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Asymptotic Performance Analysis of NOMA Uplink Networks Under
Statistical QoS Delay Constraints

Mouktar Bello, Student Member, IEEE, Arsenia Chorti, Senior Member, IEEE,
Inbar Fijalkow, Senior Member, IEEE, Wenjuan Yu, Member, IEEE, Leila Musavian Senior Member, IEEE

In this paper, we study the performance of an uplink non-orthogonal multiple access (NOMA) network under statistical quality of
service (QoS) delay constraints, captured through each user’s effective capacity (EC). We first propose novel closed-form expressions
for the EC in a two-user NOMA network and show that in the high signal-to-noise ratio (SNR) region, the “strong” NOMA user,
referred to as U2, has a limited EC, assuming the same delay constraint as the “weak” user, referred to as U1. We demonstrate that
for the weak user U1, OMA and NOMA have comparable performance at low transmit SNRs, while NOMA outperforms OMA
in terms of EC at high SNRs. On the other hand, for the strong user U2, NOMA achieves higher EC than OMA at small SNRs,
while OMA becomes more beneficial at high SNRs. Furthermore, we show that at high transmit SNRs, irrespective of whether
the application is delay tolerant, or not, the performance gains of NOMA over OMA for U1, and OMA over NOMA for U2

remain unchanged. When the delay QoS of one user is fixed, the performance gap between NOMA and OMA in terms of total EC
increases with decreasing statistical delay QoS constraints for the other user. Next, by introducing pairing, we show that NOMA
with user-pairing outperforms OMA, in terms of total uplink EC. The best pairing strategies are given in the cases of four and six
users NOMA, raising once again the importance of power allocation in the optimization of NOMA’s performance.

Index Terms—Beyond 5G (B5G), effective capacity, low latency, non-orthogonal multiple access (NOMA), quality of service (QoS),
user-pairing.

I. INTRODUCTION

NOn-orthogonal multiple access (NOMA) schemes have
attracted a lot of attention recently, allowing multiple

users to be served simultaneously with enhanced spectral
efficiency; it is known that the boundary of achievable rate
pairs using NOMA is outside the capacity region achievable
with orthogonal multiple access (OMA) techniques [1]–[5].
Superior achievable rates are attainable through the use of
superposition coding at the transmitter and of successive
interference cancellation (SIC) at the receiver [6]. The SIC
receiver decodes multi-user signals with descending received
signal power and subtracts the decoded signal(s) from the
received superimposed signal, so as to improve the signal-
to-interference ratio. The process is repeated until the signal
of interest is decoded [7]. The interest in NOMA is linked
to the multiple possibilities it offers, for example, in massive
machine type communications (mMTC) systems where a large
number of smart Internet of things (IoT) devices try to access
the shared resources simultaneously.

In uplink NOMA networks, the strongest user’s signal is
decoded first (reverse order with respect to the downlink).
However the use of SIC limits the promised performance gain
brought by NOMA due to error propagation [8]–[10]. The
authors in [11] introduce an iterative interference cancellation
(IIC) detection scheme for uplink NOMA, and proposed a new
detection scheme based on IIC, which is called advanced IIC
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(AIIC). Its shown that the bit error rate performance of AIIC
is much better than that of SIC.

Similarly, the combination of NOMA with other emerging
techniques and technologies such as new modulation tech-
niques, user pairing, resource allocation algorithms (power
and channel), MIMO, etc., improves its performance [12]–
[16]. The authors in [17] investigate the optimal power al-
location in a NOMA system with two users, analyze user
pairing in a NOMA system with four users and propose a
closed-form globally optimal power allocation solution for
a general NOMA downlink networks. In [18], an iterative
gradient ascent-based power allocation method is proposed for
downlink NOMA that achieves better performance compared
to fixed and fractional power allocation strategies.

Furthermore, the power allocation strategy for energy effi-
cient improvement in a downlink NOMA system is discussed
in [19]. A novel power allocation algorithm based on par-
ticle swarm optimization is presented in [20]. To tackle the
power allocation problem in downlink multi-carrier NOMA
networks, a dynamic power allocation algorithm is proposed
in [21], while a joint subchannel and power allocation is
proposed based on the Dinkelbach algorithm in [22]. In the
same framework, the joint power allocation and time switching
control for energy efficiency optimization is investigated in
[23], with the aim to optimize the energy efficiency of the
system under maximum transmit power budget among others.

In [24], a novel prioritization-based buffer-aided relay se-
lection scheme which is able to combine NOMA and OMA
transmission in a relay network is proposed and an analyt-
ical expression for the average throughput of the proposed
scheme is derived. In [25], dynamic and fixed power controls
at users are discussed in the case of a cooperative uplink
system with a buffer-aided NOMA and OMA transmission
and an efficient buffer-aided hybrid NOMA/OMA based mode
selection scheme is proposed. A hybrid OMA-NOMA scheme
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is presented in [26], in which NOMA is only employed if all
users gain in terms of effective rates. Finally, NOMA offers
a natural scenario for physical layer security as one user’s
signal is naturally degraded with respect to the other’s [27]
and constitutes the equivalent of a helping interferer [28].

Besides, in a number of emerging applications, delay con-
straints become increasingly important, e.g., ultra reliable low
latency communication (URLLC) systems such as autonomous
vehicles and enhanced reality. Furthermore, in future wireless
networks, users are expected to necessitate flexible delay
guarantees for achieving different service requirements. In
order to satisfy diverse delay requirements, a simple and
flexible delay quality of service (QoS) model is imperative
to be applied and investigated. In this respect, the effective
capacity (EC) theory can be employed [29]–[31]. The EC
denotes the average maximum constant arrival rate which can
be served by a given service process, while guaranteeing the
required statistical delay provisioning [32].

The delay-constrained communications for a downlink
NOMA network was studied in [33], where the EC theory
was utilized. The present analysis on uplink complements [33]
which focused on downlink transmissions. NOMA, as a more
spectrum-efficient technique, is considered to be promising
for supporting a massive number of devices in the uplink
connections.

The present work extends our recent publication [34] in
which novel closed form expressions for the effective rate
in a two user uplink NOMA network were presented. Our
contributions in this works are articulated around six lemmas
and four propositions; the main contributions of this paper are
listed below:
• First, using the theory of order statistics, we derive

closed-form expressions for the effective capacity of each
user in a two-user uplink NOMA network; The expres-
sions are validated through Monte-Carlo simulations.

• We then provide an asymptotic analysis of the individual
and sum ECs for both OMA and NOMA, in the case
of delay-constrained and delay-tolerant applications. A
detailed comparison between NOMA and OMA is pro-
vided; through an extensive set of simulation results, we
show that NOMA does not always perform better than
OMA in the presence of delay constraints. For illustration
purposes, we depict the regions of the transmit signal-to-
noise ratio (SNR) where the earlier outperforms the latter
for generic values of the system parameters.

• With respect to the strong NOMA user, we prove that,
its EC reaches a plateau in the high SNRs, in contrast to
OMA, a consequence of the fact that the strong user is
interference limited.

• The impact of the delay QoS exponent and of the transmit
SNR on the individual and sum ECs is investigated as
well. Specifically, we show that, through an extensive
set of simulation results, the individual ECs decrease
as the delay constraints becomes more stringent, and
consequently so does the sum EC.

• Moreover, we investigate the impact of the choice of the
user-pairing strategy on the sum EC. The best pairing
strategy that maximizes the sum EC is shown, numer-

TABLE I
Notation Used

Notation Parameters
M Total number of users
Ui User i
Pi Allocated transmission power to Ui

PT Total power
ρ Transmit SNR
θi Delay QoS constraint of Ui

|hi|2 Channel gain of Ui

z Received superimposed signal at the base station
Ri Achievable rate of Ui under NOMA
R̃i Achievable rate of Ui under OMA
Tf Duration of each fading-block
B System bandwidth
βi Normalized QoS exponent
Ei

c Effective capacity of i-th user NOMA
VN Sum ECs under NOMA
VO Sum ECs under OMA

ically, to be the pairing of users with the maximum
channel gains gaps, which is in agreement to previous
results in systems without delay constraints [35].

The rest of the paper is organized as follows. In Section II,
we introduce the system model and define the notion of EC
in an uplink NOMA system under delay QoS constraints. In
Section III, an asymptotic analysis of the EC is provided for
a two-user system. In Section IV, the EC of multiple pairs is
studied to investigate the impact of pairing. Simulation results
are given in Section V, followed by conclusions in Section VI.

II. EFFECTIVE CAPACITY IN UPLINK NOMA

The notation used throughout the rest of the paper is given
in Table I for convenience.

A. General Case: M -User NOMA

Assume a M -user NOMA uplink network with users
U1, U2, ...UM in Rayleigh block-fading propagation channels
[36], with respective channel gains during a transmission block
denoted by |hi|2, i = 1, . . . ,M , that without loss of generality
are ordered as |h1|2< · · · < |hM |2. The users transmit
corresponding unit power symbols s1, . . . , sM respectively,
with E[|si|2] = 1, i = 1, . . . ,M with a total transmit power
constraint PT =

∑M
i=1 Pi = 1. We note in passing that the

total power constraint does not capture the individual user’s
budgets, but rather regulatory requirements imposing that the
transmit power in any given resource block cannot exceed a
maximum value [37]. The received superimposed signal can
be expressed as [38]:

z =

M∑
i=1

√
Pihisi + w, (1)

where w denotes a zero mean circularly symmetric com-
plex Gaussian random variable with variance σ2, i.e., w ∼
CN (0, σ2).
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The receiver first decodes the symbols of the strongest user
treating the transmission of the weaker users as interference.
After decoding it, the receiver suppresses it from z and
decodes the signal of the second strongest user, and so on
until the decoding of the weakest user’s signal. Following the
SIC principle and denoting the transmit SNR ρ = 1

σ2 , the
achievable rate, in b/s/Hz, for user Ui, i = 1, . . . ,M , assuming
no error propagation, is expressed as [39]:

Ri = log2

(
1 +

ρPi|hi|2

1 + ρ
∑i−1
l=1 Pl|hl|2

)
. (2)

Notice that in the present work we don’t consider the impact of
path loss, but it could be easily taken into account by inserting
a multiplicative coefficient on the user received SNR or SINR,
accounting for the loss in received power due to distance. For
the sake of simplicity, we do not account for this effect in the
present, as common in related published work [1], [2], [33],
[38].

Next, let θi be the statistical delay exponent of the i-th user,
i.e., θi captures how strict the delay constraint of the user i
is, and assume that the service process satisfies the Gärtner-
Ellis theorem [30]. A slower decay rate can be represented by
a smaller θi, which indicates that the system is more delay
tolerant, while a larger θi corresponds to a system with more
stringent QoS requirements. Applying the EC theory in an
uplink NOMA with M users, the i-th user’s EC over a block-
fading channel is defined as:

Eic = − 1

θiTfB
ln

(
E
[
e−θiTfBRi

])
(in b/s/Hz) , (3)

where Tf is the duration of each fading-block, B is the system
bandwidth and E [·] denotes expectation over the channel
gains. By inserting Ri into (3), we obtain the following
expression for the EC of the i-th user

Eic =
1

βi
log2

E

(1 +
ρPi|hi|2

1 + ρ
∑i−1
l=1 Pl|hl|2

)βi (4)

where βi = − θiTfBln 2 , i = 1, . . .M , is the normalized
(negative) QoS exponent. Developing (4), we have that:

Eic=
1

βi
log2

(∫ ∞
0

∫ ∞
x1

∫ ∞
x2

...

∫ ∞
xi−1

(
1 +

ρPixi

1 +
∑i−1
l=1 ρPlxl

)βi

f
X(1),X(2),...,X(i)

(x1, x2, ..., xi) dxi dxi−1...dx1

)
, (5)

where f
X(1),X(2),...,X(i)

(x1, x2, ..., xi) is the joint distribution
of xi = |hi|2, i = 1, . . . ,M .

To evaluate the joint distribution of the channel gains, we
make use of the theory of order statistics [40]. The probability
density function (PDF) of the i-th ordered random variable in
a population of M is given by:

f
X(i)

(x) = ψif(x)(1− F (x))M−iF (x)i−1, (6)

where ψi = 1
B(i,M−i+1) , and, B(a, b) is the beta function

B(a, b) = Γ(a)Γ(b)
Γ(a+b) , with Γ(a) = (a − 1)!. Assuming a

Rayleigh wireless environment, the channel gains, denoted

by xi = |hi|2, are exponentially distributed with PDF and
cumulative density function (CDF) respectively given by
f(x) = e−x, and F (x) = 1− e−x.

The joint distribution of M order statistics is given by [40]:

f
X(1)...X(M)

(x1, x2, . . . , xM ) = M ! f
X(1)

(x1) . . . f
X(M)

(xM ),
(7)

where x1 ≤ x2 ≤ . . . ≤ xM , while for any two order
statistics, we have that:

f
X(l),X(k)

(xl, xk) =
M !

(l − 1)! (k − l − 1)! (M − k)!

× (1− F (x))l−1f(x)(F (x)− F (y))k−l−1f(y)(F (y))M−k.
(8)

Closed-form expressions for multi-users uplink NOMA can
be obtained by inserting (7) into (5), but considering the
complexity of the analytical development of these integrals, we
will just consider in this study, the simple case of two users.
Furthermore, there is also a question of practical limitation. In
fact, the execution of several SICs in series at the base station
can lead to additional processing delay; thus, an increase
in terms of latency, especially for the last decoded user.
Moreover, if we have imperfect SIC, additional errors due
to error propagation can lead to decoding failure for weaker
users, as they are the last to be decoded [41]. Due to the above
reasons, in the following we focus on deriving closed-form
expressions only for the two-user case.

B. Case of Two-User NOMA Uplink Network (M=2)

Using (6), we obtain

f
X(1)

(x1) = 2e−2x1 . (9)

Furthermore, by setting M = 2, l = 1 and k = 2 in (8), we
get:

f
X(1),X(2)

(x1, x2) = 2f(x1)f(x2) = 2e−x1e−x2 . (10)

As a result, the EC of U1, denoted by E1
c , is expressed as

E1
c =

1

β1
log2

(
E[(1 + ρP1x1)β1 ]

)
=

1

β1
log2

(∫ ∞
0

(1 + ρP1x1)
β1 f

X(1)
(x1)dx1

)
=

1

β1
log2

(
2

P1ρ
× U

(
1, 2 + β1,

2

ρP1

))
, (11)

where U(·, ·, ·) denotes the confluent hypergeometric function
[33].
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On the other hand, the EC of U2 is evaluated as

E2
c =

1

β2
log2

(
E

[(
1 +

ρP2x2

1 + ρP1x1

)β2
])

=
1

β2
log2

(∫ ∞
0

∫ ∞
x1

(
1 +

ρP2x2

1 + ρP1x1

)β2

f
X(1),X(2)

(x1, x2)dx2dx1

)
=

1

β2
log2

(
2P 1−β2

2 (ρP2)β2e
1
ρP2 e−

(P1−P2)
ρP2

)
+

1

β2
log2

(−β2∑
j=0

(
−β2

j

)
(ρP1)j ×

∞∑
k=0

(−1)k(P2 − P1)k

k! (1 + j + k)

×
[
Γ

(
2 + β2 + j + k,

1

ρP2

)
−(ρP2)−1−j−kΓ

(
1 + β2,

1

ρP2

)])
(12)

with Γ(·, ·) denoting the incomplete Gamma function [33].
Proof: The proof is provided in Appendix I.

The closed-form expression of the sum EC in the case of
a two-user NOMA uplink network can be easily obtained by
summing up the individual ECs.

C. Case of a Two-User OMA Network

Similarly, using time division multiple access (TDMA), the
achievable data rate of the i-th user in a two-user OMA
network, denoted by R̃i, i = 1, 2, is given by

R̃i =
1

2
log2

(
1 + 2ρPi|hi|2

)
, i = 1, 2. (13)

Note that 1
2 is due to the equal allocation of resources to both

users. Furthermore, it is important to note that the power of
each OMA user is double that of NOMA, for the sake of
fairness [33]. The corresponding ECs of both users in an OMA
network are denoted by Ẽic:

Ẽic =
1

βi
log2

(
E
[
(1 + 2ρPi|hi|2)

βi
2

])
. (14)

A general expression of the ECs of M TDMA OMA users is
given in [33]; applying this to a two-user network we can be
easily obtain:

Ẽ1
c =

1

β1
log2

(
1

ρP1
× U

(
1, 2 +

β1

2
,

1

ρP1

))
, (15)

Ẽ2
c =

1

β2
log2

(
1

ρP2

1∑
k=0

(
1

k

)
(−1)k × U

(
1, 2 +

β2

2
,

1 + k

2ρP2

))
.

(16)

The difference in these expressions is due to the different PDFs
of ordered channel gains.

III. ASYMPTOTIC ANALYSIS

In this Section, an asymptotic analysis with respect to
the transmit SNR ρ is presented. This analysis consists in
describing the limiting behavior of individual and total ECs,
and how they evolve with the transmit SNR ρ. Our results are
summarized in the following Propositions and Lemmas.

A. Case 1: Delay-Constrained Users

Proposition 1:
1) At low transmit SNR, ρ→ 0, E1

c , Ẽ1
c , E2

c and Ẽ2
c start

at zero and then increase at the same rate for any user.
2) At high values of the transmit SNR, ρ >> 1, E1

c

increases faster than Ẽ1
c and NOMA becomes more

advantageous than OMA, for U1. While for U2, Ẽ2
c

increases faster than E2
c , although NOMA is outperform-

ing OMA.
3) At very high values of the transmit SNR, ρ → ∞,

the performance gain of NOMA over OMA increases
at gradually reducing rate, for U1. Albeit, for U2, E2

c

reaches an upper limit, allowing OMA to outperform
NOMA after some SNR value (which depends on the
system parameters).

Proposition 1 is the synthesis of Lemmas 1, 2 and 3, discussed
in detail next.

Lemma 1: In the low and high SNR regimes, respectively,
the following conclusions hold:

1) When ρ→ 0, then, E1
c → 0, E2

c → 0, Ẽ1
c → 0, Ẽ2

c → 0,
E1
c − Ẽ1

c → 0, E2
c − Ẽ2

c → 0;
2) When ρ → +∞, then E1

c → +∞, E2
c →

1
β2

log2

(
E
[(

1 + P2|h2|2
P1|h1|2

)β2
])

, Ẽ1
c → +∞, Ẽ2

c →

+∞, E1
c − Ẽ1

c → +∞, E2
c − Ẽ2

c → −∞.
Proof: The proof is provided in Appendix II.

To further analyze the impact of ρ on the individual EC, the
partial derivatives with the respect of ρ are investigated [33].

Lemma 2: For the EC of the U1, in a two-user uplink
network the following hold:

1) ∂E1
c

∂ρ ≥ 0 and ∂Ẽ1
c

∂ρ ≥ 0, ∀ρ;

2) When ρ→ 0, then lim
ρ→0

(
∂(E1

c−Ẽ
1
c )

∂ρ ) = 0;

3) When ρ >> 1, then ∂(E1
c−Ẽ

1
c )

∂ρ ≈ 1
2ρ ln 2 ≥ 0 and it

approaches 0 when ρ→∞.
Proof: The proof is provided in Appendix III.

Lemma 3: For the EC of the U2, in a two-user uplink
network the following hold:

1) ∂E2
c

∂ρ ≥ 0 and ∂Ẽ2
c

∂ρ ≥ 0, ∀ρ;

2) When ρ→ 0, then lim
ρ→0

(
∂(E2

c−Ẽ
2
c )

∂ρ ) = 0

3) When ρ >> 1, then ∂(E2
c−Ẽ

2
c )

∂ρ ≈ − 1
2 ln 2

1
ρ < 0 and it

approaches 0 when ρ→∞.
Proof: The proof is provided in Appendix IV.

Finally, we investigate the sum ECs when using OMA and
NOMA, denoted by VN and VO, respectively, i.e.,

VN = E1
c + E2

c , (17)

VO = Ẽ1
c + Ẽ2

c . (18)

Proposition 2:
1) At low transmit SNR ρ, VN and VO increase at a

constant rate that depends on the average of the channel
power gains and the allocated power coefficients.

2) When ρ >> 1, VN and VO tend to ∞, and reach a
plateau when the transmit SNR ρ→∞.
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Proposition 2 is the consequence of the Lemma 4.
Lemma 4: For the sum EC with NOMA, denoted by VN ,

and with OMA, denoted by VO, in a two-user uplink network,
the following hold:

1) ∂VN
∂ρ ≥ 0 and ∂VO

∂ρ ≥ 0, ∀ρ;
2) When ρ → 0, VN → 0, lim

ρ→0
(∂VN∂ρ ) = P1

ln 2E[|h1|2] +

P2

ln 2E[|h2|2] ≥ 0, and VO → 0, lim
ρ→0

(∂VO∂ρ ) =

P1

ln 2E[|h1|2] + P2

ln 2E[|h2|2] ≥ 0;
3) When ρ >> 1, VN → ∞, lim

ρ→∞
(∂VN∂ρ ) = 0, and VO →

∞, lim
ρ→∞

(∂VO∂ρ ) = 0.

Proof: The proof is provided in Appendix V.

B. Case 2: Delay-Tolerant Applications

A case of particular interest is presented when the users’
applications are delay tolerant, i.e., when the delay exponent
becomes negligible. In this case, investigation of the ECs of
the two-user, uplink NOMA and OMA networks, is performed
without delay constraints. The impact of the transmit SNR ρ
in this case is also investigated.

Proposition 3:
1) For both OMA and NOMA, when there is no delay

constraint (θ = 0), the individual ECs of both users
are equal to their ergodic capacities.

2) At high transmit SNRs, irrespective of whether there’s
a tolerance for delay or not, the conclusions on the
performance gain of NOMA over OMA for U1, and
OMA over NOMA for U2 remain the same.

Proposition 3 is the consequence of the Lemma 5.
Lemma 5: Considering the EC for the weaker user with

θ1 → 0, in NOMA and OMA, the following hold:
a) When θ1 → 0, lim

θ1→0
E1
c = E[R1], lim

θ1→0
Ẽ1
c = E[R̃1],

lim
θ1→0

(E1
c − Ẽ1

c ) = E[R1]− E[R̃1],

b) When θ1 → 0, ρ → ∞, lim
θ1→0
ρ→∞

E1
c = ∞, lim

θ1→0
ρ→∞

Ẽ1
c = ∞,

lim
θ1→0
ρ→∞

(E1
c − Ẽ1

c ) =∞.

Considering the EC for the stronger user with θ2 → 0, in
NOMA and OMA, we prove that:

c) When θ2 → 0, lim
θ2→0

E2
c = E[R2], lim

θ2→0
Ẽ2
c = E[R̃2],

lim
θ2→0

(E2
c − Ẽ2

c ) = E[R2]− E[R̃2],

d) When θ2 → 0, ρ→∞,

lim
θ2→0
ρ→∞

E2
c = E

[
log2

(
1 + P2|h2|2

P1|h1|2

)]
, lim
θ2→0
ρ→∞

Ẽ2
c = ∞,

lim
θ2→0
ρ→∞

(E2
c − Ẽ2

c ) = −∞.

Proof: The proof is provided in Appendix VI.

IV. EFFECTIVE CAPACITY OF MULTIPLE NOMA PAIRS

The M NOMA users scenario assumes that the resource
block is shared among M users. For large values of M ,
stronger users are penalized due to high interference level from
weaker users since they are decoded first. Pairing allows us

to mitigate interference from weaker users on stronger ones.
A popular approach for alleviating this effect in an M user
network, is to form M

2 groups with indices i = 1, . . . , M2 ,
where each group involves only 2 users. Inside each group,
NOMA is implemented, while across different groups TDMA
is applied.

The achievable data rate of the two users, U1 and U2 of the
ithgroup, where |h1i |2≤ |h2i |2, can be formulated as follow:

R1i =
2

M
log2

(
1 + ρP1i |h1i |2

)
, (19)

R2i =
2

M
log2

(
1 +

ρP2i |h2i |2

1 + ρP1i |h1i |2

)
, (20)

with 2
M the fraction of resources at the disposal of the two

users inside a NOMA group.
On the other hand, if all users utilize TDMA, their achiev-

able data rates are given as follows:

R̃j =
1

M
log2

(
1 + 2Pjρ|hj |2

)
, j ∈ {1i, 2i} . (21)

The factor 1
M is to indicate that each user has only one time

slot to transmit.
By replacing (19) and (20) in (3), we get respectively the

following ECs for U1 and U2 in the ith group:

E1i
c =

1

β1i

log2

(
E
[
(1 + ρP1i |h1i |2)

2β1i
M

])
, (22)

E2i
c =

1

β2i

log2

E
[(

1 +
ρP2i |h2i |2

1 + ρP1i |h1i |2

) 2β2i
M
] . (23)

On the other hand, replacing (21) in (3) we get the expres-
sions for both users while using TDMA:

Ẽ1i
c =

1

β1i

log2

(
E
[
(1 + 2ρP1,i|h1i |2)

β1i
M

])
, (24)

Ẽ2i
c =

1

β2i

log2

(
E
[
(1 + 2ρP2,i|h2i |2)

β2i
M

])
. (25)

Next, we analyze the total sum EC of multiple NOMA pairs,
denoted by Etotc , in comparison with the total sum EC for the
M OMA users, Ẽc

tot
defined as:

Etotc =

M
2∑
i=1

(E1i
c + E2i

c ), (26)

Ẽc
tot

=

M
2∑
i=1

(Ẽ1i
c + Ẽ2i

c ). (27)

To investigate the performance of the user-pairing, the
following Proposition and Lemma are provided.

Proposition 4:
1) NOMA user-pairing outperforms OMA at low transmit

SNRs and this performance gain carries on at very high
transmit SNRs, with the possibility to be improved by
optimizing the power allocation.

Proposition 4 is the consequence of Lemma 6.
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Lemma 6: Considering Etotc − Ẽc
tot

, we prove that:

a) When ρ→ 0, Etotc −Ẽc
tot
→ 0, and lim

ρ→0

∂(Etotc −Ẽc
tot

)
∂ρ =

0.
b) When ρ→∞, Etotc − Ẽc

tot
→ constant, given in (28),

and lim
ρ→∞

∂(Etotc −Ẽc
tot

)
∂ρ = 0.

lim
ρ→∞

(Etotc −Ẽc
tot

)=

M
2∑
i=1

(
1

β1,i
log2

(
2−

β1,i
M E

[
(P1,i|h1,i|2)

β1,i
M

])

+
1

β2,i
log2

E
[ (

1 +
P2,i|h2,i|2
P1,i|h1,i|2

) 2β2,i
M
]

E
[
(2P2,i|h2,i|2)

β2,i
M

]

 . (28)

Proof: The proof is provided in Appendix VII.
From Lemma 6, we can conclude that Etotc − Ẽc

tot
initially

starts at 0, first increases at low transmit SNRs ρ, and finally
approaches the constant value given in (28) that depends
on the power allocation, at high transmit SNRs, i.e., this
performance gain of NOMA with user-pairing over OMA can
be optimized by finding the best pairing strategy.

V. NUMERICAL RESULTS

In this Section, the Propositions and Lemmas presented in
previous sections are validated through Monte-Carlo simula-
tions. We first consider a two-user uplink NOMA system, with
the following parameters: normalized transmission power for
both users, P1 = 0.2, P2 = 0.8, normalized delay exponent
β1 = β2 = −1 for both users, unless otherwise stated. Fixed
power allocation is used for the sake of simplicity.

Fig.1 provides validation of the proposed closed-form ex-
pressions of E1

c and E2
c respectively in (11) and (12). The

analytical expressions of these individual ECs ( , ) and
the corresponding Monte-Carlo simulations ( , ) are
indistinguishable, showcasing the accuracy of the proposed
closed-from expressions.

-10 -5 0 5 10 15 20 25 30 35 40

The transmit SNR  (dB)

0

1

2

3

4

5

6

7

8

E
c
 (

b
/s

/H
z
)

E
c

1

E
c

1

E
c

2

E
c

2

Fig. 1. Validation of the closed-form expressions in uplink two-user NOMA
system.
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, Ẽc
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, versus the transmit SNR ρ
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Fig. 3. E1
c versus the transmit SNR, for different delay requirements.

In Fig.2, the ECs of the two-user uplink NOMA and OMA
networks are depicted versus the transmit SNR. We note that
for U1, NOMA and OMA perform equally well at very low
transmit SNRs, and NOMA is advantageous compared to
OMA at high transmit SNRs. In contrast, for U2, NOMA
is better at low SNRs and OMA is advantageous at high
transmit SNRs. We notice also that the EC of U2 reaches a
plateau at high SNRs, validating Lemma 1. Moreover, we note
that, at low transmit SNRs, E2

c is higher than E1
c , despite the

interference that U2 experiences; but with the transmit SNR
increasing, E1

c increases without bound and therefore at some
point surpasses E2

c which is capped to an upper value.
Fig.3 and Fig.4 show, respectively, the EC of U1 and U2,

versus the transmit SNR, for different values of the delay
exponent. When the delay constraints become more stringent,
i.e., β decreases (equivalently, θ increases), both E1

c and E2
c

decrease.
In Fig. 5, the ECs of the strong and weak users are depicted
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Fig. 4. E2
c versus the transmit SNR ρ for different delay requirements.
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Fig. 5. E1
c , E2

c , and Ẽc
1

and Ẽc
2

, versus the (negative) normalized delay
exponent β at ρ = 30 dB.

in the high SNR regime (ρ = 30 dB) as functions of the
(negative) normalized delay exponent, for NOMA and OMA.
We noticed that the EC curves are identical. On the other
hand, in Fig.6, where E1

c and E2
c are depicted across different

SNR values, ρ ∈ {1, 10, 30, 40, 50} dB, as functions of the
(negative) normalized delay exponent, the EC of both users
increase with the transmit SNR ρ increasing.

Fig. 7 shows E1
c − Ẽ1

c versus the transmit SNR. This curve
initially starts at zero, increases at the high transmit SNRs.
Also, we can note that this gap decreases with delay con-
straints becoming more stringent (β decreasing). This confirms
Lemma 2.

Fig. 8 shows E2
c − Ẽ2

c versus the transmit SNR. This curve
initially starts at zero, increases to a certain maximum and
starts decreasing without bound at high values of the transmit
SNR. This confirms Lemma 3. We note that the maximum of
these curves decreases when the delay becomes more stringent.
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Fig. 6. E1
c , E2

c versus normalized delay β, for different values of ρ.
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Fig. 7. E1
c − Ẽ1

c versus ρ, for several values of the normalized delay
exponent.

Furthermore, as the negative delay exponent decreases, the
zero crossing point moves to higher SNRs; this implies that
as the delay QoS constraints become more stringent, the region
of SNRs over which NOMA outperforms OMA increases.

To investigate the impact of ρ on the performance of the
total EC for the two-user system, in Fig.9, the plots for VN in
NOMA and VO in OMA, versus the transmit SNR are depicted
for various delay exponents. The curves demonstrate that for
both NOMA and OMA, the total EC for the two users starts at
the initial value of 0 and then increases with the transmit SNR,
as outlined in Lemma 4. When ρ is very small, the total EC
for the two users in NOMA, VN , increases faster than VO in
OMA. On the contrary, with the increase of the transmit SNR,
VO becomes gradually higher than VN . At very high values
of the transmit SNR, the gap between VN and VO increases
further. Finally, when the delay becomes more stringent, both
VN and VO decrease.
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Fig. 9. VN and VO versus ρ, for various values of normalized delay exponent.

Fig.10 and Fig.11 depict VN − VO versus ρ, for several
values of the (negative) normalized delay exponent. In Fig.10,
the delay of U2 is fixed, while the delay exponent of U1

varies. It is shown that in that case, the smallest delay QoS
(i.e., the highest negative normalized delay exponent) of U1

corresponds to the highest gap in VN−VO. With more stringent
delay constraints for U1, NOMA outperforms OMA in an
increasing region of SNRs. On the other hand, when the
delay of U1 is fixed, Fig.11 shows that the smallest delay
QoS (i.e., the highest negative normalized delay exponent) for
U2 corresponds to the largest gap in VN − VO. The curve of
VN − VO, initially starts at zero, increases to a maximum,
and returns to negative values. In the regions in which it is
positive, NOMA outperforms OMA in terms of the total EC;
the opposite is true in the regions in which it is negative.

Next, we focus on the comparison of multiple NOMA pairs
and OMA, i.e., Etotc and Ẽc

tot
. Fig. 12-(a) depicts the curves

of Ẽc
tot

and Etotc , versus the transmit SNR. NOMA with
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Fig. 10. VN - VO versus ρ for various values of normalized delay exponent.
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Fig. 11. VN - VO versus ρ for various values of normalized delay exponent.

multiple pairs outperforms OMA. The performance gain of
NOMA with multiple pairs over OMA starts at zero, increases
at small values of SNR, and stabilizes at high transmit SNRs.

Fig. 12-(b) shows the curves of Etotc − Ẽc
tot

versus the
transmit SNR, for various settings of user-pairing. Initially
these start at zero at low transmit SNRs, increasing to a
maximum at high values of ρ. This confirms Lemma 6.
Specifically, we set the total number of users M = 4;
the normalized delay of all users are assumed to be equal
β1,i = β2,i = −1,

(
i = 1, . . . , M2

)
. The best pairing policy in

the case of M = 4 is (1,4)-(2,3). We noticed that even the
worst pairing strategy outperforms OMA in terms of the total
EC.

Fig. 13 depicts the result of the exhaustive search, done in
order to find the pairing strategy which gives the highest total
EC in the case of M = 6. The curves are normalized to the
worst pairing. It appears that when these six users are divided
in three groups of two users, the pairing strategy: (1,6)-(2,5)-
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Fig. 12. (a): Etot
c and Ẽc

tot
; (b): Etot

c - Ẽc
tot

versus ρ for various pairing
settings. M = 4.

(3,4) gives the highest total sum EC. We believe that this is
due to the fact that coupling the strongest user and the weakest
user produces the lowest interference at decoding.

Fig. 14, on the other hand, depicts the result of the exhaus-
tive search, of valid pairs, when all six users are divided in two
groups of three users. It appears that the best pairing policy
in terms of total sum EC is : (1,2,6)-(3,4,5). The results for
the best pairing are aligned with the literature on NOMA user
pairing without delay constraints.

Fig. 15 depicts a comparison between full NOMA, i.e.,
when all users transmit in the same resource block, NOMA
user-pairing, NOMA user-grouping (groups of 3 users) and
OMA, for M = 6 users. Considering the best power allocation
policies in the case of user-pairing and user-grouping, it
appears that full NOMA outperforms all of them in terms
of the total EC, followed by NOMA with user-grouping,
assuming absence of error propagation due to decoding errors.

In the simulation results given above, the user pairing is
presented for a specific values of the system parameters and
can be further improved by the power allocation optimization,
which in the present was ignored to simplify the analysis. We
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Fig. 13. Etot
c versus ρ for various pairing settings, normalized to the worst

pairing which is (1,2)(3,4)(5,6). M = 6.
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note in passing that when the number of users M is not a
multiple of two or three, a hybrid pairing can be used, i.e.,
using both clusters of two and three users.

VI. CONCLUSIONS AND FUTURE WORK

The concept of EC enabled us to study the performance gain
of NOMA over OMA in systems with statistical delay QoS
constraints. First, we investigated the EC of the uplink of a
two-user NOMA network, assuming a Rayleigh block fading
channel. We derived novel closed-form expressions for the ECs
of the two users and provided a comparison between NOMA
and OMA. The results show that, the EC of U1 can surpass
the EC of U2, as the latter is limited due to interference.
Furthermore, we showed that the ECs of both users decrease as
the delay constraints become more stringent. For both users,
when the delay QoS of one of them is fixed, the smallest
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Fig. 15. Sum EC and ∆Sum EC for various setting versus ρ. M = 6.

values of the other’s delay QoS give the highest performance
gap between NOMA and OMA in terms of total EC. On
the other hand, we investigated NOMA with user pairing and
found the optimal pairing strategy that gave the highest EC,
for M = 4 and M = 6. It turns out that NOMA grouping
and NOMA pairing does not do better than full NOMA, but
one can get close to it when users transmit with optimal
power. NOMA with user pairing is interesting as it can be
an alternative to mitigate interference on stronger users and
reduce the impact of error propagation. These results raise
questions on the possibility of switching between NOMA and
OMA according to the individual users’ delay constraints and
transmit power.

APPENDIX I

E1
c =

1

β1
log2

(
2

∫ ∞
0

(1 + ρP1x1)β1e−2x1dx1

)
. (29)

Set t = ρP1x1 i.e., x1 = t
ρP1

and since x1 : 0→∞ =⇒ t :

0→∞, dx1 = 1
ρP1

dt, we can get that:

E1
c =

1

β1
log2

(
2

P1ρ

∫ ∞
0

(1 + t)β1e−
2t
P1ρ )dt

)
. (30)

Also, by setting a = 1, (b−a−1) = β1, =⇒ b = β2 +2, z =
2
P1ρ

and denoting by U (., ., .) the confluent hypergeometric
function: U(a, b, z) = 1

Γ(a)

∫∞
0
e−ztta−1(1 + t)b−a−1dt, we

have that:
∫∞

0
(1 + t)β1e−

2t
P1ρ dt = U

(
1, 2 + β1,

2
ρP1

)
, which

means that:

E1
c =

1

β1
log2

(
2

P1ρ
× U

(
1, 2 + β1,

2

ρP1

))
. (31)

For the U2, we have that:

E2
c =

1

β2
log2

(
E

[(
1 +

ρP2x2

1 + ρP1x1

)β2
])

=
1

β2
log2

(
2

∫ ∞
0

(
ρP2

1 + ρP1x1

)β2

e−x1

∫ ∞
x1

(
1 + ρP1x1

ρP2
+ x2

)β2

e−x2dx2dx1

)
. (32)

We set z = 1+ρP1x1

ρP2
+x2, i.e., we have that: x2 = z− 1+ρP1x1

ρP2

and dx2 = dz, so that x2 → x1, =⇒ z → 1+ρP1x1

ρP2
+ x1 =

1+ρx1

ρP2
and x2 →∞ =⇒ z →∞.

E2
c =

1

β2
log2

(
2

∫ ∞
0

(
ρP2

1 + ρP1x1

)β2

e−x1

∫ ∞
1+ρx1
ρP2

zβ2

e
−
(
z− 1+ρP1x1

ρP2

)
dzdx1

)

=
1

β2
log2

(
2e

1
ρP2

∫ ∞
0

(
ρP2

1 + ρP1x1

)β2

e−x1e
P1x1
P2

∫ ∞
1+ρx1
ρP2

zβ2e−zdzdx1

)
. (33)

We note that:
∫∞
a

e−x

xb
dx = a−

b
2 e−

a
2 W− b2 , 1−b2

(a) where W is
the Whittaker W function. Hence, we get that:

E2
c =

1

β2
log2

(
2e

1
ρP2

∫ ∞
0

(
ρP2

1 + ρP1x1

)β2

e−x1e
P1x1
P2

[(1 + ρx1

ρP2

) β2
2

e−
1+ρx1
2ρP2 W β2

2 ,
1+β2

2

(
1 + ρx1

ρP2

)]
dx1

)

=
1

β2
log2

(
2 (ρP2)

β2
2 e

1
2ρP2

∫ ∞
0

(1 + ρP1x1)
−β2

(1 + ρx1)
β2
2 e

(2P1−2P2−1)x1
2P2

[
W β2

2 ,
1+β2

2

(
1 + ρx1

ρP2

)]
dx1

)
.

(34)

Note that Wu− 1
2 ,u

(z) = e
1
2 zz

1
2−uΓ(2u, z),

so that we have W β2
2 ,

1+β2
2

(
1+ρx1

ρP2

)
=

e
1+ρx1
2ρP2

(
1+ρx1

ρP2

)− β22
Γ
(

1 + β2,
1+ρx1

ρP2

)
.
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By substituting it in E2
c , we have that:

E2
c =

1

β2
log2

(
2(ρP2)β2e

1
ρP2

∫ ∞
0

(1 + ρP1x1)−β2e
(P1−P2)x1

P2

× Γ

(
1 + β2,

1 + ρx1

ρP2

)
dx1

)
. (35)

To continue we set 1+ρx1

ρP2
= y, i.e., x1 = P2y − 1

ρ , and
dx1 = P2dy. x1 → 0 =⇒ y → 1

ρP2
and x1 → ∞ =⇒

y → ∞. Recall that without loss of generality we have set
P1 + P2 = 1. Then we get that

E2
c =

1

β2
log2

(
2(ρP2)β2e

1
ρP2

∫ ∞
0

(1 + ρP1x1)−β2

× e
(P1−P2)x1

P2

[
Γ

(
1 + β2,

1 + ρx1

ρP2

)]
dx1

)

=
1

β2
log2

(
2P2(ρP2)β2e

1
ρP2 e−

(P1−P2)
ρP2

×
∫ ∞

1
ρP2

P−β2

2 (1 + ρP1y)−β2e(P1−P2)yΓ(1 + β2, y)dy

)
.

(36)

Using binomial expansion we have (1 + ρP1y)−β2 =∑−β2

j=0

(−β2

j

)
(ρP1y)j when β2 is integer, otherwise we use

bβ2c. And, using Taylor series expansion we have that
e(P1−P2)y = e−(P2−P1)y =

∑∞
k=0

(−1)k(P2−P1)k

k! yk, which
converges.

E2
c =

1

β2
log2

(
2P 1−β2

2 (ρP2)β2e
1
ρP2 e−

(P1−P2)
ρP2

×
∫ ∞

1
ρP2

(1 + ρP1y)−β2e(P1−P2)yΓ(1 + β2, y)dy

)
=

1

β2
log2

(
2P 1−β2

2 (ρP2)β2e
1
ρP2 e−

(P1−P2)
ρP2

×
−β2∑
j=0

(
−β2

j

)
(ρP1)j ×

∞∑
k=0

(−1)k(P2 − P1)k

k!

×
∫ ∞

1
ρP2

yj+kΓ (1 + β2, y) dy

)
. (37)

Note that∫ ∞
c

zbΓ (A, z) dz=
1

1 + b

(
−c1+bΓ (A, c)+Γ (1 +A+ b, c)

)
i.e.,∫ ∞

1
ρP2

yj+kΓ (1 + β2, y) dy =
1

1 + j + k

×
(
− (ρP2)−1−j−kΓ(1 + β2,

1

ρP2
)+Γ(2 + β2 + j + k,

1

ρP2
)

)
.

(38)

Finally, by inserting (38) in (37) we obtain (12).

APPENDIX II

By inserting ρ→ 0 into (11) and (12), we get 1) of Lemma
1, i.e.,

lim
ρ→0

(E1
c − Ẽ1

c ) =
1

β1
log2

 E
[(

1 + ρP1|h1|2
)β2
]

E
[
(1 + 2ρP1|h1|2)

β2
2

]
 = 0,

lim
ρ→0

(E2
c − Ẽ2

c ) =
1

β2
log2

E
[ (

1 + ρP2|h2|2
1+ρP1|h1|2

)β2
]

E
[
(1 + 2ρP2|h1|2)

β2
2

]
 = 0.

In the same way, by inserting ρ → ∞ into (11) and (12),
we get 2) in Lemma 1, given below.

lim
ρ→∞

E2
c =

1

β2
log2

(
E

[(
1 +

P2|h2|2

P1|h1|2

)β2
])

,

lim
ρ→∞

(E1
c − Ẽ1

c ) =
1

β1
log2

(ρP1)
β1
2

E
[
( 1
ρP1

+ |h1|2)β2

]
E
[
( 1
ρP1

+ 2|h1|2)
β2
2

]


=∞,

lim
ρ→∞

(E2
c − Ẽ2

c ) =
1

β2
log2


E

[(
1
ρ+P1|h1|2+P2|h2|2

1
ρ+P1|h1|2

)β2
]

ρ
β2
2 E

[(
1
ρ + 2P2|h2|2

) β2
2

]


= −∞.

APPENDIX III

To analyze the trends of E1
c and Ẽ1

c with respect to ρ, we
start with

∂E1
c

∂ρ
=

1

β1 ln 2

(
E[(1 + ρP1|h1|2)β1 ]

)′
E[(1 + ρP1|h1|2)β1 ]

=
P1

ln 2

E[|h1|2(1 + ρP1|h1|2)β1−1]

E[(1 + ρP1|h1|2)β1 ]
≥ 0. (39)

Similarly, for U1 in OMA we have that

∂Ẽ1
c

∂ρ
=

1

β1 ln 2

(
E[(1 + 2ρP1|h1|2)

β1
2 ]
)′

E[(1 + 2ρP1|h1|2)
β1
2 ]

=
P1

ln 2

E[|h1|2(1 + 2ρP1|h1|2)
β1
2 −1]

E[(1 + 2ρP1|h1|2)
β1
2 ]

≥ 0. (40)

Then, we get that

∂(E1
c − Ẽ1

c )

∂ρ
=

P1

ln 2

E[|h1|2(1 + ρP1|h1|2)β1−1]

E[(1 + ρP1|h1|2)β1 ]

− P1

ln 2

E[|h1|2(1 + 2ρP1|h1|2)
β1
2 −1]

E[(1 + 2ρP1|h1|2)
β1
2 ]

. (41)
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and lim
ρ→0

(
∂(E1

c−Ẽ
1
c )

∂ρ ) = (P1−P1)
ln 2 E[|h1|2] = 0. When ρ >> 1,

we have that
∂(E1

c − Ẽ1
c )

∂ρ
) =

P1

ρ ln 2

E[|h1|2(P1|h1|2)β1−1]

E[(P1|h1|2)β1 ]

− P1

ρ ln 2

E[|h1|2(2P1|h1|2)
β1
2 −1]

E[(2P1|h1|2)
β1
2 ]

=
1

2ρ ln 2
≥ 0. (42)

When ρ→∞, this term approaches 0.

APPENDIX IV

E2
c =

1

β2
log2

(
E
[(

1 +
ρP2|h2|2

1 + ρP1|h1|2

)β2 ])
. (43)

And

∂E2
c

∂ρ
=

1

β2 ln 2

(
E
[ (

1 + ρP2|h2|2
1+ρP1|h1|2

)β2
])′

E
[ (

1 + ρP2|h2|2
1+ρP1|h1|2

)β2
]

=
1

ln 2

E
[

P2|h2|2
(1+ρP1|h1|2)2

(
1 + ρP2|h2|2

1+ρP1|h1|2

)β2−1 ]
E
[ (

1 + ρP2|h2|2
1+ρP1|h1|2

)β2
] ≥ 0.

(44)

In the same way, for the U2 in OMA, we have that:

∂Ẽ2
c

∂ρ
=

1

β2 ln 2

(
E[(1 + 2ρP2|h2|2)

β2
2 ]
)′

E[(1 + 2ρP2|h2|2)
β2
2 ]

=
P2

ln 2

E[|h2|2(1 + 2ρP2|h2|2)
β2
2 −1]

E[(1 + 2ρP2|h2|2)
β2
2 ]

≥ 0, (45)

and

∂(E2
c − Ẽ2

c )

∂ρ
=

1

ln 2

E
[

P2|h2|2
(1+ρP1|h1|2)2

(
1 + ρP2|h2|2

1+ρP1|h1|2

)β2−1 ]
E
[ (

1 + ρP2|h2|2
1+ρP1|h1|2

)β2
]

− P2

ln 2

E[|h2|2(1 + 2ρP2|h2|2)
β2
2 −1]

E[(1 + 2ρP2|h2|2)
β2
2 ]

. (46)

When ρ → 0, we have that lim
ρ→0

(
∂(E2

c−Ẽ
2
c )

∂ρ ) = 0. When ρ is

very large,

∂(E2
c − Ẽ2

c )

∂ρ
=

E
[

P2|h2|2
ρ2( 1

ρ+P1|h1|2)2
(1 + ρ

ρ
(P2|h2|2)

( 1
ρ+P1|h1|2)

)β2−1
]

ln 2E
[
(1 + ρ

ρ
P2|h2|2

( 1
ρ+P1|h1|2)

)β2

]
− P2

ln 2

1

ρ

E[|h2|2( 1
ρ + 2P2|h2|2)

β2
2 −1]

E[( 1
ρ + 2P2|h2|2)

β2
2 ]

=
P2

ρ2P 2
1 ln 2

E
[
|h2|2

(|h1|2)2

(
1 + P2|h2|2

P1|h1|2

)β2−1 ]
E
[ (

1 + P2|h2|2
P1|h1|2

)β2
] − 1

2 ln 2

1

ρ

=

P2

P 2
1 ln 2

A− 1
2 ln 2ρ

ρ2
, (47)

where A =
E
[
|h2|

2

(|h1|2)2

(
1+

P2|h2|
2

P1|h1|2

)β2−1]
E
[(

1+
P2|h2|2

P1|h1|2

)β2] , unrelated to ρ. And it

gradually approaches 0 when ρ→∞.

APPENDIX V
Note that VN = E1

c +E2
c . By using Lemma 1, we have that

lim
ρ→0

(VN ) = 0 and lim
ρ→∞

(VN ) =∞. Then, we get that,

∂VN
∂ρ

=
∂(E1

c + E2
c )

∂ρ
=

P1

ln 2

E[|h1|2(1 + ρP1|h1|2)β1−1]

E[(1 + ρP1|h1|2)β1 ]

+
1

ln 2

E
[

P2|h2|2
(1+ρP1|h1|2)2

(
1 + ρP2|h2|2

1+ρP1|h1|2

)β2−1 ]
E
[ (

1 + ρP2|h2|2
1+ρP1|h1|2

)β2
] ≥ 0.

(48)

When ρ → 0, we have that lim
ρ→0

(∂VN∂ρ ) = P1

ln 2E[|h1|2] +

P2

ln 2E[|h2|2].
When ρ→∞, we get that

lim
ρ→∞

∂VN
∂ρ

=
1

ρ ln 2
+

E
[

P2|h2|2
(P1|h1|2)2

(
1 + P2|h2|2

P1|h1|2

)β2−1 ]
ρ2 ln 2E

[ (
1 + P2|h2|2

P1|h1|2

)β2
] =0.

For VO in the case of OMA, we note that VO = Ẽ1
c+Ẽ2

c . By
using Lemma 1, we have lim

ρ→0
(V0) = 0 and lim

ρ→∞
(V0) = ∞.

Then,

∂V0

∂ρ
=
∂(Ẽ1

c + Ẽ2
c )

∂ρ
=

P1

ln 2

E[|h1|2(1 + 2ρP1|h1|2)
β1
2 −1]

E[(1 + 2ρP1|h1|2)
β1
2 ]

+
P2

ln 2

E[|h2|2(1 + 2ρP2|h2|2)
β2
2 −1]

E[(1 + 2ρP2|h2|2)
β2
2 ]

≥ 0. (49)

When ρ → 0, we have that lim
ρ→0

(∂VO∂ρ ) = P1

ln 2E[|h1|2] +

P2

ln 2E[|h2|2]. When ρ → ∞, we have that lim
ρ→∞

(∂VO∂ρ ) =

lim
ρ→∞

( 1
2ρ ln 2 + 1

2ρ ln 2 ) = lim
ρ→∞

( 1
ρ ln 2 ), which equals to 0.

APPENDIX VI
We have

E2
c =

1

β2
log2

(
E
[(

1 +
ρP2|h2|2

1 + ρP1|h1|2

)β2 ])

= − 1

θ2TfB

(
E
[
− θ2TfB

ln 2
ln

(
1 +

ρP2|h2|2

1 + ρP1|h1|2

)])
.

(50)

When θ2 → 0, we get an indeterminate form. By applying the
L’Hopital’s rule one can get

E2
c = − 1

TfB

(
E
[
−TfB

ln 2
ln
(

1 +
ρP2|h2|2

1 + ρP1|h1|2
)])

= E
[
log2

(
1 +

ρP2|h2|2

1 + ρP1|h1|2

)]
. (51)

Hence, we get that

lim
θ2→0

E2
c = E

[
log2

(
1 +

ρP2|h2|2

1 + ρP1|h1|2

)]
,
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which equals to E[R2], the ergodic capacity.
Proceeding in the same way, one can find

lim
θ1→0

E1
c = E

[
log2

(
1 + ρP1|h1|2

)]
= E[R1],

lim
θ1→0

Ẽ1
c = E

[1

2
log2

(
1 + 2ρP1|h1|2

)]
= E[R̃1],

lim
θ2→0

Ẽ2
c = E

[1

2
log2

(
1 + 2ρP2|h2|2

)]
= E[R̃2],

lim
θ1→0

(E1
c − Ẽ1

c ) = E[R1]− E[R̃1],

lim
θ2→0

(E2
c − Ẽ2

c ) = E[R2]− E[R̃2].

To look further the impact of the transmit SNR ρ on the EC
considering delay-unconstrained user:

lim
θ1→0
ρ→∞

E1
c = lim

ρ→∞
E
[

log2

(
1 + ρP1|h1|2

)]
=∞,

We also have that

lim
θ2→0
ρ→∞

E2
c = lim

ρ→∞
E
[
log2

(
1 +

ρP2|h2|2

1 + ρP1|h1|2

)]
= E

[
log2

(
1 +

P2|h2|2

P1|h1|2

)]
.

Similarly, we have for OMA

lim
θ1→0
ρ→∞

Ẽ1
c = lim

ρ→∞
E
[1

2
log2

(
1 + 2ρP1|h1|2

) ]
=∞,

lim
θ2→0
ρ→∞

Ẽ2
c = lim

ρ→∞
E
[1

2
log2

(
1 + 2ρP2|h2|2

)]
=∞.

Therefore, we have that

lim
θ1→0
ρ→∞

(
E1
c − Ẽ1

c

)
= lim
ρ→∞

(
E
[

log 2

(
1 + ρP1|h1|2

(1 + 2ρP1|h1|2)
1
2

)])

= lim
ρ→∞

(
E
[

log 2

(√
ρP1|h1|2

2

)])
=∞.

lim
θ2→0
ρ→∞

(
E2
c − Ẽ2

c

)
= −∞.

APPENDIX VII

Using the Lemma 1, when ρ→ 0, we can show that E1,i
c −

Ẽ1,i
c → 0 and E2,i

c − Ẽ2,i
c → 0. Then Etotc − Ẽc

tot
→ 0, since

Etotc − Ẽc
tot

=
∑M

2
i=1(E1,i

c + E2,i
c − Ẽ1,i

c − Ẽ2,i
c ), we get

lim
ρ→0

(
Etotc − Ẽc

tot
)

= 0.

On the other side, when ρ→∞,

Etotc − Ẽc
tot

=

M
2∑
i=1

(
1

β1,i
log2

E
[
(1 + ρP1,i|h1,i|2)

2β1,i
M

]
E
[
(1 + 2ρP1,i|h1,i|2)

β1,i
M

]


+
1

β2,i
log2

E
[ (

1 +
ρP2,i|h2,i|2

1+ρP1,i|h1,i|2

) 2β2,i
M
]

E
[
(1 + 2ρP2,i|h2,i|2)

β2,i
M

]

)

=

M
2∑
i=1

(
1

β1,i
log2

ρ β1,iM E
[
( 1
ρ + P1,i|h1,i|2)

2β1,i
M

]
E
[
( 1
ρ + 2P1,i|h1,i|2)

β1,i
M

]


+
1

β2,i
log2

ρ− β2,iM E
[ (

1 +
P2,i|h2,i|2

1
ρ+P1,i|h1,i|2

) 2β2,i
M
]

E
[
( 1
ρ + 2P2,i|h2,i|2)

β2,i
M

]

)
. (52)

Then,

Etotc − Ẽc
tot

=
M
2∑
i=1

(
1

β1,i
log2

E
[
( 1
ρ + P1,i|h1,i|2)

2β1,i
M

]
E
[
( 1
ρ + 2P1,i|h1,i|2)

β1,i
M

]


+
1

β2,i
log2

E
[
(1 +

P2,i|h2,i|2
1
ρ+P1,i|h1,i|2

)
2β2,i
M

]
E
[
( 1
ρ + 2P2,i|h2,i|2)

β2,i
M

]
).

(53)

lim
ρ→∞

(Etotc − Ẽc
tot

) =

M
2∑
i=1

(
1

β1,i
log2

(
2−

β1,i
M E

[
(P1,i|h1,i|2)

β1,i
M

])

+
1

β2,i
log2

E
[ (

1 +
P2,i|h2,i|2
P1,i|h1,i|2

) 2β2,i
M
]

E
[
(2P2,i|h2,i|2)

β2,i
M

]

)
,

which is a constant with respect to ρ.
Furthermore, to analyze lim

ρ→0
(
∂(Etotc −Ẽc

tot
)

∂ρ ) and

lim
ρ→∞

(
∂(Etotc −Ẽc

tot
)

∂ρ ), we start with ∂Etotc
∂ρ and ∂Ẽc

tot

∂ρ .

∂Etotc
∂ρ

=

M
2∑
i=1

(
∂E1,i

c

∂ρ
+
∂E2,i

c

∂ρ

)

=

M
2∑
i=1

(
2P1,i

M ln 2

E
[
|h1,i|2(1 + ρP1,i|h1,i|2)

2β1,i
M −1

]
E
[
(1 + ρP1,i|h1,i|2)

2β1,i
M

]
+

2P2,i

M ln 2

E
[

|h2,i|2
(1+ρP1,i|h1,i|2)2 (1 +

ρP2,i|h2,i|2
1+ρP1,i|h1,i|2 )

2β2,i
M −1

]
E
[
(1 +

ρP2,i|h2,i|2
1+ρP1,i|h1,i|2 )

2β2,i
M

] )
,

(54)

where (.)’ a first derivative with respect to ρ. Then,
lim
ρ→0

(
∂Etotc
∂ρ

)
=
∑M

2
i=1

(
2P1,i

M ln 2E[|h1,i|2] +
2P2,i

M ln 2E[|h2,i|2
)
.
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lim
ρ→∞

(
∂Etotc
∂ρ

)
= lim
ρ→∞

( M
2∑
i=1

(
2

M ln 2ρ

+
2P2,i

M ln 2ρ2

E
[

|h2,i|2
(P1,i|h1,i|2)2

(
1 +

P2,i|h2,i|2
P1,i|h1,i|2

) 2β2,i
M −1 ]

E
[ (

1 +
P2,i|h2,i|2
P1,i|h1,i|2

) 2β2,i
M
]

))
= 0.

Similarly,

∂Ẽc
tot

∂ρ
=

M
2∑
i=1

(
∂Ẽ1

c

∂ρ
+
∂Ẽ2

c

∂ρ

)
,

=

M
2∑
i=1

(
1

M ln 2

E
[
2P1,i|h1,i|2(1 + 2ρP1,i|h1,i|2)

β1,i
M −1

]
E
[
(1 + 2ρP1,i|h1,i|2)

β1,i
M

]
+

1

M ln 2

E
[
2P2,i|h2,i|2(1 + 2ρP2,i|h2,i|2)

β2,i
M −1

]
E
[
(1 + 2ρP2,i|h2,i|2)

β2,i
M

] )
. (55)

Then we have that, lim
ρ→0

(
∂Ẽc

tot

∂ρ

)
=∑M

2
i=1

(
2P1,i

M ln 2E[|h1,i|2] +
2P2,i

M ln 2E[|h2,i|2
)

, and

lim
ρ→∞

(
∂Ẽc

tot

∂ρ

)
= lim

ρ→∞

(∑M
2
i=1

1
ρM ln 2 + 1

ρM ln 2

)
= 0.

So that, lim
ρ→0

(
∂(Etotc −Ẽc

tot
)

∂ρ

)
= 0.

By following similar approach, we also get,

lim
ρ→∞

(
∂(Etotc −Ẽc

tot
)

∂ρ

)
= 0.

REFERENCES

[1] S. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain
non-orthogonal multiple access (NOMA) in 5G systems: Potentials and
challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742,
2016.

[2] B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A survey of noma:
Current status and open research challenges,” IEEE Open J. Commun.
Soc., vol. 1, pp. 179–189, 2020.

[3] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
Research challenges and future trends,” IEEE J. Sel. Areas Commun.,
vol. 35, no. 10, pp. 2181–2195, 2017.

[4] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level
performance evaluation of downlink non-orthogonal multiple access
(noma),” in IEEE 24th Annu. Int. Symp. Pers., Indoor, Mobile Radio
Commun. (PIMRC), 2013, pp. 611–615.

[5] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of
non-orthogonal multiple access in 5G systems with randomly deployed
users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, 2014.

[6] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and
K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular
future radio access,” in Proc. IEEE Veh. Technol. Conf. Spring, 2013,
pp. 1–5.

[7] K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access
(NOMA) with successive interference cancellation for future radio
access,” IEICE Trans. Commun., vol. 98, no. 3, pp. 403–414, 2015.

[8] J. He, Z. Tang, Z. Ding, and D. Wu, “Successive interference cancel-
lation and fractional frequency reuse for LTE uplink communications,”
IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10 528–10 542, 2018.

[9] N. I. Miridakis and D. D. Vergados, “A survey on the successive
interference cancellation performance for single-antenna and multiple-
antenna OFDM systems,” IEEE Commun. Surveys Tuts., vol. 15, no. 1,
pp. 312–335, 2013.

[10] T. Manglayev, R. C. Kizilirmak, Y. H. Kho, N. Bazhayev, and I. Lebe-
dev, “NOMA with imperfect SIC implementation,” in IEEE EUROCON-
17th Int. Conf. Smart Technol., 2017, pp. 22–25.

[11] M. Chen and A. Burr, “Multiuser detection for uplink non-orthogonal
multiple access system,” IET Commun., vol. 13, no. 19, pp. 3222–3228,
2019.

[12] Y. Cai, Z. Qin, F. Cui, G. Y. Li, and J. A. McCann, “Modulation and
multiple access for 5G networks,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 629–646, 2018.

[13] W. Shin, M. Vaezi, B. Lee, D. J. Love, J. Lee, and H. V. Poor, “Non-
orthogonal multiple access in multi-cell networks: Theory, performance,
and practical challenges,” IEEE Commun. Mag., vol. 55, no. 10, pp.
176–183, 2017.

[14] S. M. R. Islam, M. Zeng, O. A. Dobre, and K. Kwak, “Resource
allocation for downlink NOMA systems: Key techniques and open
issues,” IEEE Trans. Wireless Commun., vol. 25, no. 2, pp. 40–47, 2018.

[15] Q. Sun, S. Han, C. I, and Z. Pan, “On the ergodic capacity of MIMO
NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 405–
408, 2015.

[16] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor,
“Capacity comparison between MIMO-NOMA and mimo-oma with
multiple users in a cluster,” IEEE J. Sel. Areas Commun., vol. 35, no. 10,
pp. 2413–2424, 2017.

[17] L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, “Optimal user pairing
for downlink non-orthogonal multiple access (noma),” IEEE Wireless
Commun. Lett., vol. 8, no. 2, pp. 328–331, 2019.
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