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Abstract

A large amount of data is produced every day by stakeholders of the Air Traf-
fic Management (ATM) system, in particular airline operators, airports, and air
navigation service provider (ANSP). Most data is kept private for many reasons,
including commercial and security concerns. More than data, shared information
is precious, as it leverages intelligent decision-making support tools designed to
smooth daily operations.

We present a framework to detect, identify and characterise anomalies in past
aircraft trajectory data. It is based on an open source of ADS-B based aircraft
trajectories, and extracted information can benefit a wide range of stakeholders:
Air Traffic Control (ATC) training centres could play more realistic simulations;
ANSP may improve capacity indicators; academics improve safety models and
risk estimations; and commercial stakeholders, like airlines and airports, may use
such information to improve short-term predictions and optimise their operations.

The technique is based on autoencoding artificial neural networks applied on
flows of trajectories, which provide a useful reading grid associating cluster anal-
ysis with quantified level of abnormality. In particular, we find that the highest
anomaly scores correspond to poor weather conditions, whereas anomalies with a
lower score relate to ATC tactical actions.
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1. Introduction1

The identification of significant events in historical aircraft trajectory data falls2

within the scope of knowledge discovery and information extraction. It focuses on3

getting value out of the huge amount of data produced every day by stakeholders4

of the air traffic management (ATM) system. It is an arduous task as trajectories5

flown every day by commercial, military, private and other aircraft are subject to6

a large amount of impacting factors commonly modelled as uncertainty and caus-7

ing deviation from the plan in terms of predicted times at given milestones along8

trajectories from gate to gate.9

Sources of uncertainty in air traffic management are manifold. Weather-related10

uncertainties cause deviation from the plan due to a strong tailwind, deviations due11

to thunderstorm activities (also referred to as CB, for cumulonimbus, in the fol-12

lowing) or disruptions when airport operations are interrupted. Air Traffic Control13

(ATC) staffing, late maintenance issues, airport operations including late boarding14

causing late startup time also introduce uncertainties in the whole aviation system.15

Some of these sources of uncertainties can be predicted, quantified or logged16

but as the information produced by each stakeholder is not necessarily made avail-17

able to all stakeholders, a systematic analysis of correlations between events and18

of their impact in the air traffic network is a considerable challenge.19

This contribution presents a successful Machine Learning (ML) approach for20

anomaly detection and identification of significant events in past trajectory data.21

The method builds on top of open sources of aircraft trajectory data, as received by22

a network of receivers of Automatic Dependent Surveillance–Broadcast (ADS-B),23

stored on and requested from The OpenSky Network [1]. Our approach is based24

on trajectory data only, although external sources of not necessarily open data were25

used to help assessing and interpreting detected situations.26

Detected significant events on a wide range of study cases include strong de-27

viations (weather disruptions, regulations) and ATC actions, such as deconfliction28

and sequencing actions. The proposed method complements well with clustering29

techniques to identify air traffic flows and highlights trajectories within flows as30

presenting a degree of dissimilarity important enough to justify further analysis.31

Detecting and identifying significant events is a valuable asset to address many32

applications, including safety analyses, preparation of ATC training simulations33

with realistic situations and feeding collaborative decision making (CDM) tools34

with operational information coming from the observation of past data in order35

to improve their acceptability. In particular, identifying traffic situations which36

could have led to a separation loss, analysing context and proximate events are37

valuable inputs for collision risk models (CRM) [2], resulting in estimations of38

mid-air collision risks. Locating hot spots based on identified situations could also39
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help assess the complexity of traffic inside a given sector when it is in operation.40

The evaluation of our methodology is performed on several months of data41

at various scales: first with a focus on routes between city pairs, i.e. trajectories42

flying from city A to city B; then looking from a sector point of view, coupled43

with periods when the sector was operationally deployed according to the Sector44

Configuration Plans (SCP). Finally, we have a closer look at Terminal Manoeuvring45

Areas (TMA) and have a look at internal layers of autoencoder neural networks46

to understand what kind of representation is learned before being able to detect47

significant events.48

The paper is organised as follows. Section 2 reviews the state of the art with49

respect to trajectory clustering, anomaly detection and their application to safety50

analyses. Section 3 presents the formalism, based on an extensive use of a special51

kind of artificial neural networks called autoencoders. Section 4 presents various52

use cases and analyses detected and labelled situations. Section 5 provides insight53

on the representation that is produced by our neural networks through the learning54

process.55

2. Background and literature review56

Detection and identification of significant events in large amounts of historical57

aircraft trajectory data is an active area of research. What a significant event means58

depends ultimately on the specific use case addressed. In general, it encompasses59

operational situations or pattern behaviours in air traffic which are worth iden-60

tifying for online tracking or post-operational analysis because of their potential61

impact on the safety or efficiency of air traffic operations.62

The methodology described in this paper builds on two previous research ef-63

forts [3, 4] based on trajectory clustering and anomaly detection techniques. The64

most relevant research on these two areas will be introduced here in the corre-65

sponding subsections.66

Trajectory clustering is useful to identify the air traffic flows within an airspace.67

The major and recurrent flows correspond to the standard modes of operation in an68

airspace, such as Instrument Landing Approaches (ILS) procedures in TMA or69

the main ATS routes linking the defined entering and exiting points in an en-route70

sector. Once the standard modes of operation are determined, it is possible to71

detect in a more precise way (by using other techniques) specific anomalous traffic72

patterns. At the trajectory level, concrete examples of these significant events will73

be given as part of the literature review, but we are generally referring to flight74

trajectories or flight interactions within or among the main flows with a certain75

degree of unexpected behaviour. At the flow level, although it is not the focus of76
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our approach, non-nominal flow configurations in a certain airspace at certain time77

could also be considered as examples significant events.78

2.1. Trajectory clustering and flow identification79

Clustering is an unsupervised data analysis technique widely used to group80

similar entities into clusters according to a similarity, or distance, function. Multi-81

ple clustering algorithms exist in the literature to cluster point-based data such as82

k-means [5], BIRCH [6], OPTICS [7], DBSCAN [8] or H-DBSCAN [9]. When83

clustering is applied to trajectories, it requires a proper distance function to be84

defined between trajectory pairs, which is challenging because of the functional85

nature of trajectories. The most commonly used approach is to simply sample the86

trajectory so as to obtain a n-dimensional vector of points for the use of point-based87

clustering algorithms and distances such as the Euclidean one.88

When trajectories are represented in the form of high-dimensional vectors, it is89

good practice to reduce their dimensionality before clustering by projecting trajec-90

tory data in high-dimensional space to a space with fewer dimensions. Numerous91

linear or non-linear data transformation techniques exist to reduce the dimension-92

ality. Principal Component Analysis (PCA) is a widely used linear transformation93

technique to project data into a lower-dimensionality space so that the variance94

in the low-dimensional space representation is maximised. Kernel PCA is a non-95

linear variant of PCA which is based on kernel methods. Autoencoders are a cate-96

gory of neural networks capable of learning non-linear reduction functions as well97

as their inverse functions to transform data into the low dimension and back into98

the original representation.99

Trajectory clustering methods based on Euclidean distance do not always pro-100

duce satisfying results, especially when applied to trajectories with different lengths.101

Fortunately, more specific distances for trajectory and time series exist in the lit-102

erature [10]. For instance, warping-based distances such Dynamic Time Warping103

(DTW) [11], Longest Common Subsequence (LCSS) [12], Edit Distance on Real104

Sequences (EDR) [13], Edit Distance with Real Penalty (ERP) [13] find an opti-105

mal way of aligning the time dimension of trajectories to achieve a perfect match106

between them. Other distances exist to better take into account the geometry of107

the trajectories and their shape. The most well known shape-based distances are108

Hausdorff [14] and Fréchet [15], but they are not appropriate to compare trajecto-109

ries as a whole. More recently, a more promising shape-based called Symmetrized110

Segment-Path Distance (SSPD) distance has been proposed [10, 16] which takes111

into consideration several trajectory aspects: the total length, the variation and the112

physical distance between two trajectories.113

A significant number of clustering methods exist in the literature for flow iden-114

tification, where the goal is to determine the set of clusters that best fit the opera-115
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tional air traffic flows within an airspace. These methods associate each cluster to116

an air traffic flow which is a traffic pattern with both temporal and spatial charac-117

teristics. The exact definition of what a flow is ultimately depends on the specific118

application context. Also, it is worth noticing that a majority of the research have119

focused primarily on studying the spatial dimension of flows.120

Some flow identification methods are developed for analysis of air traffic op-121

erations in the terminal area. For instance, Eckstein [17] combines PCA with122

k-means to evaluate the performance of individual flights in TMA procedures.123

Gariel et al. [18] propose a framework based on PCA, DBSCAN and k-means for124

airspace monitoring and complexity assessment also in the TMA. Rehm [19] and125

Enriquez [20] apply hierarchical and spectral clustering techniques to identify air126

traffic flow patterns from and to an airport. Murça et al. [21] present a framework127

based on DBSCAN and other algorithms to identify and characterise air traffic128

flow patterns in New York transition/terminal airspace for daily assessment of the129

tactical air traffic operations.130

More recently, Murça et al. [22] present a framework based on DBSCAN and131

other machine learning techniques to characterise traffic flow patterns and compare132

the terminal airspace design as well as the operational and performance differences133

in three multi-airport systems (New York, Hong Kong and São Paulo). Olive [23]134

propose a specific clustering technique for identifying converging flows in the ter-135

minal area of Toulouse which helps understand how approaches are managed. The136

analysis of outliers provides elements to understand and assess specific situations137

calling for more in-depth safety analyses.138

Other research focus on flow identification within en-route airspace. Sabhnani139

et al. [24] present a specific clustering algorithm to identify flow patterns and criti-140

cal points for en-route airspace redesign. Basora et al. [25] propose a framework for141

the analysis of air traffic flows based on trajectory clustering with the HDBSCAN142

algorithm [25] and the SSPD distance. Finally, flow identification have been per-143

form on a larger scale to characterise air traffic route networks [26, 27, 28, 29].144

2.2. Anomaly detection145

Anomaly detection refers to the problem of finding patterns in data that do not146

conform to expected behaviour [30]. Anomaly detection techniques can be used147

to detect significant events in flight data, as these usually correspond to unusual148

operational situations and so presenting a certain degree of anomaly. Go-around149

operations, runway excursions, conflict resolution manoeuvres and traffic rerouting150

are just a few examples of significant events that could be identified by applying151

anomaly detection methods.152

A recent survey [31] reviews some of the main anomaly detection techniques153

and their application to aviation data. The review covers an exhaustive number of154
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use cases and methods for the identification of significant events which is too large155

to be reproduced here again. Instead, we will focus only on the most relevant and156

recent research work in the field.157

MKAD [32] can be considered as one of the first methods designed to effec-158

tively detect operationally significant anomalies with heterogeneous sequences of159

both discrete and continuous variables. Based on kernel functions and OC-SVM,160

MKAD can identify operational situations in flight data such as anomalous flight161

approaches. More recently, Janakiraman and Nielsen [33] propose an unsupervised162

anomaly detection approach based on extreme learning machines as an alternative163

to MKAD for the identification of safety risks in very large aviation datasets.164

Approaches based on clustering algorithms have been widely used for anomaly165

detection. For instance, Li et al. [34] propose a cluster-based anomaly detection166

method based on DBSCAN (ClusterAD) to detect anomalies in a airline dataset167

for 365 B777 take-off and approach operations. Following up this research, Li et168

al. [35] present a method based also on DBSCAN called ClusterAD – Flight to169

identify abnormal flights during take-off or approach as a whole.170

More recently, Li et al. develop ClusterAD – DataSample [36] which is a171

Gaussian Mixture Model (GMM) based method capable of instantaneously detect-172

ing abnormal data samples during a flight rather than abnormal flights as a whole173

during a specific flight phase. Puranik and Mavris [37] present a generic methodol-174

ogy based on DBSCAN and SVM for identifying anomalies from general-aviation175

in the approach and landing phase. Olive et al. [38] propose a method based on176

functional principal component analysis, HDBSCAN – GLOSH [39] to identify177

atypical approaches and landings both in post-operational analysis and on-line.178

Deshmukh et al. [40] propose a temporal logic based anomaly detection al-179

gorithm (TempAD) applicable to trajectories in the terminal airspace. The algo-180

rithm, based on a temporal-logic learning approach [41, 42, 43], can learn human-181

readable mathematical expressions from data which facilitates the feedback and182

interaction with operational experts. The method uses DBSCAN as a preprocess-183

ing step to identify the clusters with similar trajectories on which the detection of184

anomalies with TempAD becomes more effective.185

2.3. Significant events and safety analysis186

In the two previous subsections, we have presented some techniques to auto-187

matically discover significant events from a dataset of flight data. In this subsec-188

tion, we will focus on a few specific examples of what kind of significant events189

can be identified and how they can be used for safety analysis.190

It is worth noticing that significant events automatically discovered by an algo-191

rithm do not necessarily present a safety risk (or not in isolation anyway), which is192
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the reason why these events need to be further analysed by a safety expert. How-193

ever, the frequent occurrence of certain significant events like deconfliction mea-194

sures within an area of an airspace can create hotspots leading to high complexity195

and potentially higher safety risk. Therefore, not only the identification of individ-196

ual events but also their frequency and geographical density are important from a197

safety point of view.198

An efficient method for identification of significant events from flight data can199

be beneficial for a collision risk model (CRM) to improve safety level estimation.200

For instance, Garcia [2] and Saéz et al. [44] develop a CRM for Eurocontrol to as-201

sess European en-route airspace safety risk. The detection of what they call proxi-202

mate events (situations where the aircraft involved may evolve towards a collision203

due to a separation minima infringement) is performed based on either a track seg-204

mentation technique or the simulation of the traffic evolution via a time step and205

look-ahead time parameters [45]. Our methodology could be useful in such con-206

text by providing an alternative mean of detecting changes in trajectories associated207

with aircraft manoeuvres or flight interactions corresponding to potential conflicts.208

However, the major focus of the past research has been put on identifying sig-209

nificant events for an individual flight during a specific flight phase, especially210

during the approach, landing and take-off phases because of their inherent higher211

safety risks. For instance, MKAD [32] can identify significant events during the212

approach phase such as go-around operations, unusually high airspeed flights at213

low altitude, flights impacted by gusty winds and abnormal approaches. Clus-214

terAD [34] can identify operational situations including high/low energy approaches,215

unusual pitch excursions, abnormal flap settings and high wind conditions. Clus-216

terAD – DataSample [36] is able to detect several cases of unstable approaches,217

strong tailwind and late localizer intercept, just to mention a few examples. Un-218

fortunately, these approaches work with on-board recorded data whose access is219

restricted and needs authorisation from the airlines.220

3. Methodology221

3.1. Autoencoders222

Autoencoders are artificial neural networks consisting of two stages: encoding223

and decoding. A single-layer autoencoder (Figure 1) is a kind of neural network224

consisting of only one hidden layer. Autoencoders aim at finding a common feature225

basis from the input data. They reduce dimensionality by setting the number of226

extracted features to be less than the number of inputs. Autoencoder models are227

usually trained by backpropagation in an unsupervised manner. The underlying228

optimization problem aims to minimize the distance between the reconstructed229

results and the original inputs.230
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Figure 1: Autoencoder neural network architecture with one layer

The encoding function of an autoencoder (such as the one depicted in Figure 1)231

maps the input data s ∈ Rd to a hidden representation y ∈ Rh = e(s) = g(w · s+232

b) where w ∈ Rd×h and b ∈ Rd are respectively the weight matrix and the bias233

vector and g(·) is a non linear activation function such as the sigmoid or hyperbolic234

tangent functions. The decoding function maps the hidden representation back to235

the original input space according to ŝ = d(y) = g(w′ · y+ b′), g(·) being most of236

the time the same activation function.237

The objective of the autoencoder model is to minimise the error of the recon-238

structed result:239

(w,b,w′,b′) = argmin `(s,d(e(s))) (1)

where `(u,v) is a loss function determined according to the input range, typically240

the mean squared error (MSE) loss:241

`(u,v) =
1
n

∑
||ui− vi||2 (2)

Depending on the volume and complexity of the considered data set, autoen-242

coders’ layers may be stacked (see Figure 2) in an attempt to better grasp the struc-243

ture of the underlying traffic. Other loss functions, such as cross-entropy loss, or244

custom loss functions with regularisation terms (see Section 3.3) may be designed245

for a better robustness and stability of the results across executions of the method.246

3.2. Distribution of reconstruction errors and evidence of convergence247

Autoencoders are trained to project, or compress, data onto a latent space of a248

smaller dimension, then to regenerate the original data in the original space based249

on a representation in a smaller dimension. The rationale behind the use of autoen-250

coders for anomaly detection is that these artificial neural networks specialise on251

finding a representation of the data with few parameters, just enough to reconstruct252
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Figure 2: Autoencoder neural network architecture with stacked layers

the original data in most cases. They are trained to minimise a loss function, and253

learn to reconstruct the original data, at the risk of not being able to reconstruct254

anomalous samples.255

Figure 3 plots the evolution of the MSE loss together with the distribution of256

reconstruction errors across all the samples contained in a dataset. Details about257

the specificity of the dataset are not relevant at this point: we will introduce them258

in depth in Section 4.259

After one iteration, i.e. with random weights on the edges of the neural net-260

work, reconstruction errors present an initial distribution which starts moving to-261

wards lower reconstruction errors after 10 or 100 iterations. After 1000 iterations,262

although the convergence is obviously not complete, we see that most samples263

distribute close to 0 and few samples reconstruct with higher residual errors.264

Within the unsupervised learning paradigm, after the loss function converges,265

we have no way to check the accuracy of our network, the authors recommend to266

plot this distribution as a rule of thumb to verify the convergence of the training267

process and the relevance of the resulting autoencoder.268

3.3. A new term of regularisation269

In some of the datasets introduced in Section 4, we found that several runs of270

the training phase of our autoencoders would distribute along two variation modes.271

Figure 4 displays such an example of distribution when variation modes of unbal-272

anced weights exist in the original dataset: these modes may subsist in the distri-273

bution of reconstruction errors in the form of a distribution with two ”hills”.274

In order to limit a premature optimisation of the autoencoder which would learn275

to favour one mode over the other (the one with the more samples) in some runs of276
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Figure 3: Distribution of reconstruction errors during the training of the autoencoder. The sample
dataset used to generate this figure is presented in Section 4.
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our algorithm, we improved the training of our network with a regularisation term277

added to the loss `(u,v).278

A regularisation term is a penalty term added to the loss that is commonly used279

to prevent overfitting. Among neural networks, L1- (resp. L2-) regularisations280

penalize the loss after each iteration with the sum of the absolute (resp. squared)281

weights of the neural network. In our case, since we expect a distribution of recon-282

struction errors that would fit an exponential law, we propose a regularisation term283

based on a measure of distance between distributions.284

After each iteration, we fit an exponential law to our distribution of reconstruc-285

tion errors. The best fit to an exponential distribution can be written based on the286

mean of all ρi = ||ui− vi||2 samples, which have already been computed in form287

of the MSE loss `(u,v). Therefore, the best fit for the probability density function288

becomes:289

f : x 7→ 1
`(u,v)

· e
−

x
`(u,v) (3)

Then, we compute the distance between the distribution of reconstruction er-290

rors and the fitted exponential probability density function. For each t j ∈ [0,max(ρi)]291

equally sampled with j ∈ [1,m], we evaluate the difference:292

δ j =

(
1
n

∑
i

Kρi(t j)

)
− f (t j) (4)

with Kρi a Gaussian Kernel function:293

Kρi(x) =
1

σ
√

2π
· e
−

1
2

Åx−ρi

σ

ã2

(5)

Finally, we sum all the δ j as a regularisation term to the original square loss.294

For the specific example of Figure 4, with a bandwidth term σ = 0.02, we found295

λ = 10−4 to be particularly efficient as it helped converging to a better MSE loss296

than the one obtained without regularisation.297

`?(u,v) = `(u,v)+λ

m∑
j=1

δ j (6)

We performed several training runs with the same dataset and parameters. We298

observed that the regularisation term help balance bias and variance resulting in299

more stable and predictable results which hopefully should prevent model overfit-300

ting and help staying away from multimodal distributions.301
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Figure 4: Distribution of ρi, suggesting two modes of variations, and their fitted exponential law:
the regularisation term aims at fitting the distribution under the curve while the MSE loss aims at
pushing the bins toward zero. When the regularisation is prevalent (overfitting on the exponential
distribution), all the bins fit under the curve but samples reconstruct poorly with no added value for
anomaly detection.

The differentiation of the regularised loss `?(u,v), necessary to implement the302

gradient descent and backpropagation during the training period has been delegated303

to the autograd module of PyTorch [46]. All terms presented in this subsection can304

be written with torch functions which provide all that is needed for backpropaga-305

tion.306

4. Application to the identification and detection of significant events307

4.1. Description of the use cases308

We considered in this paper a series of particular use cases. The first proof309

of concept of this method has been made on a set of city pairs [3], before being310

extended to flows in an airspace [4]. In this paper, we present a novel use case in311

the Terminal Manoeuvring Area (TMA) around Zurich airport (LSZH) which we312

will explore further in Section 5.313

Automatic Dependent Surveillance–Broadcast (ADS-B) is a cooperative surveil-314

lance technology which provides situational awareness in the air traffic manage-315

ment system. Aircraft determine their position via satellite, inertial and radio navi-316

gation and periodically emit it (roughly one sample per second) with other relevant317

parameters to ground stations and other equipped aircraft. Signals are broadcast at318

1090 MHz: a decent ADS-B receiver antenna can receive messages from cruising319
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aircraft located up to 400 km far away, while the range is much lower for aircraft320

flying in low altitude or on ground.321

The data used for this study is collected by the OpenSky Network [1], a net-322

work of ADS-B receivers, which offer querying capabilities on their database for323

academics. Recorded data contains timestamps (added on the receiver side, with324

many receivers equipped with a GPS nanosecond precision clock), transponder325

unique 24-bit identifiers (icao24), space-filled 8 character callsigns, latitude, lon-326

gitude (in degrees, 5 digit precision), (barometric) altitude (in ft, w.r.t. standard327

atmosphere), GPS altitude (in ft), ground speeds (in kts), true track angle (in de-328

grees), vertical speed (in kts). Based on sensors located on the landing gear, differ-329

ent messages with similar information are sent when the aircraft is on the ground,330

resulting in a boolean flag in the OpenSky records.331

Aircraft compute their position within uncertainty margins they are able to es-332

timate and broadcast. These information are not provided decoded in the OpenSky333

Network database but could be processed [47] from the raw messages on an as-334

need basis. However, we kept the uncertainty analysis out of the scope of this335

paper and chose to manually filter irrelevant data as part of the preprocessing step.336

The city-pair data set consists of one full year of 3536 trajectories flying from337

Paris–Orly (LFPO) to Toulouse–Blagnac (LFBO) airports between January and De-338

cember 2017. This data set has been requested based on a set of 28 callsigns339

commonly attributed to trajectories serving this route.340

The airspace data set consists of seven months of trajectories flying through341

the LFBBPT airspace of the French Bordeaux Area Control Centre (ACC) between342

January 1st and August 6th 2017. The data set is limited to 14,461 trajectories343

crossing the airspace during the time intervals when the sector was operationally344

deployed according to the Sector Configurations Plans (SCP), also known as open-345

ing schemes. The goal of using the SCP is for the traffic under analysis to be repre-346

sentative of operational situations with a level of workload deemed acceptable by347

controllers.348

The landing data set consists of 19,480 trajectories landing at Zurich airport349

(LSZH) between October 1st and November 30rd 2019. We relied on The OpenSky350

Network [1] database to properly label trajectories landing at LSZH.351

All datasets have been requested and preprocessed with the help of the Python352

traffic library [48] which downloads OpenSky data, converts the data to struc-353

tures wrapping pandas data frame and provides a specialised semantics for aircraft354

trajectories (e.g., intersection, resampling, filtering, and more). In particular, it355

iterates over trajectories based on contiguous timestamps of data reports from a356

given icao24 identifier: all trajectories are then assigned a unique identifier and357

resampled to one sample per second.358

Figure 5 shows a preview of the data contained in the pandas data frame un-359
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Figure 5: Preview on the trajectory data associated to one trajectory.

derlying the trajectory structures. The data for the three use case presented in this360

paper is now provided as generic imports in the traffic library, triggering a down-361

load from a corresponding figshare repository [49] if the data is not in the cache362

directory of the user:363

from traffic.data.datasets import (
# -- The city pair use case --
# -> 3536 trajectories between Paris--Orly to Toulouse--Blagnac (2017)
paris_toulouse_2017,
# -- The airspace use case --
# -> 14,461 trajectories crossing the LFBBPT sector (1st semester 2017)
airspace_bordeaux_2017,
# -- The landing use case --
# -> 19,480 trajectories landing at Zurich airport (Oct./Nov. 2019)
landing_zurich_2019

)

4.2. City pairs364

The provided dataset includes full trajectories from Paris–Orly to Toulouse–365

Blagnac airports. Trajectories from the OpenSky Network are subject to errors366

happening in different steps of the acquisition chain: errors before the emission367

of data (imprecision in the localisation, quantification artefacts) and errors in the368

receiving and decoding of the data by a pool of heterogeneous feeders. A first set369

of basic filtering and resampling methods provided in the traffic library has been370

applied to (partly) sanitise all data sets before publication.371

Then, the second step consists in defining a bounding box containing the set of372

trajectories. We chose in this section to consider roughly drawn bounding boxes373

including most trajectories before they enter the TMA of LFBO airport (here the374

bottom-left and top-right coordinates of the learning box are resp. (44°17′N, 0°57′E)375

and (45°32′N, 2°45′E) ). We also chose to include in the bounding box the first376

navigational beacon (i.e., a set of geographical coordinates) of the standard arrival377

(STAR) procedures.378

The next step in the data preparation consists in resampling the trajectories in379

the selected bounding box. Since autoencoders have a fixed number of inputs, we380
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Figure 6: Data preparation: each trajectory is cropped and resampled with 150 samples.

resample each subset of trajectory cropped to our learning box so as to get only d381

equally distributed samples. Figure 6 plots a resampling with d = 15 for illustra-382

tions’ sake but we chose a larger number of samples d = 150 for our experiments.383

This choice is arbitrary and we found that other values of d in the same order of384

magnitude have no significant impact on the results.385

Features are chosen among all data provided in the ADS-B specifications: lat-386

itude, longitude, GPS and barometric altitude, track angle, ground speed, vertical387

speed. Different airspeeds (CAS, IAS, TAS, etc.) are sent by aircraft upon request388

on DF 20 and 21 but for the sake of clarity, we chose to keep these features out389

of our dataset for future work beyond the scope of this paper. Controller’s actions390

are most often expressed in terms of altitude (“climb to flight level 310”), track391

angle (“turn left heading 210”, “direct to NARAK”), and speed (“reduce speed to392

160 kts”); since speeds are expressed in IAS and not in ground speed, we focused393

on track angles and altitude profiles.394

For the sake of clarity, we focus here on an analysis on normalised track an-395

gles. The input dimension, i.e. the number of neurons on both input and output396

layers of our autoencoder, has been set to d = 150. The embedding dimension,397

i.e. the number of neurons on the hidden layer has been set to a lower value of398

64. All neurons are defined with a sigmoid activation function. The loss function399
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Figure 7: Distribution of reconstruction errors on the Toulouse scenario. The bottom distribution
replicates the top distribution on a semi-log y-axis.

used is the mean squared error as defined in (2), which compares vectors of scaled400

track angles (through min-max normalisation) with their reconstructions, i.e. their401

images through the autoencoder.402

As a result of our training process, we get a reconstruction error, i.e. a mea-403

sure of the difference between a given trajectory and its autoencoded representa-404

tion. Figure. 7 plots the distribution of these reconstruction errors. The model405

is trained to minimise the sum of all reconstruction errors, so the distribution is406

centred around zero.407

The same distribution is plotted on a logarithmic y-axis to emphasise the few408

specific trajectories with higher reconstruction errors: we study in the following409

section the contextual situations associated to such specific trajectories pointed on410

the distribution. We focused first on trajectories with the highest reconstruction411

errors, which should be representative of the most unusual trajectories; then on a412

few situations with lower reconstruction errors, closer to the tail of the bell-shape413

distribution.414

The analysis of the context was made after analysing traffic around anomalous415

detected trajectories. ADS-B may be an incomplete source of data for a thorough416
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analysis of the situation since some aircraft are still not properly equipped. In417

that case, flight plans and trajectories inferred by multilateration give a hint but418

situations analysed in this paper have been selected so as to be representative of419

the wide panel of detected situations and to be explainable with ADS-B tracks420

openly accessible. A perfect analysis would have also involved confirmation of421

our hypotheses with radio recordings; unfortunately, none were available for the422

chosen scenarios.423

In general, we found that very high reconstruction errors are associated to less424

common situations; explanations are more to be found in the METAR history or425

regulation history. Conversely, reconstruction errors closer to the tail of the bell-426

shaped distribution, are more prone to yielding nominal situations which may be427

explained by ATC orders issued for a deconfliction or sequencing purpose.428

4.2.1. Highest values of reconstruction errors relate to less common situations429

Figure 8: Situations with high reconstruction errors on the city-pair scenario

Flight AFR51ZU on June 28th (Figure 8) yields a high (although not the topmost)430

reconstruction score and its peculiar route on final approach called the authors’ at-431

tention. This day was marked with a lot of delays because of weather. METAR432

on that day is particularly explicit: thunderstorm (TS), presence of cumulonimbus433

(CB) and a gusting wind forecast (20G35KT). Local news reported that traffic was434
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interrupted on that day in Toulouse–Blagnac when AFR51ZU was in approach. The435

aircraft was not rerouted, but the interruption may explain the unusual path and the436

two loops during final approach.437

LFBO 281600Z AUTO 20006KT 180V240 9999 TS FEW033/// SCT047/// BKN060///438

///CB 20/14 Q1004 TEMPO 28020G35KT 2000 TSRA=439
440

Figure 9: Weather impact on STAR procedures on the city-pair scenario

Traffic around Toulouse airport on July 19th was also impacted by poor weather441

and cumulonimbus probably located on the path of the STAR procedure starting442

from NARAK. All aircraft (including AFR47FW, see Figure 9) coming from the North-443

East were deviated to the West prior to entering the TMA, so as to be sequenced444

on the usual STAR procedures applicable to aircraft coming from the North-West.445

LFBO 192100Z AUTO 02004KT 350V050 9999 TS BKN024/// OVC031/// ///CB 23/19446

Q1014 TEMPO 1500 TSRAGR BKN010 BKN040CB BECMG 14010KT=447
448

QFU refers to the magnetic heading of the runway in use. ATC may change the449

QFU at any time depending on the weather conditions. On August 27th, EZY24EH450

took a very peculiar route (Figure 8) as other aircraft were landing from the south451

on QFU32. After the last flight has landed (16:51), a first aircraft landed at 17:08452

on QFU14 and EZY24EH was on hold before landing 3 minutes later.453

As we validated our approach on different city pairs, including flights from454
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Figure 10: Last filed flight plan and trajectory of DLH2F on June 2nd, 2017, detected as outlier on
one year of traffic between LFPG and EDDF.

Paris–Charles-de-Gaulle (LFPG) to Frankfurt (EDFF), we found that regulations set455

by ATC may also result in very high reconstruction errors. Historical records con-456

tain many regulations in place between Paris and Frankfurt (Reims and Langen457

ACC) in early evening on June 2nd, 2017, because of cumulonimbus present in458

the area. In particular, DLH2F was impacted by a 15 minute delay before departure459

because of a regulation filed by Frankfurt arrivals. Figure 10 plots the last filed460

flight plan (Filed Tactical Flight Model, FTFM) and the Current Tactical Flight461

Model (CTFM), refined version of the FTFM based on live positions for DLH2F.462

Such a pattern suggests that DLH2F adapted its route to avoid further regulations in463

the area.464

4.3. High values of reconstruction errors relate to tactical ATC actions465

In contrast, we found more classical and conventional ATC situations in the466

belly of the reconstruction error distributions.467

On Figure 11, AFR27GH has a higher reconstruction error, probably because its468

trajectory is pushed quite to the East of the NARAK beacon, a less usual pattern for469

trajectories on the LFPO to LFBO route. As we investigate closer into the situation,470

it appears that AFR27GH was flying behind EZY81GE before being instructed to turn471

left. As EZY743l arrived from Lyon (to the North-East), AFR27GH was sequenced472

behind with an appropriate ATC order. RYR3YM arrives next and is sequenced behind473

AFR27GH in a similar manner.474

On Figure 12, DLH4J flies into Frankfurt area. The density of traffic converging475

on this IAF at this time of the day would probably not explain this shift in trajectory.476

The explanation could come from TAP571 which took off a bit earlier from runway477
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Figure 11: Aircraft are sequenced for landing before entering Toulouse TMA; AFR27GH is vectored
behind EZY81GE and EZY743l.

Figure 12: Deconfliction between DLH4J scheduled for landing and TAP571 taking off from Frank-
furt airport, runway 18.
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18. Without a turn left order to DLH4J, her climb path could have crossed DLH4J’s478

trajectory, probably causing a potential loss of separation.479

4.4. Airspaces480

Figure 13: Description of the airspace dataset over the LFBBPT sector of the Bordeaux Area Control
Centre

The provided dataset includes seven months of trajectories from the LFBBPT sec-481

tor operated by Bordeaux Area Control Center (ACC) (see Figure 13) for periods482

when the sector was operationally deployed according to the Sector Configuration483

Plans (SCP), also known as opening schemes.484

The challenge of this section is to apply our anomaly detection method to iden-485

tified flows of trajectories entering and leaving a sector rather than from city-pair486

trajectories. Identified clusters may result from the aggregation of sparsely dis-487

tributed trajectories.488

The flow identification method applied in this paper for the use case concern-489

ing the en-route airspace [50, 4] is based on a progressive clustering technique490

originally developed by Andrienko et al. [51, 52]. This method is based on the DB-491

SCAN algorithm, which requires two main parameters determining the size n and492

the density ε of clusters. For the first application of DBSCAN, we have set ε to 0.4493

and n to 1% of the total number of trajectories. For the refinement of the clusters,494

DBSCAN has been executed with ε set to 0.5 and n set to 1% of the total number of495

trajectories in the cluster where it is applied. The minimum number of trajectories496

for a cluster to be formed has been established to 2% of the traffic in the sector.497

The resulting cluster centroids representing the flows are displayed in Fig-498

ure 14. A total number of nine flows have been identified with a percentage of499

outliers reaching 26.4% of the traffic. We have checked how well the generated500

clustering centroids match the ATS Route Network (ARN) also published on eAIP.501
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Figure 14: The clustering method applied to our dataset trimmed to LFBBPT sector resulted in the
nine following clusters. The altitude below the identifier of the cluster reflects the altitude profile of
the centroid.
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Some clusters fit well to sections of the published air routes, e.g. UN869 (cluster502

1), UM728 (cluster 5) or UN460 (cluster 7) but a similar match is less evident with503

clusters 0, 3 and 4. Cluster 0 is an evolving flow with flights taking off from Paris504

area, so it seems reasonable to have it separated from clusters 3 and 4 which are505

both stable flows with a centroid at FL360. The reason for separating clusters 3506

and 4 is less obvious, but certainly due to the fact that the exit points of these two507

clusters are separated by a less dense area, which can be observed in Figure 13.508

All trajectories within a cluster are then considered independently. We applied509

to each cluster the anomaly detection technique presented in Section 3.1 with a510

different autoencoder network architecture, adapted to the resampling of our tra-511

jectories at 50 points per trajectories, working only with normalised track angles512

so as to focus on lateral resolutions of potential conflicts.513

The MSE loss converged properly for each cluster, although the distribution514

of reconstruction errors of clusters with more sparsely distributed trajectories (e.g.515

cluster 4) lead to distribution profiles suggesting two modes, as reflected in Fig-516

ure 4. The regularisation term presented in Section 3.3 lead to better results and517

validated the idea behind regularisation which consists in penalising our criterion518

(the MSE loss) hoping we can avoid overfitting and converge toward more robust519

solutions.520

4.4.1. Weather related events521

callsign date and time of entry in LFBBPT cluster rank

TRA47R 2017-06-20 18:21:00Z 2 6
RYR9TG 2017-06-20 19:09:28Z 4 1
TOM84T 2017-06-20 19:14:51Z 4 3
RYR79EY 2017-06-20 18:35:46Z 4 7
SAA235 2017-06-20 19:07:15Z 5 9
DAH1007 2017-06-20 18:33:34Z 6 8
DLH68F 2017-06-20 18:25:17Z 7 8
VLG83TJ 2017-06-20 18:21:00Z 8 2

AFR88DM 2017-07-08 19:55:01Z 0 1
VLG8248 2017-07-08 20:09:53Z 0 6
AEA1008 2017-07-08 19:39:50Z 0 9
AAF221 2017-07-08 20:08:52Z 0 10
FIN611 2017-07-08 19:42:22Z 2 8

Table 1: Most significant trajectories/days in LFBBPT grouped by date.

We found in Section 4.2 with the city-pair data set that once the autoencoder522

has converged, the few samples with the highest reconstruction errors were associ-523

ated with exceptional events (mostly weather related) whereas reconstruction errors524

located in the ”belly” of the distribution were matching tactical ATC operations. In525
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order to validate this assumption with the airspace data set, we selected the top526

10 trajectories with the highest reconstruction errors for each cluster, for a total of527

90 trajectories. Table 1 shows that two days were particularly represented in that528

subset of trajectories. The last column (rank) reflects the position of the sample in529

the distribution: 1 stands for the highest reconstruction error in the cluster, 2 for530

the second highest, etc.531

A first look at the METAR history in airfields located around the LFBBPT sector532

(LFLX, Châteauroux, to the North-West of LFBBPT and LFLC, Clermont-Ferrand in533

the Southern part of the sector) reflects locations of cumulonimbus (CB) and tower534

cumulus (TCU) consistent with the location of anomalous trajectories (Figure 15):535

CB impacted the whole sector (hence clusters 2, 4, 5, 6, 7 and 8) on June 20th but536

only the Northern part of the sector (mostly clusters 0) on July 8th.537

Figure 15: Trajectories of aircraft flying to avoid thunderstorm activities.
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Figure 15 plots positions, trajectories for the past 15 minutes of aircraft flagged538

as anomalous by our method on June 20th 2017. The location of cumulonimbus is539

estimated from Thermal IR data from the Spinning Enhanced Visible and InfraRed540

Imager (SEVIRI), collected by the Meteosat Second Generation series of satellite.541

The sector was implemented during the last hours of daylight, which may sug-542

gest that pilots avoid thunderstorms areas based on their visual perception in the543

early hours of operation, and relied on their on board weather radar in the later544

hours. Another explanation for aircraft seeming to fly through CBs may rely in545

the anvil shape of such cloud developments: satellite images only see the top of546

the clouds so it may be safe to fly below the cap and still avoid the vertical devel-547

opment of the cloud. Based on this kind of heatmap, future safety studies could548

assess how pilots manage to avoid thunderstorm areas based on the information of549

on board weather radars.550

4.4.2. Detection of tactical ATC actions551

Isolating deconfliction ATC orders in regular traffic is a difficult task because552

most flights are executed without much deviation from their original intention. Re-553

construction errors help isolate flights calling for further analysis. We considered554

hereafter only a subset of our trajectories, namely trajectories with a reconstruction555

error higher than a given threshold. We defined the threshold based on the fitted556

exponential distribution f defined in (3) and illustrated in Figure 16 with the set of557

samples {xi} s.t.558

f (xi)≤
1
5
· f (0) i.e. xi ≥ log(5) · `cluster(u,v) (7)

In an attempt to automatise the process, we computed the closest point of ap-559

proach (CPA) for all pairs of trajectories which fly at the same moment in LFBBPT560

and which belong to our subset of trajectories defined in (7). For the CPA compu-561

tation, we used the distance between two trajectories based on the cylindrical norm562

defined in [53]:563

dCPA = min
t

Ç
max

Ç
dlat(t)
5nm

,
dvert(t)
1,000ft

åå
(8)

where dlat is the distance between the two WGS84 coordinates and dvert the564

difference of altitudes. 5 nm and 1000 ft are respectively the lateral and vertical565

separation minima required between aircraft flying within Reduced Vertical Sepa-566

ration Minima (RVSM) airspace [54]. Since we observe traffic which has allegedly567

been deconflicted by ATC, all pairs of trajectories should be separated by a distance568

dCPA ≥ 1. However, we assume that an action of deconfliction is likely to involve569

pairs of trajectories with a dCPA relatively small.570
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Figure 16: Selection of the sample trajectories with the higher reconstruction scores (example of
cluster 4). For the purpose of the study, we chose a threshold of 1/5 = 20% although this could be
reconsidered in the future.

In the following we focus on pairs of trajectories respecting the following con-571

ditions:572

1. each trajectory has a reconstruction error higher than log(5) ·`cluster(u,v) (see573

Figure 16);574

2. their dCPA ≤ 2, i.e. the lateral and vertical distance at the CPA should be575

smaller than 10 nm and 2000 ft respectively. In addition, we impose a con-576

straint on the vertical distance to be smaller than 1500 ft in order to focus577

only on aircraft flying at adjacent flight levels.578

Each trajectory being associated with a cluster, we build the density matrix579

as shown in Figure 17 which reads as follows: the darker the colour at position580

(i, j) with i≥ j, the more trajectories from cluster i and j are possibly subject to a581

deconfliction order from the ATC. A first consistency cross-check with the map on582

Figure 14 seems convincing: cluster 0 interacts with clusters 3 and 4 (mostly clus-583

ter 3); cluster 1 interacts with clusters 2, 6 and 8, albeit less with cluster 5. Cluster584

7 flies at a relatively lower altitude and only interacts with cluster 6 (trajectories585

climbing) but not with clusters 2 and 8 (constant altitudes).586

We focus in the following on specific situations in converging flows, then on587

pairs of trajectories in the same flow which may be impacted by the same factors.588

Figure 18 reflects two situations involving cluster 1 and one of clusters 2, 6589

and 8, containing mainly deconfliction situations for aircraft flying at the same590

level. The first situation of Figure 18 involves TVF021Z (cluster 6) and TAP933A591

(cluster 1). The dashed line projects the situation as if no order had been given five592
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Figure 17: Density matrix (upper triangle only): the darker the colour in (i, j), the more trajectories
from clusters i and j are possibly subject to a deconfliction order from the ATC.

minutes before the closest point of approach with a possible conflict situation at the593

intersection of both routes. On the right hand side, ATC orders given to IBK7VY and594

IBK6113 seem to have anticipated the situation earlier with a probable deconfliction595

order given ten minutes before the closest point of approach. For such situations of596

converging routes at the same flight level, a future direction for improvement could597

be to automatically detect the level of anticipation of the deconfliction by looking598

backward from the CPA.599

The density matrix on Figure 17 reflects a high number of potential decon-600

fliction situations between pairs of trajectories from cluster 0 and from cluster 1.601

Figure 19 looks into those situations. On the left hand side, AEA1038 takes off602

from Paris–Charles-de-Gaulle and RAM781S from Paris–Orly. They both belong to603

cluster 0 and will probably be vectored on the same route. Having similar climb604

profiles (both aircraft are B738), special attention is paid to their lateral separation,605

probably leading to these peculiar trajectories. On the right hand side, TAP817 flies606

Milan–Porto while CES709 flies Shanghai–Madrid. When both aircraft join route607

UN869, a special attention is paid to their separation (see the level-off at FL360)608

before they are probably separated by being placed on lateral offsets from UN869.609

4.5. Terminal Manoeuvring Areas610

The provided data set includes 19,480 trajectories landing at Zurich airport611

between October 1st and November 30th 2019. Here, we applied a stacked autoen-612

coder on 14,399 trajectories landing on runway 14 which is the runway the most613
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Figure 18: Deconfliction actions between cluster 1 and cluster 6 (left, on January 3rd), resp. cluster
1 and cluster 2 (right, on March 4th).

Figure 19: Deconfliction situations between trajectories in the same clusters.
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often in operation. All trajectories are selected from the moment they enter the area614

within 40 nautical radius around the airport until the last point before the runway615

threshold.616

Figure 20: All trajectories landing at Zurich airport are cropped between a 40 nautical miles distance
to the airport and the runway threshold.

The challenge here is to be able to detect anomalies in a sample of converg-617

ing flows, in contrast with Sections 4.2 and 4.4. The autoencoder architecture we618

selected reduced 100 samples of normalised track angles to 48, 24 then 6 neurons619

per layer (encoding part) before reconstructing the samples through layers of 24,620

48 and 100 neurons each. Figure 21 plots a distribution of reconstruction errors621

which looks reasonable in spite of a low density in the bin containing the best622

reconstructed samples.623

Figure 21: Distribution of the reconstruction errors on the landing dataset. Highlighted samples are
plotted on Figure 22.
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Figure 22 plots abnormal trajectories and gives hints to interpret why they are624

so poorly reconstructed. One one hand, Flight EWG7ME had three landing attempts625

(the first one aborted at an altitude of 2000 ft), and Flight OTF6410 stacked six hold-626

ing patterns before being allowed to proceed further and align runway 14. How-627

ever, the autoencoder did not only fail at recovering holding patterns in trajectories:628

Figure 23 explains why Flight AZA572’s trajectory is atypical and non representative629

of aircraft landing from the South-East incoming flow. The right part of the Figure630

shows how landing operations where disrupted during that time frame and could631

provide hints why the aircraft was instructed that way.632

Figure 22: These three trajectories have very high reconstruction errors: Flight EWG7ME had three
landing attempts, Flight OTF6410 stacked six holding patterns; the particular case of Flight AZA572
is further detailed on Figure 23

5. Information extraction on the latent space633

This reconstructing approach may not be the most relevant to detect ATC tacti-634

cal instructions in a Terminal Manoeuvring Area when pilots are in constant contact635

with ATC. Yet it remains a powerful tool to detect unusual patterns.636

As explained in details in Section 3.1 and Figure 2, the first part of the au-637

toencoder is a projection operator. Samples are projected onto a smaller dimension638

space before a generation operator attempts at reconstructing the original samples.639

In spite of a resulting poorer reconstruction ability, we added a layer to the network640
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Figure 23: AZA572 is atypical with respect to the usual approach from the South-East (left). Indeed,
traffic was particularly disrupted during that time frame (right).

used in Section 4.5 in order to project our samples further onto a two-dimensional641

space in order to plot the distribution of projected samples on Figure 24. Colours642

are assigned to all trajectories based on the bearing (interval) from the point they643

enter the 40 nautical mile radius with respect to the airport. Each colour can be644

associated to an incoming flow into the TMA of Zurich airport. Figure 24 shows645

how the network learned to organise all trajectories on the two dimensional space646

based on similar features.647

Figure 25 plots the same distribution for the subset of self-intersecting trajec-648

tories, to be related to holding patterns. Three pairs of trajectories that are close649

to each other in their 2D representation are represented: the top right map displays650

two trajectories stacking two holding pattern before getting the clearance to land on651

runway 14. They are both located on the left part of the ”cluster” matching the flow652

of self-intersecting trajectories landing from the West-North-West of Zurich. The653

two other pairs of trajectories on the bottom right of the same cluster also display654

similar features when plotted on a map.655

Looking at the latent space of autoencoders trained to reconstruct trajectories656

is particularly enlightening with respect to their ability to extract information from657

large amounts of data which comes as a side effect of their first intended use.658

6. Conclusions659

We presented in this paper a simple and successful framework to detect, iden-660

tify and characterise anomalies in past aircraft trajectory data. The method is based661
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Figure 24: As autoencoders learn to reconstruct samples, they project the data on a small dimension
space. Even when forced onto a latent space with two dimensions, they tend to organise the data by
similarity. Here colours are associated to an incoming flow.

on unsupervised learning methods, namely autoencoders and clustering algorithms.662

We challenged this technique on three data sets very different in nature albeit cov-663

ering a wide range of situations commonly encountered by air traffic controllers.664

We introduced autoencoding neural network architectures and explained how665

a resulting reconstruction error can give hints about the nature of detected anoma-666

lies. Most anomalies are the result of ATC tactical actions, and the higher the667

reconstruction error, the more disruptive the situation. We found critical situations668

resulting from the impact of poor weather conditions, regulation measures and ca-669

pacity issues.670

This method has a wide range of applications in air transportation studies. Fu-671

ture works should leverage the information extracted from such massive amounts672

of data in order to produce predictive models in terms of ATC tactical actions (from673

an ANSP point of view) or estimated take-off and landing times (from an airline or674

airport point of view). Statistical studies on large amount of detected unusual situ-675

ations would also improve the quality of safety analyses and collision risk models.676

Lastly, unsupervised machine learning being about manipulating unlabelled677

data sets and extracting information, the question remains as to how to measure678

the quality of detection models such as the one introduced in this paper. Finding679

anomalies in past trajectory data is akin to looking for needles in a haystack but the680

variety of situations presented in this contribution attests the knowledge discovery681

power unleashed by this approach. In addition to advocating open data sets which682

are provided for reproducibility and comparison concerns, the authors will pursue683
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Figure 25: The scatter plot displays the latent space on trajectories containing one or several loops.
Samples that are close to each other reveal similar patterns on the map. In particular, trajectories
stacking two holding patterns are plotted on the top right and correspond to the left part of the purple
cluster in the scatter plot.

33



their research efforts in determining a convincing set of metrics measuring the684

relevance and accuracy of such frameworks.685
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