Recommending Deployment Strategies for Collaborative Tasks - Archive ouverte HAL Access content directly
Conference Papers Year : 2020

Recommending Deployment Strategies for Collaborative Tasks


Our work contributes to aiding requesters in deploying collaborative tasks in crowdsourcing. We initiate the study of recommending deployment strategies for collaborative tasks to requesters that are consistent with deployment parameters they desire: a lower-bound on the quality of the crowd contribution, an upper-bound on the latency of task completion, and an upper-bound on the cost incurred by paying workers. A deployment strategy is a choice of value for three dimensions: Structure (whether to solicit the workforce sequentially or simultaneously), Organization (to organize it collaboratively or independently), and Style (to rely solely on the crowd or to combine it with machine algorithms). We propose StratRec, an optimization-driven middle layer that recommends deployment strategies and alternative deployment parameters to requesters by accounting for worker availability. Our solutions are grounded in discrete optimization and computational geometry techniques that produce results with theoretical guarantees. We present extensive experiments on Amazon Mechanical Turk, and conduct synthetic experiments to validate the qualitative and scalability aspects of StratRec.
Fichier principal
Vignette du fichier
paper (1).pdf (1.89 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02972571 , version 1 (29-11-2020)



Dong Wei, Senjuti Basu Roy, Sihem Amer-Yahia. Recommending Deployment Strategies for Collaborative Tasks. SIGMOD/PODS '20: International Conference on Management of Data, 2020, Portland (virtual), United States. pp.3-17, ⟨10.1145/3318464.3389719⟩. ⟨hal-02972571⟩
30 View
74 Download



Gmail Facebook X LinkedIn More