
HAL Id: hal-02972511
https://hal.science/hal-02972511v1

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Guided exploration of user groups
Mariia Seleznova, Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, Eric Simon

To cite this version:
Mariia Seleznova, Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, Eric Simon. Guided exploration
of user groups. Proceedings of the VLDB Endowment (PVLDB), 2020, 13 (9), pp.1469-1482.
�10.14778/3397230.3397242�. �hal-02972511�

https://hal.science/hal-02972511v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Guided Exploration of User Groups

Mariia Seleznova1
∗

, Behrooz Omidvar-Tehrani2, Sihem Amer-Yahia1, Eric Simon3

1CNRS, University of Grenoble Alpes, 2NAVER LABS Europe, 3SAP Paris
1firstname.lastname@univ-grenoble-alpes.fr,

2behrooz.omidvar-tehrani@naverlabs.com, 3eric.simon@sap.com

ABSTRACT
Finding a set of users of interest serves several applications
in behavioral analytics. Often times, identifying users re-
quires to explore the data and gradually choose potential
targets. This is a special case of Exploratory Data Analy-
sis (EDA), an iterative and tedious process. In this paper,
we formalize and solve the problem of guided exploration
of user groups whose purpose is to find target users. We
model exploration as an iterative decision-making process,
where an agent is shown a set of groups, chooses users from
those groups, and selects the best action to move to the
next step. To solve our problem, we apply reinforcement
learning to discover an efficient exploration strategy from a
simulated agent experience, and propose to use the learned
strategy to recommend an exploration policy that can be
applied to the same task for any dataset. Our framework
accepts a wide class of exploration actions and does not need
to gather exploration logs. Our experiments show that the
agent naturally captures manual exploration by human ana-
lysts, and succeeds to learn an interpretable and transferable
exploration policy.

PVLDB Reference Format:
Mariia Selezniova, Behrooz Omidvar-Tehrani, Sihem Amer-Yahia,
Eric Simon. Guided Exploration of User Groups. PVLDB, 12(xxx):
xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
User data is widely available in various domains and is

characterized by a combination of demographics such as age
and location and actions such as rating a movie, providing
advice on a product, or recording one’s blood pressure [27].
Many companies address the very fast growing market of
user data analysis by proposing dedicated platforms to col-
lect and analyze such data in a variety of business segments,

∗This work was completed when the author was working as
an intern at SAP.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

and start to tightly couple user data management with en-
terprise operational data management solutions. 1.

A common way of understanding user data is user group
analysis whose purpose is to breakdown users into groups
to gain a more focused understanding of their behavior or
to identify a target group of users satisfying an information
need. User group analysis has many applications in domains
such as social sciences, product design, product marketing
campaigns, commerce and sales, and customer services [27].
For instance, a data scientist may conduct large-scale pop-
ulation studies to gain insights on the preferences of various
population segments. An information consumer may want
to explore alike user groups to be inspired for routine tasks
such as choosing a product or picking a service subscrip-
tion. In this paper, we take as an example a PC chair (a
domain expert) who wants to build a program committee,
starting with any seed group (researchers in this case) and
iteratively looking for users in groups that match certain ex-
pected properties expected of a PC (geographic distribution,
gender and topic balance, etc).

Performing user group analysis with hand-crafted queries,
which is still the most popular approach, comes with several
challenges. Firstly, the analyst needs to master a language
(e.g., SQL) to formulate queries, as well as a global under-
standing of the underlying database schema. Secondly, the
analyst usually lacks information about the distribution of
attribute values that characterize users or items on which
users performed some action. Thus, a query that selects
users based on user or item attributes may either return too
few or too many results. For instance, a query that separates
users into groups of males and females can surprisingly re-
turn very small output groups when most users do not have
gender information. Thirdly, an analyst may want to refine
her queries as she discovers more users. For instance, a PC
chair usually has a partial idea of who to look for, such as a
mix of senior and junior male and female researchers around
the world. Hence, the PC chair may want to navigate in the
space of potential PC members to iteratively choose who
to include in the final PC depending on a mix of gender,
coverage of topics, seniority, and countries obtained so far.

Due to the iterative nature of the task and its inherent
difficulty, user group analysis can be viewed as an instance
of Exploratory Data Analysis (EDA). In this setting, the
exploratory analysis of user groups is an iterative decision-
making process, whereby an analyst is shown a set of user
groups labeled with user and item attribute values (e.g.,

1
https://www.qualtrics.com/marketplace/

https://amplitude.com/behavioral-analytics-platform/

1

groups of researchers who published in SIGMOD), chooses
target users from those groups, and selects the best explo-
ration action to move to the next iteration (e.g., select a
group whose label is [prolific, female, publish in VLDB]
that has researchers with well distributed geographical loca-
tion and gender, and apply an explore-around action to re-
turn k diverse groups that overlap with the selected group).
Although there exists a large body of work on the recom-
mendation of data exploration actions, carefully reviewed in
Section 2, these works have important shortcomings. First,
most work recommend (SQL/OLAP) queries, which is not
adapted to analysts with no IT expertise, while other works
focus on specific types of high-level actions that are too lim-
ited for user group analysis. Second, existing solutions either
rely on tedious manual exploration [28], or on the collection
of a large log of exploration sessions gathered from multiple
users on the same dataset [25], which is not an acceptable as-
sumption in our case since many analysis tasks are repeated
only a few times or performed on different datasets. Last,
very recent work on automating the exploration process does
not generate interpretable policies [13].

In this paper, we propose the first framework for user
group exploration that learns an exploration policy without
requiring prior collection of exploration log. The learned
policy is used to recommend an end-to-end exploration ses-
sion on a given dataset. The recommended sessions can
be easily interpreted by an analyst with no IT expertises.
Our framework supports exploration sessions consisting of
a sequence of high-level exploration actions of various types
and can provide recommendations for the exploration of new
datasets, provided they are similar (with respect to domain-
specific features) to previously analyzed datasets. Addition-
ally, our framework learns an exploration policy offline from
a simulated agent experience in such a way that no human
intervention is needed from an analyst during the online
analysis task. It thus solves a fully guided EDA for user
group analysis when the task is to find target users.

Our first contribution is to formalize the guided EDA
problem applied to user groups as a Markov decision process
where a state displays several user groups, a transition is the
application of an exploration action to a chosen group, and
the reward is a function of whether or not some target users
are found when applying the action to the group. An ex-
ploration session is hence a sequence of exploration actions,
and an exploration policy is a function that maps a state to
an action. Our framework integrates a comprehensive set
of high-level exploration actions for user groups that were
introduced separately by previous work: explore-around [28],
explore-within [28], by-facet [37], by-distribution [2], and by-
topic [9]. Those actions were never considered all together
before. We define a unified semantics for all these actions
to make them composable and take advantage of their ex-
pressivity at each exploration step. We then formalize the
problem of guided EDA on user groups as finding a policy
that maximizes utility, i.e., that finds as many target users
as possible regardless of the dataset, the user groups and
the seed groups at every step.

Our second contribution is the of use Reinforcement Learn-
ing (RL) to learn an efficient policy from a simulated agent
experience (i.e., an RL agent that acts as an analyst who
chooses exploration actions), and recommend a policy. A

notable advantage of RL methods is that, unlike supervised
learning methods, they do not require to gather labeled
datasets. Instead, the agent learns from rewards computed
by the environment during the interaction [34]. This natu-
rally fits our context since we can use, for instance, the PC
of WebDB 2017 (or any previous PC of the same or differ-
ent venue) to learn an exploration policy offline, and apply
it online to build the PC of WebDB 2018. Additionally, the
use of RL for EDA enables to model our problem as an inter-
active decision-making process. Our work bears similarity
with recent proposals on RL-based EDA [25, 33] but differs
in several ways. First, we address a well-defined user data
analysis task (gathering target users) and the exploration
actions are chosen accordingly. Additionally, in case of in-
teractive exploration, the analysis task is often unique and
needs to be accomplished only once by an analyst. Run-
ning a large number of manual explorations for each new
dataset and new analysis task is hence impractical. In [13],
the authors propose to use a deep RL approach for EDA.
However, our focus on producing interpretable exploration
sessions for a human analyst warrants the use of classical
RL methods instead of deep RL or contextual bandits, a
special case of RL where the agent’s action does not deter-
mine the next state of the environment [21, 23, 31]. Our
reliance on classical RL methods is a first step towards a
deeper and comprehensive understanding of how to learn
data exploration policies for user data analysis, including
thorough experiments on real datasets.

Our third contribution is an extensive set of experiments
that validate the use of RL to solve the guided EDA prob-
lem for user groups. We study various cases where target
users to be found are scattered in groups. We examine the
utility of learned policies on real user datasets for different
variants where policies are learned on the same conference
or transferred from one conference to another. Our exper-
iments show that the simulated agent succeeds to learn an
interpretable strategy for several realistic use cases of in-
teractive exploration. It also validates that our exploration
actions and offline policy learning naturally capture what a
human analyst does manually (as in [28]) and can hence be
used to automate a guided EDA.

The rest of the paper is organized as follows. First, we
review related work in Section 2. We then introduce the
user data model and define the guided EDA problem for user
groups in Section 3. Then we present our solution based on
reinforcement learning in Section 4. In Section 5, we provide
an extensive set of experiments to validate the effectiveness
of our approach for EDA. We conclude in Section 6.

2. RELATED WORK
Our work lies at the intersection of data management and

machine learning. We successively present related work on
user group exploration frameworks, recommendation of ex-
ploration actions, and reinforcement learning for interactive
data exploration.

2.1 User group exploration frameworks
User group exploration is a recent and dynamic research

area in data management [27]. The most traditional way
of exploring user groups is based on previous exploration
frameworks [5, 6]. Most notably, by-query can be used to

2

select user groups that satisfy some predicates. However, to
formulate a query, the analyst needs to know the database
schema, the query language, and the underlying data distri-
butions. We discard this type of exploration in our model
because we want to target analysts that have no program-
ming expertise.

Higher-level exploration actions not requiring much ex-
pertise have been introduced in recent work. by-facet ex-
ploration returns groups that have the same value for some
attribute, e.g. gender, [17, 37]. by-example exploration [26,
28] finds groups that are similar to/different from an input
group. In [28], by-example-around returns k diverse groups
that overlap with an input group, and by-example-within

returns a set of k subgroups that maximize the coverage
of the input group. by-analytics selects groups based on
statistics. Some actions admit as input a set of distributions
and find groups with similar rating distributions [2]. Others
are a variant of by-example and look for groups similar to,
or different from, a given group in terms of their distribu-
tions [16]. by-text exploration actions [9] leverage textual
information such as tags and reviews to find groups that
exhibit similar/dissimilar tags or reviews.

Our framework accommodates the above actions and is
sufficiently generic to capture other actions. There exist
other types of actions that we did not consider. For in-
stance, by-evolution actions [19, 20, 35, 38, 39, 40] are
designed for timestamped datasets. They can be used to
select groups based on similarity/dissimilarity in their evo-
lution over time, or those that exhibit some pattern.

2.2 Recommendation of exploration actions
A number of works recommend queries for the interac-

tive exploration of databases [7, 11]. One approach based
on collaborative filtering [1, 12, 18, 24] uses previously col-
lected query logs a dataset (SQL queries in [12, 18], and
OLAP queries in [1, 24]) to recommend queries on the same
dataset. This approach is not applicable to our problem
because we cannot rely on a large number of previous ex-
ploration sessions for the same data analysis task, and we
assume that the same analysis task can be performed on
different datasets. Finally, these works focus on the recom-
mendation of SQL/OLAP queries while we are interested in
more abstract operations that do not require IT expertise.

Another mode of interactive exploration, sometimes called
data-driven approach [7, 4, 10, 15, 29, 32], recommends a
single type of exploration action whose result is expected to
optimize a measure of “interestingness” with respect to the
current analysis context of a user on a given dataset. For
instance, [15] suggests different drill-down operations on a
given table (a case of by-facet), each producing a different
set of tuples. With a data-driven approach, the notion of
context is predefined (e.g., user profile [4], sequence of ac-
tions within the same session [15, 32], or data returned by
a query [10, 29]). These works do not apply to our prob-
lem firstly because they only consider one type of explo-
ration action. Secondly, the proposed measures of “interest-
ingness” are predefined and cannot be adapted to different
analysis tasks. The closest work to ours is the recommenda-
tion of various types of high-level exploration actions (e.g.,
filter, roll-up, cluster-by) for interactive data analysis over
different datasets [25]. In the same spirit as the data-driven
approach, an exploration action is recommended based on
different user’s analysis contexts modeled as trees in which

previous actions are edges and their output dataset, called
“display”, are nodes. Given a context, the system looks for k
similar contexts in a log of previous exploration sessions, and
retrieves a candidate next action. A suggested action can be
an abstract action (e.g., Filter-by) that is generalized from
a concrete action (e.g., Filter-by ’protocol’=”SSL”) by leav-
ing out data-specific and context-specific attributes. This
framework is however not suited for our problem. The pro-
posed approach assumes the prior collection of many explo-
ration logs for a given task. Additionally, in our case, the
choice of a best next action is driven by the improvement of
a utility function computed over all the states seen so far,
rather than similarity with collected logs.

Another direction of research, called user intent identi-
fication, aims to understand how a user’s exploration goal
evolves during interaction. The approach developed in [33]
considers prediction of ”interestingness” measures relevant
to the next step of interactive exploration. These measures
characterize some properties of interactive exploration dis-
plays. Examples of such measures are: diversity (favors dif-
ferences in values), dispersion (favors similar values), pecu-
liarity (favors values different from average), conciseness (fa-
vors short displays). Other works propose predictive models
to determine the topic of the next query [22] or the relevance
of content items [3] based on the behavior features of the
analyst. Although the notion of ”interestingness” proposed
there is closer to our needs, these approaches are based on
the clustering of real behavioral patterns using large collec-
tions of past user interactions.

3. USER DATA ANALYSIS MODEL
In this section, we define our EDA environment for user

group analysis. Section 3.1 describes the user data model
and the notion of user groups. Section 3.2 presents a unified
semantics for the exploration actions used in our framework
and defines the notions of relevance and quality of an action.
Last, Section 3.3 defines our guided EDA problem which
consists of recommending an exploration policy.

3.1 User datasets and user groups
We model user data as a set of users U , a set of items I,

and a set D = {〈u, i, s, x〉} where u ∈ U , i ∈ I, s is an inte-
ger score, and x is a text. A tuple 〈u, i, s, x〉 represents the
action of user u (e.g., publishing, reviewing) on item i with
an optional score s (e.g., recency of research publications,
product rating) and an optional text x (e.g., publication
titles/abstracts, product reviews).

Each user u ∈ U is described with a set of attribute-
value pairs u = {〈a, v〉}, where a ∈ AU is a demographic
attribute (e.g., age, gender, occupation), and v is a value
in a’s domain, i.e., v ∈ dom(a). Similarly, each item i ∈ I
is described with a set of attribute-value pairs i = {〈a, v〉}
where a ∈ AI is an item attribute (e.g., publication topic,
hotel nightly price). The set of all demographic and item
attributes is denoted A = AU ∪ AI .

A user group g is a subset of users in U associated with a
set of attribute-value pairs 〈a, v〉 on attributes in A, called
label(g). We denote the set of all groups as G. We define
items(g) as the set of all items i for which there exists a
tuple 〈u, i, s, x〉 in D associated to a user u in g. Every user
u in g must satisfy each label 〈a, v〉 in label(g) as follows: if
a ∈ AU then 〈a, v〉 is true for u else (a ∈ AI) there exists
i ∈ items(g) such that 〈a, v〉 is true for i. Thus, label(g) =

3

{〈gender , female〉, 〈location,CA〉, 〈venue, VLBDJ 〉, 〈venue,
SIGMOD〉} represents a group of women researchers in Cali-
fornia who published a VLDB Journal and a SIGMOD paper
at least once.

Example 1. We consider Martin who wants to build the
WebDB 2014 PC by gathering geographically distributed male
and female researchers with different topics of interest, se-
niority and expertise levels.

3.2 Group exploration actions
The exploration actions to consider for our framework

must be expressive enough to reflect how an analyst ex-
plores the space of groups to find target users. Intuitively,
an action should provide the ability to dive into a group or
to expand a group, or to compare group members using any
meaningful dimension. Therefore, we decided to adopt pre-
viously proposed exploration actions [27] that support those
capabilities. We then unify the semantics of these actions
to make them easily composable.

We use E to denote a set of exploration actions. To rep-
resent the effect of an action, we define a generic function
explore(g, k, e) that takes as input a group g ∈ G, an integer
k, and an exploration action e ∈ E, and returns k other
groups Gk ⊆ G \ g that represent new exploration options.

We unify the semantics of the actions by defining two
conditions on the set of k groups returned by explore:

• ∀g ∈ Gk, relevance(g, e) ≥ σ;

• quality(Gk, e) is maximized.

The definitions of relevance(•) and quality(•) depend on
the exploration action e. Our design is inspired by the ap-
proach developed in [33] to predict “interestingness” mea-
sures relevant to the next step of interactive exploration.
The function relevance(g, e) forces an action to return groups
that are relevant to the input group g to ensure continuity
in the exploration. The function quality(Gk, e) ensures that
the collective set of k returned groups, Gk, covers a wide
range of exploration options. Both functions return a value
between 0 and 1. The parameter σ is a relevance threshold
where σ = [0, 1].

We now define each exploration action used in our frame-
work.

Exploration action explore-around. This action returns
k diverse groups that overlap with an input group gin [28].
Jaccard similarity is used to implement relevance(•), and
diversity is used for quality(•):

relevance(g, explore-around) = Jaccard(gin, g) =
|gin ∩ g|
|gin ∪ g|

quality(Gk, explore-around) = diversity(Gk) =
|
⋃
g∈Gk

g|∑
g∈Gk

|g|

(1)

Exploration action explore-within. This action returns k
subgroups that maximize the coverage of the input group
gin to ensure that all exploration options within gin are still
available [28]. This is akin to subgroup discovery [30]:

relevance(g, explore-within) = 1[g ⊆ gin]

The function relevance(g, explore-within) returns either 0
or 1. Hence in this case, σ is always set to 1. To ensure
a range of exploration options, coverage is used to define
quality(•) as follows:

quality(Gk,explore-within) = coverage(gin,Gk)

= | ∪g∈Gk (g ∩ gin)|/|gin|
(2)

Exploration action by-facet. This action is a realization
of faceted search in the group space [14]. Output groups
result from splitting an input group gin on a given facet (e.g.,
split a group by gender into males and females), i.e., 〈a, v〉,
is added to the label of gin, where a ∈ A and v ∈ dom(a).
Given gin and an attribute a, relevance(•) and quality(•)
are defined as follows:

relevance(g, by-facet) = 1[label(g) \ label(gin) = 〈a, v〉]

The function relevance(g, by-facet) returns either 0 or 1.
Hence in this case, σ is always set to 1.

quality(Gk, by-facet) =
|{g ∈ Gk, label(g) \ label(gin) = 〈a, v〉}|

|dom(a)|

Exploration action by-distribution. A score distribution
g̃ can be built for each group g using the score component s
in 〈u, i, s, x〉 ∈ D (e.g., publication years of papers, ratings
of products), as follows:

g̃ = {〈s, count(s)〉 : ∀u ∈ g,∀i ∈ items(g),∃〈u, i, s, x〉 ∈ D}

The by-distribution action finds groups with score distri-
butions similar to an input group gin [2]. In this case
relevance(g, by-distribution) of a group g ∈ Gk can be ex-
pressed with a distribution comparison function (for instance,
Earth Mover’s Distance or Kendall Tau), and
quality(Gk, by-distribution) is expressed using diversity.

relevance(g, by-distribution) = EMD(g̃, ˜gin) =

min(work(g̃, ˜gin))

min(‖g̃‖2 , ‖ ˜gin‖2)

(3)

where the function work(g̃, ˜gin) computes the matching weight
between the score distributions g̃ and ˜gin, and ‖.‖2 denotes
the Euclidean norm.

quality(Gk, by-distribution) = diversity(Gk) =
|
⋃
g∈Gk

g|∑
g∈Gk

|g|

Exploration action by-topic. This action operates on the
text component x of 〈u, i, s, x〉 in D. Several methods, in-
cluding Latent Dirichlet Allocation (LDA) and tf*idf, can
be used to process those x and associate a topic vector ~x to
each tuple 〈u, i, s, x〉 ∈ D. In our work we use LDA where
the corpus is the set of x in all tuples of D. Given a group
g of users u, its topic vector ~g is obtained by combining
(e.g., using sum) the topic vectors of all its associated tu-
ples 〈u, i, s, x〉.

4

In by-topic, relevant groups are the ones whose Cosine
similarity to gin’s topic vector is higher than a threshold.
The quality function is the diversity of the returned group
labels.

relevance(g, by-topic) = Cosine(~g, ~gin)

quality(Gk, by-topic) =
|
⋃
g∈Gk
〈a, v〉 ∈ label(g)|∑

g∈Gk
|〈a, v〉 ∈ label(g)|

Example 2. We now revisit our PC formation example.
Assume that Martin starts with an input group containing
2 junior researchers, Sebastian Michel and Xiaokui Xiao
to be included in the final committee. He applies explore-
around to broaden his search. He discovers 3 groups of re-
searchers out of which he chooses a group whose label is [pro-
lific, SIGMOD] that contains 29 geographically-distributed
and gender-distributed researchers. Martin identifies Lu-
cian Popa, An-Hai Doan, Sihem Amer-Yahia and Michael
Benedikt in that group, and applies another explore-around
exploration to explore relevant groups. Among the 3 returned
groups, he examines one containing 119 highly senior re-
searchers, and requests explore-within to delve into that large
group. He finds the group labeled [highly senior, very pro-
ductive, VLDB, ICDE] containing 26 senior researchers out
of which Francesco Bonchi, Kaushik Chakrabarti, Piero Fra-
ternali and Felix Naumann are of interest. Martin then ap-
plies a by-topic exploration to find other groups whose re-
search areas are similar to those 26 researchers. by-topic
expands the explored topics which allows him to identify a
new group of 38 researchers whose research covers ”stream
processing” and ”data integration”. The latter is the main
topic of WebDB in 2014. Martin decides to apply a by-facet
on that group to separate males and females and balance his
PC. At this stage and after 5 steps only, Martin has already
covered 80% of the WebDB 2014 PC.

Example 2 illustrates the need for an iterative process to
find users of interest, since the analyst does not necessarily
have a complete specification of the set of target users at the
beginning, and a full understanding of the underlying data
distributions. The example also illustrates several key as-
pects of the exploration: an effective end-to-end exploration
depends on the seed group (the set of users with which the
analyst starts the exploration) as well as the series of ex-
ploration actions and their utility in helping the analyst to
locate target users.

3.3 Exploration states and policies
In our EDA environment, the analyst goes through multi-

ple steps where each step is the application of an exploration
action to an input group g to obtain a set of k groups, Gk,
that constitute further exploration options. Each step gen-
erates an exploration state si = 〈gi,Gki〉 that represents the
result of applying an action ei−1 to group gi−1 (from the pre-
vious state). An exploration session S, starting at state s1,
of length n, is a sequence of exploration states and actions
of the form:

Ss1 = [(g1,Gk1, e1), . . . , (gn,Gkn, en)]

where gi ∈ Gki ⊆ G and ei ∈ E. For instance, the explo-
ration session of length 3 in Example 2 can be represented

as: [〈g1, {g1}, explore-around〉, 〈g2,Gk2, explore-within〉,
〈g3,Gk3, by-topic〉], where g1 is a starting group in G, Gk2 is
the result of applying explore-around to g1, etc.

We define a policy π as a function that takes an explo-
ration state si = 〈gi,Gki〉 and returns an action ei: π(si) =
ei. Then, we can rewrite the definition of a session S starting
at state s1 and generated by a policy π as:

Sπs1 = [(s1, π(s1)), . . . , (sn, π(sn))]

Utility of groups. In our EDA environment, the aim of
an analysis task is to gather a set of target users Ut ⊆ U
that are scattered in many groups in G. Therefore, we need
to measure the utility of a group g returned by an explore
function with respect to Ut. A straightforward definition of
utility would be |g ∩ Ut|. However, this definition results
in higher utility for larger groups which is not desired since
the analyst would need to scan many users to identify target
ones. For example, when Martin (the PC chair) wants to
find “Asian female researchers working on Machine Learn-
ing”, the group of “all female researchers” contains many
target users, but also many more irrelevant users. We hence
introduce a concentration parameter c ∈ [0, 1] to reflect the
distribution of target users in a given user group. We refine
the definition of group utility as follows:

g utility(g,Ut) = |g ∩ Ut| ∗ 1[g ∈ Gct]

Gct = {g ∈ G :
|g ∩ Ut|
|g| > c}

(4)

where Gct ⊆ G is a set of target groups. While Ut charac-
terizes the exploration goal, Gct is the set of all groups where
users from Ut are concentrated.

Utility of a policy. The utility of an exploration session
measures the total number of unique target users identified
in target groups during this session discounted by the num-
ber of steps in that session with parameter γ ∈ [0, 1]:

s utility(S,Ut) =
∑

(gi,Gki,ei)∈S

γig utility(gi,Ut\
⋃
j<i

{gj ∈ Gct })

(5)
Given a seed state s1 = 〈g1,Gk1〉, we can now define the

utility of a policy π for a target set of users Ut:

p utility(π, s1,Ut) = s utility(Sπs1 ,Ut)

3.4 Guided EDA problem
We are now ready to state our problem:
Given the task of finding a set of target users Ut, the

guided EDA problem is formulated as finding a policy π∗

with the highest utility. More formally,

π∗ = argmaxπp utility(π, s1,Ut),∀s1 = 〈g1,Gk1〉

The guided EDA problem poses two major challenges: (i)
how to simulate a human agent in such a way that we learn
a policy that is applicable to any dataset and any input
groups? (ii) how to characterize exploration states in such
a way that they are independent from the underlying data,
and that the decision of which action to apply next maxi-
mizes overall utility?

5

4. RL-BASED APPROACH
We describe our solution to the guided EDA problem us-

ing an RL-based approach. We first describe the general
architecture of our approach. Then, Section 4.2 presents
our modeling using a Markov Decision Process (MDP) fol-
lowing which we reformulate our guided EDA problem for
user groups 4.3. Last, Section 4.4 describes the RL frame-
work and algorithms to learn and apply the best exploration
policy.

4.1 Architecture of the RL-based approach
The general architecture for our RL-based approach is de-

picted in Figure 1. The offline phase addresses our first chal-
lenge: simulate a human experience in such a way that we
learn a policy that is applicable to any dataset and any ini-
tial group. During the offline phase, an agent simulating a
human analyst is trained to learn a policy that maximizes
utility, e.g., for the PC of WebDB 2017. The policy is up-
dated as the agent interacts with user groups via exploration
actions. The outcome is final exploration policy that can be
leveraged in an online phase to find any set of target users.
For instance, the policy will apply explore-within at a given
step i in case a group at step i − 1 includes some target
users but is too large and hence requires further splitting. If
instead the group is too small, it would apply explore-around
at step i. Once a policy is learned, it is provided to a human
analyst who applies it during the online phase to generate
an interpretable exploration session that finds a PC for the
same venue at a following year, e.g., WebDB PC in 2018, or
for another venue, e.g., the SIGMOD PC in 2018.

Figure 1: RL framework architecture

4.2 Exploration model
We model EDA as a Markov Decision Process (MDP)

comprising a quadruple (S,E, P,R) where:

• S is a set of states of the process;

• E is a set of exploration actions that change the process
state;

• P (si+1|si, ei) are probabilities that action ei will change
state si ∈ S to state si+1 ∈ S;

• R(si+1|si, ei) are rewards for transitioning from state si ∈
S to state si+1 ∈ S by applying exploration action ei.

Each state si+1 in S is a tuple 〈gi+1,Gki+1〉 obtained by
applying an exploration action ei to a previous state si =
〈gi,Gki〉, and for which an action ei+1 should be selected
to continue the exploration. The probabilities P (si+1|si, ei)
characterize the behavior of exploration actions, i.e., they
represent what will be displayed next if ei is selected. These
probabilities are not known in advance and depend on the
quality and relevance functions of the exploration actions
and on properties of the dataset.

Reward design. The reward of a state R(si+1|si, ei) must
reflect the utility of group gi+1 for a set of target users Ut de-
fined in Section 3.3 (Equation 5). Reward design is known
to be a challenging issue, because a reward must capture
what a human analyst expects to achieve and a poorly spec-
ified reward may lead to counter-intuitive performance [25].
In our approach, the simulated RL agent is rewarded each
time it discovers new target users, i.e.,

R(si+1|si, ei) = g utility(gi+1,Ut)

It is important that the agent is rewarded only for targets
which have not been found so far, because otherwise it would
prefer to go back to the same target group [8]. This re-
ward signal does not capture the need to maximize the total
number of target users found in a session. It only prefers
discovering more targets sooner starting from the current
state. A reward that captures the overall utility of an ex-
ploration policy should be computed once at the end of the
exploration. However, learning from such a sparse reward is
too complex in our case. Therefore, we reward the agent at
each intermediate steps.

4.3 Reformulating the guided EDA problem
Following our MDP model, our guided EDA problem is

reformulated as finding a policy π : S → E, such that it
maximizes the discounted cumulative reward R̂:

R̂ =
∑
i

γiR(si+1|si, ei)→ max

where ei = π(si) and γ ∈ [0, 1] is a discount factor.
Similarly to classical RL, given a policy π, we use a value

function Vπ(s) and action-value function Qπ(s, e):

Vπ(s) = E[

∞∑
k=0

γi+kR(si+k+1|si+k, ei+k)|si = s]

Qπ(s, e) = E[

∞∑
k=0

γi+kR(si+k+1|si+k, ei+k)|si = s, ei = e]

The function Vπ(s) computes the expected cumulative re-
ward of the policy π gained after observing state s at step
i. The function Qπ(s, e) captures the expected cumulative
reward that π gets from applying action e at state s. An op-
timal policy π∗ always selects actions with the highest value

6

in the current state, thus maximizing expected reward. This
yields optimal functions V ∗ and Q∗ which satisfy the Bell-
man optimality equations [34]:

V ∗(s) = max
a

Q∗(s, e) =

max
e

∑
si+1

P (si+1|si = s, ei = e)[R(si+1|si = s, ei = e)+γV ∗(si+1)]

Our goal is then to find π∗ which yields the best explo-
ration action at every exploration step.

4.4 RL framework
Reinforcement learning (RL) is a set of methods to find an

optimal decision policy for an MDP when transition prob-
abilities are not given, i.e., the input to an RL model is
(S,E, P,R) \ P . RL fits our context, because in EDA, the
transition probabilities between exploration actions are un-
known and depend on the dataset.

To learn an optimal policy, we simulate interactions be-
tween an analyst and groups in the offline phase. An RL
agent interacts with different states and gathers several sim-
ulated exploration sessions. At each state si = 〈gi,Gki〉, the
agent decides which exploration action ei to select. This de-
cision is based on the action-value function Q(si, ei), which
the agent learns.

State-action features f(s, e). Our goal is to learn mean-
ingful EDA policies that generate interpretable exploration
sessions for human analysts. To enable that, we describe our
states with a small set of domain-dependent features and use
those features in our learning process. The features we use
reflect the result of applying an exploration action to a state.
They must enable learning how to choose between actions at
each step. In Section 3.2, we specified relevance and quality
functions that the actions maximize, such as overlap with
input group (akin to coverage), and diversity. We expect
the states generated by different actions to possess different
values for these functions (e.g., explore-around aims to gen-
erate states with higher diversity, while explore-within aims
to generate states with higher coverage). A set of features
related to the relevance and quality functions ensures that
values of P (si|si−1, ei−1) depend on ei−1, so it is possible to
learn a policy that performs better than random. Section 5
(Table 2) contains a detailed description of the features we
engineered for our empirical validation. The choice of those
features is based on realistic exploration tasks in the liter-
ature [28, 14, 2] and on several trial-and-error steps. We
denote f(s, e) as a feature vector of size n for a correspond-
ing state-action pair.

Representation of Q(s, e). Typically, an RL method learns
a matrix of size |S| × |E| for Q(s, e). In our case, our state
space is huge (i.e., all 〈g,Gk〉 combinations). Consequently
the matrix is large and highly specific to the group set G.
Hence the scope of the learned policy will be limited. We
rely on approximate control methods [34] to learn an approx-

imation of the action-value function Q̂(w, s, e) ≈ Q(s, e) as
a function of a weight vector w ∈ Rn, where n is the number
of state features and n � |S|. Given a state-action feature
vector f(s, e), we define a linear approximation of Q(s, e):

Q̂(w, s, e) = wT f(s, e) (6)

Algorithm 1: Policy learning

Input: E,G, k,Ut,Gct , g0, ε, α, γ,w0

Output: agent
1 agent .set(ε, α, γ,w0, E)
2 while not end of learning do
3 si ← (g0, {g0})
4 ei ← agent.get exploration action(si)
5 while not end of session do
6 Gki+1, r ← explore(si, ei)
7 si+1 ← (gi+1, Gki+1)
8 ei+1 ← agent .get exploration action(si)
9 agent .update weights(si, ei, r, si+1, ei+1)

10 si = si+1

11 ei = ei+1

12 end

13 end
14 return agent

This approximation is essential as it still makes our rep-
resentation data-driven but not strictly data-dependent. It
blends together states with the same features in the same
manner as grouping similar contexts is done in database ex-
ploration [25].

Learning procedure. To learn the approximation of the
action-value function, we apply a common method, a semi-
gradient method [34] based on stochastic gradient descent
(SGD) minimization of mean squared error:

err(w) =
∑

s∈S,e∈E

P (s, e)(Q(s, e)− Q̂(w, s, e))2 (7)

where P (s, e) denotes probabilities of the state-action pairs
in the agent-environment interaction. During simulated ex-
ploration, SGD updates the weights w to minimize the error
function. The exact stochastic gradient step with the learn-
ing rate α is defined as follows:

wi+1 = wi + α(Q(si, ei)− Q̂(wi, si, ei))∇Q̂(wi, si, ei) (8)

This update is done each time the RL agent observes a
new state and selects an exploration action. While the true
Q(s, e) is unknown, we rely on its estimator as follows:

wi+1 = wi + α(Qi − Q̂(wi, si, ei))∇Q̂(wi, si, ei) (9)

The estimator we use is proposed in the semi-gradient SARSA
algorithm [34], i.e., Qi = Ri+1 +γQ̂(wi, si+1, ei+1). SARSA
is a slight variation of the popular Q-Learning algorithm. It
uses the action performed by the current policy to learn the
Q-value. Our final linear approximation function is there-
fore:

wi+1 = wi+α(Ri+1+γwT
i f(si+1, ei+1)−wT

i f(si, ei))f(si, ei)
(10)

These updates guarantee to converge to a local minimum
with a sufficiently small learning rate α and a fixed P (s, e)
distribution [34].

7

Algorithm 2: Policy recommendation

Input: agent, g0
Output: exploration action recommendation erec

1 si ← (g0, {g0})
2 ei is chosen by a human analyst
3 while not end of session do
4 Gki+1, r ← explore(si, ei)
5 si+1 ← (gi+1, Gki+1)
6 erec ← agent .get exploration action(si+1)
7 ei+1 is chosen by a human analyst with

recommendation erec
8 si ← si+1

9 ei ← ei+1

10 end

Learning algorithm. We apply the learning procedure in
an offline phase (Algorithm 1) and then recommend the best
exploration policy in the online phase (Algorithm 2). Algo-
rithm 1 shows the process of the agent-environment interac-
tion during policy learning. The algorithm iterates until the
end of learning is true which can be caused by a time limit
or a limit on the proportion of target users found (more de-
tails are provided in Section 5). In each learning loop, the
environment first returns to its initial state s0 = (g0, {g0}).
Then the agent iteratively observes environment states and
selects corresponding actions using get exploration action()
(line 8). With a probability of ε, the function returns

argmaxe∈EwT f(g,Gk, e)

otherwise it returns a random e. The observation steps
break when the parameter end of policy is true. In line 4,
the function action apply() performs the selected exploration
action e to change the environment state and get its corre-
sponding reward. We set r = |g∩Ut| if the selected group is
in Gt, otherwise 0. The function update weights() is respon-
sible for learning the weights through semi-gradient updates
as depicted in Equation 10 (line 9). Finally the agent with
the learned set of weights w is returned (line 14).

Given the updated agent, Algorithm 2 describes the pro-
cess of policy recommendation. At each step, the algorithm
picks the best exploration action erec as a function of the
current state 〈g,Gk〉 (line 6).

5. EXPERIMENTS
We follow two distinct goals in our experiments. We first

seek to validate the use of RL for EDA on user data, and
then we examine the utility of our learned policies on real
user datasets.

5.1 Datasets
We test our system on DM-Authors, a dataset we built

from DBLP.2 DM-Authors includes 1, 860 researchers with
a total of 200, 000 publications in data management venues
between 2000 and 2018: WWW, VLDB, SIGMOD, ICDE,
SIGMOD, RecSys, EDBT, DEXA, WebDB, and HILDA.
We crawled profiles of researchers from DBLP and added
demographic attributes.

2https://dblp.uni-trier.de/db/

Following our data model (Section 3), we describe the
quadruple 〈u, i, s, x〉 in DM-Authors as follows: u ∈ U is a
researcher, i ∈ I is a publication by a researcher, s ∈ [1, 5]
is a normalized value for publication recency, and x is a
bag of words from the publication title. The score s is
assigned based on the year of publication: [2017, 2018] →
5, [2014, 2017] → 4, [2010, 2013] → 3, [2006, 2009] → 2,
[2000, 2005]← 1. For instance, the quadruple 〈Volker Markl ,
VLDB , 5, {fault-tolerance, dataflows}〉 represents that Volker
Markl published a paper in VLDB during the years 2017
and 2018 (s = 5) whose title contains “fault-tolerance” and
“dataflows”.3

Demographic and item attributes. Table 1 describes
the set of demographic attributes AU for each researcher in
DM-Authors. The set AI has one attribute, i.e., the venue
(conference or workshop) that the paper was published in.

Attribute
a ∈ AU Description

Values
v ∈ dom(a)

Seniority

Number of years since
the first publication in
researcher’s DBLP.
Values are chosen to
equalize the number of
researchers in each
category.

starting
(1 to 8 years),
junior (9 to 12),
senior (13 to 15),
highly senior
(16 to 21),
confirmed (22+)

Publication
rate

Average number of
publications per year.
Values are chosen to
equalize the number of
researchers in each
category.

active
(0.18 to 1.47),
very active
(1.48 to 2.48),
productive
(2.49 to 3.71),
very productive
(3.72 to 6.0),
prolific (6.1+)

Location
Extracted from
researchers’ affiliations
in DBLP profiles.

North America,
UK/Ireland,
South America,
Europe,
East/South Asia,
Australia,
Middle East,
other

Gender

Extracted by matching
researcher’s first name
to a database of more
than 40,000 names.4

male, female

Table 1: Demographic attributes in DM-Authors.

User groups. To build the set of groups G, we rely on
LCM, an implementation of the Apriori algorithm for closed
frequent pattern mining [36]. LCM admits D and a support
threshold η, and returns a set of frequent patterns which
contain at least η users. Each frequent pattern is described
with demographics, items, and item attributes which are
common to all η users of the pattern. Hence each pattern
forms a user group g where label(g) is the pattern itself. We

3https://dblp.org/rec/html/journals/pvldb/XuLSM18
4https://github.com/ferhatelmas/sexmachine/

8

mined 26, 648 groups with a support value set to η = 10.
The size of group labels in G varies between 1 and 5.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

FP(c)

T
P
(c
)

WebDB 2015 PC

WebDB 2017 PC

WebDB 2018 PC

SIGMOD 2015 PC

SIGMOD 2017 PC

SIGMOD 2018 PC

0 0.2 0.4 0.6 0.8 1
0

0.5

1

c

T
P
(c
)

0 0.2 0.4 0.6 0.8 1
0

1

2

·104

c

|G
c t
|

Figure 2: Quality of G with respect to exploration
targets.

State-action features. In Section 4.4, we proposed to
describe each state-action pair (s, e) with a set of domain-
dependent features, f(s, e), and use those features in our
learning process. The first column of table 2 describes the
state-action features considered in this work, whose design
is influenced on one hand by the relevance and quality func-
tions of our exploration actions (represented as diversity and
coverage), and on the other hand by the analysis task of find-
ing target users (e.g., support of input group, number of item
attributes in its label, number of target users discovered at
that step). The second column of the table describes how
the features are instantiated for the dataset schema consid-
ered in our experiments. The engineering of these features
is therefore strongly guided.

5.2 Experimental setup
Our exploration goal is to gather a set of researchers to

serve on a PC. Our ground-truth consists of real PCs of one
large and one small venue, i.e., the SIGMOD conference and
the WebDB workshop, in the years 2015, 2017, and 2018.

Learning variants. To compare different policies, we de-
fine 3 learning variants each of which has a different train
set. All the variants share the same test set, namely 2018 PC
of either WebDB or SIGMOD. We run offline policy learning
on the train set and use the learned policy to explore the
test set. The learning variants are:

1. OLDEST: the train set is the 2015 PC of the same venue.

2. LAST: the train set is the PC of the previous year’s venue,
i.e., 2017.

3. TRANSFER: the train set is the PC of the other venue:
SIGMOD for WebDB, and vice versa.

Learning parameters. In real exploration tasks, target
users are scattered over the group set, and the analyst needs
to scan many different user groups to achieve a task. We
propose to measure the overall utility of G for locating the
target users using “true positive” and “false positive” rates
(Equation 11).

TPR(Gct , c) =
|
⋃
g∈Gct

(Ut ∩ g)|
|Ut|

; FPR(Gct , c) =
|
⋃
g∈Gct

(g \ Ut)|
|U \ Ut|

(11)
The true positive rate TPR(•) measures the fraction of

target users Ut found in target groups Gct . Also the false
positive rate FPR(•) measures the fraction of non-target
users found in target groups. Plotting TPR(Gct , c) against
FPR(Gct , c) for different values of c is analogous to a receiver
operating characteristic (ROC) curve. We can then employ
the area under the curve (ROC-AUC) to measure the utility
of a group set with respect to a set of target users Ut .

To choose target groups and check how well a group set
G locates target users, we vary the concentration parameter
c and examine the evolution of TPR and FPR measures
(Equation 11) in a ROC curve. The results are illustrated
in Figure 2. In general, we observe that ROC-AUC values
for all the sets of target users are high, hence exploring G
is potentially beneficial for the task under investigation. In
all our experiments, we set c = 0.3 for a large venue like
SIGMOD, and c = 0.1 for WebDB. This means that, in the
worst case, one needs to scan a group of ten people to find
one PC member for SIGMOD. We observe in Figure 2 that
with the aforementioned values of c, Gt includes only around
10% of all groups that overlap with Ut, but still covers almost
all PC members of WebDB 2015, 2017 and 2018. Table 3
summarizes the properties of Ut and Gt.

In the offline simulation phase, we set k = 5 and choose
the next group to explore at random. If Gk includes groups
with target users not discovered earlier, we simulate the
choice of an analyst by randomly selecting one of those
groups as . And if there are no such groups, the choice
of g is random.

The learning parameters are α = 0.001, γ = 0.5. The
number of sessions is set as ε = min(10/n, 1). Initial weights
w0 are set to zero. Each exploration action has a time limit
of 100ms. The number of iterations is limited to 200. All
our results are averages of 10 runs of the offline learning.

Exploration actions. We make use of all the exploration
actions described in Section 3.2 with different default values
for the relevance threshold σ: explore-around with σ = 0.2,
by-distribution with σ = 0.05, and by-topic with σ = 0.1, and
explore-within and by-facet with σ = 1.0. We also consider
an additional exploration action undo to enable returning to
the previous state if no target user has been observed in the
current state. We use LDA to generate the topic vectors
that are used in by-topic. LDA generates 10 topics.

5.3 Synthetic exploration
We run a number of synthetic experiments with different

levels of concentration of target users Ut in groups in G.
In all the experiments, |Ut| = 20. In the first experiment,
all target users are concentrated in the same group. We
choose “females from Europe who published in VLDB” as
the set of target users, which fits in a single group with

9

Feature Description

Diversity of Gk binary features representing 5 equal-width intervals between 0 and 1
Coverage of gi−1 binary features representing 5 equal-width intervals between 0 and 1
Number of displayed groups |Gk| 2 binary features to determine whether more than one group

is displayed or not
Size of input group |gin| binary features for the following intervals: [0, 15], [16, 50],

[51, 100], [101, 200], [201, 500] and [501,∞)
Number of item attributes in label(gi) 3 features for “0 item attributes”, “between 1 and 2 item attributes”,

and “more than 2”
Number of demographic attributes in label(gi) 3 features for “0 demographic attributes”, “between 1 and

2 demographic attributes”, and “more than 2”
Previously discovered target users 2 features to capture whether gi contains target users or not
Rating distribution of gi 3 features for low, uniform, and high distributions, computed using

Earth Mover’s Distance between g̃i and the distributions:
[1, 0, ..., 0], [0, ..., 0, 1], [1

k
, 1
k
, ..., 1

k
]

Number of discovered target users features for the following intervals: [0, 1], [2, 3], [4, 5], [6, 7]
and [8,∞)

Presence of demographic attributes 8 features for 4 facets, i.e., gender, seniority level, productivity,
and location

Reward 2 features to capture whether gi yielded a positive reward (i.e., if
new target users were selected from the group) or not

Previous exploration action one feature per exploration action e ∈ E

Table 2: State-action features. All features are encoded as Boolean values.

WebDB’15 WebDB’17 WebDB’18 SIGMOD’15 SIGMOD’17 SIGMOD’18

members |Ut| 43 19 22 119 173 163
|Gt| 1874 649 880 4145 3985 7405
ROC-AUC 0.85 0.94 0.89 0.83 0.81 0.82

Table 3: Summary of statistics about Ut and Gt.

0 50 100 150 200 250 300

5

10

15

20

25

30

simulated sessions

#
st
ep
s
to

N
=
20
%

ta
rg
et
s

1 group (ROC-AUC=1.)

2 groups (ROC-AUC=0.98)

4 groups (ROC-AUC=0.95)

10 groups (ROC-AUC=0.90)

0 50 100 150 200 250 300

20

40

60

simulated sessions

#
st
ep
s
to

N
=
50
%

ta
rg
et
s

1 group (ROC-AUC=1.)

2 groups (ROC-AUC=0.98)

4 groups (ROC-AUC=0.95)

10 groups (ROC-AUC=0.90)

0 50 100 150 200 250 300

40

60

80

100

120

140

simulated sessions

#
st
ep
s
to

N
=
80
%

ta
rg
et
s

1 group (ROC-AUC=1.)

2 groups (ROC-AUC=0.98)

4 groups (ROC-AUC=0.95)

10 groups (ROC-AUC=0.90)

Figure 3: Learning curve for the synthetic exper-
iments with different scattering levels: 20 target
users are scattered equally over 1, 2, 4 or 10 groups
from the group set.

the label [female,VLDB ,Europe]. In the second experi-
ment, the same number of target users is gathered from
two non-overlapping groups: [female,VLDB ,Europe] and
[male,AAAI ,Asia] and each of these groups contains 10
targets. In two other experiments, we scatter targets over
4 and 10 groups in the same way. In all the experiments
c = 0.1. Figure 3 reports the number of steps required in
the learning phase of the experiments. One can clearly see
that scattering targets over more groups increases the time
it takes the agent to reach its targets.

by_gender
[](all the users)

by_country

['female', 'North America']
['UK/Ireland', ‘female']

['female', ‘Europe']
['Asia', 'female']

['Australia', 'female']

['male']
['female]

Discovered PC: 0Discovered PC: 0

Discovered PC: 19

by
-f

ac
et

 (g

en
de

r)

B
eg

in
ni

ng
 o

f
th

e
se

ss
io

n

[∅] (all the users)
[male]
[female]

[female, North America]
[UK/Ireland, female]
[female, Europe]
[Asia, female]
[Australia, female]

discovered PC: 0 # discovered PC: 0

by
-f

ac
et

 (c

ou
nt

ry
)

discovered PC: 19

Figure 4: Simulated session with a policy trained on
the synthetic task.

More specifically, we can see that the task of finding target
users concentrated in one group takes only a few steps. The
reason is that the ROC-AUC value of the synthetic setting is
equal to 1.0. We delve into one of the learned policies that
reaches the target in only 2 steps (Figure 4) and observe
that this policy does not make use of explore-around and by-
distribution. It favors by-facet on gender and location that
help locate the single target group of interest more quickly.
This simple experiment is a proof-of-concept showing that
when target users are concentrated in the same group, our

10

policy is equivalent to simple SQL queries (on gender and
location). Our subsequent experiments will require more
sophisticated policies to reach target users.

5.4 Impact of learned policies

0 50 100 150 200 250 300

20

30

40

50

simulated sessions

#
st
ep
s
to

N
=
20
%

ta
rg
et
s

LAST

OLDEST

TRANSFER

0 50 100 150 200 250 300

20

30

40

50

simulated sessions

#
st
ep
s
to

N
=
20
%

ta
rg
et
s

LAST

OLDEST

TRANSFER

0 50 100 150 200 250 300

60

80

100

120

140

160

simulated sessions

#
st
ep
s
to

N
=
50
%

ta
rg
et
s

LAST

OLDEST

TRANSFER

0 50 100 150 200 250 300

60

80

100

120

140

simulated sessions

#
st
ep
s
to

N
=
50
%

ta
rg
et
s

LAST

OLDEST

TRANSFER

0 50 100 150 200 250 300

160

170

180

190

200

simulated sessions

#
st
ep
s
to

N
=
80
%

ta
rg
et
s

LAST

OLDEST

TRANSFER

0 50 100 150 200 250 300

140

160

180

200

simulated sessions

#
st
ep
s
to

N
=
80
%

ta
rg
et
s

LAST

OLDEST

TRANSFER

Figure 5: Learning curves of simulated sessions that
run until discovering 20% (top), 50% (middle), 80%
(bottom) of WebDB (left) and SIGMOD (right)
PCs. The curves show the average number of steps
that the agent takes to reach the exploration goal
after learning in a number of simulated sessions dis-
played in the x-axis. Each point in each run is the
mean over a window of 10 last exploration sessions.
Exploration probability decreases with the number
of sessions leading to convergence.

Our second experiment examines the impact of the learned
policies in each learning variant, OLDEST, LAST and TRANSFER.
We measure the utility of each policy as the percentage of
discovered PC members (see Section 3.3), denoted as ν. Fig-
ure 5 illustrates the learning curves.

Initially, the agent acts randomly, choosing any explo-
ration action, then over time it discovers useful actions in
the observed states. One can see that the training curve
and the test curve increase together, which means that the
policy based on the state-action features is useful for similar
exploration goals, not only for the goal used in training.

The figure shows that the number of steps to find 20, 50,
and 80% of target users decreases over time. This indicates
that the RL agent is able to improve performance, i.e., in-
crease ν, through the learning process. We observe that in
general the policy learning improves the agent’s performance
as the agent needs on average fewer steps to find ν% of tar-
get users with more training sessions. We also observe that
the performance of the learning variants differs significantly.

For WebDB’18, LAST and OLDEST perform significantly bet-
ter than TRANSFER, as they require fewer exploration steps to
reach the same goal. The low performance of TRANSFER from
SIGMOD to WebDB is potentially due to the large size of
the SIGMOD PC which results in over-fitting and increasing
variance drastically. On the other hand, the policies trained
on WebDB’18 perform well for SIGMOD’18, indicating that
policy transfer is useful and could be examined for other
venues in the future.

From this experiment we can conclude that different explo-
ration tasks require different policies, but it is also possible
to transfer policies between similar tasks. We also observe
that the difference in performance between learning variants
increases with ν. In other words, the task becomes more spe-
cific when the goal is to discover more target users, so it is
useful to train the policy on similar tasks. Finally, we val-
idate the usefulness of our state-action features to capture
each state and guide the learning process.

5.5 Decision making
To better understand how the RL agent makes decisions

during exploration, we delve into the EDA process and vi-
sualize several steps in Figure 6. Our general observation
is that the decision highly depends on the weights that are
assigned to different features of the exploration.

To interpret and compare different policies discussed in
Section 5.4, we examine the vector w of the learned feature
weights describing the size of the input group (Figure 7) and
the number of discovered targets (Figure 8). In both figures,
WebDB’17 is used as a train set on the left and SIGMOD’17
is used as a train set on the right. Both policies use mostly
explore-around and by-distribution. These two actions return
many diverse groups, which is beneficial when target users
are scattered over many different groups.

One can notice similar patterns in the policies: when in-
creasing the number of targets discovered so far, the like-
lihood of using explore-around decreases (Figure 8). As it
becomes less probable to find new targets in the groups over-
lapping with an input group (via other actions than explore-
around), it is better to jump to new groups to increase the
likelihood of finding target users.

One can also see some differences: the policy trained for
SIGMOD strongly prefers by-distribution for smaller groups.
A possible explanation is the larger ratio of target users to
all users for the SIGMOD PC, as by-distributioncan return
more users with recent papers regardless of their research
topics. The agent sees more active researchers from various
areas which increases the likelihood of discovering SIGMOD
PC members that make almost 20% of the dataset. On the
other hand, the policy trained for WebDB strongly prefers
explore-around, most likely because the agent explores more
groups to locate sparsely distributed WebDB PC members
that only make around 1% of the dataset.

This last experiment allows us to validate that our explo-
ration actions and offline policy learning naturally capture
what a human analyst does manually [28].

6. CONCLUSION
In this paper, we examined the applicability of machine

learning techniques to EDA on user data where the task is
to find a set of users. We first proposed a unified formal-
ization of the guided EDA problem that leverages a wide

11

[female, highly senior, Enc. of DB Sys.]
[VLDB J., senior, IEEE, PVLDB]

[Asia, EDBT, confirmed, male]
[highly senior, very productive, Europe, Enc. of DB Sys.]

[GRADES]

by
-d
is
tr
ib
u*

on

features ↓ explore
-around

by-
distrib.

by-
topic

support<200 -0.04 0.01 0.03

no conferences 0.02 0.05 -0.04

demographic attr 0.04 -0.02 0.03

recent papers 0.06 0.03 0.0

0-1 targets 0.14 0.1 -0.0

no seniority 0.1 0.02 0.03

reward=0 -0.12 0.04 0.02

sum 0.2 0.23 0.07

discovered PC: 0

B
eg

in
ni

ng
 o

f
th

e
se

ss
io

n

discovered PC: 0

ex
pl
or
e-
ar
ou

nd

discovered PC: 2

[female, very productive, Europe, SIGIR]
[CEUR Workshop Proceedings, very
productive, Europe]
[female, very productive, SIGIR]
[female, Europe]
[female, EDBT, very productive]

[Asia, very active, male]
[Europe, confirmed, ICDE]
[UK/Ireland, very productive, male]
[ICDM, North America, ICDE]
[productive, female, Europe]

[IEEE, Europe, prolific, confirmed]
[Europe, ICDE, male]
[female, Europe, ICDE]
[EDBT, Enc. of DB Sys., confirmed, ICDE]
[VLDB J., EDBT, Europe, confirmed,
male]

active
features

features ↓ explore-
around

by-
distrib.

by-
topic

diversity>0.8 0.06 0.04 0.03
support<50 0.11 -0.02 0.01
conf. in label -0.03 -0.04 0.02
demog. attr 0.04 -0.02 0.03

recent papers 0.06 0.03 0.0
0-1 targets 0.14 0.1 -0.0
seniority -0.07 0.02 0.0
reward=0 -0.12 0.04 0.02

sum 0.19 0.15 0.11

active
features

features ↓ explore-
around

by-
distrib.

by-
topic

diversity>0.8 0.06 0.04 0.03
support<50 0.11 -0.02 0.01
conference in

desc
-0.03 -0.04 0.02

demographic
attr

0.04 -0.02 0.03
older papers -0.03 0.0 0.03
0-1 targets 0.14 0.1 -0.0
no seniority 0.1 0.02 0.03
reward>0 0.15 -0.0 0.01

sum 0.54 0.08 0.16

active
features

ex
pl
or
e-
ar
ou

nd [female, Europe, confirmed, PVLDB]
[female, EDBT, SIGMOD]
[female, Europe, Enc. of DB Sys.]
[female, prolific, ICDE]
[Europe, confirmed, ICDE]

features ↓ explore-
around

by-
distrib.

by-
topic

diversity>0.8 0.06 0.04 0.03
support<50 0.11 -0.02 0.01
conference in

desc
-0.03 -0.04 0.02

demographic
attr

0.04 -0.02 0.03
recent papers 0.06 0.03 0.0
2-3 targets -0.03 0.01 0.12
no seniority 0.1 0.02 0.03
reward=0 -0.12 0.04 0.02

sum 0.19 0.06 0.26

discovered PC: 0

by
-t
op

ic

discovered PC: 1

features ↓ explore-around by-distrib. by-topic features ↓ explore-around by-distrib. by-topic

diversity>0.8 0.06 0.04 0.03 recent papers 0.06 0.03 0.0

support<50 0.11 -0.02 0.01 2-3 targets found -0.03 0.01 0.12

conference in desc -0.03 -0.04 0.02 no seniority 0.1 0.02 0.03

demographic attr 0.04 -0.02 0.03 reward=0 -0.12 0.04 0.02

sum 0.19 0.06 0.26

active
features

active
features

Figure 6: Simulated session example. For each step in the simulated session, the labels of the k groups and
their active features are shown. The agent chooses actions with the highest sum of weights (highlighted).

≤
1
5

(1
5
−

5
0
]

(5
0
−

1
0
0
]

(1
0
0
−

2
0
0
]

(2
0
0
−

5
0
0
]

≥
5
0
0

−
5
·1

0
−
2

0
5
·1

0
−
2

0
.1

W
ei
gh

t

explore-around explore-within

by-facet (gender) by-facet (country)

by-facet (senior.) by-facet (prod.)

by-facet (conf.) by-distribution

by-topic undo

≤
1
5

(1
5
−

5
0
]

(5
0
−

1
0
0
]

(1
0
0
−

2
0
0
]

(2
0
0
−

5
0
0
]

≥
5
0
0

0
0
.2

0
.4

W
ei
gh

t

Figure 7: Learned weights for the feature describ-
ing the size of the input group (x-axis), trained on
WebDB 2017 (left) and SIGMOD 2017 (right). Each
line corresponds to one exploration action. For a
given exploration state, only one of the binary fea-
tures displayed here takes value 1, others are 0.

[1− 2] [3− 4] [5− 6] [7− 8] [8−∞]
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

Features (# discovered targets)

W
ei
gh

t

explore-around explore-within

by-facet (gender) by-facet (country)

by-facet (senior.) by-facet (prod.)

by-facet (conf.) by-distribution

by-topic

[1− 2] [3− 4] [5− 6] [7− 8] [8−∞]

−0.1

0

0.1

Features (# discovered targets)

W
ei
gh

t

Figure 8: Learned weights for the features showing
the number of targets discovered so far in the explo-
ration, trained on WebDB 2017 (left) and SIGMOD
2017 (right).

range of user data exploration actions. We developed a solu-
tion based on a Markov Decision Process and reinforcement
learning to learn an exploration policy. We conducted exper-
iments on real datasets from DBLP where the purpose was
to build the program committees of WebDB and SIGMOD.
Our results validate the utility of different learning variants
to find an exploration policy for guided PC formation.

Our work opens many new questions at the intersection
of data management and machine learning. A deeper exper-
imental validation of several choices we made is warranted.
In particular, we need to test the robustness of learned
strategies with different state-action features. We also need
to investigate the definition of different exploration policy
utilities and corresponding reward functions. In the near
future, we would like to investigate the utility of text-based
exploration actions for new tasks such as finding products
in retail. Such actions will help us explore user reviews and
tags in addition to the item space. We believe this will raise
new challenges in the design of the feature space and the
reward function.

7. REFERENCES
[1] J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, and

S. Rizzi. A collaborative filtering approach for
recommending olap sessions. Decision Support Systems,
69:20–30, 2015.

[2] S. Amer-Yahia, S. Kleisarchaki, N. K. Kolloju, L. V.
Lakshmanan, and R. H. Zamar. Exploring rated datasets
with rating maps. In WWW, 2017.

[3] I. Arapakis, M. Lalmas, and G. Valkanas. Understanding
within-content engagement through pattern analysis of
mouse gestures. In Proceedings of the 23rd ACM
International Conference on Conference on Information
and Knowledge Management, pages 1439–1448. ACM, 2014.

[4] C. Bolchini, E. Quintarelli, and L. Tanca. Context support
for designing analytical queries. In Methodologies and
Technologies for Networked Enterprises - ArtDeco:

12

Adaptive Infrastructures for Decentralised Organisations,
pages 277–289. 2012.

[5] F. Bonchi, F. Giannotti, C. Lucchese, S. Orlando,
R. Perego, and R. Trasarti. Conquest: a constraint-based
querying system for exploratory pattern discovery. In Data
Engineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on, pages 159–159. IEEE, 2006.

[6] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi.
Exante: Anticipated data reduction in constrained pattern
mining. In PKDD, volume 2838, pages 59–70. Springer,
2003.

[7] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
International Conference on Scientific and Statistical
Database Management, pages 3–18. Springer, 2009.

[8] J. Clark and D. Amodei. Faulty reward functions in the
wild. https://blog.openai.com/faulty-reward-functions/,
2016.

[9] M. Das, S. Thirumuruganathan, S. Amer-Yahia, G. Das,
and C. Yu. Who tags what?: an analysis framework.
Proceedings of the VLDB Endowment, 5(11):1567–1578,
2012.

[10] M. Drosou and E. Pitoura. Ymaldb: exploring relational
databases via result-driven recommendations. The VLDB
JournalThe International Journal on Very Large Data
Bases, 22(6):849–874, 2013.

[11] R. Ebenstein, N. Kamat, and A. Nandi. Fluxquery: An
execution framework for highly interactive query workloads.
In Proceedings of the 2016 International Conference on
Management of Data, pages 1333–1345. ACM, 2016.

[12] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh.
Querie: Collaborative database exploration. IEEE
Transactions on knowledge and data engineering,
26(7):1778–1790, 2014.

[13] O. B. El, T. Milo, and A. Somech. ATENA: an autonomous
system for data exploration based on deep reinforcement
learning. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management,
CIKM 2019, Beijing, China, November 3-7, 2019, pages
2873–2876, 2019.

[14] M. A. Hearst. Clustering versus faceted categories for
information exploration. Commun. ACM, 49(4):59–61, Apr.
2006.

[15] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran.
Interactive data exploration with smart drill-down. IEEE
Trans. Knowl. Data Eng., 31(1):46–60, 2019.

[16] M. Kahng, S. B. Navathe, J. T. Stasko, and D. H. P. Chau.
Interactive browsing and navigation in relational databases.
Proceedings of the VLDB Endowment, 9(12):1017–1028,
2016.

[17] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed and interactive cube exploration. In 2014 IEEE
30th International Conference on Data Engineering, pages
472–483. IEEE, 2014.

[18] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: Context-aware autocompletion for sql.
Proceedings of the VLDB Endowment, 4(1):22–33, 2010.

[19] P. Lee, L. V. Lakshmanan, and E. E. Milios. Incremental
cluster evolution tracking from highly dynamic network
data. In Data Engineering (ICDE), 2014 IEEE 30th
International Conference on, pages 3–14. IEEE, 2014.

[20] F. Lemmerich, M. Becker, P. Singer, D. Helic, A. Hotho,
and M. Strohmaier. Mining subgroups with exceptional
transition behavior. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 965–974. ACM, 2016.

[21] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010.

[22] L. Li, H. Deng, Y. He, A. Dong, Y. Chang, and H. Zha.

Behavior driven topic transition for search task
identification. In Proceedings of the 25th International
Conference on World Wide Web, pages 555–565.
International World Wide Web Conferences Steering
Committee, 2016.

[23] S. Li, A. Karatzoglou, and C. Gentile. Collaborative
filtering bandits. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in
Information Retrieval, pages 539–548. ACM, 2016.

[24] P. Marcel and E. Negre. A survey of query recommendation
techniques for data warehouse exploration. In EDA, pages
119–134, 2011.

[25] T. Milo and A. Somech. Next-step suggestions for modern
interactive data analysis platforms. In Proceedings of the
24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 576–585.
ACM, 2018.

[26] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas.
New trends on exploratory methods for data analytics.
Proceedings of the VLDB Endowment, 10(12):1977–1980,
2017.

[27] B. Omidvar-Tehrani and S. Amer-Yahia. User group
analytics survey and research opportunities. IEEE
Transactions on Knowledge and Data Engineering, 2019.

[28] B. Omidvar-Tehrani, S. Amer-Yahia, and A. Termier.
Interactive user group analysis. In CIKM, pages 403–412.
ACM, 2015.

[29] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of olap data cubes. In International Conference
on Extending Database Technology, pages 168–182.
Springer, 1998.

[30] T. Scheffer and S. Wrobel. A Sequential Sampling
Algorithm for a General Class of Utility Criteria. In
Proceedings of the International Conference on Knowledge
Discovery and Data Mining, 2000.

[31] Y. Shen and H. Jin. Epicrec: Towards practical
differentially private framework for personalized
recommendation. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security,
pages 180–191. ACM, 2016.

[32] M. Singh, M. J. Cafarella, and H. Jagadish. Dbexplorer:
Exploratory search in databases. In EDBT, pages 89–100,
2016.

[33] A. Somech, T. Milo, and C. Ozeri. Predicting ”what is
interesting” by mining interactive-data-analysis session
logs. In Advances in Database Technology - 22nd
International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26-29,
2019, pages 456–467, 2019.

[34] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[35] M. Tsytsarau, S. Amer-Yahia, and T. Palpanas. Efficient
sentiment correlation for large-scale demographics. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013, pages 253–264, 2013.

[36] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In
Fimi, volume 126, 2004.

[37] N. Yan, C. Li, S. B. Roy, R. Ramegowda, and G. Das.
Facetedpedia: enabling query-dependent faceted search for
wikipedia. In Proceedings of the 19th ACM international
conference on Information and knowledge management,
pages 1927–1928. ACM, 2010.

[38] J. Yang, J. McAuley, J. Leskovec, P. LePendu, and
N. Shah. Finding progression stages in time-evolving event
sequences. In Proceedings of the 23rd international
conference on World wide web, pages 783–794. ACM, 2014.

[39] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. Lui.
Diversified temporal subgraph pattern mining. In KDD,
pages 1965–1974, 2016.

13

[40] T. Zhang, P. Cui, C. Faloutsos, Y. Lu, H. Ye, W. Zhu, and
S. Yang. Come-and-go patterns of group evolution: A
dynamic model. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1355–1364. ACM, 2016.

14

