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The identification of Obstructive Sleep Apnea (OSA) relies on laborious and expensive polysomnography (PSG) exams. However, it is known that other factors, easier to measure, can be good indicators of OSA and its severity. In this work, we extensively investigate the use of Machine Learning techniques in the task of determining which factors are more revealing with respect to OSA. We ran extensive experiments over 1,042 patients from the Centre Hospitalier Universitaire of the city of Grenoble, France. The data included ordinary clinical information, and PSG results as a baseline. We employed data preparation techniques including cleaning of outliers, imputation of missing values, and synthetic data generation. Following, we performed an exhaustive attribute selection scheme to find the most representative features. We found that the prediction of OSA depends largely on variables related to age, body mass, and sleep habits more than the ones related to alcoholism, smoking, and depression. Next, we tested 60 regression/classification algorithms to predict the Apnea-Hypopnea Index (AHI), and the AHI-based severity of OSA. We achieved performances significantly superior to the state of the art both for AHI regression and classification. Our results can benefit the development of tools for the automatic screening of patients who should go through polysomnography and further treatments of OSA. Our methodology enables experimental reproducibility on similar OSA-detection problems, and more generally, on other problems with similar data models.

INTRODUCTION

Obstructive Sleep Apnea (OSA) is the predominant type of sleep breathing disorder; it is characterized by repeated episodes of complete or partial obstructions of the upper airway while sleeping, usually associated with a reduction of the blood oxygen saturation. OSA has the potential of reducing the quality of life and increasing the risks of cardio-vascular comorbidities [START_REF] Gilat | Obstructive sleep apnea and cardiovascular comorbidities: a large epidemiologic study[END_REF]. Yet, a great part of the patients that suffer from OSA is not detected [START_REF] Jennum | Epidemiology of sleep apnoea/hypopnoea syndrome and sleep-disordered breathing[END_REF]. The detection of OSA is based on the results of a polysomnography exam, which records brain waves, blood oxygen level, heart rate and breathing, eye and leg movements during hours of monitored sleep. For OSA diagnosis, the Apnea-Hypopnea Index (AHI) measured by polysomnography breathing monitoring is the gold standard. However, polysomnography is a laborious and expensive exam carried out on a limited basis, when OSA is already suspected in a patient.

Rather than polysomnography, simpler tests in the form of direct observations, i.e. questionnaires, are used for screening OSA patients. However, according to AlGhanim et al. [START_REF] Alghanim | The economic impact of obstructive sleep apnea[END_REF], even the bestvalidated test, the "STOP-BANG", is limited when used for screening based on only eight questions [START_REF] Network | The official stop-bang questionnaire website[END_REF]. Another test, the Epworth Sleepiness Scale has minimal OSA-detection capabilities [START_REF] Chervin | The epworth sleepiness scale may not reflect objective measures of sleepiness or sleep apnea[END_REF]. And the Berlim Questionaire heavily varies in terms of sensitivity and specificity, revealing its impreciseness in several clinical scenarios [START_REF] Chung | Validation of the berlin questionnaire and american society of anesthesiologists checklist as screening tools for obstructive sleep apnea in surgical patients[END_REF]. By inspecting such questionnaires, one can argue that the pieces of evidence that they collect are fail-proof as, for example, "Has anyone Observed you Stop Breathing or Choking/Gasping during your sleep?" But, still, they fail in a significant number of situations denoting that the identification of OSA still lacks the "proper questions" [START_REF] Alghanim | The economic impact of obstructive sleep apnea[END_REF] [START_REF] Chervin | The epworth sleepiness scale may not reflect objective measures of sleepiness or sleep apnea[END_REF].

In this work, we approach the problem with the use of stateof-the-art ML techniques. We demonstrate that good performance in screening sleep apnea is possible in an automated manner departing from simple measures collected in the every-day hospital practice. We introduce a methodology based on an elaborate data pre-processing technique, followed by an exhaustive attribute selection, and a comprehensive experimentation over 60 regression and classification algorithms. The attribute selection allowed us to discuss the most important attributes for OSA diagnosis, confirming known facts and suggesting future investigations. We use regression to predict the continuous value of the AHI based on simple clinical measures, like the body mass index and sleepiness of the patient; and, similarly, we use classification to predict the severity of OSA as given by four possible classes: an AHI < 5 events per hour is considered normal (class 0); mild (class 1) for 5 ≤ AHI < 15; moderate (class 2) for 15 ≤ AHI < 30; and severe (class 3) for AHI ≥ 30. As we review in Section 2, the performance of OSA diagnosis ranges in between 70% and 80%; that is, it is not a problem easy to solve.

Our results can benefit the development of tools for the automatic screening of patients who go through polysomnography and further treatments of OSA. Our thorough methodology enables experimental reproducibility on similar OSA-detection problems, and more generally, on other problems with similar datasets. We review related works in the next section; in Section 3, we detail our dataset, an important factor in this kind of research. Figure 1 illustrates our methodology, which comprises three stages: (i) data preparation and attribute selection, presented in Sections 4 and 5, respectively; (ii) algorithm selection, presented in Section 6; and (iii) training and evaluation, presented in Section 7 along with a comparison to related works. We present further discussion in Section 8, and Section 9 concludes the paper.

RELATED WORK

We consider state-of-the-art approaches that investigate the task of predicting the presence or the severity of Obstructive Sleep Apnea based on factors other than the polysomnography-based Apnea-Hypopnea Index (AHI).

The work of Ustun et al. [START_REF] Ustun | Clinical prediction models for sleep apnea: the importance of medical history over symptoms[END_REF] discusses OSA prediction based on clinical indicators before employing their method named Supersparse Linear Integer Model (SLIM). This method aims to find a simple arithmetic scoring questionnaire to be carried on paper; the score is used as an indicator of a clinical condition of interest. Although the results are not comparably sound to other more elaborated works, the authors elegantly demonstrated that OSA is to be diagnosed by means of easier-to-acquire factors.

In the work of Wu et al. [START_REF] Wu | A new method for self-estimation of the severity of obstructive sleep apnea using easily available measurements and neural fuzzy evaluation system[END_REF], the authors use a neural fuzzy evaluation system [START_REF] Zhao | A new gradient descent approach for local learning of fuzzy neural models[END_REF] over 17 patient variables to predict the occurrence of OSA, as well as the value of indicator AHI. Their findings, by means of a stepwise regression [START_REF] Armitage | Modelling continuous data[END_REF], indicate that variables Body Mass Index (BMI), difference of systolic blood pressure before going to sleep and early in the morning, and the Epworth Sleepiness Scale (ESS) [START_REF] Abrishami | A systematic review of screening questionnaires for obstructive sleep apnea[END_REF], were the most important factors in predicting OSA. Their work was based on 150 patients. Our work uses one order of magnitude more patients.

Mencar et al. [15] perform an extensive investigation of the applicability of ML methods to detect OSA. They use 8 classification strategies and 6 regressions over 19 variables; they found that Support Vector Machine [START_REF] Steinwart | Support vector machines[END_REF] and Random Forest models [START_REF] Breiman | Random forests[END_REF] work best for classification, while Support Vector Machine and Linear Regression [START_REF] Seber | Linear regression analysis[END_REF] are most effective on predicting the AHI value. They also demonstrated that a limited number of variables is enough for such tasks. Their work was based on 313 patients. Our work uses one order of magnitude more patients. Moreover, they do not investigate the ample set of ML algorithms that we use.

More recently, Huang et al. [12] conducted a robust investigation of over 6,875 individuals using Support Vector Machines. Their results are convincing and widely discussed with abundant evidence. However, the applicability of their work is limited. The authors used the AHI in data modeling and preparation. To achieve high performance, they partitioned data according to gender, age, and AHI, which resulted in a different model for each partition; each model relying on a different set of variables. Despite the fact that this methodology can reveal important facts, it is not usable in a real scenario because, initially, one does not have the AHI value.

It interesting to note that each work considers a different set of variables; they vary in number and type. This is possibly due to the specific medical routine that originated each work. As we discuss in Section 8, this fact and the use of proprietary datasets do not permit an absolute comparison among different works. We address this issue by detailing and comparing the steps of our methodology.

THE MARS DATASET

We use a dataset named MARS, provided by the Centre Hospitalier Universitaire of the city of Grenoble, France. The dataset comprises of 1,042 patients, each one depicting 20 features including age, gender, smoking, (yes/no), number of cigarette packets per year, alcohol use (yes/no), physical exercise frequency (weekly), nocturia frequency (urination at night), Medical Research Council scale for the difficulty in breathing, New York Heart Association for heart failure, Epworth Sleepiness Scale, asthenia (physical strength loss) score, depression score, restless legs syndrome score, body mass index, neck circumference (cervical perimeter), waistline (abdominal perimeter), hip measurement, systolic blood pressure, diastolic blood pressure, and cardiac frequency. All of them are measurable without complex exams in comparison to the expensive and timeconsuming polysomnography. 1: Set of attributes in the dataset MARS along with their short version used throughout the text.

For this investigation, we consider polysomnography results in an attended setting (sleep laboratory) as the "gold standard" for the diagnosis of OSA. Among the measures acquired by a polysomnography session, the most important is the Apnea-Hypopnea Index (AHI). Hence, all of the records of our dataset include a continuous AHI value that ranges from 0 to 141. The AHI is defined as the average sum of apneas and hypopneas per hour of sleep; apnea is defined as the absence of airflow for more than 10 seconds; and hypopnea corresponds to a reduction in the respiratory effort with more than 4% oxygen desaturation. The value of the AHI in adults points to four classes of OSA: an AHI < 5 events per hour is considered normal (class 0); mild (class 1) for 5 ≤ AHI < 15; moderate (class 2) for 15 ≤ AHI < 30; and severe (class 3) for AHI ≥ 30. This referential allows the application of two ML tasks: (i) prediction of the AHI continuous value for a given patient; (ii) classification of a patient into one of the four classes of OSA. For patients positively diagnosed (AHI > 5), continuous positive airway pressure (CPAP) therapy is the recommended treatment.

From Figure 2(a), one can see that MARS consists mostly of OSA-positive cases (AHI ≥ 5), notably of severe cases (AHI ≥ 30). The data distribution indicates that the patients who look for OSA screening already have a diagnosis suspicion. This reveals that the dataset is severely imbalanced -see Figure 2(b), showing that only 6.5% of patients have a normal status (non-OSA). 

DATA PREPARATION

MARS is a real-world generated dataset used in a production setting. As such, it includes inconsistent values, missing values, and imbalance. These problems directly impact the use of MARS and had to be treated beforehand.

Inconsistent values

For treating inconsistent values, we drew boxplots [START_REF] Wickham | years of boxplots[END_REF] considering all fields, from which we identified patients having attributes whose values are far from the interquartile range (IQR) and its lower and upper 1.5 whiskers. We also found patients with negative age values and null polysomnography exams. Accordingly, our first data preparation was to exclude all these records because they could not be fixed and had the potential to jeopardize the learning of our algorithms.

Missing values

We learned that the majority of records had at least one missing value. This occurred for as many as 20 attributes. This was possibly because the very patient did not know the value or because the annotation was faulty. While null values are not necessarily a threat to learning data patterns, many ML algorithms simply cannot operate in such circumstances due to numeric or algorithmic reasons.

We solved this problem by substituting the missing values of each field by its median value. The reason is that: (i) none of the fields data distribution was clearly Gaussian, hence we could not use the mean value; (ii) the algorithms we use are based on Naive Bayes and Decision Trees, which are barely affected by the median value as it provides little or no information for a given patient with respect to the upper and lower 50% of the data.

Imbalance

As we discussed in Section 3, the data is heavily skewed to cases with higher severity. The impact of this imbalance is that the ML algorithms are not able to correctly learn which regions of the space refer to which classes. As we can see in Figure 3(a), although the samples of class 3 (severe) patients are concentrated in a specific central region, there are samples of class 3 scattered all over. Many samples of class 3 can be considered as outliers (located away from the denser cluster) that occupy odd regions of the space, yet, they outnumber other classes due to the strong imbalance. As a result, during our initial experiments, our algorithms reported that all the test samples belonged to class 3. To alleviate this problem, we applied oversampling technique ADASYN [START_REF] He | Adasyn: Adaptive synthetic sampling approach for imbalanced learning[END_REF], an improved version of method SMOTE. This method works by identifying the hard-to-classify samples of the minority class by means of a k-NN neighborhood inspection (we use k=5 and Euclidean distance); the samples of interest are the ones with the highest ratio of 𝑘 nearest neighbors belonging to a different class. It then generates synthetic points in the proximity of these samples by linearly interpolating data; the interpolation considers a sample of interest and its closest neighbors of the same class, creating synthetic data in the space between them. Given two samples 𝑥 𝑖 and 𝑥 𝑧𝑖 , the new synthetic data point is given by:

𝑠 𝑖 = 𝑥 𝑖 + (𝑥 𝑧𝑖 -𝑥 𝑖 ) * 𝜆 (1) 
where 3: Effects of oversampling given by precision and recall of the standard Naive-Bayes algorithm -original versus oversampled data, using 75% for train and 25% for testing over 100-rounds stratified sampling.

𝜆 ∈ [0,
Table 3 depicts the effects of oversampling using the standard Naive-Bayes algorithm (refer to Section 5). Before oversampling ("Original"), normal-class patients could not be detected during testing. This is because their space was populated with outliers from the other classes; as a result, that space was interpreted as characterizing classes 2 (moderate) and 3 (severe). After oversampling ("Oversampled"), the misinterpreted regions of the space characterized the minority classes (normal and mild) -this new setting obviously reduced the recall of the majority class (severe), but now we can detect normal patients, and more mild patients. Nevertheless, the Precision regarding the majority classes was barely impacted, which indicates that the learning algorithm was able to absorb the new information without "forgetting" the original setting, see Table 3, 1st column, rows 5 and 9.

ATTRIBUTE SELECTION

In Section 3, we saw that the original data comprises 20 variables. We observed that most of them are of little use in the ML process. This is because some of them are correlated, noisy, ineffective for decision making, or simply non-relevant for the problem at hand. Besides, this large number of variables demands excessive processing time. To find which variables were the most relevant to our problem, we used a Naive-Bayes classifier [START_REF] Ren | Naive bayes classification of uncertain data[END_REF] to experiment with all possible attribute combinations. That is, we trained and validated the classifier over all the 20 𝑘=1 20! 𝑘! * (20-𝑘)! =1,048,575 possible attribute combinations. For each round, we used a 5-fold cross-validation, averaging the one-versus-the-rest Area Under the Receiver-Operating Characteristic (AUC-ROC) performance results with respect to the predicted class of the patients.

We used the classifier provided by the Scikit-Learn library 1 . It implements the standard algorithm which draws the distributions of each variable and computes the conditional probability 𝑃 (𝑦 𝑖 |𝑥 𝑖 ). In our case, for each sample validation, the algorithm computes 𝑃 (𝑦 𝑖 = 𝑐𝑙𝑎𝑠𝑠 |𝑥 𝑖 = {𝑠𝑒𝑡 𝑜 𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠}). Once the probability is computed, we calculate the ROC curve by varying the classification threshold for each class. We opted for Naive Bayes because it depends on data distributions, it is interpretable, it is known for providing accurate results [START_REF] Saritas | Performance analysis of ann and naive bayes classification algorithm for data classification[END_REF], and because it has low computing cost.

We performed the processing twice, which produced slightly different results due to the data shuffling. The final set of attributes corresponds to the set intersection of the results of the two machines: age, smoking, nocturia frequency, depression score, body mass index, neck circumference, hip measurement, and diastolic blood pressure. Table 4 presents the results for Naive-Bayes. The results show improvements in both sensitivity and specificity when using the selected attributes. 4: Detection of classes using Naive-Bayes in terms of sensitivity and specificity (one versus the rest) for all the attributes, and for the selected attributes.

All attributes

Discussion on the selected attributes

We selected the attributes based on strong experimental evidence. Yet, gender, which is a variable pointed out as important in other works, was not selected in our procedure -see Table 5. For instance, gender appears as important in the works of Mencar et al. [15] and Ustun et al. [START_REF] Ustun | Clinical prediction models for sleep apnea: the importance of medical history over symptoms[END_REF], but not in our setting. Possibly, this is because females are under-represented in our work, and in the works of Wu et al. [START_REF] Wu | A new method for self-estimation of the severity of obstructive sleep apnea using easily available measurements and neural fuzzy evaluation system[END_REF] and Huang et al. [12]; in our dataset, only 26% of the patients are women.

Features related to the patient's age and weight (body mass index, waistline, neck circumference, and/or hip measurement) are attributes of choice in all the related works -definitely, obesity is 1 https://scikit-learn.org/stable/modules/naive_bayes.html relevant to the detection of OSA [START_REF] Vgontzas | Sleep apnea and sleep disruption in obese patients[END_REF]. This fact is revealing and, at the same time, it demonstrates the complexity of the problem; this is because not every patient with OSA is obese. One question that might be worth pursuing in a future work is: which factors cause patients with low bmi to develop OSA? Still looking at Table 5, the presence of blood-pressure-related features is noticeable, but less straightforward; these features appear in three of the five works (including ours). It is easy to find work [START_REF] Jiang | Obesity and hypertension[END_REF] that states a strong correlation between obesity and hypertension (also diabetes), and between OSA and hypertension [START_REF] Dopp | Obstructive sleep apnea and hypertension: Mechanisms, evaluation, and management[END_REF]. Therefore, while obesity might explain OSA and hypertension, OSA can worsen hypertension issues even further, a relevant discussion, but that is outside the scope of this work -please refer to the work of Wolk et al. [START_REF] Wolk | Obesity, sleep apnea, and hypertension[END_REF]. Another relevant feature refers to the Epworth Sleepiness Scale, which points out that daily sleepiness is quite relevant -the limitation here is that sleepiness is subjective in nature, and might be caused by other factors other than OSA, reducing the discriminability of this feature [START_REF] Chervin | The epworth sleepiness scale may not reflect objective measures of sleepiness or sleep apnea[END_REF]. Other non-unanimous features, considering our review, include smoking and nocturia frequency, which seem to have an impact on OSA detection, but that are not fundamental.

Work

Selected features Wu et al. [START_REF] Wu | A new method for self-estimation of the severity of obstructive sleep apnea using easily available measurements and neural fuzzy evaluation system[END_REF] age; body mass index; Epworth Sleepiness Scale; waistline; neck circumference; and difference of blood pressure before going to sleep and early in the morning Mencar et al. [15] 

CHOOSING AN ALGORITHM

The automatic detection of Obstructive Sleep Apnea defines two types of problems that depart from the clinical signals (see Table 1) of a given patient: regression or classification. Regression corresponds to determining the value of the Apnea-Hypopnea Index. Classification corresponds to determining the status of a patient, a 4-classes problem (normal, mild, moderate, or severe). For the two tasks, we benefit from the advanced and matured frameworks available in the Scikit-Learn ecosystem (https://scikit-learn.org/); accordingly, we experimented with 60 regression and classification algorithms to find the most effective solutions -see Table 6 

Regression problem

For regression, we experiment with 28 different algorithms as detailed in Table 6. Figure 4 presents the 𝑅 2 -score (or coefficient of determination) computed with each of the available regressors over the MARS dataset, using default parameters and the selected attributes presented in Section 5. We compute the performance over a 33%-split validation set, iterating up to 300 times depending on the algorithm. The regressors are ordered according to their score, the best ones with a higher score to the right. One can see that regressors HistGradientBoosting, and ExtraTrees had the best performances.

Classification problem

For classification, we experiment with 32 different algorithms as detailed in the Appendix. Figure 5 presents the accuracy score computed with each of the available classifiers over MARS, using default parameters and the selected attributes in Section 5. Similarly to the experiments with regressors, we compute the performance 

Algorithm of choice

Considering the performance for both regression and classification, after experimenting with 60 algorithmic configurations, we proceed using algorithm ExtraTrees (Extremely Randomized Trees [START_REF] Geurts | Extremely randomized trees[END_REF]). Extremely Randomized Trees refer to an ensemble algorithm quite similar to the popular Random Forests [START_REF] Breiman | Random forests[END_REF]. The principle is to use a bagging technique, that is, to pick multiple sets of random samples from the data (with replacement), each one using a subset of the original features; then, a decision tree is built for each set; the final classification is given by majority voting. Extremely Randomized Trees differ from Random Forests in two aspects: the algorithm does not use bagging but a single dataset; each tree builds on random splits rather than on using the "best split" according to a metric such as the Gini Impurity [START_REF] Breiman | Random forests[END_REF]. Both algorithms build hundreds of trees; we experimented with 150, after empirical testing.

The use of Extremely Randomized Trees is known to work better in the presence of noisy attributes, that is, attributes that do not add

COMPARISON TO RELATED WORKS

Table 7 summarizes our comparison to the related work. Unfortunately, we are not able to experiment on the same datasets as they are proprietary and inaccessible. For this reason, besides the metrics usually used for performance in regression and classification, we use other dimensions related to the whole process, in particular to data preparation. This contributes to an improved methodology overall and a more comprehensive evaluation.

In Table 7, one can see that our results are superior or comparable to all of the former works with respect to regression and classification metrics using the attributes selected in Section 5 over Extremely Randomized Trees, as explained in Section 6. We computed the metrics using 100 rounds of random stratified-sampling crossvalidation, each round with 66% of the data for training and 33% for validation (oversampled dataset). With respect to the steps of the methodology, our work is more extensive; this is especially true for the number of methods used to find the best models for regression and classification. As reported in Section 6, we experimented with 28 regression algorithms, and 32 classification algorithms.

DISCUSSION ON OUR CONTRIBUTION

Concerning the data preparation, although our pre-processing steps are not new, we believe we put together a comprehensive set of techniques: distribution analysis, box-plot-based outlier detection and elimination, imputation of missing values, synthetic data generation, and principal component visual analysis. The attribute selection process, in turn, was performed over a procedure with results potentially more precise than those of other works because it was carried exhaustively to find the best set of attributes. Nevertheless, we warn that a larger and more diversified dataset is likely to yield more universal conclusions. This is an open issue for OSA-detection in general.

Despite our good results presented in Section 7, the absence of a benchmark does not permit experimentation in the same conditions, preventing the extrapolation of our conclusions. Hence, as we report in Table 7 and demonstrate in Section 6, instead of advocating for a specific method, we experimented with the largest set of possible approaches. We also provide numbers on the efficacy of each possible solution both for regression and classification. This amplitude is the strongest point of our work; with this thorough experimentation, we provide a versatile methodology on how to solve OSA risk-prediction problems, including the source code for this project, available at https://github.com/jfrjunio/OSAML. Overall, our data analysis and ML processes can guide not only the OSA-detection problem, but also tasks that rely on datasets with a similar model and goal.

As a last remark, we reflect on a critical aspect common to all the reviewed works, including ours: the limited data size. The largest one presented in [12] reports a study involving 6,875 patients. None of the existing works explicitly includes attributes such as ethnic diversity and gender under-representation, which have long been considered as a determinant in medicine [START_REF] Cruickshank | Ethnic factors in health and disease[END_REF]. This fact is to be taken into account not only with respect to our work, but to all the works reviewed so far.

CONCLUSIONS

We described the process of using ML in the task of automated Obstructive Sleep Apnea (OSA). We used the MARS dataset from the Centre Hospitalier Universitaire of the city of Grenoble, France, which comprises 1,042 patients diagnosed with all the four levels of OSA In our analysis, we found that the dataset was challenging due to its complexity, missing values, extreme class imbalance, large number of attributes, and due to the fact that patients with normal diagnostic (non-OSA) were not categorically different from those with severe OSA problems. The solution was two-fold, including an extensive dataset pre-processing, and a robust algorithm selection. We tuned the dataset using oversampling, reducing the detection of positive OSA patients, but increasing the detection of normal non-OSA patients as measured by sensitivity, specificity, precision, recall, f1-measure, and AUC-ROC. For attribute selection, we experimented with 60 algorithms (28 regressors and 32 classifiers). The verdict was to use Extremely Randomized Trees, which are tailored to noisy data. As for our contribution, we follow our methodology for data preparation and algorithm selection since each dataset presents its peculiarities even for the same problem.

We also investigated the most important attributes for OSA detection, which included recurrent factors of age, weight, blood pressure, and sleepiness-related measures. We compared them to the selected features indicated in the related work. For our dataset in particular, the features of nocturia and depression played a relevant role. However, we warn the reader that each dataset has its characteristics and a corresponding set of features. Further investigation is required on such diversity. Finally, we suggest the need for a more robust and diversified dataset because the ones used in this and other works are rather small in the number of patients, not systematically covering ethnic diversity and gender representativeness.
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 1 Figure 1: Overview of our methodology, which comprises three stages: (i) data preparation and attribute selection, (ii) algorithm selection, and (iii) training and evaluation.

Figure 2 :

 2 Figure 2: AHI distributions in the MARS dataset. (a) Distribution of the AHI continuous values. (b) Distribution of the OSA classes based on the AHI value.

Figure 3 :

 3 Figure 3: Principal Component Analysis 2D scatter plot visualization. (a) Original data. (b) Data oversampled with technique ADASYN [11].

Figure 3 (

 3 Figure 3(b) presents the Principal Component Analysis scatter plot visualization after oversampling with ADASYN. The visualization shows that many regions populated by class 0 and class 1 samples became more densely populated with samples of these classes. This is particularly true in the periphery of the space. In the central part of the space, one can see that classes 0 and 1 are still hard to separate, which constitutes a challenge for the algorithms.

Figure 4 :

 4 Figure 4: Comparative 𝑅 2 -score plot of all the 41 regressors using default parameters over dataset MARS.

Figure 5 :

 5 Figure 5: Comparative accuracy plot of all the 32 classifiers using default parameters over dataset MARS.

Table 1

 1 summarizes the features and their short names used throughout the paper.

	Textual	Short name
	age	age
	gender	gender
	tabagism (yes/no)	tabagism
	number of cigarette packets per	cigarette_packets
	year	
	alcohol use (yes/no)	alcohol
	physical exercise frequency	exercise_times_per_week
	nocturia frequency	nocturia_times_per_night
	Medical Research Council for diffi-	mrc
	culty in breathing	
	New York Heart Association for	nyha
	heart failure	
	Epworth Sleepiness Scale	epworth_score
	asthenia (physical strength loss)	asthenia_score
	score	
	depression score	depression_score
	restless legs syndrome score	rls_score
	body mass index	bmi
	neck circumference	neck_circumference
	waistline	waistline
	hip measurement	hip_measurement
	systolic blood pressure	syst_bp
	diastolic blood pressure	diast_bp
	Table	

Table 2 :

 2 1] is a random number. As its authors point out, ADASYN adaptively shifts the classification decision boundary toward the difficult examples. In Table2, we present the original cardinality of the data and the oversampled cardinality after ADASYN. Data cardinality, before and after oversampling.

	Class Original Oversampled
	0	68	561
	1	115	565
	2	293	566
	3	566	570
	Total	1,042	2,262

Table 5 :

 5 Selected features after preprocessing in the state-ofthe-art works.

		body mass index; gender; and Epworth
		Sleepiness Scale
	Huang et al. [12] age; waistline; neck circumference; snoring;
		sleep onset latency; and witnessed apnea
	Ustun et al. [21] age; body mass index; gender; diabetes; hy-
		pertension; and tabagism
	This work	age; nocturia frequency; body mass index;
		depression score; neck circumference; hip
		measurement; diastolic blood pressure; and
		tabagism

Table 6 :

 6 . Lists of the regression and classification algorithms experimented over dataset MARS.

	Regression	Classification
	Bayesian ARD	Ada Boost
	Bagging	Bagging
	Bayesian Ridge	Bernoulli Naive Bayes
	Elastic Net	Calibrated CV
	Elastic Net CV	Decision Tree
	Extra Trees	Extra Tree
	Gradient Boosting	Extra Trees
	Hist Gradient Boosting	Gaussian Naive Bayes
	K-Neighbors	Gaussian Process
	Lars	Gradient Boosting
	Lars CV	Hist Gradient Boosting
	Lasso	K-Neighbors
	Lasso CV	Label Propagation
	Lasso Lars	Label Spreading
	Lasso Lars CV	Linear Discriminant Analysis
	Lasso Lars IC	Linear Support Vector
	Linear	Logistic Regression
	Linear Support Vector	Logistic Regression CV
	Multi-layer Perceptron	Multi-layer Perceptron
	Nu Support Vector	Multinomial Naive Bayes
	Partial Least Squares	Nearest Centroid
	Random Forest	Nu Support Vector
	Ridge	Passive Aggressive
	Ridge CV	Perceptron
	Stochastic Gradient Descent Quadratic Discriminant Analysis
	Support Vector Machine	Random Forest
	Theil-Sen	Ridge
	Transformed Target	Ridge CV
	XGBoost	Stacking
		Stochastic Gradient Descent
		Support Vector Machine
		XGBoost

This work

Huang et al.
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value to the algorithmic decision. Hence, having our experiments recommend the use of Extremely Randomized Trees is a signal that our dataset is significantly noisy; however, this recommendation is not necessarily ideal for other OSA risk-prediction datasets. Instead, our recommendation is to perform the same algorithmic massive evaluation to find which regressor and classifier work better -accordingly, we make the source code that performs this evaluation available at https://github.com/jfrjunio/OSAML.

Evaluation metrics

Each kind of problem demands specific evaluation metrics. In the case of regression, we use root mean squared error (RMSE), mean absolute error (MAE), and median absolute error (MAE). For classification, we use precision, sensitivity/recall, specificity, F1-score, and AUC-ROC. In the case of classification, the binary metrics are computed for each class versus the others, after which we average the results for each class. With these sets of metrics, it is possible to compare our work to all the works presented in Section 2.