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ABSTRACT
The identification of Obstructive Sleep Apnea (OSA) relies on labo-
rious and expensive polysomnography (PSG) exams. However, it is
known that other factors, easier to measure, can be good indicators
of OSA and its severity. In this work, we extensively investigate
the use of Machine Learning techniques in the task of determining
which factors are more revealing with respect to OSA. We ran ex-
tensive experiments over 1,042 patients from the Centre Hospitalier
Universitaire of the city of Grenoble, France. The data included
ordinary clinical information, and PSG results as a baseline. We em-
ployed data preparation techniques including cleaning of outliers,
imputation of missing values, and synthetic data generation. Fol-
lowing, we performed an exhaustive attribute selection scheme to
find the most representative features. We found that the prediction
of OSA depends largely on variables related to age, body mass, and
sleep habits more than the ones related to alcoholism, smoking, and
depression. Next, we tested 60 regression/classification algorithms
to predict the Apnea-Hypopnea Index (AHI), and the AHI-based
severity of OSA. We achieved performances significantly superior
to the state of the art both for AHI regression and classification.
Our results can benefit the development of tools for the automatic
screening of patients who should go through polysomnography
and further treatments of OSA. Our methodology enables exper-
imental reproducibility on similar OSA-detection problems, and
more generally, on other problems with similar data models.
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1 INTRODUCTION
Obstructive Sleep Apnea (OSA) is the predominant type of sleep
breathing disorder; it is characterized by repeated episodes of com-
plete or partial obstructions of the upper airway while sleeping,
usually associated with a reduction of the blood oxygen saturation.
OSA has the potential of reducing the quality of life and increasing
the risks of cardio-vascular comorbidities [10]. Yet, a great part of
the patients that suffer from OSA is not detected [13]. The detection
of OSA is based on the results of a polysomnography exam, which
records brain waves, blood oxygen level, heart rate and breath-
ing, eye and leg movements during hours of monitored sleep. For
OSA diagnosis, the Apnea-Hypopnea Index (AHI) measured by
polysomnography breathing monitoring is the gold standard. How-
ever, polysomnography is a laborious and expensive exam carried
out on a limited basis, when OSA is already suspected in a patient.

Rather than polysomnography, simpler tests in the form of di-
rect observations, i.e. questionnaires, are used for screening OSA
patients. However, according to AlGhanim et al. [2], even the best-
validated test, the “STOP-BANG”, is limited when used for screen-
ing based on only eight questions [16]. Another test, the Epworth
Sleepiness Scale has minimal OSA-detection capabilities [5]. And
the Berlim Questionaire heavily varies in terms of sensitivity and
specificity, revealing its impreciseness in several clinical scenar-
ios [6]. By inspecting such questionnaires, one can argue that the
pieces of evidence that they collect are fail-proof as, for example,
“Has anyone Observed you Stop Breathing or Choking/Gasping
during your sleep?” But, still, they fail in a significant number of
situations denoting that the identification of OSA still lacks the
“proper questions” [2][5].

In this work, we approach the problem with the use of state-
of-the-art ML techniques. We demonstrate that good performance
in screening sleep apnea is possible in an automated manner de-
parting from simple measures collected in the every-day hospital
practice. We introduce a methodology based on an elaborate data
pre-processing technique, followed by an exhaustive attribute se-
lection, and a comprehensive experimentation over 60 regression
and classification algorithms. The attribute selection allowed us
to discuss the most important attributes for OSA diagnosis, con-
firming known facts and suggesting future investigations. We use
regression to predict the continuous value of the AHI based on
simple clinical measures, like the body mass index and sleepiness
of the patient; and, similarly, we use classification to predict the
severity of OSA as given by four possible classes: an AHI < 5 events
per hour is considered normal (class 0); mild (class 1) for 5 ≤ AHI
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Figure 1: Overviewof ourmethodology,which comprises three stages: (i) data preparation and attribute selection, (ii) algorithm
selection, and (iii) training and evaluation.

< 15; moderate (class 2) for 15 ≤ AHI < 30; and severe (class 3)
for AHI ≥ 30. As we review in Section 2, the performance of OSA
diagnosis ranges in between 70% and 80%; that is, it is not a problem
easy to solve.

Our results can benefit the development of tools for the auto-
matic screening of patients who go through polysomnography and
further treatments of OSA. Our thorough methodology enables
experimental reproducibility on similar OSA-detection problems,
and more generally, on other problems with similar datasets. We
review related works in the next section; in Section 3, we detail
our dataset, an important factor in this kind of research. Figure
1 illustrates our methodology, which comprises three stages: (i)
data preparation and attribute selection, presented in Sections 4
and 5, respectively; (ii) algorithm selection, presented in Section 6;
and (iii) training and evaluation, presented in Section 7 along with
a comparison to related works. We present further discussion in
Section 8, and Section 9 concludes the paper.

2 RELATEDWORK
We consider state-of-the-art approaches that investigate the task of
predicting the presence or the severity of Obstructive Sleep Apnea
based on factors other than the polysomnography-based Apnea-
Hypopnea Index (AHI).

The work of Ustun et al. [21] discusses OSA prediction based
on clinical indicators before employing their method named Su-
persparse Linear Integer Model (SLIM). This method aims to find
a simple arithmetic scoring questionnaire to be carried on paper;
the score is used as an indicator of a clinical condition of interest.
Although the results are not comparably sound to other more elab-
orated works, the authors elegantly demonstrated that OSA is to
be diagnosed by means of easier-to-acquire factors.

In the work ofWu et al. [25], the authors use a neural fuzzy evalu-
ation system [26] over 17 patient variables to predict the occurrence
of OSA, as well as the value of indicator AHI. Their findings, by
means of a stepwise regression [3], indicate that variables Body
Mass Index (BMI), difference of systolic blood pressure before go-
ing to sleep and early in the morning, and the Epworth Sleepiness
Scale (ESS) [1], were the most important factors in predicting OSA.
Their work was based on 150 patients. Our work uses one order of
magnitude more patients.

Mencar et al. [15] perform an extensive investigation of the ap-
plicability of ML methods to detect OSA. They use 8 classification
strategies and 6 regressions over 19 variables; they found that Sup-
port Vector Machine [20] and Random Forest models [4] work best
for classification, while Support Vector Machine and Linear Re-
gression [19] are most effective on predicting the AHI value. They
also demonstrated that a limited number of variables is enough
for such tasks. Their work was based on 313 patients. Our work
uses one order of magnitude more patients. Moreover, they do not
investigate the ample set of ML algorithms that we use.

More recently, Huang et al. [12] conducted a robust investigation
of over 6,875 individuals using Support Vector Machines. Their
results are convincing andwidely discussedwith abundant evidence.
However, the applicability of their work is limited. The authors
used the AHI in data modeling and preparation. To achieve high
performance, they partitioned data according to gender, age, and
AHI, which resulted in a different model for each partition; each
model relying on a different set of variables. Despite the fact that
this methodology can reveal important facts, it is not usable in a
real scenario because, initially, one does not have the AHI value.

It interesting to note that each work considers a different set of
variables; they vary in number and type. This is possibly due to the



specific medical routine that originated each work. As we discuss
in Section 8, this fact and the use of proprietary datasets do not
permit an absolute comparison among different works. We address
this issue by detailing and comparing the steps of our methodology.

3 THE MARS DATASET
We use a dataset named MARS, provided by the Centre Hospitalier
Universitaire of the city of Grenoble, France. The dataset comprises
of 1,042 patients, each one depicting 20 features including age,
gender, smoking, (yes/no), number of cigarette packets per year,
alcohol use (yes/no), physical exercise frequency (weekly), nocturia
frequency (urination at night), Medical Research Council scale for
the difficulty in breathing, New York Heart Association for heart
failure, Epworth Sleepiness Scale, asthenia (physical strength loss)
score, depression score, restless legs syndrome score, body mass
index, neck circumference (cervical perimeter), waistline (abdomi-
nal perimeter), hip measurement, systolic blood pressure, diastolic
blood pressure, and cardiac frequency. All of them are measurable
without complex exams in comparison to the expensive and time-
consuming polysomnography. Table 1 summarizes the features and
their short names used throughout the paper.

Textual Short name
age age
gender gender
tabagism (yes/no) tabagism
number of cigarette packets per
year

cigarette_packets

alcohol use (yes/no) alcohol
physical exercise frequency exercise_times_per_week
nocturia frequency nocturia_times_per_night
Medical Research Council for diffi-
culty in breathing

mrc

New York Heart Association for
heart failure

nyha

Epworth Sleepiness Scale epworth_score
asthenia (physical strength loss)
score

asthenia_score

depression score depression_score
restless legs syndrome score rls_score
body mass index bmi
neck circumference neck_circumference
waistline waistline
hip measurement hip_measurement
systolic blood pressure syst_bp
diastolic blood pressure diast_bp

Table 1: Set of attributes in the dataset MARS along with
their short version used throughout the text.

For this investigation, we consider polysomnography results in
an attended setting (sleep laboratory) as the “gold standard” for the
diagnosis of OSA. Among the measures acquired by a polysomnog-
raphy session, the most important is the Apnea-Hypopnea Index
(AHI). Hence, all of the records of our dataset include a continuous
AHI value that ranges from 0 to 141. The AHI is defined as the

average sum of apneas and hypopneas per hour of sleep; apnea is
defined as the absence of airflow for more than 10 seconds; and
hypopnea corresponds to a reduction in the respiratory effort with
more than 4% oxygen desaturation. The value of the AHI in adults
points to four classes of OSA: an AHI < 5 events per hour is con-
sidered normal (class 0); mild (class 1) for 5 ≤ AHI < 15; moderate
(class 2) for 15 ≤ AHI < 30; and severe (class 3) for AHI ≥ 30. This
referential allows the application of two ML tasks: (i) prediction of
the AHI continuous value for a given patient; (ii) classification of a
patient into one of the four classes of OSA. For patients positively
diagnosed (AHI > 5), continuous positive airway pressure (CPAP)
therapy is the recommended treatment.

From Figure 2(a), one can see that MARS consists mostly of
OSA-positive cases (AHI ≥ 5), notably of severe cases (AHI ≥ 30).
The data distribution indicates that the patients who look for OSA
screening already have a diagnosis suspicion. This reveals that the
dataset is severely imbalanced – see Figure 2(b), showing that only
6.5% of patients have a normal status (non-OSA).

Figure 2: AHI distributions in the MARS dataset. (a) Distri-
bution of the AHI continuous values. (b) Distribution of the
OSA classes based on the AHI value.

4 DATA PREPARATION
MARS is a real-world generated dataset used in a production set-
ting. As such, it includes inconsistent values, missing values, and
imbalance. These problems directly impact the use of MARS and
had to be treated beforehand.

Inconsistent values
For treating inconsistent values, we drew boxplots [23] considering
all fields, fromwhich we identified patients having attributes whose
values are far from the interquartile range (IQR) and its lower
and upper 1.5 whiskers. We also found patients with negative age
values and null polysomnography exams. Accordingly, our first data
preparation was to exclude all these records because they could
not be fixed and had the potential to jeopardize the learning of our
algorithms.

Missing values
We learned that the majority of records had at least one missing
value. This occurred for as many as 20 attributes. This was possibly
because the very patient did not know the value or because the
annotation was faulty. While null values are not necessarily a threat
to learning data patterns, many ML algorithms simply cannot oper-
ate in such circumstances due to numeric or algorithmic reasons.



We solved this problem by substituting the missing values of each
field by its median value. The reason is that: (i) none of the fields
data distribution was clearly Gaussian, hence we could not use the
mean value; (ii) the algorithms we use are based on Naive Bayes and
Decision Trees, which are barely affected by the median value as it
provides little or no information for a given patient with respect to
the upper and lower 50% of the data.

Imbalance
As we discussed in Section 3, the data is heavily skewed to cases
with higher severity. The impact of this imbalance is that the ML
algorithms are not able to correctly learn which regions of the space
refer to which classes. As we can see in Figure 3(a), although the
samples of class 3 (severe) patients are concentrated in a specific
central region, there are samples of class 3 scattered all over. Many
samples of class 3 can be considered as outliers (located away from
the denser cluster) that occupy odd regions of the space, yet, they
outnumber other classes due to the strong imbalance. As a result,
during our initial experiments, our algorithms reported that all the
test samples belonged to class 3.

Figure 3: Principal Component Analysis 2D scatter plot visu-
alization. (a) Original data. (b) Data oversampled with tech-
nique ADASYN [11].

To alleviate this problem, we applied oversampling technique
ADASYN [11], an improved version ofmethod SMOTE. Thismethod
works by identifying the hard-to-classify samples of the minority
class by means of a k-NN neighborhood inspection (we use k=5 and
Euclidean distance); the samples of interest are the ones with the
highest ratio of 𝑘 nearest neighbors belonging to a different class.
It then generates synthetic points in the proximity of these samples
by linearly interpolating data; the interpolation considers a sample
of interest and its closest neighbors of the same class, creating
synthetic data in the space between them. Given two samples 𝑥𝑖
and 𝑥𝑧𝑖 , the new synthetic data point is given by:

𝑠𝑖 = 𝑥𝑖 + (𝑥𝑧𝑖 − 𝑥𝑖 ) ∗ _ (1)

where _ ∈ [0, 1] is a random number. As its authors point out,
ADASYN adaptively shifts the classification decision boundary
toward the difficult examples. In Table 2, we present the origi-
nal cardinality of the data and the oversampled cardinality after
ADASYN.

Class Original Oversampled
0 68 561
1 115 565
2 293 566
3 566 570

Total 1,042 2,262
Table 2: Data cardinality, before and after oversampling.

Figure 3(b) presents the Principal Component Analysis scatter
plot visualization after oversampling with ADASYN. The visual-
ization shows that many regions populated by class 0 and class
1 samples became more densely populated with samples of these
classes. This is particularly true in the periphery of the space. In the
central part of the space, one can see that classes 0 and 1 are still
hard to separate, which constitutes a challenge for the algorithms.

Class Precision Recall F1-score Support

O
rig

in
al normal 0.00 0.00 0.00 17

mild 0.23 0.17 0.20 29
moderate 0.32 0.23 0.27 73
severe 0.57 0.74 0.64 142

O
ve
rs
am

pl
ed normal 0.44 0.64 0.52 143

mild 0.35 0.39 0.37 140
moderate 0.38 0.23 0.29 141
severe 0.54 0.42 0.47 142

Table 3: Effects of oversampling given by precision and re-
call of the standard Naive-Bayes algorithm – original versus
oversampled data, using 75% for train and 25% for testing
over 100-rounds stratified sampling.

Table 3 depicts the effects of oversampling using the standard
Naive-Bayes algorithm (refer to Section 5). Before oversampling
(“Original”), normal-class patients could not be detected during test-
ing. This is because their space was populated with outliers from
the other classes; as a result, that space was interpreted as char-
acterizing classes 2 (moderate) and 3 (severe). After oversampling
(“Oversampled”), the misinterpreted regions of the space charac-
terized the minority classes (normal and mild) – this new setting
obviously reduced the recall of the majority class (severe), but now
we can detect normal patients, andmoremild patients. Nevertheless,
the Precision regarding the majority classes was barely impacted,
which indicates that the learning algorithm was able to absorb the
new information without “forgetting” the original setting, see Table
3, 1st column, rows 5 and 9.

5 ATTRIBUTE SELECTION
In Section 3, we saw that the original data comprises 20 variables.
We observed that most of them are of little use in the ML pro-
cess. This is because some of them are correlated, noisy, ineffective
for decision making, or simply non-relevant for the problem at
hand. Besides, this large number of variables demands excessive
processing time. To find which variables were the most relevant
to our problem, we used a Naive-Bayes classifier [17] to experi-
ment with all possible attribute combinations. That is, we trained



and validated the classifier over all the
∑20
𝑘=1

20!
𝑘!∗(20−𝑘)! =1,048,575

possible attribute combinations. For each round, we used a 5-fold
cross-validation, averaging the one-versus-the-rest Area Under the
Receiver-Operating Characteristic (AUC-ROC) performance results
with respect to the predicted class of the patients.

We used the classifier provided by the Scikit-Learn library 1. It
implements the standard algorithm which draws the distributions
of each variable and computes the conditional probability 𝑃 (𝑦𝑖 |𝑥𝑖 ).
In our case, for each sample validation, the algorithm computes
𝑃 (𝑦𝑖 = 𝑐𝑙𝑎𝑠𝑠 |𝑥𝑖 = {𝑠𝑒𝑡 𝑜 𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠}). Once the probability
is computed, we calculate the ROC curve by varying the classifi-
cation threshold for each class. We opted for Naive Bayes because
it depends on data distributions, it is interpretable, it is known for
providing accurate results [18], and because it has low computing
cost.

We performed the processing twice, which produced slightly
different results due to the data shuffling. The final set of attributes
corresponds to the set intersection of the results of the two ma-
chines: age, smoking, nocturia frequency, depression score, body
mass index, neck circumference, hip measurement, and diastolic
blood pressure. Table 4 presents the results for Naive-Bayes. The
results show improvements in both sensitivity and specificity when
using the selected attributes.

All attributes Selected attributes
Sensitivity class 0 0.46 0.58
Sensitivity class 1 0.34 0.19
Sensitivity class 2 0.20 0.39
Sensitivity class 3 0.53 0.47
Average sensitivity 0.38 0.41
Specificity class 0 0.59 0.55
Specificity class 1 0.62 0.76
Specificity class 2 0.80 0.65
Specificity class 3 0.60 0.74
Average specificity 0.65 0.68

AUC-ROC 0.67 0.70
Table 4: Detection of classes using Naive-Bayes in terms of
sensitivity and specificity (one versus the rest) for all the at-
tributes, and for the selected attributes.

Discussion on the selected attributes
We selected the attributes based on strong experimental evidence.
Yet, gender, which is a variable pointed out as important in other
works, was not selected in our procedure – see Table 5. For instance,
gender appears as important in the works of Mencar et al. [15] and
Ustun et al. [21], but not in our setting. Possibly, this is because
females are under-represented in our work, and in the works of
Wu et al. [25] and Huang et al. [12]; in our dataset, only 26% of the
patients are women.

Features related to the patient’s age and weight (body mass
index, waistline, neck circumference, and/or hip measurement) are
attributes of choice in all the related works – definitely, obesity is

1https://scikit-learn.org/stable/modules/naive_bayes.html

relevant to the detection of OSA [22]. This fact is revealing and, at
the same time, it demonstrates the complexity of the problem; this
is because not every patient with OSA is obese. One question that
might be worth pursuing in a future work is: which factors cause
patients with low bmi to develop OSA?

Still looking at Table 5, the presence of blood-pressure-related
features is noticeable, but less straightforward; these features ap-
pear in three of the five works (including ours). It is easy to find
work [14] that states a strong correlation between obesity and hy-
pertension (also diabetes), and between OSA and hypertension [8].
Therefore, while obesity might explain OSA and hypertension, OSA
can worsen hypertension issues even further, a relevant discussion,
but that is outside the scope of this work – please refer to the work
of Wolk et al. [24]. Another relevant feature refers to the Epworth
Sleepiness Scale, which points out that daily sleepiness is quite rel-
evant – the limitation here is that sleepiness is subjective in nature,
and might be caused by other factors other than OSA, reducing the
discriminability of this feature [5]. Other non-unanimous features,
considering our review, include smoking and nocturia frequency,
which seem to have an impact on OSA detection, but that are not
fundamental.

Work Selected features
Wu et al. [25] age; body mass index; Epworth Sleepiness

Scale; waistline; neck circumference; and
difference of blood pressure before going
to sleep and early in the morning

Mencar et al. [15] body mass index; gender; and Epworth
Sleepiness Scale

Huang et al. [12] age; waistline; neck circumference; snoring;
sleep onset latency; and witnessed apnea

Ustun et al. [21] age; body mass index; gender; diabetes; hy-
pertension; and tabagism

This work age; nocturia frequency; body mass index;
depression score; neck circumference; hip
measurement; diastolic blood pressure; and
tabagism

Table 5: Selected features after preprocessing in the state-of-
the-art works.

6 CHOOSING AN ALGORITHM
The automatic detection of Obstructive Sleep Apnea defines two
types of problems that depart from the clinical signals (see Table
1) of a given patient: regression or classification. Regression cor-
responds to determining the value of the Apnea-Hypopnea Index.
Classification corresponds to determining the status of a patient,
a 4-classes problem (normal, mild, moderate, or severe). For the
two tasks, we benefit from the advanced and matured frameworks
available in the Scikit-Learn ecosystem (https://scikit-learn.org/);
accordingly, we experimented with 60 regression and classification
algorithms to find the most effective solutions – see Table 6.

https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/


Regression Classification
Bayesian ARD Ada Boost
Bagging Bagging
Bayesian Ridge Bernoulli Naive Bayes
Elastic Net Calibrated CV
Elastic Net CV Decision Tree
Extra Trees Extra Tree
Gradient Boosting Extra Trees
Hist Gradient Boosting Gaussian Naive Bayes
K-Neighbors Gaussian Process
Lars Gradient Boosting
Lars CV Hist Gradient Boosting
Lasso K-Neighbors
Lasso CV Label Propagation
Lasso Lars Label Spreading
Lasso Lars CV Linear Discriminant Analysis
Lasso Lars IC Linear Support Vector
Linear Logistic Regression
Linear Support Vector Logistic Regression CV
Multi-layer Perceptron Multi-layer Perceptron
Nu Support Vector Multinomial Naive Bayes
Partial Least Squares Nearest Centroid
Random Forest Nu Support Vector
Ridge Passive Aggressive
Ridge CV Perceptron
Stochastic Gradient Descent Quadratic Discriminant Analysis
Support Vector Machine Random Forest
Theil-Sen Ridge
Transformed Target Ridge CV
XGBoost Stacking

Stochastic Gradient Descent
Support Vector Machine
XGBoost

Table 6: Lists of the regression and classification algorithms
experimented over dataset MARS.

6.1 Regression problem
For regression, we experiment with 28 different algorithms as de-
tailed in Table 6. Figure 4 presents the 𝑅2-score (or coefficient of
determination) computed with each of the available regressors
over the MARS dataset, using default parameters and the selected
attributes presented in Section 5. We compute the performance
over a 33%-split validation set, iterating up to 300 times depending
on the algorithm. The regressors are ordered according to their
score, the best ones with a higher score to the right. One can see
that regressors HistGradientBoosting, and ExtraTrees had the best
performances.

6.2 Classification problem
For classification, we experiment with 32 different algorithms as
detailed in the Appendix. Figure 5 presents the accuracy score
computed with each of the available classifiers over MARS, using
default parameters and the selected attributes in Section 5. Similarly
to the experiments with regressors, we compute the performance

Figure 4: Comparative 𝑅2-score plot of all the 41 regressors
using default parameters over dataset MARS.

over a 33%-split validation set, iterating up to 300 times. In the
figure, the classifiers are ordered according to their score; the best
performances were achieved with algorithms RandomForest and
ExtraTrees.

Figure 5: Comparative accuracy plot of all the 32 classifiers
using default parameters over dataset MARS.

Algorithm of choice
Considering the performance for both regression and classification,
after experimenting with 60 algorithmic configurations, we pro-
ceed using algorithm ExtraTrees (Extremely Randomized Trees [9]).
Extremely Randomized Trees refer to an ensemble algorithm quite
similar to the popular Random Forests [4]. The principle is to use a
bagging technique, that is, to pick multiple sets of random samples
from the data (with replacement), each one using a subset of the
original features; then, a decision tree is built for each set; the final
classification is given by majority voting. Extremely Randomized
Trees differ from Random Forests in two aspects: the algorithm does
not use bagging but a single dataset; each tree builds on random
splits rather than on using the “best split” according to a metric
such as the Gini Impurity [4]. Both algorithms build hundreds of
trees; we experimented with 150, after empirical testing.

The use of Extremely Randomized Trees is known to work better
in the presence of noisy attributes, that is, attributes that do not add



This work Huang et al.
[12]

Mencar et al.
[15]

Wu et al.
[25]

Ustun et al.
[21]

Meta data
Cardinality (#patients) 1,042 6,875 313 150 1,922

Number of methods/models 60 5 12 6 2
Source code available Yes No No No No
Data preprocessing

Outliers removal Yes No No No Yes
Data imputation Yes No No No No

Synthetic data generation Yes No Yes No No
AHI Regression

Root meansquared error (RMSE) 16.25 - - 16.61 -
Mean absolute error (MAE) 9.6 - - - -

Median absolute error (MnAE) 4.15 - - - -
OSA-severity classification

Specificity (Sp) 0.83 0.71 - 0.75 0.77
Sensitivity (Sn) 0.64 0.73 - 0.77 0.64

Sp+Sn-1 0.48 0.44 - 0.52 0.41
Precision 0.67 - 0.40 - -

Recall 0.68 - 0.45 - -
F1-Score 0.66 - 0.41 - -

AUC-ROC 0.85 0.80 0.65 - 0.785
Table 7: Comparison to related works. Metrics obtained with algorithm Extremely Randomized Trees set with 150 estimators
and evaluated with 100 rounds of random stratified-sampling cross-validation, each round with 66% of the data for training
and 33% for validation.

value to the algorithmic decision. Hence, having our experiments
recommend the use of Extremely Randomized Trees is a signal that
our dataset is significantly noisy; however, this recommendation is
not necessarily ideal for other OSA risk-prediction datasets. Instead,
our recommendation is to perform the same algorithmic massive
evaluation to find which regressor and classifier work better – ac-
cordingly, we make the source code that performs this evaluation
available at https://github.com/jfrjunio/OSAML.

6.3 Evaluation metrics
Each kind of problem demands specific evaluation metrics. In the
case of regression, we use root mean squared error (RMSE), mean
absolute error (MAE), and median absolute error (MAE). For clas-
sification, we use precision, sensitivity/recall, specificity, F1-score,
and AUC-ROC. In the case of classification, the binary metrics are
computed for each class versus the others, after which we average
the results for each class. With these sets of metrics, it is possible
to compare our work to all the works presented in Section 2.

7 COMPARISON TO RELATEDWORKS
Table 7 summarizes our comparison to the related work. Unfortu-
nately, we are not able to experiment on the same datasets as they
are proprietary and inaccessible. For this reason, besides the metrics
usually used for performance in regression and classification, we
use other dimensions related to the whole process, in particular
to data preparation. This contributes to an improved methodology
overall and a more comprehensive evaluation.

In Table 7, one can see that our results are superior or comparable
to all of the former works with respect to regression and classifi-
cation metrics using the attributes selected in Section 5 over Ex-
tremely Randomized Trees, as explained in Section 6. We computed
the metrics using 100 rounds of random stratified-sampling cross-
validation, each round with 66% of the data for training and 33% for
validation (oversampled dataset). With respect to the steps of the
methodology, our work is more extensive; this is especially true for
the number of methods used to find the best models for regression
and classification. As reported in Section 6, we experimented with
28 regression algorithms, and 32 classification algorithms.

8 DISCUSSION ON OUR CONTRIBUTION
Concerning the data preparation, although our pre-processing steps
are not new, we believe we put together a comprehensive set of
techniques: distribution analysis, box-plot-based outlier detection
and elimination, imputation of missing values, synthetic data gen-
eration, and principal component visual analysis. The attribute
selection process, in turn, was performed over a procedure with
results potentially more precise than those of other works because
it was carried exhaustively to find the best set of attributes. Nev-
ertheless, we warn that a larger and more diversified dataset is
likely to yield more universal conclusions. This is an open issue for
OSA-detection in general.

Despite our good results presented in Section 7, the absence of a
benchmark does not permit experimentation in the same conditions,
preventing the extrapolation of our conclusions. Hence, as we report
in Table 7 and demonstrate in Section 6, instead of advocating

https://github.com/jfrjunio/OSAML


for a specific method, we experimented with the largest set of
possible approaches. We also provide numbers on the efficacy of
each possible solution both for regression and classification. This
amplitude is the strongest point of our work; with this thorough
experimentation, we provide a versatile methodology on how to
solve OSA risk-prediction problems, including the source code
for this project, available at https://github.com/jfrjunio/OSAML.
Overall, our data analysis and ML processes can guide not only the
OSA-detection problem, but also tasks that rely on datasets with a
similar model and goal.

As a last remark, we reflect on a critical aspect common to all the
reviewed works, including ours: the limited data size. The largest
one presented in [12] reports a study involving 6,875 patients. None
of the existing works explicitly includes attributes such as ethnic
diversity and gender under-representation, which have long been
considered as a determinant in medicine [7]. This fact is to be taken
into account not only with respect to our work, but to all the works
reviewed so far.

9 CONCLUSIONS
We described the process of using ML in the task of automated
Obstructive Sleep Apnea (OSA). We used the MARS dataset from
the Centre Hospitalier Universitaire of the city of Grenoble, France,
which comprises 1,042 patients diagnosed with all the four levels
of OSA severity. In our analysis, we found that the dataset was
challenging due to its complexity, missing values, extreme class im-
balance, large number of attributes, and due to the fact that patients
with normal diagnostic (non-OSA) were not categorically different
from those with severe OSA problems. The solution was two-fold,
including an extensive dataset pre-processing, and a robust algo-
rithm selection. We tuned the dataset using oversampling, reducing
the detection of positive OSA patients, but increasing the detection
of normal non-OSA patients as measured by sensitivity, specificity,
precision, recall, f1-measure, and AUC-ROC. For attribute selection,
we experimented with 60 algorithms (28 regressors and 32 classi-
fiers). The verdict was to use Extremely Randomized Trees, which
are tailored to noisy data. As for our contribution, we follow our
methodology for data preparation and algorithm selection since
each dataset presents its peculiarities even for the same problem.

We also investigated the most important attributes for OSA de-
tection, which included recurrent factors of age, weight, blood
pressure, and sleepiness-related measures. We compared them to
the selected features indicated in the related work. For our dataset
in particular, the features of nocturia and depression played a rel-
evant role. However, we warn the reader that each dataset has
its characteristics and a corresponding set of features. Further in-
vestigation is required on such diversity. Finally, we suggest the
need for a more robust and diversified dataset because the ones
used in this and other works are rather small in the number of
patients, not systematically covering ethnic diversity and gender
representativeness.
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