẋ(t) = A s x(t) + B s u(t), (1) 
with the state vector x ∈ R 12 , the control vector u

= F R x F R y F R z τ R x τ R y τ R z ∈ R 6
, where F R x , F R y and F R z are the components of the resulting propeller's force and τ R

x , τ R y and τ R z are the components of the resulting propeller's torque expressed in the drone's frame denoted by the superscript R. The matrices A s ∈ R 12×12 and B s ∈ R 12×6 are provided in [START_REF] Makarov | Octorotor UAVs for radar applications: modeling and analysis for control design[END_REF]. The thrust force and drag torque generated by the i-th propeller are assumed to be proportional to the squared propeller's speed Ω i , with i = {1, 2, . . . , 8}. The new reduced control vector in this case can be expressed as linear combination of the rotational speeds of the motor Ω i denoted by the matrix M u , leading to u(t) = M u Ω, with Ω = Ω 1 Ω 2 . . . Ω 8 . In order to avoid high computation complexity of the ellipsoidal state estimation method, the 12-state linearized model is decoupled into three double integrator subsystems detailed below.

Continuous-time subsystem 1 (altitude and yaw dynamics dynamics) -It describes the altitude dynamics expressed by the altitude z and the velocity V z of the drone on this axis as well as the movement of the drone around the vertical axis that changes the direction the drone is pointing to

                   ż(t) = V z (t), ψ(t) = ω z (t), Vz (t) = 1 m F R z (t), ωz (t) = 1 I zz τ R z (t).
(

) 2 
with m the octorotor's mass and I zz the UAV's inertia component around the z-axis. Continuous-time subsystem 2 (roll and pitch dynamics) -It describes the movement of the drone around the roll axis (front-to-back) and the pitch (side-to-side) axis

                     φ(t) = ω x (t), θ(t) = ω y (t), ωx (t) = 1 I xx τ R x (t), ωy (t) = 1 I yy τ R y (t), (3) 
with I xx and I yy the UAV's inertia components around the x-axis and the y-axis, respectively. Continuous-time subsystem 3 (longitudinal dynamics) -It refers to the motion of the drone across the longitudinal axis denoted by the linear coordinates (x and y) with the corresponding velocities on the two axes (V x and V y , respectively)

                   ẋ(t) = V x (t), ẏ(t) = V y (t), Vx (t) = 1 m F R x (t), Vy (t) = 1 m F R y (t). (4) 
However, simplifying conditions should be met for the obtained decoupled model to hold. Indeed, the rotational angles (i.e. roll, pitch and yaw) should be as small as possible and maintained as close as possible to zero. To quantify this constraint, the change in these angles should not exceed 0.2618rad or 15 • [START_REF] Abdolhosseini | An efficient model predictive control scheme for an unmanned quadrotor helicopter[END_REF].

The subsystems 1 and 2 describe the angular behavior of the drone, in addition to its altitude, while the subsystem 3 describes the linear movement on both of the x-axis and the y-axis. These subsystems are then discretized with a sampling period T e which is equal to the highest of all sensors sampling periods. This leads to the state-space representations (5), ( 6) and ( 7).

Discretized subsystem 1

                               z k+1 ψ k+1 V zk+1 ω zk+1     = A     z k ψ k V zk ω zk     +     0 0 0 0 Te m 0 0 Te Izz     F R zk τ R zk + E 1 w k , z k ψ k = C     z k ψ k V zk ω zk     + F 1 w k .
(5)

Discretized subsystem 2                              φ k+1 θ k+1 ω xk+1 ω yk+1     = A     φ k θ k ω xk ω yk     +     0 0 0 0 Te Ixx 0 0 Te Iyy     τ R xk τ R yk + E 2 w k , φ k θ = C     φ k θ k ω xk ω yk     + F 2 w k . ( 6 
)
Discretized subsystem 3

                             x k+1 y k+1 V xk+1 V yk+1     = A     x k y k V xk V yk     +     0 0 0 0 Te m 0 0 Te m     F R xk F R yk + E 3 w k , x k y k = C     x k y k V xk V yk     + F 3 w k . (7) 
The same matrices A = I 2 T e I 2 0 2 I 2 and C = I 2 0 2 are obtained for the three subsystems. The perturbations and the measurement noises are considered to be modeled by the vector w k which is bounded by the unitary box B 6 and the matrices

E i = i • I 4 0 4×2 , F i = γ i • 0 4 I 4×2 , for i ∈ {1
, 2, 3}. The scalars i and γ i represent the accuracy precision provided by the sensors information.

In the following, this octorotor is the application platform for a guaranteed ellipsoidal set-membership state estimation technique presented in the next section.

Guaranteed ellipsoidal set-membership state estimation method

This section briefly describes the ellipsoidal guaranteed state estimation technique [START_REF] Ben Chabane | Fault detection techniques based on set-membership state estimation for uncertain systems[END_REF] based on the minimization of the radius of the ellipsoidal estimation at each sample time k by solving an optimization problem. Consider the following discrete-time Linear Time Invariant (LTI) system

xk+1 = Ax k + Bũ k + Ew k , ỹk = Cx k + Fw k , (8) 
where xk ∈ R nx is the state vector of the system, ũk ∈ R nu is the input vector, ỹk ∈ R ny is the measured output vector, and the vector w k ∈ B nx+ny contains the unknown but bounded state perturbations and measurement noises, at sample time k. The matrices A, B, C, E and F have the appropriate dimensions. The reader will notice that the discretized subsystems ( 5), ( 6) and ( 7) of the octorotor are written in the form (8).

Considering that at time instant k the state xk belongs to an ellipsoidal set, the main goal is to provide a guaranteed ellipsoidal set-membership estimation for the state xk+1 , taking into consideration bounded perturbations and measurement noises [START_REF] Ben Chabane | Fault detection techniques based on set-membership state estimation for uncertain systems[END_REF]. For the ellipsoidal method to be implemented, the initial state is assumed to belong to the ellipsoid

E(P 0 , x0 , ρ 0 ) = {x 0 ∈ R nx : (x 0 -x0 ) P 0 (x 0 -x0 ) ≤ ρ 0 }, (9) 
with P 0 = P 0 0 being the shape matrix, x0 the center and the so-called radius ρ 0 (Ben Chabane, Stoica Maniu, Alamo, Camacho, & Dumur, 2014). Similar to the Kalman filter, the algorithm works in a two-step process

• First, the prediction step in which a set offering a bound for the uncertain trajectory of the system is calculated (the blue ellipsoid Xk+1 in Fig. 2); • Then, the correction step in which the guaranteed state estimation set at time k + 1 (the red set Xk+1 in Fig. 2) is computed as an outer approximation of the intersection (the grey set in Fig. 2) between the predicted state set Xk+1 and the measurement strip X ỹk (in green in Fig. 2).

Assuming the prior knowledge of xk belonging to the ellipsoidal set Xk , the predicted state set is given by Xk+1 ⊆ A Xk ∪ Bũ k ∪ EB nx+ny . This set offers a bound for the uncertain trajectory of the system (8) such that xk+1 ∈ Xk+1 . This step is followed by the computation of the intersection set between the prediction Xk+1 and the state calculated with respect to the measurements X ỹk which can be represented by the green strip (Fig. 2). Exhaustively, the grey part (see Fig. 2) is given by Xk+1 X ỹk .

Nevertheless, the exact state estimation set that contains xk+1 has in general an arbitrary shape, thus the need of outer-approximating it by an ellipsoid for simplicity reasons ( Xk+1 in Fig. 2). The algorithm is repeated at each iteration step in order to decrease the size of the guaranteed ellipsoidal state estimation set depicted in red in Fig. 2. Notice that this technique can also be applied on linear time varying systems with interval uncertainties [START_REF] Ben Chabane | Fault detection techniques based on set-membership state estimation for uncertain systems[END_REF]. Even though it is considered to be an important advantage of this method, this characteristic will not be tested in this work. Additionally, the theorems formulating the full solution to this problem are detailed in [START_REF] Ben Chabane | Fault detection techniques based on set-membership state estimation for uncertain systems[END_REF].

The detailed study considered in Theorem 5.4 of (Ben Chabane, 2015) does not include the input ũk of the system, which is similar to B = 0. Hence, the present paper deals with the general case when control inputs are considered. Indeed, the system state xk+1 is guaranteed to belong to the ellipsoid E(P k+1 , xk+1 , ρ k+1 ), with P k+1 = P k+1 0, if: (i ) at time k the state xk belongs to the ellipsoid E(P k , xk , ρ k ) and (ii ) there exist a matrix Y k+1 ∈ R nx×ny , a matrix G k+1 ∈ R nx×nx , a vector g k+1 ∈ R nx and the strictly positive scalars β k+1 > 0, ρ k+1 > 0 such that the following Linear Matrix Inequality (LMI) is satisfied min βk+1,Yk+1,Pk+1,Gk+1,g k+1 ,ρk+1

ρ k+1 subject to              β k+1 P k 0 A P k+1 -C Y k+1 0 ρ k+1 -β k+1 ρ k τ k+1 P k+1 A -Y k+1 C τ k+1 P k+1   0, ρ k+1 ≤ βρ k + σ, 0 < β < 1, (10) 
for all w k belonging to the vertices set3 of the box B nx+ny , with the matrix

Y k = P k L k , the vector τ k+1 = (P k+1 A -Y k+1 C -G k+1 )x k + (P k+1 E -Y k+1 F)w k+1 -g k+1 + B(ũ k -ūk )
and the nominal estimated state xk+1 = P -1 k+1 (G k+1 xk +Y k+1 ỹk +g k+1 )+ Bū k , where ūk is the nominal control signal.

The proof of this result is similar to the proof provided by (Ben Chabane (2015), page 111) with the additional terms Bū k in τ k+1 and xk+1 . Indeed, denoting by zk = xkxk the error between the real state and the nominal estimated state at time k, the goal is to prove the following expression, based on the results proposed in Ben Chabane ( 2015)

z k P k zk ≤ ρ k ⇒ z k+1 P k+1 zk+1 ≤ ρ k+1 .
At the time instant k + 1, the following expression is found

zk+1 = (A -L k+1 C)z k + (A -L k+1 C)x k + (E -L k+1 F)ω k -P -1 k+1 (G k+1 xk + g k+1 ),
highlighting that the evolution of the error zk+1 is related to the eigenvalues of the matrix A -L k+1 C. In addition, the computation of the matrix G k+1 and the vector g k+1 guarantees a faster convergence of the error zk+1 to zero. In this context, the observer (which is similar to the structure of the Luenberger observer) is stable since zk converges to zero at each time instant.

Besides minimizing the size of the estimation set by solving the LMI problem (10), this method also reduces the conservativeness of the estimation by allowing the adjustment of the ellipsoid shape. Indeed, considering the matrix P k+1 as a decision variable can modify the shape of the ellipsoid at time instant k + 1 compared to the ellipsoid at the previous time instant.

Furthermore, the estimation accuracy can be improved by considering additional quadratic constraints on the output measurements ỹk+1 = Cx k+1 + Fw k+1 and on the perturbations at time instant k+1 such that w k+1 T i w k+1 ≤ 1, with i = 1, . . . , n x + n y , T i = e i e i and I nx+ny = e 1 . . . e nx+ny . The updated method, improves the accuracy of the estimation by decreasing the size of the ellipsoid X k+1 at each iteration. In this context, considering the ellipsoidal state estimation set E(P k+1 , xk+1 , ρ k+1 ) obtained by solving the previous LMI (10), an updated set E (P k+1 , x k+1 , ρ k+1 ) can be found if the following Linear Matrix Inequality (similar to Ben Chabane (2015), page 118) is satisfied min

ρ k+1 ,P k+1 ,bk+1,H,θ,µi,α,γ α subject to                                            η 1 η 2 P k+1 η 2 η 3 - nx+ny i=1 µ i -b k+1 P k+1 -b k+1 P k+1     0, P k+1 0, F HF < nx+ny i=1 µ i T i , θ ≥ 0, θ < 1, ρ k+1 > θρ k+1 , µ i ≥ 0, i = 1, . . . , n x + n y , γ > 0, (11) 
with

b k+1 = P k+1 x k+1 , η 1 = θP k+1 + C HC, η 2 = -θ x k+1 P k+1 -ỹ k+1 HC + ū k B C HC, η 3 = ρ k+1 -θρ k+1 + θ xk+1 2 Pk+1 + ỹk+1 2 H + CBū k 2 -2ū k B C Hỹ k+1 .
The proof of this result is similar to Ben Chabane ( 2015), with the additional terms related to the control signal in η 2 and η 3 . Exhaustively, supposing that xk+1 ∈ E(P k+1 , xk+1 , ρ k+1 ), the expression ( 11) offers an improved ellipsoidal state estimation set E (P k+1 , x k+1 , ρ k+1 ). Due to the fact that this estimation method changes both the shape and the radius at each iteration k, the computational complexity can be high even though it offers a very good accuracy estimation wise.

The LMI optimization problems ( 10)-( 11) are solved using the mincx solver of the Matlab Robust Control Toolbox. This solver is based on the iterative interior point method [START_REF] Nesterov | Interior point polynomial methods in convex programming: Theory and applications[END_REF] technique, solving at each iteration a least square problem. Thus, the computational complexity of the ellipsoidal state estimation method can be approximated to O(o 2.75 l 1.5 ), with o the number of decision variables and l the number of constraints [START_REF] Vandenberghe | Positive definite programming[END_REF] in the worst case scenario. For the optimization problem (10), it should be noted that o = n x (1.5n x + n y + 1.5) + 4 and l = 2 nx+ny + 3, while for the improved method represented by the optimization problem ( 11), o = n x (0.5n x +2.5)+n y (0.5n y +1.5)+4 and l = n x +n y +6 which highlights the fact that the improved method offers better accuracy but with higher complexity. This accuracy is further exploited in a radar application which is detailed in the next section.

Application to the design of SAR sensor

Synthetic Aperture Radar (SAR) has been proposed in the fifties to provide images of large areas with high resolution [START_REF] Carrara | Spotlight synthetic aperture radar: signal processing algorithms[END_REF]. Since then, airplanes and satellites have been the main carriers of SAR sensors [START_REF] Moreira | A tutorial on synthetic aperture radar[END_REF]. In recent years, due to reduction in their cost and weight, SAR sensors are being mounted and tested on small UAVs (Gonzalez-Partida, Almorox-Gonzalez, Burgos- [START_REF] Gonzalez-Partida | SAR system for UAV operation with motion error compensation beyond the resolution cell[END_REF][START_REF] Yan | X-band mini SAR radar on eight-rotor mini-UAV[END_REF][START_REF] Zaugg | The BYU SAR: A small, student-built SAR for UAV operation[END_REF]. Moreover, SAR images are formed using the phase evolution resulted from comparing (e.g. via match filtering) a SAR transmitted pulse signal (i.e. typically thousands of pulses per second, hence the term pulse repetition frequency -PRF) with the received scattered signal of the illuminated scatterers of the scene under study [START_REF] Carrara | Spotlight synthetic aperture radar: signal processing algorithms[END_REF][START_REF] Moreira | A tutorial on synthetic aperture radar[END_REF]. This is done while the SAR sensor is moving. A popular operating mode for SAR is stripmap (side-looking), where ideally the SAR antenna points to a fixed direction (as illustrated in Fig. 3) and the sensor is assumed to move in a perfect linear trajectory with a constant speed and orientation, which is not the case for the small UAV used in this work. Indeed, even under the best circumstances, perturbations will cause the drone's path to deviate from its assumed coordinates. As a result, errors might occur in the formation of SAR images if the deviation (e.g. the difference between the ideal and the real UAV's position) is not accurately taken into account. Errors on the estimation of the position of the SAR sensor (hence, UAV) lead to errors on the relative distance D r between the SAR sensor and the scatterer (see Fig. 3), which involve a phase error φ e in the SAR data as shown in the next equation

φ e = 4πδ D f 0 c 0 , ( 12 
)
where δ D is the error on the estimation of the relative distance D r ∈ [D min , D max ], f 0 is the working frequency and c 0 is the light speed in free-space (equation adapted from [START_REF] Carrara | Spotlight synthetic aperture radar: signal processing algorithms[END_REF], page 225) where the working wavelength has been replaced by In this work, the drone's linear position is estimated using the ellipsoidal state estimation technique detailed in Section 3. This method offers guaranteed estimation bounds for the coordinates at each iteration. Thus, the relative distance D r between the drone and the scatterer can be calculated and bounded by a maximal D max and minimal D min bounds. For instance, the estimation error of the drone's position on both axes induces a relative distance error between the UAV and the scatterer.

λ = f 0 c 0 . ( 13 
)
The next two figures present examples of SAR images with an accurately estimated UAV position (Fig. 4) and with an erroneous estimated UAV position (Fig. 5) The SAR parameters for these examples are detailed in Table 1. As the Fig. 5 shows, due to phase errors, the position of a single scatterer at 50m range and 2m azimuth with respect to the scanned region can be mistaken as being three scatterers. It is common to use signal processing autofocus techniques to compensate these phase errors as long as they are inferior to about 60rad [START_REF] Carrara | Spotlight synthetic aperture radar: signal processing algorithms[END_REF]. Therefore, according to (12), knowing the maximum error amplitude in the position estimation of the UAV will let us know the maximum working frequency of the SAR sensor. Reciprocally, if the working frequency of the SAR sensor is imposed, this will specify the maximum acceptable error (in terms of guaranteed bounds) of the position estimation of the UAV to obtain SAR images with acceptable performance. In the next section, we will use the guaranteed ellipsoidal state estimation technique to estimate the position of the UAV where the SAR sensors are mounted. This step is followed by the computation of the maximum allowed error amplitude in estimation, in the goal of obtaining the suitable frequencies for which the SAR sensor can operate.

Simulation results

The three discretized subsystems ( 5)-( 7) presented in Section 2 are fully controllable and observable. Considering the presence of state perturbations and measurement noises, the complete numerical discrete-time model of the octorotor can be obtained with the drone parameters shown in Table 2 including payload. The sampling period T e = 0.1s is the highest of all sensors sampling period. An accuracy of ± 1m is assumed for both the GPS and the altimeter, and an accuracy of ± 0.01rad is considered for the gyroscope. Based on this information on the bounds of measurement noises and perturbations, the matrices F 1 = F 3 = 0 4 I 4×2 and F 2 = 0.01 • 0 4 I 4×2 are chosen. For simplification, the state perturbations can be chosen as follows E 1 = E 2 = E 3 = 10 -3 • I 4 0 4×2 . The drone's behavior was simulated using a Matlab/Simulink simulator implementing the non-linear model. Additionally, a linear quadratic integral (LQI) controller, detailed in [START_REF] Makarov | Octorotor UAVs for radar applications: modeling and analysis for control design[END_REF] for this UAV is used for nominal input computations. These nominal control inputs are then fed into the linear designed system (5)-(7). Two reference trajectories have been tested in the simulation

• A circular trajectory in which the drone rotates around its z-axis at a constant tangential speed; • A linear trajectory back and forth on the x-axis at a linear constant speed which allows the drone to scan the selected area and process the estimated positions for the radar application.

The circular trajectory is used to validate the ellipsoidal set-membership estimation technique, whereas the aim of the linear trajectory is to estimate the components of the state vector and test them in a radar imaging application. More precisely, the goal is to calculate the frequencies for which the radar can operate; thus the need to compute the distance between the drone (i.e. the radar) and the target at each sample time. The guaranteed bounds for the relative distance provided by the set-membership state estimation technique are used to find the error on the estimation and the working frequency afterwards. The drone is initially, on the floor in an equilibrium state. The rotor's generated thrust compensates the weight. The estimation results have been obtained with an Intel Core i7 processor-3770 3.40 GHz. The entire flight duration for both trajectories is 235s. Both trajectories correspond first to a take-off to an altitude of 50m. The results for the take-off of the drone are the same for both movements regardless of the trajectory type. Figure 6 presents the guaranteed estimation bounds (blue dashed lines) of the altitude z, calculated using the technique previously detailed in Section 3. It can be seen that the real state (the red dots represented at each time instant in Fig. 6) is guaranteed to remain inside the estimated bounds (see the zoom of Fig. 6), despite the presence of perturbations and measurement noises. The velocity on the z-axis is shown in Fig. 7. In the next sections, the set-membership state estimation technique is validated through two different trajectories: a circular trajectory, and a linear trajectory suitable for the radar application.

Case 1: Circular Trajectory

After the take-off, the drone moves in a circular trajectory as shown in Fig. 8. 7) applying the ellipsoidal set-membership state estimation method for 2350 iterations. The real state is represented by red dots and it is found inside the estimated bounds. Notice that at t = 0, the position of the drone is (x 0 , y 0 ) = (0, 0) and the velocity on both axes is equal to 0. The velocity of the drone varies between -2m/s and 2m/s as shown in Fig. 10 and Fig. 12. After the take-off, the reference trajectory shown is composed of a movement on the x-axis from x = 0 to x = 250m and then back to x = 0 at a constant speed of 2.5m/s, which is a relevant trajectory for the drone in a radar application. While the drone is moving, the radar scans a region where the potential target is expected. In details, the drone takes off from the initial starting point to reach a certain altitude. Then, it goes in an outward movement along the x-axis where it can scan a certain region before returning to its stopping point. These movements are represented in Fig. 13. Figure 14 shows the estimation done on the drone's movement, along the x-axis. A part of the figure has been zoomed in order to better exhibit the position on the xaxis which is guaranteed inside the estimation bounds. The UAV keeps moving forward with a constant speed until it reaches its destination (x = 250m), this is when it moves in the opposite direction to reach the stopping point (Fig. 13) with the same speed as Fig. 15 shows. By the end, the drone would have scanned the area, and identified the targets, this is why the final velocity is equal to zero. It should be noticed that no movement is made on the y-axis, however (as shown in Fig. 16), the real y position is found between the upper and lower bounds (blue dashed curve in Fig. 16) estimated by the ellipsoidal technique. While moving in its planned linear trajectory, the drone images a scatterer during 8s (which corresponds to 20m for a nominal speed of 2.5m/s) in stripmap mode. An extreme case is considered here where the scatterer is at 50m range and 10m azimuth with respect to the scanned region (see Table 3). Using the bounds found for the coordinates of the drone, the maximal, real and minimal distances between the scatterer and UAV are calculated at each iteration. Afterwards, |D min -D r | and |D max -D r | are plotted in Fig. 17, where δ D is equal to max(δ max , δ min ). Since phase errors can be effectively compensated by autofocus techniques up to 60rad, and using (12) in Section 4 with δ D ≈ 2m, the maximum operating frequency of the SAR sensor has to be less than 600MHz (very high frequency VHF and ultra high frequency UHF applications). 

Conclusion

This paper illustrated an application of an ellipsoidal guaranteed set-membership state estimation technique to an octorotor's attitude and position used for radar applications. The considered technique minimizes an ellipsoidal set in the presence of bounded perturbations and measurement noises in order to improve the estimation accuracy at each sample time. The computed bounds are used in the context of radar applications to find the operating frequency of the synthetic aperture radar. Future work consists on combining deterministic and stochastic approaches in a new state estimation technique that would improve performance. Other interesting perspectives are to consider model uncertainties, to extend the state estimation procedure for fault detection (e.g. actuator/sensor faults) or to extend the guaranteed ellipsoidal state estimation method for non-linear models. Finally, experimental tests will be considered to validate the methods on the UAV.
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 8 Figure 8. Circular reference trajectoryFigures 9 and 11 show the bounds of x and y, respectively computed as detailed in (7) applying the ellipsoidal set-membership state estimation method for 2350 iterations. The real state is represented by red dots and it is found inside the estimated bounds. Notice that at t = 0, the position of the drone is (x 0 , y 0 ) = (0, 0) and the velocity on both axes is equal to 0. The velocity of the drone varies between -2m/s and 2m/s as shown in Fig.10and Fig.12.
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Table 1 .

 1 SAR parameters

Table 2 .

 2 Drone parameters

	Total mass m	3.69kg
	Inertia components	
	I xx	0.0869kg•m 2
	I yy	0.0873kg•m 2
	I zz	0.1683kg•m 2

Table 3 .

 3 SAR parameters

	PRF	2kHz
	Scatterer position	
	Azimuth	10m
	Ground range	50m

The reader will notice that the notion of set-membership estimation is employed by different research communities (control systems, signal processing, applied mathematics etc.), in a different sense/meaning. In this

Decoupling the 12-state octorotor model into 3 subsystems (5)-(7) allows us to reduce the number of LMI constraints in (10) from 2 3(nx+ny ) to 3 • 2 nx+ny .
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