
HAL Id: hal-02972587
https://hal.science/hal-02972587

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Interactive Dynamic Graph Clustering on
Multicore CPUs

Son Mai, Sihem Amer-Yahia, Ira Assent, Mathias Skovgaard Birk, Martin
Storgaard Dieu, Jon Jacobsen, Jesper Kristensen

To cite this version:
Son Mai, Sihem Amer-Yahia, Ira Assent, Mathias Skovgaard Birk, Martin Storgaard Dieu, et al..
Scalable Interactive Dynamic Graph Clustering on Multicore CPUs. IEEE Transactions on Knowledge
and Data Engineering, 2019, 31 (7), pp.1239-1252. �10.1109/TKDE.2018.2828086�. �hal-02972587�

https://hal.science/hal-02972587
https://hal.archives-ouvertes.fr


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Scalable Interactive Dynamic Graph Clustering
on Multicore CPUs

Son T. Mai, Sihem Amer-Yahia
CNRS, University of Grenoble Alpes, France

Email: {mtson, sihem.amer-yahia}@univ-grenoble-alpes.fr
Ira Assent, Mathias Birk, Martin Storgaard Dieu, Jon Jacobsen, Jesper Kristensen

Department of Computer Science, Aarhus University, Denmark
Email: ira@cs.au.dk

Abstract—The structural graph clustering algorithm SCAN is a fundamental technique for managing and analyzing graph data.
However, its high runtime remains a computational bottleneck, which limits its applicability. In this paper, we propose a novel interactive
approach for tackling this problem on multicore CPUs. Our algorithm, called anySCAN, iteratively processes vertices in blocks. The
acquired results are merged into an underlying cluster structure consisting of the so-called super-nodes for building clusters. During its
runtime, anySCAN can be suspended for examining intermediate results and resumed for finding better results at arbitrary time points,
making it an anytime algorithm which is capable of handling very large graphs in an interactive way and under arbitrary time
constraints. Moreover, its block processing scheme allows the design of a scalable parallel algorithm on shared memory architectures
such as multicore CPUs for speeding up the algorithm further at each iteration. Consequently, anySCAN uniquely is a both interactive
and work-efficient parallel algorithm. We further introduce danySCAN an efficient bulk update scheme for anySCAN on dynamic
graphs in which the clusters are updated in bulks and in a parallel interactive scheme. Experiments are conducted on very large real
graph datasets for demonstrating the performance of anySCAN. They show its ability to acquire very good approximate results early,
leading to orders of magnitude speedup compared to SCAN and its variants. Moreover, it scales very well with the number of threads
when dealing with both static and dynamic graphs.

Index Terms—Structural graph clustering, SCAN, anytime clustering, parallel algorithm, multicore CPUs, dynamic graphs.

F

1 INTRODUCTION

Given a graph G = (V,E), where V is a set of vertices and
E a set of edges, graph clustering algorithms group vertices
in V so that those in the same group are highly connected
and there are few connections among different groups. They
have many applications, e.g., finding communities of people
in social networks or detecting hidden structures in graphs.
During the last decades, many techniques have been intro-
duced such as modularity-based methods [1] and graph
partitioning [2]. Among these techniques, the structural
graph clustering algorithm SCAN [3] is not only able to
discover clusters but also hubs connecting several clusters
and outliers. SCAN, however, requires evaluating all O(|E|)
structural similarities for all pairs of adjacent vertices. For
very large graphs, these overheads obviously are a compu-
tational bottleneck that limits applicability. Enhancing the
performance of SCAN is thus an important task and is
currently attracting considerable research efforts, e.g., [4]–
[9]. However, many challenges still remain. For example,
how can we produce clusters under arbitrary time con-
straints? How can we provide user interaction during the
clustering process? How can we design a parallel algorithm
that scales well with multiple threads while still efficient
enough compared to state-of-the-art sequential techniques
under single thread usage? Or, how can we efficiently deal
with changes in dynamic graphs?

Contributions. In this paper, we focus on the problem of

speeding up SCAN for very large graphs and deal with
all questions above. Our algorithm, called anytime SCAN
(anySCAN), has some unique properties described below.

First, anySCAN, as an anytime technique, quickly pro-
duces an approximate result and then iteratively refines it
during its execution. Thus, while it is running, users can
suspend it for examining intermediate results and resume
it again at any time, until a satisfactory result is reached.
Obviously, this interactive scheme of anySCAN is very useful
for coping with very large graphs under arbitrary limited
time constraints. Though anytime algorithms have been
widely employed for time consuming problems in many
fields, e.g. [10]–[12], no anytime variant of SCAN exists.

Second, anySCAN is the first parallel extension of SCAN
specifically designed for shared memory architectures such
as multicore CPUs. By maintaining an underlying cluster
structure consisting of the so-called super-nodes and process-
ing vertices in blocks to connect these super-nodes to form
clusters, anySCAN significantly reduces synchronization
among threads, thus making it a scalable parallel algorithm.
Combined with its anytime property, anySCAN is an unique
technique that can exploit multiple threads for approximat-
ing the results of SCAN as well as produce the exact results
of the algorithm SCAN faster.

Third, anySCAN is a work-efficient anytime and parallel
method. Concretely, an anytime version of an algorithm
usually ends up being slower if run to the end than the
original algorithm due to additional cost for maintaining
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the anytime properties. Similarly, a parallel algorithm aims
to ensure high throughput to better utilize all its threads.
Typically high throughput comes at the cost of increased
overall workload, making it slower on a single thread than
sequential techniques. In contrast to these techniques, by
examining the current cluster structure at each iteration and
calculating the structural similarity only when it is neces-
sary, anySCAN reduces redundant calculations and is thus
a work-efficient method, i.e., its final cumulative runtimes are
much faster than SCAN even on a single thread.
Extensions. In our previous work [13], we only consider
static graphs. However, many real-world graphs such as
social networks (e.g., Facebook or Twitter), communication
networks, or biological networks are subject to frequent
changes. For example, an edge is added or removed when
two persons are connected or disconnected in Facebook,
leading to changes in communities. These changes are even
more volatile when considering actions taken in the network
(such as sharing particular types of content) to identify
communities. In these cases, the graph clustering should be
updated immeditately to reflect these changes, instead of
reclustering from scratch.

When graphs evolve over time, all existing techniques
for SCAN update clusters in a batch mode for each change
[8], which may not be efficient when the number of changes
is large due to redundant calculations. In contrast, our
algorithm, called danySCAN, processes changes in a bulk
mode for multiple updates at once. It thereby achieves
performance improvements as well as admits an interactive
parallel processing scheme for updating clusters. To the best
of our knowledge, danySCAN is the first dynamic clustering
algorithm with interactive parallel bulk update for SCAN.

Experiments are conducted on very large graphs with
up to 1.3 billion edges to demonstrate the performance of
our algorithms. They are an order of magnitude faster than
SCAN and its variants. Moreover, in its parallel mode, they
scale very well with the number of threads on both static
and dynamic graphs.

2 SOME BASIC NOTIONS

The algorithm SCAN. SCAN [3] is originally designed
for clustering undirected and unweighted graphs. Here,
we study weighted graphs, which are more general and
have wider applicability. Thus, we first extend the notion
of SCAN to work with weighted graphs.

We are given an undirected and weighted graph G =
(V,E,W ), where V , E, W are sets of vertices, edges, and
their weights of G, respectively. Let Np be the set of adja-
cency vertices of a vertex p, and wpq ∈ W be the weight
of the edge (p, q). We extend the unweighted structural
similarity notion of SCAN into a weighted one as follows.
Definition 1. The weighted structural similarity between

two vertices p and q is defined as:

σ(p, q) = (
∑

r∈Np∩Nq

wpr · wqr)/
√

(
∑
r∈Np

w2
pr) · (

∑
r∈Nq

w2
qr)

Generally, σ(p, q) indicates how strong the two vertices
influence each other through their shared neighbors. The
structural similarity of SCAN is a special case of Definition
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Fig. 1. Basic idea of anySCAN

1 where all the edge weights are 1. Similar to [3], σ(p, q)
can be calculated in O(|Np|+ |Nq|) time following the sort-
merge join style [5] orO(min(|Np|, |Nq|)) if a hash structure
is employed [5] since the length lp =

∑
r∈Np

w2
pr of a vertex

p is fixed and can be easily calculated in a preprocessing
step in O(|Np|) time. Given the two parameters µ ∈ N+ and
ε ∈ R∗, the cluster notions of SCAN can be extended by
using the weighted structural similarity in Definition 1.
Definition 2. The structural neighborhood of a vertex p (N ε

p)
is defined as N ε

p = {q | q ∈ Np ∧ σ(p, q) ≥ ε}.

Definition 3. A vertex p is called a core vertex, denoted as
core(p), if |N ε

p| ≥ µ. If p has less than µ neighbors but
one of its neighbors is a core vertex, then it is called
a border (denoted as border(p)). Otherwise it is called
noise (or outlier) (denoted as noise(p)).

Definition 4. A vertex p is directly density-reached from q,
denoted as p / q, if core(q) and p ∈ N ε

q . Two vertices p
and q are density-connected, denoted as p on q, if there
exists a chain of vertices x so that p/x1 · · ·/xi.· · ·.xn.q.

Definition 5. A cluster in SCAN is defined as a maximal set
of vertices that are density-connected from each other.

SCAN builds clusters by randomly starting from an un-
processed core vertex p, finding its neighbors q, and expand-
ing clusters by examining q’s neighbors until all vertices are
processed. Its time complexity is O(min(|Np|, |Nq|) · |E|)
and it is worst-case optimal [5].
Anytime algorithms. Anytime algorithms are widely used
to cope with time consuming tasks in many fields, e.g., [10],
[12], [14]–[16]. In contrast to batch algorithms, anytime ones
can be interrupted to provide a best-so-far result and then
resumed to produce better results at any time, thus allowing
interactions with users during execution.

3 THE ALGORITHM ANYTIME SCAN
Figure 1 illustrates the basic idea of anySCAN. It processes
vertices such that the cluster structure quickly emerges and
is refined without naively checking all vertices. Assume that
with the first five neighborhood checks on a, b, c, i, and j,
we know that a, b, and c are core vertices, and i and j are
noise. Following Definition 4 and 5, all other vertices now
belong to at least one cluster, e.g., g and h must be in the
same cluster with a. AnySCAN then looks for true clusters
using this information as a guideline. If it chooses d and
discovers that core(d), then b, c and all their neighbors (N ε

b

and N ε
c ) must belong to the same cluster. Next, it examines

f and sees that f is not a core, then N ε
a and N ε

c will
surely belong to different clusters. It can then safely stop
the algorithm and have the same clustering result as SCAN
without further examining the rest of the vertices, since the
clusters will not change anymore regardless of additional
neighborhood checks. This saves many structural similarity
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Function anySCAN (G, µ, 0, ., �) 

BeginFunction 

 /* Step 1: Summarization */ 

 while there still exist untouched vertices do 

  select a set X of . untouched vertices for examining 

  for all vertex p  in X do 

   perform the range query on p and mark the state of p  

   if p is a core then 

    for all vertex q in  Np
0 do   

     mark the state and increase the number of neighbors of q  

     add sn(p) to the list of super nodes SN 

     if q is unprocessed-core or processed-core then 

      get the list SNq of super nodes containing q 

      Union(sn(p), sn(g)), where g ë  SNq 

   else  

     for all vertex q in  Np
0 do 

      increase the number of neighbors nei(q) of q 

    add sn(p) to the noise list L 

 /* Step 2: Merging strongly-related super-nodes */ 

 build the set S of shared unprocessed-border vertices  

 sort S in the descending order of the numbers of super-nodes 

 while S is not empty do 

  remove a set X of � fist vertices for examining 

  for all vertex p in X do 

   check if p should be pruned from the core check 

   perform the core check on p 

   if p is not a core then continue  

   get the list of super nodes SNp containing p 

   for i = 0 to |SNp| ± 1 do 

    let sn(u) and sn(v) be super-nodes of p at i and i + 1 of SNp 

    if Findset(sn(u�����Findset(sn(v)) then 

     Union( Findset(sn(u)), Findset(sn(v)))  

 /* Step 3:  Merging weakly-related super-nodes */ 

 find the representative super-nodes for all vertices 

 build the set T of unprocessed-border or core vertices  

 sort T in the descending order according to the vertex degrees 

 while T is not empty do 

  remove a set X of � fist vertices for examining 

  for all vertex p in X do 

   check if p should be pruned from the core check 

   perform the core check on p 

   if p is not a core then continue  

   for all vertex q in Np do 

    if q is not a core then continue end if  

    if Findset(clu(p�����Findset(clu(q)) then 

     if 1(p, q����0 then 

      Union( Findset(clu(p)), Findset(clu(q)))  

 /* Step 4:  Determining border vertices */ 

 for all vertex p in L do  

  check if p is a border or a true noise 

EndFunction 

Fig. 2. Pseudocode for anySCAN

calculations and reduces runtime. Moreover, anySCAN can
be interrupted after any neighborhood checks for producing
approximate results of SCAN. Besides that, if it processes
a block of vertices (with sizes α and β) each time instead
of a single vertex like SCAN and its variants [3]–[5], each
neighborhood query can be handled by a thread indepen-
dently before being used to produce clusters, thus opening
a way for designing a scalable parallel technique on shared
memory architectures such as multicore processors.

3.1 Anytime SCAN
Concretely, anySCAN is built upon the concepts: summa-
rization, selection, merging, and block processing which are
summarized in Figure 2.
Step 1: Summarization. Step 1 (Line 3-18) summarizes
vertices into homogeneous groups called super-nodes, which
will be exploited to build clusters quickly in the next steps.
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Fig. 3. The state transition schema for vertices

Assume that all vertices have untouched states in the be-
ginning. We repeatedly and randomly choose an untouched
vertice p for examining until there are no more untouched
ones. If noise(p) (Line 15-18), we mark it as processed-noise
and store N ε

p in a noise list L for a post processing step. If
core(p) (Line 8-14), N ε

p is summarized in a super-node with
p as a representative (denoted as sn(p)) and stored in the
super-node list SN for further processing. We update the
states of p to processed-core and its neighbors q to processed-
border (if q was noise), or unprocessed-border (if q is not
examined), or unprocessed-core (if q is untouched and is
known to have more than µ neighbors)1 following the vertex
transition state schema in Figure 3 described below.

Figure 3 summarizes the state transition for all vertices
during the execution of anySCAN. For example, if |Np| < µ,
then we know that p is surely not a core without having to
examine its neighbors. Thus state(p) is unprocessed-noise. If
we know that p is a neighbor of a core vertex q, then p will
be a border of a cluster. Thus its state is changed to processed-
border. If none of its neighbors is core, p is assigned processed-
noise state. If an unprocessed-border object p has more than µ
neighbors, it is surely a core and is changed to processed-core.
Otherwise if it has fewer than µ neighbors, it is changed
to processed-border since it already belongs to a cluster. If an
unprocessed-border vertex p is not examined but p has more
than µ neighbors then it is surely a core and is assigned
unprocessed-core state. A border vertex will never become a
core. A core vertex will not change to a border or a noise one.
A processed vertex will not change to unprocessed.

Lemma 1. The state of each vertex in anySCAN changes
according to the transition schema in Figure 3.

Lemma 1 can be verified through Definition 3 and 4
of SCAN. As demonstrated in Figure 1, after the summa-
rization step, we have three super-nodes sn(a), sn(b), and
sn(c). Noise list L contains two vertices i and j. All other
vertices are not examined and marked as unprocessed-border.

Lemma 2. All objects inside a super-node sn(p) belong to
the same cluster.

Lemma 2 is directly inferred from Definition 4. Follow-
ing it, we only need to label all the super-nodes instead of
labeling all vertices like SCAN. Since the number of super-
nodes is much smaller than the number of vertices, the
label propagation time is reduced. To do so, each super-
node is initially placed in a single cluster. If we discover
that sn(p) and sn(q) must belong to the same cluster, we
merge them (Line 12-14). Here, a Disjoint-set data structure
[17] is employed to keep track of the labels of super-nodes.
It supports two operations including (1) Findset: for finding

1. To do so, we additionally store for each object q the number of
neighbors it currently has, denoted as nei(q).
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which subset a particular super-node is in and (2) Union: for
merging two subsets of super-nodes into a single subset.

At any time (e.g., after each iteration of anySCAN), the
intermediate clustering result of anySCAN can be acquired
by labeling a vertex according to the label of its super-node.

Step 2: Merging strongly-related super-nodes. In Step 2
(Line 19-32), anySCAN merges super-nodes to form clusters
starting with ones that are more likely to be in the same
cluster, e.g., vertices d and e in Figure 1.

Definition 6. Two super-nodes sn(p) and sn(q) are called
strongly-related to each other if they share some vertices,
i.e., sn(p) ∩ sn(q) 6= ∅.

Intuitively, if sn(p) and sn(q) are strongly-related, they
have a high chance to be in the same cluster. Thus, in this
step, we will examine all pairs of strongly-related super-
nodes to see if they should be merged together.

Lemma 3. If there exists a core vertex u ∈ sn(p) ∩ sn(q)
(either in processed or unprocessed state), sn(p) and
sn(q) belong to the same cluster.

Proof 1. Let a and b be two arbitrary vertices in sn(p) and
sn(q), respectively. We have a/p and q . b (Definition 4).
Since core(u) and u ∈ N ε

p ∩N ε
q , p / u and u . q, a and b

are density-connected according to Definition 4.

Lemma 3 states that if two super-nodes share a core
vertex, they are merged. We first collect a set S of all
unprocessed-border vertices that belong to at least two super-
nodes (Line 20), e.g., vertices d and e in Figure 1. The rest
can be safely ignored since they do not help to determine
the new connection of two super-nodes (cores has been
processed in Step 1). We sort all vertices in S in descending
order of the numbers of super-nodes they belong to (Line
21). Then, each vertex is extracted and processed to merge
super-nodes until S is empty.

For each vertex p, if all its super-nodes already belong
to the same cluster, we do not need to examine p anymore
since it will not lead to any change in the result (Line 25).
Otherwise, if p is an unprocessed-border vertex, we need to
check if it is a core (Line 26). To do so, we explore its
adjacency vertices q ∈ Np until we know that p is a core,
i.e., it has more than µ neighbors, instead of calculating all
structural similarities around p. This helps to reduce the
runtime. If p is a core, we set its state to unprocessed-core.
Otherwise, it is changed to processed-border vertex following
the transition schema in Figure 3. Note that, we still mark
the states for neighbors of p as in Step 1 and 3. Now, if p is
a core, all of its super-nodes g ∈ SNp belong to the same
cluster due to Lemma 3. Hence, anySCAN calls at most
|SNp|−1 Union operations for merging them together where
SNp is the set of super-nodes that contains p (Line 29-32).
Here sorting (Line 21) can help to reduce the number of core
checks since many super-nodes will be merged earlier.

Figure 1 shows an example of Step 2. Only d and e
need to be examined. We first examine d and see that it
is a core. Then sn(b) and sn(c) are merged into one cluster.
Now, e can be ignored since all of its super-nodes have the
same label. However, to finally conclude that the results are
completely identical to SCAN, we need to check whether
sn(a) and sn(c) should be merged in Step 3.

Step 3: Merging weakly-related super-nodes. Step 3 (Line
33-47) verifies connections that cannot be discovered in Step
2, e.g., sn(a) and sn(c).

Definition 7. Two super-nodes sn(p) and sn(q) are weakly-
related if there exist two vertices u ∈ sn(p) and v ∈ sn(q)
so that u ∈ Nv and v ∈ Nuv, i.e., u and v are adjacent.

Lemma 4. If there exist two core vertices u ∈ sn(p) and
v ∈ sn(q) so that u and v are adjacent (i.e., (u, v) ∈ E)
and σ(u, v) ≥ ε then two super-nodes sn(p) and sn(q)
belong to the same cluster.

Proof 2. Let a and b be two arbitrary vertices in sn(p) and
sn(q), respectively. We have a / p and q . b (Definition
4). Since core(u) and core(v) and σ(u, v) ≥ ε, we have
u on v, p / u, and v . q (Definition 4). Thus, a and b are
density-connected (Definition 4).

Identifying the connection between weakly-connected
super-nodes is much more difficult than for the strongly-
connected case. Simply examining every pair of super-nodes
sn(p) and sn(q), identifying the edge (p, q) that poten-
tially connects them, and then checking their connection is
clearly expensive. Therefore, we start with a set T of all
unprocessed-border, unprocessed-core, or processed-core vertices
(all processed-border and noise can be safely ignored due to
Lemma 4) (Line 35). We first sort T in descending order
of vertex degrees (Line 36). Each vertex is extracted and
processed until T is empty. The intuition behind this is
that the higher the degree of a vertex p, the more likely it
connects more super-nodes. Thus, examining it earlier helps
to save core checks for the next ones.

For each vertex p, we scan all of its adjacent vertices q
to see if they belong to the same cluster. If so, we can safely
skip p since examining p will not lead to any change in the
clustering result (Line 40). Otherwise, p may belong to an
edge that connects two weakly-related super-nodes, and thus
needs to be examined. If p is an unprocessed-border vertex,
we need to check if it is a core one like in Step 2 (Line 41).
If p is a core, we set its state to unprocessed-core. Otherwise,
it is changed to processed-border following Figure 3. If p is a
core, we again scan through its adjacent vertices q ∈ Np. If
q is not a core, we can skip it. Otherwise, if p and q belong
to different clusters (Line 45), we calculate their structural
similarity σ(p, q). If σ(p, q) ≥ ε, we merge sn(u) and sn(v)
by calling the Union operation, where sn(u) = clu(p) and
sn(v) = clu(q) (Line 46-47), where clu(p) is the cluster that
contains p. Note that after Step 2, all unprocessed-border or
unprocessed-core vertices only belong to one cluster.

In Figure 1, when we examine k, all of its adjacent
vertices belong to the same cluster. Thus, k is skipped. How-
ever, g and adjacent vertex f belong to different clusters.
Thus, g has to be checked. In this case, g is not a core. Thus,
f and g belong to different clusters.
Step 4: Determining border vertices. Recall that in Step
1, all noise vertices are placed in a noise list L. However,
some of them may be border vertices if they are connected
to core ones. In Step 4 (Line 49-50), we detect this case. For
all vertices p ∈ L, if state(p) is processed-noise, we examine
all q ∈ N ε

p . If q is a core either processed or unprocessed,
p is a border of clu(p). If q is unprocessed-border, we need to
check if q is a core and σ(p, q) ≥ ε. If so, p is a border of
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clu(p). If p is unprocessed-noise, we examine all q ∈ Np. If
q is processed-core or unprocessed-core and σ(p, q) ≥ ε then p
belongs to the same cluster as q. If q is unprocessed-border,
we check if q is a core and σ(p, q) ≥ ε. If so, p and q belong
to the same cluster. By checking noise at the end, we can
exploit previous results such as core vertices to save more
on similarity calculation, thus enhancing performance.

3.2 Parallel Anytime SCAN

Block processing. A key idea of anySCAN is processing
vertices in blocks. Concretely, in Step 1, we choose α vertices
for summarizing at each iteration (α � 1). Obviously, it
increases the overlap between super-nodes. However, this
overlap will lead to more super-nodes to be merged at Step
2 and will consequently reduce the number of structure
similarity calculations in Step 3. Thus, the performance is
improved. In Step 2 and 3, we choose β vertices for updating
at each iteration. Though this leads to more redundant sim-
ilarity calculations, it reduces the overhead of the anytime
scheme of anySCAN by reducing the number of iterations.

Block processing also allows threads to perform core
checks, the most expensive part of anySCAN, concurrently,
thus leading to a work-efficient parallel algorithm. Specifi-
cally, it maintains the anytime property in parallel mode.
Parallelizing. Figure 4 shows the pseudocode for anySCAN
using OpenMP [18]. Since vertices have different neighbor-
hood sizes, we use dynamic scheduling for load balancing,
e.g., Line 6, 10, 30, and 34.
Step 1: Summarization. Please note that because two super-
nodes may overlap, assigning states for their shared vertices
suffers may lead to a race condition, where threads could
attempt to write different states for a vertice at the same
time. To ensure consistency, a naive approach would need
to lock the whole for loop (Line 9-14 Figure 2) for instance.
However, this is clearly inefficient since this would sequen-
tialize a large workload. To avoid that, we separate the for
loop in Line 6 (Figure 2) into three different parts (Line 6-24
in Figure 4). First (Line 6-9), we calculate the neighborhood
of all vertices p and store the results in a temporary buffer
B. We also mark the state of p as described in Section
3.1. Obviously, vertices can be processed independently by
threads. Second (Line 10-15), for each vertex p, we examine
its neighbors q and mark its state if p is a core. If q is a
processed-noise or unprocessed-noise, it is marked as processed-
border. If q is unknown, it is marked as unprocessed-border.
Now, to check if q is a core, we increase the number of
neighbors of q by 1 (q has p as one of its neighbors) using
an atomic operation (Line 14-15). If q is an unprocessed-
border and has more than µ neighbors, it will be marked
as unprocessed-core. Last (Line 16-24), we use a sequential
algorithm for storing the super-nodes as well as merging
some of them as described in Section 3.1, since these tasks
are highly sequential. However, the overall runtime of this
part is negligible and has a small effect on the scalability of
anySCAN as demonstrated in Section 5.2.
Step 2: Merging strongly-related super-nodes. As for Step
1, we separate Step 2 into two parts for avoiding perfor-
mance limiting synchronization. In Line 30-33, we perform
the core check on each vertex p in a selected subset of ver-
tices X independently using multiple threads and store the
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Function anySCAN (G, µ, 0, ., �) 

BeginFunction 

 /* Step 1: Summarization */ 

 while there still exist untouched vertices do 

  select a set X of . untouched vertices for examining 

  #pragma omp parallel for schedule(dynamic) 

  for all vertex p  in X do 

   calculate  Np
0  and store it into a buffer B  

   mark the state of p  

  #pragma omp parallel for schedule(dynamic) 

  for all vertex p in X do    

   for all vertex q in  Np
0 do   

    mark the state of q if p is a core 

    #pragma omp atomic  

    increase the number of neighbors nei(q) of q   

  for all vertex p in X do 

   if p is a core object then 

    add sn(p) to the list of super nodes SN 

    for all vertex q in  Np
0 do 

     if q is unprocessed-core or processed-core then 

      get the list SNq of super nodes containing q 

      Union(sn(p), sn(g)), where g ë  SNq 

   else  

    add sn(p) to the noise list L 

 /* Step 2: Merging strongly-related super-nodes */ 

 build the set S of shared unprocessed-border vertices 

 sort S in the descending order of the numbers of super-nodes 

 while S is not empty do 

  remove a set X of � fist vertices for examining 

  #pragma omp parallel for schedule(dynamic) 

  for all vertex p in X do 

   check if p should be pruned from the core check 

   perform the core check on p 

  #pragma omp parallel for schedule(dynamic) 

  for all vertex p in X do  

   if p is not a core then continue  

   get the list of super nodes SNp containing p 

   for i = 0 to |SNp| ± 1 do 

    let sn(u) and sn(v) be super-nodes of p at i and i + 1 of SNp 

    #pragma omp critical 

    Union( Findset(sn(u)), Findset(sn(v)))  

 /* Step 3:  Merging weakly-related super-nodes */ 

 find the representative super-nodes for all vertices 

 build the set T of unprocessed-border or core vertices  

 sort T in the descending order according to the vertex degrees 

 while T is not empty do 

  remove a set X of � fist vertices for examining 

  #pragma omp parallel for schedule(dynamic) 

  for all vertex p in X do 

   check if p should be pruned from the core check 

   perform the core check on p 

  #pragma omp parallel for schedule(dynamic) 

  for all vertex p in X do  

   if p is not a core then continue  

   for all vertex q in Np do 

    if q is not a core then continue end if  

    if 1(p, q����0 then 

     #pragma omp critical 

     Union( Findset(clu(p)), Findset(clu(q)))  

 /* Step 4:  Determining border vertices */ 

 #pragma omp parallel for schedule(dynamic) 

 for all vertex p in L do  

  check if p is a border or a true noise 

EndFunction 

Fig. 4. Pseudocode for anySCAN using OMP

results. In Line 34-42, we check each vertex independently
and merge related super-nodes when necessary as described
in Section 3.1. The Union operation is not thread-safe. Thus,
it must be locked inside critical sections (Line 41). However,
since the number of super-nodes is much smaller than the
number of vertices in our experiments, the number of Union
operations is thus small and does not affect the scalability
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of anySCAN (see Figure 14 for more details). Note that, the
pruning check needs to get the labels for vertices (which
in turn is acquired from the labels of super-nodes via the
Findset operation). Thus, if we did not split Step 2 into two
parts, we would need to lock the Findset operation during
the pruning check to ensure consistency. This would incur
significant synchronization cost since the Findset operation
is used more frequently than the Union operation.
Step 3: Merging weakly-related super-nodes. As for Step
2, we also separate Step 3 into two parts (Line 49 to 61). The
first part is for checking the core properties of vertices, and
the second part for merging super-nodes using Union.
Step 4: Determining border vertices. Each vertex p inside
the noise list L can be examined independently to see if it
is really an outlier (Line 63-65). Here some redundant cal-
culation may happen if two noise vertices p and q share an
unprocessed-border vertex due to the checking process in Step
4. However, this case very rarely happens in experiments. By
accepting this, each vertex can be fully processed by a thread
without having to wait for the results of other threads.
Consequently, the scalability of anySCAN is improved.

3.3 Algorithm Analysis
Correctness. We first prove the correctness of anySCAN.
Lemma 5. The final results of anySCAN are identical to those

of SCAN.

Proof 3. Assume that two vertices p and q belong to the same
cluster in SCAN. There must exist a chain of core vertices
x1 · · ·xn so that p / x1 · · · / xi . · · · . xn . q (Definition 4).
After Step 1, x1 to xn must belong to some super-nodes
sn(s1) · · · sn(sm) (m ≤ n) since only unprocessed-noise or
processed-noise vertices are excluded to the noise list L.
In Step 2 and 3, if sn(s1) to sn(sm) belong to different
clusters, they will be connected by some other vertices
or by some xi(1 ≤ i ≤ n) themselves (Lemmas 3 and
4). Thus, there exists a density-connected path from x1
to xn through sn(s1) to sn(sm) (some xi may not be
included in the path because they are not processed).
Similarly, Step 4 guarantees that if p and q are in L, they
are still density-connected to x1 and xn by some paths.
Thus, p and q are also density-connected in anySCAN.
Note that, in both anySCAN and SCAN, a shared-border
vertex may be assigned to different clusters according to
the examining order of vertices.

Complexity analysis. Let SN be the set of super-nodes,
Tpq = min(|Np|, |Nq|) be the time for computing σ(p, q),
and c a constant. The time complexity of Step 1 is
O(

∑
sn(p)∈SN∪L(

∑
q∈Np

Tpq +
∑
q∈Np

c)) for calculating
neighborhoods and marking the states of vertices. We
have O(

∑
q∈C |N ε

q |) Union-Find operations (since SN(q) ⊂
N ε
q ⊂ Nq and each merge is done on new super-nodes only),

where C ⊂ V is the set of core vertices. Similarly, Step 2
and 3 need O(

∑
p∈S(

∑
q∈Np

+
∑
q∈Np

Tpq)) time for core
checks and neighborhood calculations and O(

∑
p∈S |Np|)

Union-Find operation. Step 4 needs O(
∑
p∈L

∑
q∈Np

Tpq)
time for checking border states. Obviously, all of Steps 1
to 4 are bounded by O(|E|Tpq) neighborhood calculations
and O(|E|) Union-Find operations. Sorting requires O(|V |)
time using bin-sort since the values are all integer and are

bounded by the vertex degrees. Thus, at the end, anySCAN
has the same time complexity as pSCAN and SCAN with
O(min(Np, Nq)|E|+ |E|f(|V |)), where f() is the extremely
slowly growing inverse of the single-valued Ackermann
function [5], [17]. The algorithm anySCAN needs to store the
super-node list SN as well as the noise list L. Thus, it incurs
additional memory usage compared to SCAN. However, the
overall size is still bounded by O(|E|). Thus, in the end, it
has O(|V |+ |E|) space complexity.

3.4 Optimizations
We introduce some optimization techniques to speed up the
similarity calculation of anySCAN inspired by [5].
Lemma 6. Given two vertices p and q, if σ̂(p, q)2 < ε2 ·

lp · lq , where σ̂(p, q) = min(|Np|, |Nq|) · max(wp, wq),
and wp = maxq∈Np

(wpq), and lp =
∑
r∈Np

w2
pr, then

σ(p, q) < ε.

Proof 4. We have
∑
r∈Np∩Nq

wpr · wqr ≤ min(|Np|, |Nq|) ·
max(wp, wq) < ε ·

√
lp · lq . Thus σ(p, q) =

(
∑
r∈Np∩Nq

wpr · wqr)/
√
lp · lq < ε.

The equation σ̂(p, q)2 < ε2 · lp · lq can be verified in O(1)
time (since wp and lp are fixed and can be calculated in a
preprocessing step in O(|Np|) time). If it is true, we do not
need to calculate the structural similarity σ(p, q). Moreover,
while calculating

∑
r∈Np∩Nq

wpr · wqr, if the intermediate
result is bigger than

√
ε2 · lp · lq , then σ(p, q) is bigger than

ε. Thus, we can stop for further reducing runtime.

4 DYNAMIC GRAPH CLUSTERING

Given a weighted dynamic graph G, possible changes in
G are deletion, insertion and weight change on each edge.
A naive approach would perform clustering from scratch,
which is obviously very expensive. Here, we focus on an
efficient incremental approach. Let U = {(u, v, w, t)} be a
set of changed edges (u, v, w), where t is the update type
including insertion, deletion and change weight. Instead
of updating clusters with each change [8], [19], [20], our
method, called dynamic anySCAN (danySCAN), operates
in a bulk scheme, especially when the number of updates
|U | is large. For simplicity, we skip w and t whenever it is
clear from the context.

4.1 Dynamic Anytime SCAN
The general idea of danySCAN is that we exploit the exist-
ing super-node structure for incrementally updating clusters
without having to start from scratch. We first present the
general process of danySCAN with arbitrary graph updates
before going into the optimization procedure of each special
kind of update operations.
Definition 8. Given a set of updates U , the set of directly

affected vertices A is defined as a set of vertices in U .

Definition 9. Given a set of updates U , the set of affected
edges B is defined as a set of all edges (u, v) where u ∈ A
and/or v ∈ A.

Definition 10. The set of vertices Ak is called the k-affected
of A if it consists of all vertices that are k-hop-away from
any vertices in A.
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Fig. 5. Affected vertices, edges, super-nodes and noises w.r.t. a changed
edge (u, v) ∈ U

Lemma 7. All edges (u, v) in B will change their structural
similarities after the update.

Lemma 7 is directly inferred from Definition 1. Fol-
lowing it, all 1-affected vertices in A1 may change their
core properties since their structural neighborhoods will
be changed. Conversely, all edges e ∈ E \ B will not
be affected. Their similarities remain the same after the
updates. Similarly, all vertices v ∈ V \ A1 will not change
their core properties.

Figure 5 shows an example when we change (e.g., delete)
an edge (u, v). The structural similarity σ(u, c) will be
changed. Thus, vertex c may change its core properties.
However, vertices a and d are not affected at all. Their core
properties remain the same. Each super-node sn(q) where
q ∈ A1 will also be affected by the updates following the
similarity changes of e ∈ B. Some vertices may be removed
from sn(q) or inserted into sn(q), e.g., u or v. If |sn(q)| < µ,
the super-node must be removed since q is not a core vertex
anymore. We call sn(q) a directly affected super-node. For
sn(p) where p ∈ A2 \ A1, since N ε

p is not affected, its
members will not change. However, since vertex f ∈ sn(p)
might change its core property, it will affect the connectivity
between sn(p) and its nearby super-nodes, thus leading to
changes of current clusters. We call sn(p) an affected super-
node. All other super-nodes outside the 2-affected set will not
affect the cluster structure at all since all of their vertices
do not change after the updates. Similarly, a noise vertex
nl(b) ∈ L is called a directly affected noise if b ∈ A1 since its
members can be changed into core vertex or border vertex
of another cluster. A noise object nl(a) is an affected-noise if
a ∈ A2 \ A1. Even though its members remain the same, it
may be assigned to another cluster following the change of
the core property of one of its members, e.g., vertex c.

The algorithm danySCAN consists of several steps as
shown in Figure 6 and described below. Generally, it will
update the super-node structure w.r.t. updates before merg-
ing them again to build clusters.
Step 1. Updating the super-node structures. When changes
occur, we need to rebuild the list of super-nodes and the
noise list L as well as their relationships.

First, we need to update the graph G to reflect the
changes and then recalculate the lengths of vertices for
speeding up similarity evaluations (Line 4-5 in Figure 6).

Second, we need to check the state of each affected
edge e ∈ B (Line 6-8). To do so, we assign for each edge
(u, v) ∈ E a state including: yes if σ(u, v) ≥ ε, no if
σ(u, v) < ε and unknown if σ(u, v) has not been calculated
yet. Now, for simplicity, we can set all edges e ∈ B to the
unknown state, indicating that their similarities are changed

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

Function danySCAN (G, µ, 0, ., �, U) 

BeginFunction 

 /* Step 1: Updating the super-nodes */ 

 #pragma omp parallel for schedule(dynamic) 

 Update the graph G and recalculate the lengths l of vertices 

 #pragma omp parallel for schedule(dynamic)  

 for all (u, v) in B do 

  set state of 1(u, v) to unknown (if it may change) 

 #pragma omp parallel for schedule(dynamic) 

 for each directly affected super-node sn(q) do 

  update and mark the states of its members if q is a core  

  otherwise put q into the noise list L 

 #pragma omp parallel for schedule(dynamic) 

 for each directly affected noise nl(q) do 

  update its members and check if q becomes a core 

  if so mark the states of its neighbors and  

   put q to the super-node list 

 #pragma omp parallel for schedule(dynamic) 

 find all orphan vertices and 

  build new super-nodes in parallel like anySCAN 

 find all affected clusters and put their super-nodes  

  into the affected super-node list 

 recreate the Disjointsets data structure 

 for each non-affected clusters C do 

  merge its super-nodes using Union operation 

 build the set of examined vertices A* 

 /* Step 2: Merging strongly-related super-nodes */ 

 build the set S of unprocessed vertices that belong to  

  at least two super nodes from the examined set A* 

 merge super-nodes in parallel like anySCAN  

 /* Step 3:  Merging weakly-related super-nodes */ 

 find the representative super-nodes for all vertices 

 build the set T of unprocessed-border or core vertices  

  from the examined set A* 

 merge super-nodes in parallel like anySCAN 

 /* Step 4:  Determining border vertices */ 

 #pragma omp parallel for schedule(dynamic) 

 for all affected noises in L do  

  check if p is a border or a true noise 

EndFunction 

Fig. 6. Pseudocode for dynamic anySCAN

and need to be recalculated. However, for efficiency, we
can use some optimization techniques for different kinds
of update operations as presented in Section 4.2.

Third, we set the states of all vertices p ∈ A and p ∈
sn(q), where sn(q) is a directly affected super-node to unknown.
Then, for each directly affected super-node sn(q), we update
its members by adding a new vertex r if σ(q, r) ≥ ε or
removing r if σ(q, r) < ε. If |sn(q) < µ, we delete sn(q)
from the list of super-nodes and move it to the noise list
L. Otherwise, we mark the state of p ∈ sn(q) following
the transition state diagram in Figure 3 like for Step 1 of
anySCAN (Line 9-12). Similarly, for each directly affected noise
vertex nl(q) ∈ L, we update its members. If q is a core, we
put sn(q) into the super-node list and mark the states of its
neighbors accordingly (Line 13-17). At the end of this stage,
if a vertex q is still an orphan (i.e., state(q) = unknown), we
check if it actually belongs to some unaffected super-nodes.
If so, q is marked as unprocessed-border.

Fourth, we build new super-nodes and new noise ver-
tices over orphan vertices in a similar way to the summa-
rization step of anySCAN described in Section 3.1, which
we will not repeat here for clarity, until there are no more
unknown ones (Line 19-20). After that we further extend the
sets of affected super-node and affected noises by adding newly
generated ones to them.

Fifth, in the worst case, an affected super-node sn(p)
may lose its connections to other super-nodes due to the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

changes of core properties of its members or one of its yes
connections to others is broken. This may split its cluster
into smaller groups. Thus, this cluster needs to be re-verified
to identify sub-clusters. Note that, we also have merge cases
where clusters are merged into a larger one. But, these
cases are easier due to the merging nature of anySCAN as
presented in Section 3.1. Here a cluster C is an affected cluster
if one of its super-nodes is affected. For each affected cluster,
we put its super-nodes into the affected super-node list for
rebuilding sub-clusters later (Line 21-22).

Seventh, we need to rebuilt the cluster structure if there
is a split case. To do so, we recreate a new Disjointsets
(Line 23). Then, for each non-affected cluster C with c
super-nodes, we merge them by calling the Union operation
exactly c−1 times for each adjacent pair for rebuilding C in
the new Disjointsets (Line 24-25). Note that since the number
of super-nodes is much smaller than the number of vertices,
this task thus has negligible effect on the performance of
danySCAN. Now we need to identify a special set of vertices
A∗ called examined vertices as follows before fully building
final clusters in the next steps of danySCAN (Line 26).

Definition 11. The set of examined vertices A∗ consists of all
vertices in ∪sn(p), where sn(p) is an affected super-node
and all vertices in A2.

Since we need to merge affected super-nodes to form
clusters in the next steps, it is straightforward to see that
we only need to examine vertices in A∗ for efficiency. A2

ensures that super-nodes are merged due to the update. And
∪sn(p) guarantees that if a cluster is not broken, it will be
recreated correctly. When the number of updates is large,
A∗ ≈ V . Thus, we can choose A∗ = V for simplicity.

Step 2: Merging strongly-related super-nodes. This step
(Line 27-30) works in a similar way to anySCAN with
some major modifications: (1) we only consider objects in
the examined set A∗ and (2) we consider both unprocessed-
border and unprocessed-core since we have not processed
unprocessed-core in Step 1 (Line 27-30).

Step 3: Merging weakly-related super-nodes. This step
(Line 31-35) also works exactly as in anySCAN with a
restriction on the examined set A∗ (Line 31-35).

Step 4: Determining border vertices. It is easy to prove that
if a noise vertex p ∈ L is not an affected noise, it will never be
changed. Note that if p is a shared border vertex, it may be
assigned different labels according to the examining order.
Thus, we only take out all affected noises and examine them
using the same procedure of anySCAN.

4.2 Optimization techniques for danySCAN

The above procedure of danySCAN works regardless of
the update types. However, for efficiency, we can refor-
mulate the second phase of Step 1 to cope with different
update types by exploiting some similarity check as in
[8]. For example, if an edge (u, v) is inserted, for each
vertex w ∈ Nu \ Nv , σ(w, u) will be decreased. Thus, if
state(u, v) = no, it will never change to yes. Thus, we do not
need to re-evaluate the structural similarity between u and v
anymore. We can update edge states in Step 1 in two ways:
(1) sequentially with each updates which incurs redundant
calculations when several updated edges share a vertex; or

Graph Vertices Edges d c
Ego-Gplus (GR01) 107,614 13,673,453 127.06 0.4901

Soc-LiveJournal1 (GR02) 4,847,571 68,993,773 14.23 0.2742
Soc-Poket (GR03) 1,632,803 30,622,564 18.75 0.1094

Com-Orkut (GR04) 3,072,441 117,185,083 38.14 0.1666
Kron g500-logn21 (GR05) 2,097,152 182,082,942 86.82 0.1649

Twitter (GR06) 41,652,230 1,369,000,750 32.8 0.0730

TABLE 1
REAL GRAPH DATASETS (d IS AVERAGED VERTEX DEGREES AND c IS

AVERAGED CLUSTER COEFFICIENTS)

(2) check all affected vertices in chunks for avoiding shared
vertices. In the latter case, we must modify the similarity
check of [8] for ensuring the correctness of the algorithm by
only considering w ∈ Nu \Nv if w is not an affected vertex as
in Lemma 8 below. However, compared to (1), (2) may have
weaker pruning power in case we have big chunks.

Lemma 8. Given an inserted edge (u, v), for each vertex w ∈
Nu \Nv ∧Nw ∩A = ∅, σ(u,w) will be decreased.

Proof 5. Since Nw ∩ A = ∅, its length lw is not changed
while lu is increased due to the insertion. Thus, σ(u,w)
is decreased following Definition 1.

Here, we introduce two more cases to cope with
weighted graphs: (1) increase weight which is similar to the
edge insertion and (2) decrease weight which is similar to
the edge deletion in [8]. The detailed extension for all update
types is straightforward but lengthly, and thus is omitted.

4.3 Dynamic AnySCAN on Multicore CPUs

The extension of danySCAN for multicore CPUs is exactly
the same as anySCAN with the block processing scheme in
the fourth phase of Step 1, Step 2 and 3. The pseudocode of
danySCAN can be found in Figure 6.

4.4 Algorithm Analysis

Correctness. We first prove the correctness of danySCAN.

Lemma 9. The final results of danySCAN are identical to
those of SCAN.

Proof 6. In Step 1, danySCAN checks each super-node to
add or remove members. Each new super-node p is also
built by a neighborhood query. Thus, this guarantees that
∀sn(p) : sn(p) = N ε

p . Step 1 also ensures that none
of the vertices in L is actually a core. Consequently, if
two vertices p and q are density-connected in SCAN by
a chain of core vertices x1 · · ·xn (Definition 4), all xi
must belong to some super-nodes sn(sj) after Step 1 of
danySCAN. At the end of Step 1, all possibly changed
connections among super-nodes are removed to check
them again in Step 2 and 3. Following Lemmas 3 and 4,
all sn(sj) will be put into the same cluster via xi or other
core vertices. Due to Lemma 2, p and q are connected via
a chain going through sn(sj) (including sj itself). Step 4
guarantees that if a border vertex is added to the noise
list L initially, it is surely discovered as a border here.
Thus, the results of danySCAN and SCAN are identical.

Complexity analysis. The time complexity of danySCAN
is similar to that of anySCAN, pSCAN and SCAN. It also
consumes O(|E|+ |V |) space like others.
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Fig. 7. NMI scores and cumulative runtimes of anySCAN during its
execution in comparison with other batch algorithms (represented by
horizontal lines) for GR01 to GR03

5 EXPERIMENTS

All experiments are conducted on a Linux workstation with
two 3.1 GHz Intel Xeon CPUs with 64 GB local RAM each
using g++ 4.8.3 (-O3 flag) and OpenMP2 3.1. We use 6 large
datasets (see Table 1) acquired from the Stanford Network
Analysis Project (SNAP)3 [21], The UF Sparse Matrix Collec-
tion4, and the Laboratory of Web Algorithmics5 [22].

5.1 Anytime SCAN

We compare anySCAN with the original algorithm SCAN
and its fastest variants pSCAN [5] and SCAN++ [4]. Since
these state-of-the-art techniques are originally designed to
work with unweighted graphs, we extend them to work
with weighted ones as described in Section 2. We also study
SCAN-B, our extension of SCAN using the optimization
techniques described in Section 3.4. For evaluating the any-
time property of anySCAN, we use the results of SCAN as
ground truth and Normalized Mutual Information (NMI)
scores [23] for assessing how close the intermediate result is
compared to that of SCAN. NMI is defined as the geometric
mean of shared information between the clustering result C
and the ground truth T and their conditional entropy. Its
score is in [0, 1] where 1 means both results are identical.
Unless otherwise stated, we use default parameters µ = 5,
ε = 0.5, and α = β = 8192. Due to space limitations, we
omit some graphs here. Interested readers please refer to [7]
for more results on all graphs.
Anytime properties. Figure 7 shows the cumulative run-
times and NMI scores of anySCAN for GR01 to GR03
(see Table 1) measured at different iterations of Steps 1
to 3 of anySCAN. As we can see, the clustering qualities
of anySCAN improve over time and converge toward the
results of SCAN at the end (indicating by NMI ≈ 1.0).
The longer it is run, the better the NMI scores it obtains,
i.e., its results are more similar to those of SCAN. Addi-
tionally, since anySCAN is an anytime algorithm, it has
the benefit that it can be stopped at arbitrary time points
for approximating results as well as saving computation
cost. For example, one can stop anySCAN with good NMI

2. http://www.openmp.org/
3. https://snap.stanford.edu/
4. http://www.cise.ufl.edu/research/sparse/matrices/
5. http://law.di.unimi.it/datasets.php
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Fig. 8. Final runtimes of different algorithms w.r.t. parameters ε (top)
and µ (bottom) for GR01 to GR03

Fig. 9. (Left) Numbers of structural similarity calculations for all
algorithms. For SCAN++, numbers of true similarity (bottom) and
similarity sharing (top) evaluations are plotted. (Right) Numbers of hub
and outlier (light blue), border (dark blue), and core (yellow) vertices
(from bottom to the top) for some datasets

scores ≈ 0.5 after 24.08, 13.94, and 8.91 seconds for GR01 to
GR03 and acquire acceleration factors of up to 14.55 times
compared to SCAN. This property makes anySCAN an
interactive algorithm that fits well in systems with limited
time constraints and that require fast response times.

Overall performance. In Figure 8, we further compare the
final cumulative runtimes of anySCAN and others w.r.t. pa-
rameters µ (ε = 0.5) and ε (µ = 5) for GR01 to GR03 (GR04
to GR05 are omitted due to space constraints). pSCAN is
slightly faster than anySCAN on GR02 (d = 14.2) and
GR05 (d = 15.8), and is slightly slower than anySCAN on
GR01 (d = 127.0), GR03 (d = 18.7), and GR04 (d = 38.1).
SCAN++ does not work well when ε and µ are small due to
its two-hop-away-node (DTAR) expansion scheme. The big-
ger the number and the neighborhood sizes of core vertices,
the more structural similarity evaluations it must perform,
thus making SCAN++ slower than SCAN in some cases due
to its additional overhead of calculating and maintaining the
DTARs. Similar results are also observed in [5]. Interestingly,
SCAN-B works quite well despite its simplicity. For sparse
graphs, e.g. GR02 and GR03, and high values of ε, e.g.
ε = 0.8, it is sometimes slightly faster than pSCAN and
anySCAN. The reason is that most structure similarity cal-
culations are skipped due to the filtering property described
in Lemma 6, especially when ε is very high. For GR06 with
1.3 billion edges (µ = 5, ε = 0.5), pSCAN and anySCAN
need 2806.49 and 2770.94 seconds, respectively, while SCAN
cannot finish after 12 hours.

Similarity evaluations. Figure 9 shows the number of
structural similarity evaluations for all algorithms and thus
further clarifies the acquired results above. For all datasets,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0 20 40 60 80 100

Cumulative runtime (s)

0

0.2

0.4

0.6

0.8

1

N
M

I

ǫ = 0.2

ǫ = 0.4

ǫ = 0.6

ǫ = 0.8

0 20 40 60 80 100

Cumulative runtime (s)

0

0.2

0.4

0.6

0.8

1

µ = 2

µ = 4

µ = 6

µ = 8

8 9 10 11 12 13

Block size (2n)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 r

u
n
ti
m

e
 (

s
)

ǫ = 0.2

ǫ = 0.4

ǫ = 0.6

ǫ = 0.8

8 9 10 11 12 13

Block size (2n)

60

70

80

90

100
µ = 3

µ = 5

µ = 7

µ = 9

Fig. 10. The effect of parameters µ and ε (left) and block sizes α = β
(right) for GR01

pSCAN and anySCAN use almost the same number of simi-
larity calculations, which is much smaller than those of other
methods. The number of similarity sharing calculations of
SCAN++ is clearly correlated with the numbers of core
vertices. The higher the number of core vertices, the more
similarity sharing SCAN++ uses, meaning that the similarity
evaluation time will be reduced. However, it also means
that SCAN++ incurs more overhead for expanding its DTAR
clusters. Sometimes, this overhead surpasses the similarity
sharing benefit, thus making SCAN++ slower than SCAN-B
(even though it uses fewer calculations), e.g. on GR02.

Parameter analysis. The effect of parameter ε on anySCAN
is shown in Figure 10 (top). Due to its summarization
scheme, too small ε, e.g. 0.2, means many super-nodes are
created earlier, thus leading to better approximate results
earlier. Too high ε, e.g. 0.8, creates many noise vertices
in the beginning, thus making NMI higher (than medium
values of ε) since they could be regarded as members of
a special cluster. In contrast to ε, the effect of µ is quite
straightforward: lower values of µ mean better approximate
results since there are more core vertices to be discovered
at each iteration of anySCAN. This means super nodes are
merged earlier and thus makes anySCAN reach the final
result of SCAN faster.

The effect of block size parameters α and β is also clear in
Figure 10 (bottom). Too small values make anySCAN slower
due to its anytime overhead at each iteration. When we
increase the block size, there are more super-nodes. Their
overlap helps to reduce the runtime by connecting more
super-nodes earlier, thus reducing the number of similarity
evaluations at Step 2 and Step 3 of anySCAN. For example,
with µ = 4, anySCAN decreases from 82.1 to 80.6 and 79.1
seconds when α = β increase from 256 to 2048 and 8192,
respectively. However, when α = β are too large, redundant
similarity calculations may appear during Step 1. Thus, the
runtime of anySCAN may slightly increase. For example,
with ε = 0.2, anySCAN requires 27.2, 22.5 seconds, and 28.1
seconds when α = β = 256, 2048, and 8192, respectively.
The changes, however, are very small. This means that the
performance of anySCAN is stable w.r.t. the block sizes.

Performance on synthetic graphs. Table 2 summarizes some
synthetic graphs created by LFR bench mark graphs [24]. We
set the number of vertices to 1,000,000 and vary the number
of edges in terms of average vertex degrees and average
cluster coefficients. The maximum degree is set to 100.

Figure 11 shows the performance of pSCAN and

Id Vertices Edges d c
LFR01 1,000,000 22,283,773 44.567 0.4017
LFR02 1,000,000 25,064,820 50.129 0.4007
LFR03 1,000,000 27,599,929 55.199 0.4022
LFR04 1,000,000 29,937,286 59.874 0.4011
LFR05 1,000,000 32,527,885 65.055 0.4004
LFR11 1,000,000 25,064,820 50.129 0.2012
LFR12 1,000,000 25,064,820 50.129 0.3029
LFR13 1,000,000 25,064,820 50.129 0.4168
LFR14 1,000,000 25,064,820 50.129 0.5012
LFR15 1,000,000 25,064,820 50.129 0.6003

TABLE 2
SYNTHETIC GRAPH DATASETS (d IS AVERAGED VERTEX DEGREE AND c

IS AVERAGED CLUSTER COEFFICIENT)
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Fig. 11. Performance on synthetic graphs

2 4 6

Iterations

0

50

100

C
u
m

u
la

ti
v
e
 r

u
n
ti
m

e
 (

s
)

Thread = 1 Thread = 2 Thread = 4 Thread = 8 Thread = 16

5 10 15 20 25

Iterations

0

20

40

60

1 2 4 8 16

Number of Threads

1

3

5

7

9

11

13

15
16

S
p
e
e
d
u
p
 f
a
c
to

r 
(t

im
e
s
)

GR01

GR02

GR03

GR04

GR01 GR02

Fig. 12. Cumulative runtimes of anySCAN after each iteration of its
anytime scheme for different numbers of threads (left) and the final
runtime scalability (right)

anySCAN on these synthetic graphs. When the number of
edges (indicated by the average vertex degree) increases, the
runtimes of both algorithm increase since more structural
similarity needs to be computed. However, anySCAN tends
to perform better than pSCAN on denser graphs. When
the average cluster coefficient increases from 0.2 to 0.6 the
runtimes of both methods decreases. Again, anySCAN tends
to perform better than pSCAN on datasets with higher
average cluster coefficients. This can be explained by the
way anySCAN performs clustering. The denser the graphs
and the better separated cluster structures, the more vertices
will be put in each super-node, thus reducing the efforts for
connecting them together. This leads to an improvement of
the overall performance.

5.2 Multicore Anytime SCAN

Anytime properties. Since anySCAN is an anytime and
parallel algorithm at the same time, we study how it scales
with the number of threads. As shown in Figure 12 (left),
anySCAN scales very well for each iteration of its anytime
scheme, using α = β = 32768 as a default parameter in this
section. For GR01, the speedup factors at all examined time
points are very high (around 13.25 for 16 threads). More
interestingly, for most datasets, the scalability of anySCAN
slightly declines at each iteration. For GR02 and 16 threads
as an example, at the first iteration, it achieves 9.52 times
speedup factor. However, at the end, the speed up factor
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reduces to 8.61. Thus, the earlier a user stops the algorithm,
the higher the speed up factor she enjoys.

Figure 12 (right) shows the final speedup factors of
anySCAN w.r.t. different numbers of threads for GR01 to
GR04 (GR05 and GR06 are omitted for clarity). anySCAN
scales very well with the numbers of threads, e.g., almost
linearly for GR01, GR04, and GR05. For GR01, the speedup
factors over single thread are 1.93, 3.78, 7.24, and 13.25 for
2, 4, 8, and 16 threads, respectively. Using 16 threads, the
speed up factors are 12.25, 11.41 and 9.35 for GR04, GR05
and GR06, respectively. The speed up factors on GR02 and
GR03 are worse than those of the others. Beside the com-
mon NUMA effect (threads are run on two different CPUs
with 64 GB local memory each), one reason clearly is the
sparseness of the graph. GR02 and GR03 are much sparser
than GR01, GR04 and GR05 (indicated by the averaged
vertex degrees d). Moreover, the degrees of vertices vary
significantly on GR02 and GR03. These make the workloads
of threads very unbalanced, thus reducing the scalability of
anySCAN (see also Figure 13 for further analysis). In this
case, increasing the block size values will help to solve the
problem (see Figure 15 for the parameter analysis). Sorting
vertices and processing ones with higher degrees first might
also balance the workloads better.

Performance comparison. Since anySCAN is the first par-
allel version of SCAN on multicore processors, we compare
it with an ideal parallel algorithm for further assessing its
performance in Figure 13. The ideal algorithm only calcu-
lates the structural similarities (without optimizations) of
all edges of G which is the most expensive part of SCAN
and ignores the label propagation process among vertices
to build clusters. Obviously, it does not require synchro-
nizations among threads and thus has an ideal scalability
w.r.t. the number of threads. Its performance is calculated by
the speedup factor between the single thread and multiple-
thread usages. Note that pSCAN [5] and SCAN++ [4] are
highly sequential and are non-trivial problems for paralleliz-
ing efficiently. As we can see, anySCAN acquires very close
performance to the ideal algorithm for most datasets, espe-
cially GR02. For GR03, the performance difference between
anySCAN and the ideal method is larger than for the other
data sets for 16 threads. Here, optimization techniques for
speeding up the structural similarity calculation cause the
problem. Most calculations are filtered out earlier following
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Lemma 6. Even though this makes the algorithm much
more efficient, it lowers the overall workload for threads
at each iteration of anySCAN, thus making it more sensitive
to the load balancing problem, as well as reducing the ratio
of sequential and parallel parts of anySCAN and thus the
scalability following Amdahl’s law for scalability.

AnySCAN needs to perform the Union operations inside
critical areas for merging super-nodes inside Step 2 and
3. Thus, the numbers of Union operations strongly affect
its scalability and are shown in Figure 14. Since pSCAN
uses the Disjoint Set data structure like anySCAN, we
include it here for a comparison even though it is not a
parallel algorithm. As we see, pSCAN uses much fewer
Union operations than the numbers of vertices |V | of G.
And, anySCAN uses even fewer operations (up to 25 times
and 2725 times compared to pSCAN and |V |, respectively).
Moreover, most of them (7685/7844, 31440/62351, 268/599,
and 19969/25426 operations for GR01 to GR04, respectively)
are executed sequentially in Step 1 of anySCAN, leaving
only few to be executed in Step 2 and 3 inside critical
sections. And fewer operations means better scalability of
anySCAN as shown in Figure 12.
Parameter analysis. Processing times of different core ver-
tices vary significantly depending on their neighborhood
sizes, and are obviously more expensive than those of
noise ones. Balancing the workloads for threads is therefore
harder if there are more core vertices. Moreover, the number
of merged super-nodes is higher. Thus, increasing µ and ε
will lead to greater speed up factors as shown in Figure
15 (top), since the number of core vertices is reduced. On
the other hand, increasing the block size will provide more
work for threads at each iteration, therefore increasing the
workload balance and thus increasing the scalability of
anySCAN as shown in Figure 15 (bottom).
Performance on synthetic graphs. Generally, when the
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average degree grows, the overall scalability of anySCAN
improves since the number of structural similarity calcula-
tions and the time for evaluating them both grow as well.
On the other hand, when the average cluster coefficient is
high, the overlap among the neighborhoods of vertices is
also large, thus leading to more conflicts during Step 2 and
3 of anySCAN. This reduces the overall scalability. Figure
16 shows the scalability of anySCAN using multiple threads
when varying the average degrees and cluster coefficients.
Though there are some small fluctuations, the above trends
are generally observed in most cases.

5.3 Dynamic Anytime SCAN

Since danySCAN is the first approach for weighted dynamic
structural graph clustering, we compare it with dSCAN [8],
an extension of pSCAN for dynamic graphs, also in its non-
weighted mode with two operations including insertion and
deletion. Moreover, since it processes updates in bulks, we
compare it with pSCAN [5] and anySCAN [7] for fully
reclustering the whole graphs. Unless otherwise stated, we
use default parameters µ = 5, ε = 0.5, and α = β = 8192.

Performance comparison. Figure 17 shows the performance
comparisons among danySCAN and competitors for GR01
to GR03 for different parameters ε(µ = 5) and µ(ε = 0.5)
and 4000 updates (2000 delete and 2000 insert operations).
Clearly, danySCAN is much more efficient (up to 35.2 times
faster) than pSCAN and anySCAN since it only updates
the cluster structures rather than starting from scratch.
Compared to dSCAN, danySCAN runs much faster than
dSCAN on GR01 and GR02 and is comparable to dSCAN
on GR03. The reason is that dSCAN reclusters with each
update, thus incurring costs for repeatedly traversing the
graph, while danySCAN only needs to update clusters
one time using its bulk processing scheme. Moreover, the
denser the graphs, the better the performance of danySCAN
compared to dSCAN due to the higher graph traversal costs.
For example, dSCAN runs much slower (24.8 times) than
danySCAN on GR01 (d̄ = 127) and is slightly slower (1.5
times) than danySCAN on GR02 (d̄ = 14.2).

Figure 18 shows the cumulative runtimes of different
methods when the number of updates changes from 2000
to 10000. While the runtimes of pSCAN and anySCAN
remains stable, those of danySCAN and dSCAN increase.
However, the performance changes for dSCAN are much
larger than for danySCAN. Again, this is because the bulk
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update scheme of danySCAN incurs less overhead than the
batch update scheme of dSCAN.
Parameter analysis. As seen from Figure 17, when ε in-
creases, the runtime of danySCAN decreases. The main
reason is that with lower values of ε, we have more core
vertices. Thus, when there is a change in the graph, the
number of affected clusters is higher. Thus, both dSCAN and
danySCAN have to traverse a larger part of the graph for
rebuilding clusters. Consequently, the overhead is higher,
leading to performance degradation. Similarly, with lower
values of µ, we have more core vertices, leading to worse
performance than with higher values of µ.
Performance for different update operations. Figure 19
shows the cumulative runtimes of danySCAN and dSCAN
for 1000 to 5000 insertion and deletion operations for GR01
and GR04. For both methods, deletion is more expensive
than insertion. This is due to the fact that when an edge
(u, v) is deleted, it more likely will lead to a split of clusters.
Thus, the algorithm must traverse the graph for rebuilding
these clusters. In the insertion, it usually leads to a merge
of clusters which is much cheaper due to the merging
approach of both dSCAN and danySCAN. Moreover, while
dSCAN processes the deletion cases much slower than
danySCAN, it deals with the insertion ones very efficiently.
For GR01 and 5000 insertion operations, dSCAN needs 3.67
seconds while danySCAN requires 13.58 seconds. However,
with 5000 deletion operations, dSCAN consumes 564.85 sec-
onds compared to 37.30 seconds of danySCAN. danySCAN
is designed to cope with mixed operations in its bulk update
scheme and not optimized for each specific operation like
dSCAN. However, since the deletion time is much larger
than the insertion time, danySCAN still outperforms its
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competitor if the number of insertions is not much larger
than the number of deletions as demonstrated in Figure
17. For both types of operations, when the number of
updates is larger, the better the performance of danySCAN
is compared to that of dSCAN as observed from Figure
18 above. The weight change case of danySCAN has the
performance between the insertion and the deletion cases
since it naturally consists of these two.

5.4 Dynamic Anytime SCAN on Multicore CPUs
Scalability. Figure 20 shows the scalability of danySCAN
w.r.t. the number of threads for different datasets and 10,000
different update operations using default parameters µ =
5, ε = 0.5 and α = β = 32768. Overall, danySCAN scales
very well with the number of threads. For example, using
16 threads, the speedup factor on GR01 is up to 13 times.
Among different datasets, it has the worst performance on
GR02. The reason has been examined in Section 5.2. GR02 is
the sparsest graph with significantly varied vertex degrees,
thus making workload balancing harder, which is reflected
in the relatively weaker performance of danySCAN. The
denser the graph, the better the scalability of danySCAN
due to the larger overall workload for threads.

Weight change and deletion operations show better per-
formance than insertion. The reason is simply that the more
edges are deleted, the more clusters we need to rebuild and
the heavier the update tasks which leads to better scalability.
Parameter analysis. As seen in Figure 21, smaller values of ε
and µ will increase the number of core vertices, thus leading
to workload imbalance and more super-node merges. This
typically decreases the scalability as discussed in Section
5.2. When the number of updates is large, more vertices
are affected in the bulk scheme. In turn, this increases the
overall workload of threads. And consequently, it raises the
scalability. The blocksize has similar effect on danySCAN
compared to anySCAN like µ and ε (thus omitted here). The
same results are observed for the other update cases.

6 RELATED WORK AND DISCUSSION

Graph clustering techniques. Due to the ubiquitousness of
graph like structures such as social networks, graph clus-
tering techniques are becoming more and more important.
There are graph clustering models such as modularity-based
methods [1], graph partitioning [2], and structural graph
clustering methods, which are our main focus here.
Structural graph clustering. Structural graph clustering, in
particular the density-based approach of SCAN [3], is an
active research topic with many extensions. For example,
SCOT [25], HintClus [25], and gSkeletonClu [20] aim to
solve the parameter setting problem of SCAN. DHSCAN

[26] and AHSCAN [27] are divisive and agglomerative hier-
archical algorithms, respectively, using the structural simi-
larity notion of SCAN. In this work, we focus on techniques
that speed up the algorithm SCAN [3].

LinkScan* [28] improves the efficiency of SCAN using
an edge sampling technique for reducing the number of
similarity evaluations. However, it only approximates the
result of SCAN unlike pSCAN [5] and SCAN++ [4].

pSCAN [5] is a recent state-of-the-art technique. Instead
of calculating the full neighborhood of a vertice p, it only
checks if p is a core and then tries to connect p to other
core vertices from other clusters. This scheme significantly
reduces structural evaluation and makes pSCAN one of the
fastest variants of SCAN. The final cumulative runtimes of
anySCAN are almost similar to those of pSCAN. However,
anySCAN has the power of approximation and exact tech-
niques at the same time in its anytime scheme.

SCAN++ [4] is the closest related work to anySCAN. It
builds a set of pivots by performing neighborhood calcula-
tions for a vertex p, called a pivot, and expanding pivots for
all nodes that are two-hop-away from p in the same way as
SCAN until it is converged. Then, it tries to connect pivots
by examining and pruning bridge vertices that connect
them. In this way, the number of similarity calculations
is reduced. The goals of these steps bear some similarity
with Step 1 and 2 of anySCAN, though anySCAN has a
completely different angle. First, anySCAN randomly draws
vertices for summarization and only keeps core vertices as
super-nodes for further processing, thus limiting redundant
similarity calculations since the number of super-nodes in
anySCAN is much smaller than the number of pivots in
SCAN++. Second, it connects super-nodes in a different
manner as SCAN++ by examining two different kinds of
connections (strong and weak ones) separately as well as
processing only core vertices as super-nodes. Last, noise
vertices are examined in the post processing step separately
from the whole algorithm. Thus, it has better pruning power
than SCAN++. And thus, it is more efficient.

Parallelizing SCAN. There exist some efforts for paral-
lelizing SCAN. PSCAN [6] is a parallel version of SCAN
using MapReduce for distributed computing. In [4], the
authors also briefly introduce a MapReduce framework
for SCAN++. The distributed model of MapReduce differs
significantly from parallel computing in shared memory
ones where memory is a contested resource, and latencies
are small [29], [30]. Thus naively tranforming distributed
algorithms to shared memory architectures will obviously
be very inefficient as pointed out by many previous studies,
e.g., [31]. To the best of our knowledge, anySCAN is the first
parallel algorithm for SCAN on shared memory architec-
tures such as multicore CPUs. Moreover, existing techniques
such as pSCAN [5] and SCAN++ [4] incur many synchro-
nizations that leave threads idle in a naive parallelization,
which significantly reduces the scalability w.r.t. the number
of threads. Recently, Takahashi et al. [9] introduce SCAN-XP,
a parallel version of SCAN specifically designed for Intel
Xeon Phi Coprocessors. This method, however, requires all
structural similarities to be calculated. Thus, it is not a
work-efficient parallel technique like anySCAN. It also is
not designed to work with weighted graphs like anySCAN.
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Dynamic structural graph clustering. There exist some
dynamic structural algorithms. DENGRAPH [19] is an incre-
mental clustering algorithm designed to detect communities
in large and dynamic social networks. Incorder [32] is an
incremental version of gSkeletonClu [20]. Chang et al. [8]
also introduces an incremental version of pSCAN, called
dSCAN, which is closest to danySCAN. All these techniques
update clusters in a batch mode with each insertion or dele-
tion. For large number of updates, this scheme incurs many
redundant calculations, thus decreasing their performance.
On the other hand, danySCAN processes updates in a bulk
mode, which is more efficient. Moreover, updates can be
done in an anytime parallel way. In addition, danySCAN
can handle dynamic weighted graphs.

7 CONCLUSION

In this paper, we propose an approach for accelerating the
structural graph clustering algorithm SCAN. Our anytime
algorithm, called anySCAN, quickly produces an approxi-
mate result in the beginning and continuously refines it for
acquiring better results within arbitrary time constraints.
This anytime scheme provides an efficient way for coping
with large graphs. More interestingly, anySCAN is, at the
same time, a parallel algorithm. Each iteration of its anytime
scheme can be performed in parallel, thus further accelerat-
ing performance. To the best of our knowledge, anySCAN
is the first anytime and parallel structural graph cluster-
ing algorithm. We additionally introduce an extension of
anySCAN, called danySCAN, to parallelize processing of
dynamic graphs. Experiments show that anySCAN has very
good performance on large graph datasets in its anytime
scheme. It also scales very well with the number of threads
under shared memory architectures such as multicore CPUs.

In future work, we aim for a distribute extension of
anySCAN to handle massive graph datasets on different
machines, and applying our techniques to the study of
patient data with sleep disorder symptoms.
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