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Abstract—In this paper we use state-of-the-art deep convolu-
tional neural networks for computer-aided melanoma detection.
As a result, we present the DermaDL mobile application, where
dermatologists can use neural network modules for automated
lesion analysis with the aim of identifying and classifying skin
lesions with regard to malignancy. The proposed methodology
includes a preprocessing step for data organization, normaliza-
tion, augmentation and image segmentation; after that, we will
employ transfer learning from state-of-the-art models previously
elaborated for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), using extensively trained Inception-type
neural network models. Finally, the models will be optimized
for mobile processors, allowing for mobility and convenient use.
This method can classify several types of skin lesions present in
the International Skin Imaging Collaboration (ISIC) archive with
at least 90% accuracy, purposefully documenting and triaging
clinical cases before further thorough examination.

Index Terms— deep learning; dermatology; dermoscopy; early
detection; melanoma; mobile; skin cancer

I. INTRODUCTION

In the last decade, deep CNNs (convolutional neural net-
works) have achieved unprecedented levels of performance
due to two factors: the explosion in data production, and
the popularization of high-density parallel hardware in the
form of general-purpose computing on graphic processor units
(GPGPU). The GPGPU computing approach made it possible
to build neural networks with novel architectures and dozens
of layers suited for intricate tasks, such as image, video
and speech recognition, achieving precision near or surpass-
ing classical multi-layer perceptions (MLP), other machine
learning algorithms, and even human analysts in certain data
domains, such as the ILSVRC (ImageNet Large Scale Visual
Recognition Challenge)— coining the term deep learning [1].

Deep learning (DL) can be directed towards digital skin
imaging to recognize disease patterns such as melanoma. Cu-
taneous melanoma is a class of cancerous diseases in the skin
which becomes life-threatening when the metastatic (advanced
spread) stage begins, causing more than 50 thousand deaths
annually worldwide [2]. This disease is promptly curable if
recognized and treated in its initial stages, with previous
reports in the US of 93% of patients surviving 15+ years
when their lesions are <1mm, but just 42% when their lesions
grow more than 4mm [3]. Digital images of skin lesions have
potential for educating the general public and support health
providers in early detection, as well as directly supporting the
diagnosis through teledermatology, clinical decision support,
and automated risk assessment.

This recent development of DL opens up the possibility
to power a plethora of complex recognition applications, e.g.
for healthcare [4], forensic sciences [5], manufacturing quality
control [6], agriculture [7], and many others. One of such,
a study by Esteva et al. [8] has previously demonstrated
the ability to classify cancerous skin lesions by retraining
the Inception-v3 CNN [9] over a carefully prepared dataset
(with more than 120k images) from open-access and closed-
access dermatology archives of several Institutions and Clin-
ical Hospitals— one of these datasets was the ISIC (Interna-
tional Skin Imaging Collaboration) Archive, also used in our
method. In that study, the methodology is evaluated by the
Specificity/Sensitivity AUC metric, and achieves a classifica-
tion accuracy similar to that of board-certified dermatologists.

In this context, this paper follows up the current DL research
by presenting a novel application of image recognition for
clinical decision support at the point-of-care (e.g. doctors
offices, examination rooms or census surveying locations).
We use only the open-access data from the ISIC Archive,
which comprises around 14k images labeled by professional
dermatologists along with biopsy confirmation. Our results
demonstrated that a smartphone application is able to embed
a complete CNN inference model capable of assisting derma-
tologists in skin lesion examination, obtaining at least 90%
accuracy for malignant melanoma detection.

II. BACKGROUND

In this section we review the fundamentals of dermatolog-
ical diagnosis, a hierarchy of skin lesions, the evolution of
image recognition networks and their practical usage.

A. Dermatological Diagnosis

Dermatoscopy is a procedure carried out by dermatolo-
gists, who visually examine skin lesions in order to detect
anomalous features that might characterize a specific disease.
This procedure uses an optical apparatus (a dermatoscope with
lenses and camera) to obtain high-quality images of the skin,
which are evaluated according to a set of criteria, such as
the “ABCDE” criteria [10]. This acronym summarizes the
most distinguishing features in the group of diseases called
cutaneous melanoma, i.e. a cancerous growth of pigmented
cells (melanocytes) in the skin. These features include:

• Asymmetry of the lesion shape, characterizing an accel-
erating growth of larger areas in certain directions;



• Border irregularity, characterizing an accelerating growth
in several small spots distributed over the lesion;

• Color variation, caused by necrosis, melanin production,
changes in subcutaneous tissue, vascular damage, etc;

• Diameter > 6mm, for which a millimetric ruler is super-
imposed in the dermatoscopic image;

• Evolution of previous features over a certain timespan,
e.g. a slow change in color over several months, which
may not be observed by criterion C in a single image.

The combination of these features and their magnitude are
analyzed by the dermatologist in order to assign a preliminar
diagnostic to every lesion. If the diagnostic has sufficient
support in the literature to pose a health hazard, such as the
potential to spread to and impair the functioning of other
organs, the lesion is said malignant, and the dermatologist
proceeds to a costlier but more sensitive test, e.g. a biopsy.

B. The International Skin Imaging Collaboration

The International Skin Imaging Collaboration (ISIC) 2017
dataset provides 2.000 skin lesion images with masks for
segmentation, superpixel masks for dermoscopic feature ex-
traction, and annotations for classification. It is suitable for
training machine learning algorithms. The lesions in the im-
ages classify into Melanoma, Seborrheic keratosis, and Nevus.
Melanoma, the most critical, refers to a malignant skin tumor.
The other two kinds are said to be benign skin tumors, derived
cells that do not pose the threat of spreading across the body,
but, that, still deserve treatment.

Fig. 1. Samples from the ISIC dataset. In the first row, the original images;
in the second row, the segmentation masks. Reproduced from [11].

Figure 1 presents the samples from the ISIC dataset along
with masks for different tasks. The first row presents the
original skin lesion images; the second row shows the masks
for segmentation. Besides this training bundle, the ISIC 2017
also provides a validation set with another 150 skin lesion
images to evaluate the performance of the algorithms.

C. The ILSVRC challenge

The ILSVRC [12] is an annual competition for image recog-
nition algorithms. The dataset used in the ILSVRC challenge
contains more than a million pictures from several Internet
sources, of which 50k pictures are randomly sampled and
released before the competition for validation purposes, and
another sample with 150k images is used for final scoring

of the submissions. One of the challenges in the ILSVRC is
to assign the top five (of a thousand) classes most similar
for each object portrayed in a given image. In 2012, the
AlexNet CNN [13] achieved an error rate of 15.3% in the
top-5 challenge. This error rate granted to AlexNet the 2012’s
best result and also a breakthrough for image recognition with
neural networks over large datasets. Afterwards, at least 95%
of the ILSVRC submissions and 100% of the first places
from 2013 to 2017 derived their algorithms from research on
neural networks1 effectively presenting CNNs as a feasible and
efficient method for large-scale image recognition. An increase
in deep learning research was observed in other events, such
as the 2017 editions of IEEE CVPR [14] and SIBGRAPI [15].

D. Deep Learning from Images

Deep learning (DL) is a computational method that learns
representations of data with multiple levels of abstraction by
using models that mimic the dynamics of a nervous system
composed of neurons layers. DL introduces a number of
processing, data, and mathematical innovations that have dra-
matically improved the state-of-the-art in speech recognition,
visual recognition, object detection, object segmentation and
many other domains such as drug discovery and genomics.

DL is capable of discovering intricate structures; to do
so, it optimizes an object distribution in the vector space
(objectified by the choice of model and loss function) by itera-
tively deriving clustering errors and gradually backpropagating
the proportional error terms to the millions of parameters
(weights) in between layers of neurons until a desired objective
is reached, as measured by precision, accuracy and other
scores in tasks of classification, recognition and segmentation.
Two architectural variations of DL are of special interest; deep
CNNs have brought about breakthroughs in processing images,
video, speech and audio, whereas recurrent nets (RNNs) have
shone light on sequential data such as text and speech [16].

The main feature of DL is its ability to automatically learn
features from the input data; such features correspond to the
details that numerically represent the details of a given data
item. Previously to DL, the determination of the features
was a task that had to be done manually by specialists with
knowledge about the data domain. When performed manually,
only a limited number of features could be defined, many times
the features were not effective and were sensitive to variations
of data, like linear transformations. With DL, the features
become intrinsic to the model. Another advantage of DL is that
it allows for transfer learning; that is, a model can trained and
parametrized for a given data domain, say wheeled vehicles,
and, later, be easily adjusted to a related data domain, like
sports cars. All of these traits render DL to be a technology that
organizes in the form of convenient software libraries and that
advances throughout multiple domains iteratively or even in
parallel. As a result, despite its advances and complexity, DL
is a highly accessible technology whose advances heavily rely
on the acquisition of structured, large, and labeled datasets,

1From: Challenges/ILSVRC/Results at http://image-net.org/ on 2018-06-14.



and on computing resources powerful enough to process very
large volumes of data in reasonable time.

E. Model Optimization

Mobile Optimization: Tensorflow-lite, MobileNet

III. METHODOLOGY

In this section we describe the methods used for data
preprocessing, deep learning, and application design.

A. Normalization

• DPI adjustment
• Crop border occlusions
• Split in 32/64/128/256 square patches
• Select ROIs: patches with larger variance and infrequent

pigments
• Brightness/Contrast adjusted by initial 1x1 convolutions

B. Augmentation

• Rotations
• Scaling
• Lighting
• Skin color

C. Training

• all ROIs are marked with the label
• transfer Inception-v3 learning to the skin domain
• adding residual links
• further training until stabilization

D. Deployment and Classification

• Mobile model is made available for download
• Normalize image (as defined in section III-A)
• Classify the obtained patches
• Show result as original image with overlaid labels

E. Application User Interface

• Medical staff may annotate (supervising) the result
• share their cases with other doctors
• help colleagues in their cases
• download different/updated models

IV. RELATED WORKS

The work presented by Ruiz et al. [17] presents a clinical
decision system that classifies images with suspicious lesions
on the skin to assist as a second opinion clinical protocol. The
authors combine the nearest K-neighbors method, a multi-layer
Perceptron (MLP), and a parametric classifier based on Bayes’
decision theory to achieve a collaborative classification system.
They use a set of descriptors that comprises the variation
of the sharpness, color homogeneity, mean of the R and G
components, and average of the HSL color luminosity. They
obtained a precision of 87.76%.

The work of Yu et al. [18] describes an automatic melanoma
diagnosis system. The authors use a Convolutional Residual
Network to segment the images during preprocessing. In
a second step, they use Very Deep Residual Network for

classification. For the training, they use 900 pre-labeled images
and 350 images for testing; this method obtained an accuracy
of 85.5%.

The work presented by Souza et al. [19] uses decision
trees based on descriptors of asymmetry, edge, and coloring to
distinguish between images that present melanoma skin cancer
from others that present common spots. The highest reported
accuracy was of 90%. The work presented by Aswin et al.
[20] also works over the identification of melanoma using
RNAs. The authors use a wide set of descriptors incluidng
contrast, correlation, homogeneity, Second Moment, and RGB
color variance. In this work, RNAs were used and the accuracy
was 88%.

Nasr-Esfahani et al. [21] describe an automatic melanoma
diagnosis system that uses a preprocessing step to correct the
illumination, to segment the images, and to enhance the images
through a Gaussian filter. Next, they use a Convolutional
Neural Network for classification, which also extracts the
salient characteristics of the images. This method obtained
an accuracy of 81%. Majtner et al. [22] proposes a system
that automatically classifies melanomas; in their system, the
descriptor vector of each image is obtained using RSurf, Local
Binary Patterns (LBP), and Convolutional Neural Networks.
Furhter, they use the technique Support Vector Machines
(SVM) for classification. During training, they used 900 im-
ages; for testing, they used 379 images. The highest accuracy
reported by the authors was of 82,6%.

Our work differs from previous ones as it achieves an
accurary at the order of 90% inspired by the latest achieve-
ments regarding neural network archictecutes. It also innovates
with a design dedicated to mobile platforms, which demanded
processing load adjustments and specific interface choices.

V. EXPERIMENTS

In this section we exhibit the results achieved by our method
in the ISIC dataset, discussing the effects of different settings
and comparing to previous reports in the literature.

The software was implemented using Python-3.6, Inception-
v3, TensorFlow-1.13, CUDA-10 and CUDNN-7 libraries. All
tests ran on a CentOS-7 system with an Intel-Core-i7-7700K
processor (4-core/8-thread up to 4.5GHz), 16G-DDR3 mem-
ory, an NVIDIA-Titan-Xp graphics card (3,840 cores up
to 1.58GHz with 12G-G5X memory), a Gigabyte-H110M-H
motherboard, and a 750GB Samsung-SpinPoint-F1-DT hard
disk drive. The mobile application was implemented using
Google-Android-Studio and Android-SDK tools.2

A. Data preprocessing

The preprocessing stage comprised operations of normaliza-
tion of images (DPI, brightness, contrast, resolution), increase
of the dataset cardinality (simulating color variations, illumi-
nation, deformations, and rotations), and image segmentation.
The following operations were performed on the ISIC dataset:

• DPI and size adjustment to 1000x1000 resolution;

2All trademarks are copyrighted by their respective owners.



• In conjunction with segmentation masks, the regions of
interest were selected by the masks;

• The edges of the images were discarded;
• Histogram normalization: contrast, brightness, and

gamma per channel (R, G, B), adjusting differences due
to the use of different types of equipment.

Meanwhile, the operations of zoom, rotation, and resizing
were performed online, each time the images were resubmitted
to the video memory.

It is worth noting that some of these operations are also ex-
ecuted intrinsically in the neural network model; for example,
the brightness and contrast are also adjusted by the initial 1x1
convolutions.

With the preprocessed data set, the images were separated
into three sets: training (feedforward propagation), validation
(estimation of the loss function and backpropagation), and test
(evaluation of the final precision via cross-validation). In the
literature, several values are used for the amount of data used
in each step. Goodfellow et al. 23 suggests a 50 %, 25 % and
25 % split; which distributes an equal division of data between
training and verification sets (test + validation).

B. Training

The training stage, when the weights of the network are
adjusted so to perform the best image-to-class mapping, had
the following steps:

• Assemble of the training images with their respective
labels;

• Retrain of the last layers of the Inception-v3 neural
network: the weights of the fully connected and softmax
output layers were reset, and were submitted to successive
iterations of backpropagation;

• Retrain of all the layers of Inception-v3: the nearest
weights of the output were mixed with noise, and the
backpropagation was performed throughout the entire
network;

• Alteration of the in Inception-v3 structure: we added
ResNet links for residual propagation to the Inception
module. Such a change could be performed dynamically,
followed by complete re-training with a smaller number
of iterations.

After each training cycle, we evaluated the model for each
class of skin lesion present in the data. To do so, the validation
images (with and without normalization, separately) were
classified by the network. Then, the classes of the validation
images are compared to the output of the model, and a
matrix of confusion is assembled. Finally, we used traditional
evaluation measures, such as Precision-Recall, Accuracy, F1-
measure, and area under the ROC curve (sensitivity × speci-
ficity).

VI. CONCLUSION

DermaDL is a complete solution to aid dermatological diag-
nosis at the cost of a common smartphone. It provides a mobile
application which runs a lightened neural network to classify
images obtained by dermatologists, helping them to retrieve

related information from the patient history and compare them
with similar cases in the literature while achieving results
compatible with professional medical training.

This application has the potential to be a general point-
of-care diagnosis support tool, by simply setting the correct
model for each specific kind of examination, e.g., a CNN
model trained to recognize small fractures in chest x-ray
images, or a natural language model to digitize textual blood
tests, an audio processing model to evaluate hearing damage,
and so on. DermaDL is an initial platform for general inference
models, thus fully extensible by on-demand updates.

Its architecture was designed to evolve in the cloud, creat-
ing a collaborative research network where multidisciplinary,
multi-institutional practitioners and researchers can contribute
with datasets and algorithms, given appropriate publishing
standards, whose results can be easily validated and used by
the clinical staff. As future work we plan to develop more
models, connect this service with other dataset archives and
collaborate with more medical researchers in the extension of
the system.
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