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A REVIEW OF FRACTURE TOUGHNESS TRANSFERABILITY  

WITH CONSTRAINT AND STRESS GRADIENT 

 G. Pluvinage, J. Capelle, and M. Hadj Méliani 

Abstract 

In this review paper, only constraint and stress gradient approaches to transferability of 

fracture toughness are examined.  

 

The different constraint parameters are defined and discussed and one example is given in 

each case. Factors that are influenced the constraint are studied. Special attention is given to 

the actual trends is to use the plastic constraint in the Material Failure Master Curve (MFMC) 

and the Material Transition Temperature Master Curve (MTTMC). The paper also deals with 

the influence of T stress on the crack path and out-of-plane constraint on the influence of 

thickness on fracture toughness. 

 

The uses of plasticity with gradient and the relative stress gradient in local fracture 

approaches are also examined. 

 

Key words: constraint, relative stress gradient, T stress, Q parameter 

 

NOMENCLATURE 

A constant 

Ai  William’s stress distribution parameters 

    HRR  stress distribution parameters 

AP Constraint parameter  

Ap,c  current plastic zone area  

Ap,ssy  reference plastic zone  area 

Ap,c   area  surrounded by the equivalent plastic strain 

Ap,ref   reference area surrounded by the (p)  isolines 

B thickness  

B0, B1 ,B2  and B3 constants 

D   pipe diameter 

D0 length 

E Young’s modulus  

F geometry correction factor  

G shearing modulus 

Gc fracture toughness 

I   complex function of eigenvalues 

In dimensionless integration constant  

J   path integral 

JC fracture toughness 

JIc  fracture toughness plane strain conditions 

Jref  reference fracture toughness 

KIc fracture toughness for plane strain conditions 

KJc fracture toughness  

KIz,c three-dimensional fracture toughness in pure mode I  

K0 lower bound of the notch fracture toughness 



 

 

K, c  notch fracture toughness 

    
 fracture toughness corresponding to         

L plastic constraint factor 

N   strain hardening exponent 

Pref reference property 

Pstruct structure material property 

P transferability parameter 

Q the Q parameter 

Rm ultimate strength   

T stress the T stress 

Tef,c value at critical load   
T0 reference temperature  

              transition temperature corresponding to a constraint equal to zero 

       reference temperature for a reference constraint 

  
  constraint indexing master curve reference temperature   

                             
Tz   triaxial stress constraint 

Uc fracture energy   

Xef   effective distance 

Xc.characteristic distance  

cefX ,
critical effective distance 

Xmax,c. distance where the triaxiality is maximum 

Yref constraint parameter for a reference case 

 

a2 , b2 and c2 constant 

bm Basquin’ exponent   

c constant  

c1and c2 constants 

d constant 

sc  weight function skew factor and polar fu  

)(f polar function  

kt stress concentration factor  

l   reference length 

lch characteristic length x max where opening stress is maximal 

    
 mean radius of the crack-tip plastic zone 

ry radius of the elastic boundary 

r* specimen radius 

t and s exponent 

zB relative thickness 



 

   coefficient of the Ramberg-Osgood Law 

 stress triaxiality 

max, c maximum critical stress triaxiality 

cef ,  effective critical stress triaxiality 

  relative stress gradient 

o  strain associated to the reference stress 

pl,eq  the plastic equivalent strain 



 

 

 rotation angle.  

 constant 

 shearing strain 

parameter for the proportionality 

φ constraint parameter  

 polar angle  

    bifurcation direction  

 scale factor 

 Poisson’ ratio, 

     critical gross stress 

eq equivalent  Von Mises stress 

0 reference stress  

VM Von Mises stress 

h hydrostatic stress 

  
  critical net stress 

N net stress 

          eigenvalues 

VM   Von Mises equivalent stress 

 'f,  Basquin’s coefficient 

D̂    actual endurance limit 

DN̂    real fatigue limit 

y is the shearing yield stress 

y,ap is the apparent yield stress in torsion   

T*   shift of the test temperature 

   

  relative maximum stress gradient   

Δ   applied stress range   

biaxiality ratio  

 

1) INTRODUCTION 

Mechanical properties are not intrinsic to material but depend on geometrical factors such as 

the specimen geometry, thickness, surface roughness and length, defect geometry such as the 

relative length, radius, or opening angle, loading mode, and environment. Sinclair and 

Chambers [1] have carried out fracture tests on brittle materials in plane strain conditions and 

on ductile materials in plane stress conditions and have found that the classical linear fracture 

mechanics cannot predict fracture stress and is over-conservative. 

 

If we consider two specimens that are geometrically identical but with different size, where 

the smallest is the model “m” and the second is the prototype “p”, the ratio of the geometrical 

dimensions including the crack length is equal to the scale factor 



 

 

 
Fig. 1: Scale effects on ductile fracture in plane stress. Experiments by Sinclair and Chambers 

[1]. 

For brittle material, if we assume that fracture toughness is intrinsic to material, the ratio of 

critical gross stress     is given by the following scaling law: 
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For ductile material this ratio is given by: 
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where N is the strain hardening exponent of the Ramberg-Osgood strain-stress law. 

 

Material properties available from data banks are therefore to be considered as reference 

material properties, as results of from standard tests. To use these reference properties for a 

structure and component which differ in terms of geometry and loading mode, a correction 

needs to be made, which is called transferability.  

 

The properties to be used in a structure Pstruct are deduced from the reference properties Pref 

and the transferability function f (p), where p is the transferability parameter. 

 

Pstruct = Pref. f(p) (3) 

 

Evidence of the scale effect was first pointed out by Leonardo da Vinci (1452–1519), and in 

the sixteenth century Galileo Galilei said that “from the small to the big is not so simple”.  

 

The scale effect is generally represented by models using a characteristic dimension from the 

structures. For probabilistic approaches [2], the volume V of the structure, the scale factor  

[3], or a characteristic length [3] is used as an adjustable parameter. 

 



 

 

A fractal approach to the scale effect on fracture toughness Gc was proposed by Carpinteri et 

al. [4]. It introduces a characteristic length lch which controls the transition from fractal to 

Euclidian behaviour. 

 

Bazant [5] has developed a scaling law based on an asymptotic and energetic approach. It 

refers to the critical stress, whose value is ruled by two asymptotic behaviours: plastic 

collapse without any scale effect and brittle fracture where the scale effect is maximal. These 

two asymptotes intersect at a length D0, which characterizes the brittle to ductile transition. 

 

For fractures emanating from a defect where fracture mechanics can be applied, the 

transferability is sometimes treated with the concept of characteristic length or scale factor [6] 

but more often by using the stress constraint or the relative stress gradient. These 

transferability parameters emanate from the defect tip distribution (notch or crack). If we 

compare the stress distribution obtained in a reference situation (generally small scale 

yielding) with another general one, the stress distribution is modified in two ways: there is a 

shift of the stress distribution and a small rotation. These modifications of the stress 

distribution are considered as transferability problems. The shift of the stress distribution is 

introduced into the plastic constraint, which is used as the transferability parameter. In the 

literature, we can note the following constraint parameters: the plastic constraint factor L [7], 

the stress triaxiality  [8], the Q parameter [9], T stress [10], and A2 [11]. 

 

The rotation of the defect tip distribution is also less often used as a transferability parameter. 

The following parameters can be used: the strain gradient plasticity [12], the defect tip relative 

stress gradient [13], or the relative stress gradient [14]. 

 

Today, there is no proposed approach combining these two aspects of the modification of the 

stress distribution with geometrical or loading mode parameters. 

 

In this review paper, only constraint and stress gradient approaches to transferability are 

examined. For the characteristic length approaches, the attention is focused instead on the 

scale effects [15]. 

 

The different constraint parameters are defined and discussed and one example is given in 

each case. Factors that influence of constraint are studied. Special attention is given to the 

plastic constraint in the Material Failure Master Curve (MFMC) and the Transition 

Temperature Master Curve (TTMC). The paper also deals with the influence of T stress on 

the crack path and the influence of thickness on fracture toughness with the out-of –plane 

constraint. 

 

The use of plasticity with gradient and the relative stress gradient in local fracture approaches 

is also examined. 

 

2. CONSTRAINT AND RELATIVE STRESS GRADIENT AT DEFECT TIP 

Constraint is considered as a modification of the defect tip distribution under the effects of 

specimen or defect geometries or loading mode. Different constraint parameters are defined 

and associated with the defect type or stress-strain behaviour. 

 

Singular elastic stress distribution  

For a notch with infinite acuity, Williams [16] has given a solution for elastic stress 

distribution as the following series: 
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For a crack, Larson et al. [17] have suggested describing the elastic stress field at the crack tip 

by three terms and introduce for the first time the T term as the second one of the series: 
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 + O(√r)  (5) 

  

Therefore, ideally T stress is a constant stress which acts along the crack direction and shifts 

the opening stress distribution according to the sign of this stress. For stress distribution 

emanating from a blunted crack or notch, T stress is not constant along the ligament. This 

leads to consider  a conventional value defined as the effective T stress. 

 

 
Figure 2 : Ideal T stress distribution and shift of opening stress distribution by T stress. 

 

 

Singular elastic-plastic stress distribution  

The power-law expansion of the elastic–plastic HRR [18] field if higher-order singular or 

non-singular terms are  considered, is represented by: 

 (6) 
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with s1 = –1/(N + 1) and     ~ J
1/(N+1)

, where N is the hardening exponent according to the 

Ramberg-Osgood constitutive equation, s2 is the exponent of the second singular or non-

singular term, J is a path integral, and l is a reference length. 

O'Dowd and Shih [19,20] have simplified this formula. Considering strain hardening 

exponent values in the range 5 ≤ N ≤ 20, the angular functions f and rrf  are equivalent and 

constant f ≈ rrf ≈ constant, and the value of rf  is negligible when compared with f  ( f  

>> rf ) for 2/   The stress field is therefore described by: 
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B0 and In are constants for fixed values of θ and n; q is a parameter close to zero (q ≈ 0); and 

 is the reference stress. The Q parameter is called the amplitude factor of the second-order 

field or simply   Q . 

Non-singular elastic and elastic plastic stress distribution  

The opening stress at the notch tip exhibits a more complex distribution. The stress increases 

until it reaches a maximum, which occurs behind the notch tip at distance xmax. At distance 

Xef (the effective distance), the distribution is governed by a power law with an exponent 

close to those given by the elastic stress distribution of Williams [16]. In Fig. 3, zone III 

represents precisely this zone, where the stress distribution exhibits a linear behaviour in the 

bi-logarithmic diagram and is governed by the notch stress intensity factor. In zone IV, the 

stress distribution decreases until it reaches the gross stress level. The effective distance Xef 

corresponds to the minimum of the relative stress gradient. 

 

Figure 3 : Elastic-plastic stress distribution and definition of the effective distance from the 

minimum of the relative stress gradient. 

 3. THE DIFFERENT CONSTRAINT PARAMETERS 

To assess the effect of geometry and loading mode on fracture toughness, different two-

parameter concepts are applied as K–T stress- and J–A2-concepts based on a rigorous 

description of the asymptotic fields as well as the phenomenological J–Q- and J–-concepts 

using the Q-parameter and the stress triaxiality  as secondary fracture parameters.  

 

T stress 

The stress distribution ahead of a crack tip depends on the polar angle , as we can see in Eq. 

. However for some particular  angles, the T stress is given by particular values of the 

difference between the opening stress yy and the stress parallel to the crack xx (see Table 1). 

 

Table 1: T stress values according to polar direction . 

    

 yyT  -xx  xxT  3y yxx  T  3y yxx  T   yyT  -xx  

  

Particularly for = 0, the T stress is given by : 

              
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Equation (8) is the basis of the so-called stress difference method, which was proposed by 

Yang et al. [21]. The stress distribution in the direction = 0 is generally computed by the 

finite element method. Chao et al. [22] computed xx in the direction = 180 ° (in the crack 

back direction) by the finite element method and defined the T stress as the value of xx in the 

region where the value is constant. Ayatollahi et al. [23] determined the T stress by using the 

Displacement Method in the finite element and then obtained a stabilized T stress distribution 

along the ligament.  

 

T-stress can be measured experimentally using strain with the difference between the normal 

strains in polar coordinates after a rotation of the angle . From Williams’s solution, the strain 

difference is given by: 
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Here, E and  are the Young’s modulus and Poisson’s ratio, respectively, the value of A1 is 

proportional to the stress intensity factor KI, and the parameter A2 is proportional to the T-

stress. For the angles  =  ± 120° (MM line of Fig. 4), Eq. (9) can be simplified and leads to 

the following approximation for small values of r: 
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Fig. 4.  Experimental determination of T stress using strain gauges [26].              

Physically, T stress is a stress acting parallel to the crack line in the x direction to the 

extension of the crack with amplitude proportional to the gross stress. T may be positive 

(tensile) or negative (compression). 

 

An example of the computed T stress distribution along the ligament for a Roman tile 

specimen with a notch is given in Fig. 5. It can be seen that T is not really constant as it is in 



 

 

theory. For short cracks, distribution of the T stress is stabilized after some distance. For long 

cracks, T increases linearly with the ligament except in a region close to the crack tip. To 

avoid this dependence of the T stress on distance, it is attractive to use a conventional 

definition of the effective T stress. 

  

 

 
 

 Fig. 5. T stress evolution with distance for a Roman tile specimen. Values of Tef parameter 

obtained by extrapolation or volumetric methods. 

 

Maleski et al. [27] suggested representing the T stress evolution by a linear relationship with 

distance x: 

 

                                                T (x) = Tef + (x/a))    (11)

  

where is a constant and a is the crack depth. Tef is obtained by extrapolation x → 0. Using 

the volumetric method, Hadj Meliani et al. [28] suggested defining the effective T stress as the 

corresponding value in the T stress distribution for a distance equal to the effective distance 

Xef. Figure 5 gives the T stress evolution with distance for a Roman tile specimen and the 

definition of Tef. One notes that in this case the values of Tef  obtained by extrapolation or the 

volumetric method are relatively close. In the following, the Tef parameter obtained from the 

critical stress distribution is called Tef,c. 
 

Q Parameter  

In Eq. (5) the J-integral sets the size scale over which high stresses develop while the second 

parameter, Q, quantifies the level of some stress shift at distances of a few CTODS ahead of 

the crack tip; such a dimension defines the physically relevant length scale of the fracture 

process zone Xef. 

 

The constraint has been defined by Dodds et al. [29] using the Q parameter. This parameter is 

defined as the difference between the opening stress level for a given geometry or loading 

mode and a reference situation with generally small scale yielding (ssy) divided by the 

reference stress 0.            
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O'Dowd and Shih [19,20] showed that Q corresponds effectively to a spatially uniform 

hydrostatic stress and represents the relative difference between the high triaxiality reference 

stress field and that of the fracture specimen. Q is defined at a non-dimensional distance of 0 

r/J = 2. In order to fulfil the condition of a spatially uniform Q, it is necessary that the 

reference and the studied stress field be homothetic. The following conditions are added for a 

correct determination of Q: 
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where Q(1) and Q(5) are Q values determined respectively at the non-dimensional distances 1 

and 5. 

If the condition given by Eq. (13) is satisfied, the stress distributions corresponding to the 

small scale yielding and the studied one are homothetic. Here, we considered a local fracture 

criterion for brittle fracture with two parameters, the critical stress c and the characteristic 

distance Xc. The characteristic distance is in this case independent of the stress distribution 

and is associated with a material characteristicIf we multiply the relationship (16) by 
cX : 
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and multiply again by the geometry correction factor F: 
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we can see that in this case Q is simply the relative difference between critical stress intensity 

factors. 

  

 

Fig. 6. Definition of Q parameter and validity condition. 



 

 

Stress triaxiality 

The stress triaxiality  is also used as a measure of the constraint and leads to the two-

parameter fracture mechanics approach K- or J-. Stress triaxiality is chosen as a 

transferability parameter because ductile fracture is sensitive to this parameter through void 

growth [30] as well as cleavage stress for brittle fracture [31].  

 

This parameter is defined as the ratio of the hydrostatic stress over the equivalent von Mises 

stress. 
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The critical stress triaxiality distribution at the notch tip increases until it reaches a maximum, 

which for the critical event is called max,c and corresponds to the distance Xmax,c. After that, it 

decreases, then sometimes increases again, and finally falls to zero when the distance is far 

from the notch tip.   

 

The maximum critical stress triaxiality is sensitive to the notch radius and ligament size. It 

decreases practically linearly with the notch radius and increases with relative notch depth 

[32]. It has been noted that the maximum triaxiality always occurs inside the fracture process 

zone since 
ccX
,max

 remains lower than or equal to the critical effective distance 
cefX ,
[32]. 

With an increase of the relative notch depth, the position of maximum stress triaxiality 

approaches or reaches the limit of the fracture process zone. 

 

According to [32], the maximum stress triaxiality parameter is not the most suitable constraint 

parameter to explain the modification of fracture toughness with ligament size or thickness. 

An improvement has been made using the effective critical stress triaxiality
cef , . This 

parameter is defined as the average value of the critical stress triaxiality over the critical 

effective distance  
cefX ,
. 
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Other constraint parameters  

 

A2 and A3 parameters  
A three-term asymptotic solution for stresses near the tip of the crack in an elastic-plastic 

body can be written in the form [33]: 
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where    is the dimensionless distance: 



 

 

             (21) 

t and s are exponent, and 0 is the reference stress.    
     

       
  are normalized angular 

functions obtained from the solutions of asymptotic problems. A1 and A2 are two independent 

amplitudes found by stress fitting inside the fracture process volume. 

      
 

           
 
  

    
 

   
  (22) 

The dimensionless integration constant In depends only on the hardening exponent n and is 

independent of other material constants (i.e. reference strain 0or stress , , respectively) and 

applied loads. L is a characteristic length parameter which can be chosen as the crack length 

a, the specimen width W, the thickness B, or unity.  is a parameter of the Ramberg-Osgood 

law. 

 

A3 depends on A1 and A2: 

 

     
   
 

   
 (23) 

    is related to J, and     is related and close to Q. The constraint parameter     is determined 

as presented by Nikishkov [33] by comparison of the actual radial and circumferential stresses 

distribution in the specimen and the stresses according to the reference asymptotic field  at 

two points located in the ligament and at  =/4, both at a distance of r = 2J/0. This 

procedure is identical to those used for Q determination. 

 

    can be used for a three-parameter fracture approach, K-T-A3 or J-A2-A3 [34–36]. 
  

Plastic constraint factor  
The plastic constraint factor is used for determination of the limit state. The theory of limit 

analysis appeared in the late 1930s. It constitutes a branch of the theory of plasticity related to 

an elastic perfectly plastic behaviour. In the mid-1950s a large number of analytical solutions 

appeared for calculating the ultimate load of beams and shells, leading to more realistic values 

of the capacity to resist plastic collapse.  

 

The introduction of linear fracture mechanics in the mid-1950s led to consider the risk of 

brittle fracture governed by the global stress in apparent opposition to the theory of plastic 

collapse governed by the net stress. 

 

This failure criterion assumes that failure occurs when a critical net stress   
  reaches the 

ultimate strength Rm. One notes that ductile failure is sensitive to net stress N (load divided 

by the ligament cross-section) while brittle fracture is sensitive to gross stress g (load divided 

by the entire section). The abovementioned criterion needs to be modified to take into account 

constraints due to geometry and loading mode effects in the following manner: 

 

   
       

                                                                                                (24) 

 

where  L is the so-called  plastic constraint factor. 

 



 

 

Design codes are based on limit analysis to calculate the limit state and incorporate the safety 

factor through the lower bound of a plot of experimental results. 

  

 
Fig. 7: Evolution of the plastic constraint factor versus the relative defect depth a/D. 

Polyethylene pipe. 

Figure 7 gives the evolution of the plastic constraint factor in a polyethylene pipe with a semi-

elliptical surface defect. The plastic constraint factor L is plotted versus the relative defect 

depth a/D, where D is the pipe diameter.  

 

Constraint parameter φ or AP 

T stress has a strong influence on the shape and size of the plastic zone. For example, in plane 

strain the plastic zone has a typical shape of a butterfly wing. For a positive T stress the wings 

are oriented in the crack as above direction. If the T stress is negative, the wings are oriented 

in the reverse crack extension direction. 

 

This effect is illustrated in Fig. 8, showing the plastic zone ahead of a surface notch defect. 

This defect is located in a pipe of diameter D and thickness B (B = 8.9 cm). The applied 

internal pressure is 20 bars. 

 

The size of the plastic zone is also modified because the equivalent stress is modified by the T 

stress. If we consider the asymptotic field given by Eq. 3 and , the equivalent von Mises 

stresseq is a function of the ratio T/KI : 
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When T is negative (specimen in tension), the plastic zone increases compared to the 

reference case for which T = 0. For positive values of T (double cantilever beam, DCB, or 

compact tension, CT, specimen), the size of the plastic zone decreases. 

 

Mostafavi et al. [37] have suggested a new constraint parameter φ defined as the ratio of the 

current plastic zone area Ap,c and the reference plastic zone area, that is, for a small scale 

yielding situation Ap,ssy . 

 

   
    

      
  (26) 



 

 

 

  
a/t = 0.1  R/t = 20  T<0 a/t = 0.75  R/t = 20 T>0 

 

Fig. 8 : Influence of T stress sign on plastic zone shape. 

 

Mostafavi et al. [37] remarked that the constraint parameter φ has its limitation in 

characterizing the constraint at a higher J-integral value for ductile material and suggested that 

the constraint definition be modified by a new parameter Ap: 

    
     

       
 (27) 

 

Ap,c is the area surrounded by the equivalent plastic strain (p) isolines ahead of the crack tip 

and Ap,ref is the reference area surrounded by the (p) isolines in a standard test. 

Yang et al. [38] found that a sole linear relation between the ratio of the current and the 

reference fracture toughness JC/Jref exists. This is restricted to the case for dissimilar metal 

welded joints regardless of the in-plane and out-of-plane constraints for a crack. This 

relationship is independent on the selection of the p isolines for higher p values and can be 

regarded as a unified reference line to characterize the dependence of fracture resistance of a 

crack on the constraint. 

  

 
Fig. 9: Normalized fracture resistance JC/Jref versus √Ap for cracked dissimilar metal welded 

joints, obtained from p = 1.0 isolines [38]. 

 



 

 

4. FACTORS OF INFLUENCE ON CONSTRAINT 

Values of the constraints Tef, Q, and stress triaxiality are sensitive to specimen geometry, 

loading mode, ligament size, and load level. Some examples of these effects are given as 

follows. 

Loading mode 

It has been noted that T stress can be negative or positive. In Table 1, the critical effective T 

stress for four specimens used for fracture test has been reported. These specimens have a 

notch of 0.25 mm radius and are made in X 52 pipe steel. Four types of specimens are 

examined: single edge notch tensile (SENT), CT, Roman tile (RT), and DCB.  

 

Table 2: Values of Tef,c/y for four specimen types (SENT, CT, RT, and DCB). 

Specimen SENT CT RT DCB 

Tef,c /y [–0.74; –0.80] [–0.53; –0.67] [–0.25; –0.30] [+0.19; +0.21] 

 

In general, specimens loaded in tension like CCT or SENT have a high negative effective T 

stress and are therefore less constrained. Specimens in bending like TPB or CT have lower 

negative T stress and higher constraint [39]. DCB always has positive values. In the next 

section, we will discuss the consequence for crack bifurcation. 

For the CT specimen, some contradictory results can be found in literature. The effective T 

stress is sometimes negative and sometimes positive. These differences can be explained by 

the definition of the effective T stress, the ligament size, the load level, and so on. 

 

Thickness 

The effect of thickness on constraint is explained later as the effect of out-of-plane constraint. 
 

Ligament size 

Figure 10 depicts the constraint parameter Tef distribution for the CT specimen (width W = 

63.80 mm, height = 61 mm, thickness = 5.84 mm, notch radius = 0.25 mm) in plane stress. 

The relative notch depth a/W varies in the range 0.1 to 0.7 and the applied load is constant for 

each value of a/W and equal to 1000 N. The value of effective T stress Tef is associated with 

the effective distance, which varies with a/W [40]. 

 

 
 

Fig. 10: Tef distribution for CT specimen 

(width W = 63.80 mm, height  61 mm, 

thickness 5.84 mm, notch radius 0.25 mm) in 

plane stress [28]. 

Fig. 11: Loading path and Material Failure 

Master Curve (MFMC) for a pipe with a 

longitudinal surface notch defect: a/B = 

0.1, 0.3, 0.5, and 0.75 and R/B = 40 [28]. 

 



 

 

 

One notes that the value of Tef increases when a/W increases. This result is confirmed by [41], 

where T,Q, , and A2 are computed for a clamped single-edge tension specimen. The relative 

crack depth varies in the range a/W = 0.3–0.7 at the loading level of J/(b0) = 0.01, where b is 

the ligament size. These authors indicate that, in general, T, –Q, , and –A2 increase as a/W 

increases; however, the impact of a/W is relatively small. 

 

Loading path in plane Kap-Tef 

A negative value of the Tef-parameter increases with the applied load generally according to a 

parabolic function for low values of the applied load or pressure and becomes practically 

linear when the load value increases. In the plane applied stress intensity factor-effective T 

stress, all the assessment points follow a non-linear curve, which is the so-called loading path. 

The loading path intercepts the MFMC at the point K, c–Tef,c-parameter (or Kc if the defect is 

a crack) at the critical event. Figure 11 gives an example of different loading paths for a pipe 

made of X52 steel. The pipe exhibits a longitudinal surface notch defect with relative depth 

a/B: a/B = 0.1, 0.3, 0.5, and 0.75, and relative radius R/B = 40, where B is the wall thickness 

of the pipe. 

 

5. INFLUENCE OF CONSTRAINT ON FRACTURE TOUGHNESS 

Eisele et al. [42] pointed out that the fracture toughness Kc or Jc increases with the loss of 

constraint T stress, A2 or Q.  

 

This can been seen in Fig. 12, where the JC-Q locus of a low carbon manganese cast steel is 

plotted [43]. Three-point bending tests were used for fracture behaviour determination. 

Fracture toughness was determined using three test specimen geometries. The first one was 

the standard three point bend specimen 25 × 50 × 220 mm with a ratio a/W = 0.5. The other 

ones were selected to receive shallow cracks (specimen 1: a/W = 0.1; 25 × 30 × 130 mm; 

specimen 2: a/W = 0.2; 25 × 27 × 120 mm). The stress distribution using the standard method 

for Q-parameter determination was computed by the finite element method at load level 

corresponding to the fracture force. 

 

One notes that the fracture toughness decreases when the constraint increases; that is, the Q-

parameter increases. 

 

Hadj Meliani et al. [44] have also pointed out this effect on the notch fracture toughness K,c 

with the critical constraint described by the Tef-parameter. The material used in this study is 

API X52 steel . 

 

Several specimens of four types, namely CT, DCB, SENT, and RT, were extracted from a 

steel pipe of diameter 610 mm. The geometries of these specimens were as follows:  SENT 

specimen: thickness = 5.8 mm, width = 58.40 mm; CT specimen: thickness = 5.8 mm, width 

= 63.80 mm, height = 61 mm; DCB specimen: thickness = 5.8  mm, height = 45.70 mm; RT 

specimen: thickness = 5.8 mm, width = 40 mm, length = 280 mm. The specimens have a 

notch with a notch angle  = 0 and a notch radius  = 0.25 mm and an a/W ratio in the range 

0.3–0.6. The stress distribution used was computed by the finite element method at a load 

level corresponding to the fracture force. Tef,c was determined by the volumetric method. It 

can be noted in Fig. 13 that the fracture toughness decreases linearly with the constraint 

according to  

 

                  
  (28) 



 

 

 

where     
  is the fracture toughness corresponding to        , which is considered as a 

reference. a = −0.069 and     
              for the API X52 pipe steel. 

  

  

Fig. 12: JC-Q locus of a low carbon 

manganese cast steel [43]. 
Fig. 13: K,c–Tef,c locus of a low carbon 

manganese cast steel [44]. 
 

6. INFLUENCE OF CONSTRAINT ON TRANSITION TEMPERATURE 

Wallin [45] has established a new MFMC, where the fracture toughness  Kc is a function of 

the temperature T and the T stress. The standard master curve K0 corresponding to a reference 

temperature T0 has the form 
  

                           (29) 

 

1. T0 is the transition temperature corresponding to a conventional value of fracture 

toughness of 100 MPa√m. All materials have a similar exponential evolution of 

fracture toughness with temperature T are characterized by a single parameter T0. 

 

In order to account for the constraint effect in the MFMC, Wallin [45] assumed that the 

reference temperature is constraint dependent. A linear relation was found between the 

reference temperature T0 and the Tstress.  

 

                             

                                                            
       

  

  

   
                                (30)                            

 

  

       is the reference temperature for a reference constraint as obtained for small scale 

yielding or for Tstress = 0. 

 

More generally, Wallin [46] proposed: 

 

                                                           
        

  
 (31) 



is a new parameter. To assess the validity of Eq. (31), Hohe et al. [47] presented the results 

of fracture resistance of nuclear grade 22 NiMoCr 3–7 pressure vessel steel as a linear 



 

 

regression analysis of both the fracture toughness KJc and the respective secondary fracture 

parameter Y (Tstress/0, Q, A2, or  respectively). 

                                                 T0 = cY + d (32) 

 

The parameters c and d are determined by means of a least squares minimization. The results 

are given in Table 3. Table 2 shows the linear regression parameters for the constraint 

dependence of the reference temperature, reference constraint value, and constraint indexing 

master curve reference temperature   
   [47]. 

 

Table 3. Parameters of linear regression analysis using Eq. (32) for fracture resistance of 

nuclear grade 22 NiMoCr 3–7 pressure vessel steel  

Y c(°C) c(°C)  Yref   
   (°C) 

Tstress/0 51.4 –68.6 0.40 –56.9 

Q 47.2 –59.8 0.20 –53.9 

A2 203.4 –0.16 –0.20 –55-8 

 40.6 –157.0 2.72 –53.7 

  

A similar relation was found for X65 pipe steel by Coseru et al. [48] between various 

transition temperatures Tt (Tt, tensile,T0, and TK1/2 ) and the critical effective T stress, Tef,c. 

 

                           (33) 

 

This equation represents the Material Transition Temperature Master Curve (MTTMC) Tt = f 

(Tef,c), which is the key to determining the appropriate reference transition temperature by 

comparison with the structure transition temperature. 

In Fig. 14, the determination of the MTTMC of API X65 pipe steel was done using three 

specimen types (tensile, CT, and Charpy) [48]. Different Charpy specimens were used: 

Charpy V specimens (V notch, notch radius  = 0.25 mm, notch depth a = 2 mm), Charpy U1 

(U notch, notch radius  = 1 mm, notch depth a = 5 mm), and Charpy U0.5 (U notch, notch 

radius  = 0.5 mm, notch depth a = 5 mm), and the transition temperatures of the Charpy 

specimens were corrected to take into account the influence of the loading rate. 

 
 

Fig. 14: Linear regression analysis of both 

the fracture toughness KJc and the respective 

secondary fracture parameter Y (Tstress/0, Q, 

A2, or  respectively) [47]. 

 Fig. 15: The MTTMC of API X65 pipe steel 

[48]. 



 

 

 

  

  

The MFMC was modified by Wallin. By combining (29) with (31), he obtains: 

 

                                     
       

        
    (34) 

 

K0 represents the lower bound of the notch fracture toughness because it is determined with 

pre-cracked specimens. A similar MFMC was made for the notch fracture toughness [49] of 

notched specimens like the Charpy and obtained from the fracture energy Uc: 

  

     
   

  
 (35) 

  

                                    

where B is the thickness and b the ligament size. Eta () is a parameter for the proportionality 

between the specific fracture energy per ligament area and the notch fracture toughness. It 

depends on the notch radius and relative notch depth a/W. Akkouri et al. [50] tabulated the 

values of eta for different notch radii and relative notch depths. All data are fitted to the 

following equation: 

 

                   
       

    
  (36) 

 

with 

                               (37) 

 

T* represents the shift of the test temperature with the transition temperature in function of 

constraint Tef,c.             is the transition temperature corresponding to a constraint equal to 

zero and used as reference (197 K for API X65 pipe steel). 

 

The definition of a general constraint-dependent master curve reference temperature T0(Y) 

results in the introduction of a material parameter T0, which additionally depends on the 

actual loading situation. This implies a proper separation of material and loading parameters,  

This problem was avoided by [47] by the use of a master curve defined as an exponential 

function. One of the basic features of this type of function is that a shift in the direction of the 

argument coincides with a scaling of the function itself. A constraint-dependent scaling of the 

stress intensity factors according to: 

 (38) 

where  Yref denotes the constraint parameter for a reference case. Through this procedure, a 

constraint indexing master curve reference temperature   
   is established, defining a material 

curve that is independent of the actual loading situation. Values of Yref and   
   for nuclear 

grade 22 NiMoCr 3–7 pressure vessel steel are given in Table 3.  

 

7.T STRESS AND CRACK PATH 

Cotterel [51] has pointed out the role of T stress in crack curving. The T stress is a stress 

which acts parallel to the crack direction. Therefore, this stress combined with the opening 

stress induces a mixed mode of loading with a biaxiality ratio : 



 

 

                                            
IK

π.aT
=   (39) 

The maximum stress along the distributionis not always null for  = 0 and angular 

deviation can occur only for positive values of T stress. When the T stress is negative, the 

maximum is always along the direction of propagation 0. 

 

If T stress is positive, the crack curves according to the criterion of maximum tangential stress 

introduced by Erdogan and Sih [50]. By applying this criterion, the opening stress is given by  
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 (42) 

 

The evolution of the ratio 
           

  
  with the direction of propagation  is plotted in Fig. 16 

for positive or negative values of T.  The maximum opening stress is indicated by a black spot 

for positive T stress. For negative T stress, this maximum occurs for negative values of 

opening stress and bifurcation cannot occur because the crack surfaces cannot overlap. 

 
 

Fig. 16. Evolution of the ratio 
           

  
  with crack propagation direction in the presence of 

T stress. 

  

The bifurcation direction    is given when the first derivative of Eq. (42 is equal to zero. 

 

         

 
 
 
 
 
 
     

     
        

  
   

 
 

     
        

  
   

 
  

 
 
 
 
 
 

 



 

 

 (43) 

 

and the second derivative must be negative. Chao et al. [51] introduced the RKR criterion in 

this analysis. At fracture KI = Kc, T = Tc and = c for x= Xef, .The bifurcation direction is 

   and Xef is the size of the fracture process volume or effective distance. The condition on the 

second derivative implies that for crack curving   

  

  
  

 

 

 

      
 (44) 

 

Figures 17 and 18 gives an example of a DCB specimen with positive T stress and crack 

curving. The CT specimen also has a positive T stress and non-curving crack. 

 

  
 Fig. 17: DCB with positive T-stress-induced 

crack curving T/K = +7.9; Xef = 0.53 mm 

Fig. 18: CT with positive T-stress-induced 

crack curving T/K= + 2.05 Xef = 0.49 mm 

 

For negative T stress, after initiation, the crack propagates firstly in an instable manner and 

secondly after several millimetres in a stable manner. During crack propagation in a stable 

manner,crack tip opening angle CTOA remains constant and its constant value is a 

characteristic of the fracture resistance of the material. It can be noted that during the stable 

crack propagation both CTOA and T stress are constant. 

 
 

 Fig. 19: Evolution of CTOA and T stress during crack propagation. Steel API 5L X65. 



 

 

8. EFFECT OF THICKNESS ON FRACTURE TOUGHESS AND OUT-OF-PLANE 

CONSTRAINT 

It is well known now that fracture toughness (Kc or Jc) decreases when the thickness 

increases. The fracture toughness is maximal for plane stress conditions and trends 

asymptotically to a minimum called KIc or JIc if the plane strain conditions are satisfied. 

Therefore a description of fracture resistance cannot be done with a single parameter. Zhao 

and Guo [54] proposed to described the effect of thickness B on fracture toughness Kc = f(B) 

by introducing “a triaxial stress constraint” Tz. This parameter is defined as: 

 

   
   

       
 

 (45) 

For a straight crack through the thickness, which is a typical case of 3D cracks, y is the 

direction normal to the crack plane xoz. In an isotropic linear elastic cracked body, Tz ranges 

from 0 to N, Tz = 0 for the plane stress state, and Tz = N for the plane strain state, where N is 

the strain hardening exponent of the Ramberg-Osgood strain-stress relationship.  

 

In order to take into account the thickness effect it is necessary to have a 3D descriptions of 

the singularity and angular distribution of stresses and strains as a function of the triaxial 

stress constraint Tz: 

 

      
 

               
 
     

           

                                          

    
 

 
   

 

               
 
      

           

 (46) 
 

   

These forms are similar to that of an HRR solution, but J may be path dependent and I is a 

function of Tz and N.  is the coefficient of the Ramberg-Osgood law, o the reference stress, 

and o the strain associated to the reference stress.      and      are eigenvalues. I is a complex 

function of eigenvalues of stresses and displacements. 

 

With this kind of stress distribution the T stress depends on relative thickness zB = z/B  and is 

expressed as 

 

              
 (47) 

 

where the function    presents a non-dimensional function and can be given as : 

 

            
              

  
 (48) 

 

B0, B1, B2, and B3 are coefficients in function of the Poisson ratio . 

For a pure mode I cracked plate, Zhao and Guo [54] developed a 3D fracture criterion 

considering the out-of-plane stress constraint Tz. The thickness-dependent fracture toughness 



 

 

is predicted using the equivalent thickness concept. This means that the in-plane distribution 

of Tz at the point P is the same as that at the mid-plane of a plate with a thickness of Beq: 

 

         
     (49) 

The three-dimensional fracture toughness in the pure mode I, KIz,c, is a function of the fracture 

toughness associated with different thicknesses as: 

                          
             (50) 
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where     
 is the mean radius of the crack-tip plastic zone along the thickness. 

 

Zhao and Guo [54] have tested this model on LY12-CZ aluminium alloy standard CT 

specimens. Figure 20 indicates that the fracture toughness of this alloy is strongly dependent 

on the thickness. After considering the equivalent thickness Beq from Eq. (49), we can find 

that the three-dimensional fracture toughness in pure mode I, KIz,c, is almost a constant and is 

independent of the thickness. 

  

 

Fig. 20: Determination of the three-dimensional fracture toughness in pure mode I, KIz,c, on 

LY12-CZ aluminium alloy [54]. 

 



 

 

9. INFLUENCE OF STRESS GRADIENT ON MECHANICAL PROPERTIES 
 

Aifantis [55] has proposed a modification of plastic flow rule including a plastic strain 

Laplacian. 

    0,
2

,_   eqplceqplVMf  (53)

  

VM is the von Mises equivalent stress and pl,eq the plastic equivalent strain. 
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If we assume that pl,eq varies slowly, we can approximate  uxeqpl .,  by a Taylor 

development: 
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where (s) is a pair function. i values are zero for odd values of i. By limiting Taylor 

development to two terms: 
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The non-intrinsic character of mechanical properties is also explained by the stress gradient. 

Malmberg [56] has used a local approach based on strain gradient to explain the evolution of 

yield shearing stress in torsion. 

 rGG    (57) 

 

where G is the shearing modulus,  the shearing strain, r the specimen radius, and the 

rotation angle.  

 

In the plastic region, the plastic flow rule includes gradient terms 
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where y is the shearing yield stress and c1 and c2 are constants.  

  



 

 

 

Fig. 21. Applications of Malmberg [22] to bars in torsion. 

At the boundary between elastic and plastic region we have: 

 r = ry ;  = y (59) 
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y,ap is the apparent yield stress in torsion and ry is the radius of the elastic boundary. The 

apparent yield stress is obtained when ry = r *, where r* is the specimen radius.  

The scaling law on shearing yield stress can be written as: 
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Figure 21 shows applications of Malmberg’s model [22]. 

 

10. INFLUENCE OF RELATIVE STRESS GRADIENT ON FATIGUE  

The influence of the stress gradient is mainly evidenced on fatigue resistance. Figure 22 

shows Wohler curves obtained on smooth specimens made of carbon steel (yield stress Re = 

312 MPa and ultimate stress Rm = 500 MPa). SN curves (stress amplitude versus fatigue life 

duration) for smooth specimens subject to alternate torsion, alternate tension, and 

compression and rotating bending loading are presented in Fig. 22. In this figure, the results 

of compression and tension and rotating bending are presented as the magnitude of normal 

stress versus the number of cycles to failure. The torsion data are presented in two ways: shear 

amplitude versus number of cycles at failure and the amplitude of the equivalent von Mises 

stress versus the number of cycles to failure. This figure indicates that the mode of loading 

has a strong influence on the fatigue life of smooth specimens for the same stress amplitude. 

 

  



 

 

 

Fig. 22: SN curves for smooth specimens subject to alternate torsion, alternate tension, 

and compression and rotating bending loading. 

 

Analysis of the results makes it possible to determine the parameters of Basquin’s law, which 

has the general form: 

 (62) 

 

where Δ'f, m, and bm are respectively the applied stress range, the Basquin’s coefficient, 

and Basquin’s exponent of fatigue curves for the three charging modes mentioned above (m = 

T, t, b for respectively traction, bending, or torsion). 

 

Table 4. Basquin’s coefficient and Basquin’s exponent of fatigue curves for the three charging 

modes 

 ’f (MPa) b 

Tension-compression 470 –0.05 

Rotative bending 887 –0.08 

Torsion 337 –0.04 

According to Brand et al. [57], the loading mode effect is properly taken into account by 

using the relative maximum stress gradient    : 
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where max is the actual maximum stress at the notch root. he relative maximum stress 

gradient     is expressed in millimetres 
-1

. 

Two notched specimens have the same net section at the bottom notch and are subject to the 

same bending moment. One has a low notch stress concentration factor kt, and the other a 

high notch kt (Fig. 8.6). It is found that the slopes of the tangent to the stress field in the notch 

  f,m
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 NR
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depth are different. After analysing a large number of fatigue data obtained on smooth and 

notched specimens, Brand proposed the following equation to determine the endurance limit: 

bak DtD   ˆlog..ˆ   (64) 

where D̂  is the actual endurance limit for a probability of 90%, and a and b are constants of 

the material data. 

To predict a Wöhler curve in the presence of a notch, Brand proposed the following equation:  

 ˆlog.log.ˆ
222 aNbcDN   (65) 

where DN̂  is the real fatigue limit corresponding to the number N of endurance cycles. a2, b2, 

and c2 are functions of the ultimate strength Rm.   

 

 

11. INFLUENCE OF RELATIVE STRESS GRADIENT AN LOCAL FRACTURE 

STRESS  

The stress distribution at the notch tip described in Fig. 3 is modelled by a polynomial stress 

distribution written as: 
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where )(xyy , ia , and x are the crack opening stress, polynomial coefficients, and distance 

along the notch direction, respectively. The relative stress gradient  can be derived from (66) 

as: 
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The effective distance Xef which  corresponds to the point of minimum relative stress gradient 

can be obtained as below: 
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Equation (68) can be substituted by Equation (69) and the resultant relation gives the 

“volumetric method effective distance characteristics equation” as: 
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The effective stress ef which is the average value of the stress distribution in the fracture 

process zone is given by: 
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In Eq. (69), the weight function  is presented. The weight function deals with the stress 

contribution in the fracture process zone. The weight function explicitly depends on stress, 

stress gradient, and distance from notch root and implicitly depends on the notch geometry, 

loading type, boundary conditions, and material properties. The main objective of the weight 

function is to emphasize integrant quantity in a special range for predicting the equivalent or 

so-called effective stress.   

The weight function can be chosen as unity. It leads to an equal stress or strain contribution 

for each point in the elaborated plastic zone and it can be denoted as the general form: 

                          1=),,,(  zyx                                                                  (71) 

where zyx ,, , and   are coordinates and the relative stress gradient, respectively. The 

mentioned weight function can be classified as the simplest weight function. Accordingly, the 

methods which signify the unit weight function must be deemed as Average or Line Method 

(LM), and the effective stress is given as:   
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The weight function is also proposed at a specified point around the notch root Erreur ! 

Source du renvoi introuvable.and it can be generally written as: 

)z()()(),,,( 000  zyyxxzyx               (73 )        

where 000 ,, zyx , )( 0xx  , )( 0yy  , and )z( 0z are coordinates of the specified point and 

delta functions, respectively. The delta function in the weight function definition describes the 

point method (PM). Indeed, the mathematical integration is omitted and the integrant value at 

a specific point is calculated due to the delta function feature. Consequently, the relation (72 ) 

reduces to: 

),,( 000 zyxyyef                                                         (74) 

The presented weight functions in Eqs. (71) and (73) exclude the influence of the stress 

gradient. Yao et al. Erreur ! Source du renvoi introuvable. suggested a weight function 

including the stress gradient at the notch root in polar form: 

)(1),,(  frcr s                          (75) 



 

 

where sc and )(f are the weight function skew factor and polar function for area integration 

purposes, respectively.  

For LM integration, the polar function )(f  is withdrawn and the skew factor is equal to 1. 

Consequently, Eq. (75) is simplified as: 

xx   1),(                                                          (76) 

For the LM, including the weight function given by Eq. (76), the effective distance depends 

on the relative stress gradient : 
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Equation (77) indicates that the effective stress based on the LM with the unit weight function 

is diminished by a second part including the existence of the stress gradient. 

 

Fig. 23: Evolution of the effective distance versus effective T stress for an X52 steel pipe. 

Values obtained from four specimen types (CT, SENT, DCB, and RT). 

The effective distance has been determined for four kinds of specimens used to determine 

fracture toughness: CT, DCB, SENT, and RT. These specimens provide a large range of Tef 

stresses from negative to positive values. We note that the DCB specimen exhibits only 

positive values of T stress. The same kind of specimens have different ligament sizes and thus 

exhibit different Tef values. Effective distance has been plotted versus effective T stress, 

according to the specimen type and ligament size (Fig. 23). We note that Xef increases when 

the constraint increases from negative to positive values. Effective distance is therefore not 

intrinsic to material but sensitive to constraint through stress distribution. 

 

12. CONCLUSION 

Most of the problems of transferability in fracture toughness can be treated with the help of a 

constraint parameter. However the scale effect always needs to be treated by a characteristic 

length and the loading mode cannot be treated by a two-parameter approach if the defect tip 



 

 

stress distribution is not homothetic. In this case, a stress gradient approach is preferred. 

This leads to the conclusion that a universal parameter of fracture toughness transferability is 

not available. The actual solution is to choose the ad hoc parameter according to the problems 

and after checking whether the conditions of validity are fulfilled. 

 

If a constraint parameter is required, a question arises about the choice among the different 

possibilities (T, Q, , L A2, AP, , and so on).  

 

In order to answer this question, Hohe et al. [47] tested four 2-parameter approaches, the K–T 

stress-, J–Q-, J–A2-, and J–-concepts. They found that all four approaches are able to 

characterize the local constraint situation of the different specimen geometry types 

considered. In a master curve analysis, they showed that the master curve reference 

temperature depends approximately linearly on the respective secondary fracture parameters 

of all four concepts. 

 

Regarding the literature, the T stress is most often used. Compendia of T stress solutions and 

experimental and numerical methods are available and numerous results have been published. 

This is probably the reason for its popularity. However, from its definition, T is restricted to 

elastic behaviour, but it is interesting to note that the results of [47] have been extended to the 

elastic-plastic situation. 

 

The Q stress can be used in elastic and elastic plastic conditions for fracture but its use is 

limited by the validity conditions. The stress distribution is nearly homothetic if only one 

geometrical or loading mode is modified. If two or more parameters are changing at the same 

time, this condition is not fulfilled and it is necessary to use a three-parameter approach 

including the stress gradient. 

 

To overcome these difficulties, the trend is to use a three-parameter approach by adding the 

gradient or the third term of William’s expansion A3. 

 

But this approach seems difficult to introduce in design codes and standards. The actual 

method, which consists of comparing the results of the design computing with a material 

characteristic, is not easily modify. Eventually, some empirical corrections are proposed. 

Two- or three-parameter approaches need additional computing and additional data and 

therefore have additional costs. Geometrical and loading mode effects are therefore 

incorporated in the design factor as corrections.  
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