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SPATIAL SEGREGATION LIMIT OF TRAVELING WAVE
SOLUTIONS FOR A FULLY NONLINEAR STRONGLY COUPLED

COMPETITIVE SYSTEM

LÉO GIRARDIN AND DANIELLE HILHORST

Abstract. The paper is concerned with a singular limit for the bistable traveling
wave problem in a very large class of two-species fully nonlinear parabolic systems
with competitive reaction terms. Assuming existence of traveling waves and enough
compactness, we derive and characterize the limiting problem. The assumptions and
results are discussed in detail. The free boundary problem obtained at the limit is
specified for important applications.

1. Introduction

We investigate the reaction–diffusion system

(1)



∂tu = ∂x (d1,1 (u, v) ∂xu+ d1,2 (u, v) ∂xv)

+h1,1 (u, v) ∂xu+ h1,2 (u, v) ∂xv

+ug1(u, v)− kω(u, v),

∂tv = ∂x (d2,1 (u, v) ∂xu+ d2,2 (u, v) ∂xv)

+h2,1 (u, v) ∂xu+ h2,2 (u, v) ∂xv

+vg2(u, v)− αkω(u, v),

where t is a real time variable, x is a one-dimensional real space variable, u(t, x)
and v(t, x) are two population densities, D = (di,j)1≤i,j≤2 is a matrix of self- and
cross-diffusion rates 1, H = (hi,j)1≤i,j≤2 is a matrix of self- and cross-advection rates,
g = (gi)1≤i≤2 is a vector of growth rates per capita accounting for a saturation effect,
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2 TRAVELING WAVES FOR STRONGLY COUPLED COMPETITIVE SYSTEMS

ω is an interpopulation competition operator and k > 0 and αk > 0 are constant
interpopulation competition rates exerted respectively by v on u and by u on v.

The three main examples of such systems that we have in mind are the classical
Lotka–Volterra competition–diffusion system,

(2)

{
∂tu = ∂xxu+ u(1− u)− kuv,
∂tv = d∂xxv + rv(1− v)− αkuv,

the Potts–Petrovskii competition–diffusion–cross-taxis system [31],

(3)

{
∂tu = ∂xxu− γ1∂x (u∂xv) + u(1− u)− kuv,
∂tv = d∂xxv − γ2∂x (v∂xu) + rv(1− v)− αkuv,

and the Shigesada–Kawasaki–Teramoto competition–cross-diffusion system [35],

(4)

{
∂tu = ∂xx (u(d1 + a1,1u+ a1,2v)) + u(1− u)− kuv,
∂tv = ∂xx (v(d2 + a2,1u+ a2,2v)) + rv(1− v)− αkuv.

In the above systems, the various parameters are all positive constants, except γ1 and
γ2 that might be of any sign.

Our abstract framework is justified by the fact that we want to deal with all these
systems simultaneously. We also want to encompass generalizations of (4) of the form{

∂tu = ∂xx
(
u(d1 + a1,1u

β1,1 + a1,2v
β1,2)

)
+ u(1− u)− kuv,

∂tv = ∂xx
(
v(d2 + a2,1u

β2,1 + a2,2v
β2,2)

)
+ rv(1− v)− αkuv,

with arbitrary positive exponents (βi,j)1≤i,j≤2, that have been considered in the liter-

ature [9]. Moreover, we want to be able to replace the logistic growth terms u(1− u)
and rv(1 − v) above by more general monostable reaction terms, for instance with a
weak Allee effect (e.g., u(u+ θ)(1− u) with θ ∈ [0, 1)).

More precisely, we are interested in the singular limit k → +∞ of the associ-
ated traveling wave system satisfied by entire solutions of the form (u, v) : (t, x) 7→
(φ, ψ) (x− ct), where (φ, ψ) is the wave profile and c is the wave speed. From now on,
we denote ξ = x − ct the wave variable and Φ = (φ, ψ) the wave profile vector. The
traveling wave system reads, in vector form,

(5) − (D(Φ)Φ′)′ − (H(Φ) + cI)Φ′ = Φ ◦ g(Φ)− kω(Φ)

(
1
α

)
.

The notation ◦ above stands for the component-by-component product of two vectors,
namely the so-called Hadamard product.

The singular limit k → +∞ of the traveling wave system for (2) was studied by the
first author and G. Nadin in [19]. There, it was proved that the singular limit of the
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solution (φk, ψk, ck) of

(6)



−φ′′k − ckφ′k = φk(1− φk)− kφkψk,
−dψ′′k − ckψ′k = rψk(1− ψk)− αkφkψk,
lim−∞Φk = (1, 0),

lim+∞Φk = (0, 1),

φ′k < 0,

ψ′k > 0,

is
(φ∞, ψ∞, c∞) =

(
α−1z+, z−, c

)
,

where z+ = max(z, 0) and z− = max(−z, 0) are respectively the positive and negative
part of the function z and where (z, c) is the unique (up to shifts of z) solution of
∫
−((1z>0 + d1z<0)z

′)′χ− c
∫
z′χ =

∫
(z+(1− z

α
)− rz−(1 + z))χ for all χ ∈ L1(R),

lim−∞ z = α,

lim+∞ z = −1,

z′ ≤ 0.

The integral equality is the equation −((1z>0+d1z<0)z
′)′−cz′ = z+(1− z

α
)−rz−(1+z)

tested against test functions in L1(R) and where the divergence-form second order
term, the first order term and the zeroth order term are all in L∞(R). Consequently, z
is smooth and a classical solution away from the point z−1(0) and Lipschitz-continuous
at z−1(0).

Roughly speaking, the preceding result follows from the combination of φkψk → 0
(spatial segregation) and an equation that does not depend explicitly on k:

−αφ′′k + dψ′′k − ck (αφ′k − ψ′k) = αφk(1− φk)− rψk (1− ψk) .
In the present work, we will show that the singular limit k → +∞ of (5) is similarly

given, under reasonable assumptions, by the unique (up to shifts) solution of

(7)


∫
−(d(z)z′)′χ−

∫
(c+ h(z))z′χ =

∫
g(z)χ for all χ ∈ L1(R),

lim−∞ z = α,

lim+∞ z = −1,

z′ ≤ 0.

where

(8) d : z 7→ d1,1

( z
α
, 0
)

1z>0 + d2,2 (0,−z) 1z<0,

(9) h : z 7→ h1,1

( z
α
, 0
)

1z>0 + h2,2 (0,−z) 1z<0,

(10) g : z 7→ z+g1

( z
α
, 0
)
− z−g2(0,−z).
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1.1. Minimal speeds of the underlying monostable problems. In order to state
more precisely the assumptions and the results, we need to introduce c+? ∈ R the
minimal speed of classical traveling wave solutions of

−(d(z)z′)′ − (c+ h(z))z′ = g(z),

lim−∞ z = α,

lim+∞ z = 0,

z′ ≤ 0,

and c−? ∈ R the minimal speed of classical traveling wave solutions of
−(d(z)z′)′ − (c+ h(z))z′ = g(z),

lim−∞ z = −1,

lim+∞ z = 0,

z′ ≥ 0.

Both are well-defined provided d, h and g are continuous away from 0 and d is positive
away from 0 [27].

1.2. Standing assumptions. The standing assumptions follow.

(A1) D ∈ C 1([0, 1]2), H ∈ C ([0, 1]2), g ∈ C ([0, 1]2), ω ∈ C ([0, 1]2).
(A2) d1,1 and d2,2 are positive in [0, 1]2.
(A3) d1,2(0, •), d2,1(•, 0), h1,2(0, •) and h2,1(•, 0) are identically zero in [0, 1].
(A4) g1(•, 0) and g2(0, •) are positive in (0, 1) and g1(1, 0) = g2(0, 1) = 0.
(A5) ω is positive in (0, 1]2 and identically zero on {0} × [0, 1] ∪ [0, 1]× {0}.
(A6) c

+
? > −c−? .

(A7) There exists k? > 0 such that, for all k > k?, the system (5) admits a classical
solution (Φk, ck) with nonincreasing φk, nondecreasing ψk, lim−∞Φk = (1, 0),
lim+∞Φk = (0, 1).

(A8) Any family of wave speeds (ck)k>k? is bounded in R.
(A9) Any family of wave profiles (Φk)k>k? is locally relatively compact in a Hölder

space.

Note that the systems (2), (3), (4) all satisfy directly the assumptions (A1)–(A5).
As will be explained in the discussion (cf. Section 3.2.6), they also satisfy (A6). It
will be explained in the discussion (cf. Section 3.2.9) that (A9) is satisfied for (2),
(4) and (3) if min (γ1, γ2) ≥ 0 (attractive–attractive case). Finally, (A7) and (A8)
are satisfied for (2) [16, 22] but are, to the best of our knowledge, important open
problems for the strongly coupled systems (3) and (4) that have been solved only in
special perturbative cases (cf. Sections 3.2.7 and 3.2.8). Solving these problems away
from any such perturbative regime is way outside the scope of this paper.

1.3. Statement of the main result. The main result follows. The limiting pro-
files and their basic properties – spatial segregation and free boundary relation – are
illustrated on Figure 1.
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0

αd1,1(1, 0)

φ, ψ

ξ

−d2,2(0, 1)

φ∞ ψ∞

−d2,2(0, ψ∞)ψ∞

αd1,1(0, 0)φ′∞(0)ξ = −d2,2(0, 0)ψ′∞(0)ξ

0

1

αd1,1(φ∞, 0)φ∞

Figure 1. The segregated limiting profiles in the moving frame ξ = x− c∞t

Theorem 1.1. Assume (A1)–(A9).
Then there exists c∞ ∈ R and Φ∞ ∈ C 2(R\ {0})∩W 1,∞(R) such that, up to shifting

(Φk)k>k?,

lim
k→+∞

(
|ck − c∞|+ ‖Φk −Φ∞‖L∞(R) + ‖Φ′k −Φ′∞‖L1(R)

)
= 0.

The limit satisfies φ∞ψ∞ = 0 and the pair (αφ∞ − ψ∞, c∞) is the unique solution
(z, c) of (7) satisfying z(0) = 0.

Consequently,

(1) the profiles φ∞ and ψ∞ are respectively decreasing in (−∞, 0) with limit 1 at
−∞ and increasing in (0,+∞) with limit 1 at +∞;

(2) the free boundary relation reads

−d1,1(0, 0)α lim
ξ→0−

φ′∞(ξ) = d2,2(0, 0) lim
ξ→0+

ψ′∞(ξ);

(3) the speed c∞ satisfies −c−? < c∞ < c+? ;
(4) if h1,1 = h2,2 = h0 ∈ R, then

(11) sign (c∞ + h0) = sign

(
α2 −

∫ 1

0
zd2,2 (0, z) g2 (0, z) dz∫ 1

0
zd1,1 (z, 0) g1 (z, 0) dz

)
.

Below, we specify the theorem for the three main examples. It turns out that (2)
and (3) have the same singular limit whereas (4) has a different limit.
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Corollary 1.2 (“Disunity is strength” [19]). Assume (1) has the form (2).
Then there exists c∞ ∈ R and Φ∞ ∈ C 2(R\ {0})∩W 1,∞(R) such that, up to shifting

(Φk)k>k?,

lim
k→+∞

(
|ck − c∞|+ ‖Φk −Φ∞‖L∞(R) + ‖Φ′k −Φ′∞‖L1(R)

)
= 0.

The limit satisfies φ∞ψ∞ = 0 and the pair (αφ∞ − ψ∞, c∞) is the unique solution
(z, c) of

∫
−((1z>0 + d1z<0)z

′)′χ− c
∫
z′χ =

∫
(z+(1− z

α
)− rz−(1 + z))χ

for all χ ∈ L1(R),

lim−∞ z = α,

lim+∞ z = −1,

z′ ≤ 0,

z(0) = 0.

Consequently,

(1) the profiles φ∞ and ψ∞ are respectively decreasing in (−∞, 0) with limit 1 at
−∞ and increasing in (0,+∞) with limit 1 at +∞;

(2) the free boundary relation reads

−α lim
ξ→0−

φ′∞(ξ) = d lim
ξ→0+

ψ′∞(ξ);

(3) the speed c∞ satisfies −2
√
rd < c∞ < 2;

(4) sign (c∞) = sign (α2 − rd).

Corollary 1.3. Assume (1) has the form (3) and assume furthermore (A7)–(A8) and,
if min (γ1, γ2) < 0, assume (A9).

Then all the conclusions of Corollary 1.2 remain true.

Remark 1.1. The above statement is consistent with the fact that (A9) is automatic
in the attractive–attractive case (min γi ≥ 0), as explained in Section 3.2.9.

Corollary 1.4. Assume (1) has the form (4) and assume furthermore (A7)–(A8).
Then there exists c∞ ∈ R and Φ∞ ∈ C 2(R\ {0})∩W 1,∞(R) such that, up to shifting

(Φk)k>k?,

lim
k→+∞

(
|ck − c∞|+ ‖Φk −Φ∞‖L∞(R) + ‖Φ′k −Φ′∞‖L1(R)

)
= 0.
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The limit satisfies φ∞ψ∞ = 0 and the pair (αφ∞ − ψ∞, c∞) is the unique solution
(z, c) of

∫
−(((d1 + a1,1z)1z>0 + (d2 + a2,2z)1z<0)z

′)′χ− c
∫
z′χ =

∫
(z+(1− z

α
)− rz−(1 + z))χ

for all χ ∈ L1(R),

lim−∞ z = α,

lim+∞ z = −1,

z′ ≤ 0,

z(0) = 0.

Consequently,

(1) the profiles φ∞ and ψ∞ are respectively decreasing in (−∞, 0) with limit 1 at
−∞ and increasing in (0,+∞) with limit 1 at +∞;

(2) the free boundary relation reads

−d1α lim
ξ→0−

φ′∞(ξ) = d2 lim
ξ→0+

ψ′∞(ξ);

(3) the speed c∞ satisfies −c−? < c∞ < c+? , where c+? is the minimal speed of
monotonic traveling wave solutions of

−((d1 + a1,1z)z′)′ − cz′ = z
(

1− z

α

)
, z(−∞) = α, z(+∞) = 0,

and c−? is the minimal speed of monotonic traveling wave solutions of

−((d2 + a2,2z)z′)′ − cz′ = rz(1− z), z(−∞) = 1, z(+∞) = 0;

(4) sign (c∞) = sign (α2(d1 + a1,1)− r(d2 + a2,2)).

Remark 1.2. In the preceding corollary, if d1 ≥ a1,1, then z 7→ (d1 + a1,1z)z(1 − z) is
concave and therefore the speed c+? is linearly determined [27]: c+? = 2

√
d1. Similarly,

if d2 ≥ a2,2, then c−? = 2
√
rd2.

1.4. Organization of the paper. In Section 2 we prove the main result. In Section
3 we discuss at length the literature, the assumptions and the results.

2. Proof of Theorem 1.1

For clarity, we divide the proof in several parts.

2.1. Existence of limit points.

Proof. Up to extraction, the bounded family (ck)k>k? converges to some limit c∞
(whose uniqueness is unclear at this point).

Now, we fix a family of shifts for the profiles:

(1) if c∞ ≤ 1
2
(c+? − c−? ), the family (Φ)k>k? is shifted so that φk(0) = 1

2
;

(2) if c∞ > 1
2
(c+? − c−? ), the family (Φ)k>k? is shifted so that ψk(0) = 1

2
.
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Next, since the family of profiles is locally relatively compact in some Hölder space,
up to another (diagonal) extraction, (Φk)k>k? converges locally uniformly to some
limit Φ∞ (whose uniqueness is also unclear at this point).

Since the families of profile derivatives are uniformly bounded in L1(R), by the
Banach–Alaoglu theorem, up to another extraction, the families (φ′kdξ)k>k? and (ψ′kdξ)k>k?
converge in the weak-? topology of the set of bounded Radon measures to some lim-
its, dφ∞ and dψ∞ respectively, which are supported in the support of φ∞ and ψ∞
respectively.

We deduce from such a convergence that φ∞ and ψ∞ are continuous, valued in
[0, 1], nonincreasing and nondecreasing respectively and with (distributional) deriva-
tives that are bounded Radon measures of total mass smaller than or equal to 1.
Subsequently, φ∞ and ψ∞ have limits at ±∞. �

2.2. Segregation of the limiting supports.

Proof. Testing for all k > k? one of the two equations of (5), say the first one, against
any smooth and compactly supported test function χ ∈ D(R) and using the dominated
convergence theorem as well as estimates of the form∣∣∣∣∫

R
d1,2(φk, ψk)ψ

′
kχ
′
∣∣∣∣ ≤ ‖d1,2‖L∞([0,1]2) ‖χ

′‖L∞(R)

∫
K

|ψ′k|

= ‖d1,2‖L∞([0,1]2) ‖χ
′‖L∞(R)

∫
K

ψ′k

≤ ‖d1,2‖L∞([0,1]2) ‖χ
′‖L∞(R) ,

where K ⊂ R is the support of χ, we find that ω(Φk) converges to 0 in the space of
distributions. By continuity of ω, ω(Φ∞) = 0, whence at any ξ ∈ R, φ∞(ξ) = 0 or
ψ∞(ξ) = 0. Consequently, the following equalities are true pointwise in R:

(1) αφ∞ = (αφ∞ − ψ∞)+;
(2) ψ∞ = (αφ∞ − ψ∞)−.

Recall that dψ∞ is supported in the support of ψ∞, namely the closure of ψ−1∞ ((0, 1]).
Note that ψ−1∞ ((0, 1]) ⊂ φ−1∞ ({0}). Since Φ∞ and d1,2 are continuous with d1,2(0, •) =
0, ∫

R
d1,2(Φ∞)dψ∞ =

∫
ψ−1
∞ ((0,1])∪∂(ψ−1

∞ ((0,1]))

d1,2(0, ψ∞)dψ∞ = 0.

Note that this calculation does not require the absolute continuity of dφ∞ with respect
to the Lebesgue measure, which is unclear a priori. Repeating this argument, we
discover that the equalities
(12)∫

R
d1,2(Φ∞)dψ∞ =

∫
R
h1,2(Φ∞)dψ∞ =

∫
R
d2,1(Φ∞)dφ∞ =

∫
R
h2,1(Φ∞)dφ∞ = 0

are all true. �
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2.3. The limiting equation.

Proof. For all k > k?, the scalar equation[
−(D(Φk)Φ

′
k)
′ − (H(Φk) + ckI)Φ′k −Φk ◦ g(Φk) + kω(Φk)

(
1
α

)]
·
(
α
−1

)
= 0

is equivalent to

(13) [−(D(Φk)Φ
′
k)
′ − (H(Φk) + ckI)Φ′k −Φk ◦ g(Φk)] ·

(
α
−1

)
= 0.

The equation (13) does not depend explicitly on k. Our aim is to pass to the limit
in this equation. Therefore we test this equation against a smooth and compactly
supported test function χ ∈ D(R) and we subtract from the result the equation (7)
tested against the same χ. Working in the space of distributions, we can write φ′∞
and ψ′∞ without abuse of notation.

The zeroth-order terms converge to 0 by the dominated convergence convergence.
The first-order terms converge to 0 by estimates of the form∣∣∣∣∫

R
(h1,2(Φk)ψ

′
k − h1,2(Φ∞)ψ′∞)χ

∣∣∣∣ ≤ ‖h1,2(Φk)− h1,2(Φ∞)‖L∞(K) ‖χ‖L∞(R)

∫
K

|ψ′k|

+

∣∣∣∣∫
R
h1,2(Φ∞)χ (ψ′k − ψ′∞)

∣∣∣∣
(where the compact set K ⊂ R is the support of χ). The first term on the right-hand
side converges to 0 by

∫
K
|ψ′k| ≤ 1 and locally uniform convergence of the profiles

whereas the second term converges to 0 by weak-? convergence of the derivatives (the
test function |h1,2(Φ∞)χ| is indeed continuous and zero at infinity).

The second-order terms converge to 0 by similar estimates with χ replaced by χ′.
Eliminating all the terms that are actually zero (12), we find that (z, c) = (αφ∞ −

ψ∞, c∞) is a solution of

(14)

∫
d(z)z′χ′ −

∫
(c+ h(z))z′χ =

∫
g(z)χ for all χ ∈ D(R),

where the functions d, h and g are defined above in (8), (9), (10).
Note that, when identifying the terms, it can be useful to cut all integrals into three

parts: the integral over the set z−1 ((0, α]), the one over z−1 ({0}) and the one over
z−1 ([−1, 0)). By monotonicity of z, these three sets are intervals, ordered from left to
right. Also, some of these sets might be empty (at this point). It turns out that all
integrals over the closed interval z−1 ({0}) are zero. Indeed,

(1) if this interval is empty or a singleton, then the set is negligible;
(2) if this interval is neither empty nor a singleton, then z = z′ = 0 there.

�
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Remark 2.1. In [19], the limiting equation (of the form −(αφ∞ − dψ∞)′′ − c(αφ∞ −
ψ∞)′ = g(αφ∞ − ψ∞) in D ′(R), with a constant diffusion rate d > 0) was used to
deduce directly the continuity of (αφ∞ − dψ∞)′, just by taking the antiderivative of
the equation. Let us emphasize that here the situation is not so easy: indeed, at this
point of the proof, we do not know that the distributional derivative z′ is sufficiently
regular to write the chain rule h(z)z′ = (H(z))′ (where H is a Lipschitz-continuous
antiderivative of h). Therefore more care is needed to obtain the regularity at the
free boundary and subsequently the free boundary relation. In order to complete the
proof, we will use ideas from [20], where the free boundary problem was also more
delicate, due to the spatial periodicity of the setting there.

2.4. Non-triviality, piecewise-smoothness and limits at infinity of the limit
points.

Proof. By pointwise convergence,

(1) if c∞ ≤ 1
2
(c+? − c−? ), φ∞(0) = 1

2
;

(2) if c∞ > 1
2
(c+? − c−? ), ψ∞(0) = 1

2
.

Note that, by (A6),

(15) − c−? <
1

2
(c+? − c−? ) < c+? .

We define ξ+ = supφ−1∞ ((0, 1]) and ξ− = inf ψ−1∞ ((0, 1]). These two quantities, a
priori defined in R, satisfy ξ+ ≤ ξ− by virtue of φ∞ψ∞ = 0. Moreover, ξ+ ≥ 0 if
c∞ ≤ 1

2
(c+? − c−? ) and ξ− ≤ 0 if c∞ > 1

2
(c+? − c−? ).

We are going to prove now the following claim:

(16) ξ± ∈ R, φ∞ ∈ C 2
(
(−∞, ξ+)

)
, ψ∞ ∈ C 2

(
(ξ−,+∞)

)
, lim
−∞

φ∞ = lim
+∞

ψ∞ = 1.

Assume for instance c∞ ≤ 1
2
(c+? − c−? ), so that ξ+ ≥ 0.

From the equation (14) tested against test functions supported in (−∞, ξ+), where
ψ∞ is identically zero, we find that φ∞ is a weak solution of

(17) − (d1,1(φ∞, 0)φ′∞)′ − (c∞ + h1,1(φ∞, 0))φ′∞ = φ∞g1(φ∞, 0) in (−∞, ξ+).

By standard elliptic regularity [17], φ∞ is then C 2 in (−∞, ξ+).
Since (−∞, ξ+) is not empty and φ∞ is non-increasing and larger than or equal to

1/2 in (−∞, 0), its limit C at −∞ is well-defined and larger than or equal to 1/2.
Let (ξn)n∈N be a sequence such that ξn → −∞ as n→ +∞ and define, for all n ∈ N,
φn∞ : ξ 7→ φ∞(ξ+ξn). By standard elliptic estimates, up to extraction of a subsequence,
the sequence (φn∞)n∈N converges in C 2

loc. By uniqueness of the limit, the limit in C 2
loc

is also the constant C ≥ 1/2. By (17), invariance by translation and convergence in
C 2
loc, we directly deduce that C ≥ 1/2 satisfies Cg1(C, 0) = 0, whence C = 1 by (A4).
In order to prove the finiteness of ξ+, assume by contradiction ξ+ = +∞. Then

ψ∞ = 0 identically and φ∞(ξ) > 0 at any ξ ∈ R. Hence φ∞ is a positive weak solution,
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and then a positive classical solution by elliptic regularity, of

−(d1,1(φ∞, 0)φ′∞)′ − (c∞ + h1,1(φ∞, 0))φ′∞ = φ∞g1(φ∞, 0) in R.

Repeating the argument, the limit of φ∞ at +∞ is then 0. Hence (t, x) 7→ φ∞(x−c∞t)
is a traveling wave solution with speed c∞, and by (15), c∞ < c+? , which contradicts the
analysis of monostable equations by Malaguti and Marcelli [27]. Therefore ξ+ < +∞,
or in other words ξ+ ∈ R.

Next, integrating the equation satisfied by φ∞ in (ξ+−1, ξ+), we infer that the left-
sided limit of φ′∞ at ξ+ is finite and, by the Hopf lemma, negative. Since ξ− ∈ [ξ+,+∞],
we infer similarly that one, and only one, of the following two claims is true:

(1) ξ− = +∞,
(2) ψ∞ is C 2 in (ξ−,+∞) with 1 as limit at +∞ and a finite and positive right-

sided limit of ψ′∞ at ξ−.

Integrating the equation (14) over R with an arbitrary test function χ ∈ D(R) and
using the fact that z = 0 in (ξ+, ξ−), we obtain:

0 =

∫ +∞

−∞
[g(z)χ+ (c∞ + h(z))z′χ− d(z)z′χ′]

=

∫ ξ+

−∞
[g(z)χ+ (c∞ + h(z))z′χ− d(z)z′χ′] +

∫ +∞

ξ−
[g(z)χ+ (c∞ + h(z))z′χ− d(z)z′χ′]

Integrating by parts the terms
∫ ξ+
−∞−d(z)z′χ′ and

∫ +∞
ξ−
−d(z)z′χ′, we deduce:

(18)

− d1,1(0, 0)χ(ξ+)α lim
ξ−ξ+→0−

φ′∞(ξ) =

{
d2,2(0, 0)χ(ξ−) lim

ξ−ξ−→0+
ψ′∞(ξ) if ξ− < +∞,

0 if ξ− = +∞.

By positivity of the left-hand side, necessarily ξ− < +∞, or in other words ξ− ∈ R.
We have thus proved the claim (16) in the case c∞ ≤ 1

2
(c+? − c−? ).

Repeating the argument with the roles of φ∞ and ψ∞ reversed, we find that the
claim (16) remains true even if c∞ < 1

2
(c+? − c−? ), that is for any possible value of

c∞. �

2.5. Triviality of the free boundary, the free boundary relation and regu-
larity of the first derivatives.

Proof. It follows from (18) that

d1,1(0, 0)χ(ξ+)α

(
− lim

ξ−ξ+→0−
φ′∞(ξ)

)
= d2,2(0, 0)χ(ξ−) lim

ξ−ξ−→0+
ψ′∞(ξ)

with limξ−ξ+→0− φ
′
∞(ξ) < 0 < limξ−ξ−→0+ ψ

′
∞(ξ).

We first check that ξ+ = ξ−. Indeed, if ξ+ < ξ−, we can choose the test function χ
so that its support contains ξ+ but not ξ−, and then the above equality becomes an
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equality between a positive term and a zero term, which is contradictory. Therefore
ξ+ = ξ−.

Next, choosing χ so that its support contains ξ+ = ξ− and dividing by χ(ξ+) 6= 0,
we find

d1,1(0, 0)α

(
− lim

ξ−ξ+→0−
φ′∞(ξ)

)
= d2,2(0, 0) lim

ξ−ξ−→0+
ψ′∞(ξ).

In other words, d(z)z′ is a well-defined continuous function in R.
In order to simplify the notations, we work from now on with the shifted profiles so

that ξ+ = ξ− = 0. With this convention, the free boundary relation reads

−d1,1(0, 0)α lim
ξ→0−

φ′∞(ξ) = d2,2(0, 0) lim
ξ→0+

ψ′∞(ξ).

Since the limits of d(z)z′ at ±∞ are zero, we also obtain d(z)z′ ∈ L∞(R). We
deduce the piecewise-continuity and global boundedness of z′. Hence the distribution
z is a well-defined function in W 1,∞(R), or in other words a well-defined Lipschitz-
continuous, piecewise-C 1, function in R.

Since z has no jump discontinuity at 0, a standard result of distribution theory
yields the identification z′dξ = αdφ∞ − dψ∞. This proves that the measures dφ∞
and dψ∞ are absolutely continuous with respect to the Lebesgue measure, or in other
words that the derivatives φ′∞ and ψ′∞ are well-defined functions in L1(R). �

2.6. Regularity of the second derivatives.

Proof. From the equality

(d(z)z′)′ = −(c+ h(z))z′ − g(z) in D ′(R),

and the fact that the right-hand side is a well-defined function in L∞(R), we infer that
(d(z)z′)′ ∈ L∞(R) (in other words, d(z)z′ is Lipschitz-continuous).

We are now in a position to rewrite (14) with less regular test functions: by density,∫
−(d(z)z′)′χ−

∫
(c+ h(z))z′χ =

∫
g(z)χ for all χ ∈ L1(R).

�

2.7. Uniqueness of the limit point.

Proof. The uniqueness (up to shifts) of the limit point is a direct consequence of the
uniqueness (up to shifts) of the bistable traveling wave (Theorem A.1).

By a classical compactness argument, the uniqueness of the limit point implies the
convergence of the full initial family (Φk, ck)k>k? (as defined before any extraction of
subsequence). �
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2.8. Estimates on c∞.

Proof. Similarly, the estimates −c−? < c∞ < c+? follow directly from Theorem A.1.
The sign of the effective wave speed if h1,1 = h2,2 = h0 ∈ R (which implies h = h0)

is obtained by testing (7) against d(z)z′. After an integration by parts and a change
of variable, we find

(c∞ + h0)

∫
R
d(z)(z′)2 = α2

∫ 1

0

ẑd1,1 (ẑ, 0) g1 (ẑ, 0) dẑ −
∫ 1

0

ẑd2,2 (0, ẑ) g2 (0, ẑ) dẑ,

so that the effective wave speed c∞ + h0 has indeed the sign of the right-hand side.
Note that since z′ ∈ L1(R) ∩ L∞(R), clearly z′ ∈ L2(R). �

2.9. Improvement of the convergence.

Proof. In view of the limits at ±∞ of φ∞ and ψ∞, the equalities
∫
φ′k = −1 and∫

ψ′k = 1 are true for all k ∈ (k?,+∞]. From this remark, it follows that:

(1) by a result sometimes known as the second Dini theorem 2, the convergence of
the families of monotonic functions (φk)k>k? and (ψk)k>k? is actually uniform
in R;

(2) by the Prokhorov theorem, the convergence of the tight families of probability
measures (−φ′kdξ)k>k? and (ψ′kdξ)k>k? actually occurs in the weak-? topology
of the set of probability measures in R (i.e., the measures converge when tested
against any fixed continuous bounded function from R to R). Since the lim-
its −φ′∞dξ and ψ′∞dξ are absolutely continuous with respect to the Lebesgue
measure, this implies the strong convergence of (Φ′k)k>k? in L1(R) (testing as
usual the weak-? convergence against the test function 1R).

�

3. Discussion

Our focus is on the effect of D and H. For g and ω, we mostly have in mind the
special Lotka–Volterra case:

(19) g(Φ) =

(
1− φ

r(1− ψ)

)
and ω(Φ) = φψ.

3.1. On the literature. To the best of our knowledge, this paper is the very first
to consider the spatial segregation limit of traveling waves for general fully nonlinear
competitive systems and to show the connection with general fully nonlinear scalar
equations.

2The second Dini theorem states that a sequence of nondecreasing functions that converges point-
wise in a closed interval of R to a continuous function converges uniformly in this interval; when ±∞
belong to the interval, the assumption is naturally understood as the convergence of the limits at
±∞ to the limits at ±∞ of the continuous limit.
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3.1.1. Fully nonlinear strongly coupled competitive systems. The semilinear competition–
diffusion system (6) was studied by the first author and G. Nadin in [19] (refer also
to [20] for an extension to space-periodic media). The spatial segregation limit was
used to characterize the sign of the wave speed: c∞ has in such a case the sign of
α2 − rd. This was interpreted as a “Unity is not strength”-type result (and, actually,
as a “Disunity is strength”-type result): if α = r = 1, so that the two species only
differ in diffusion rate, then the invader is the fast diffuser (that is, with pure Brownian
motion, the winning strategy is to disperse rapidly instead of remaining concentrated).
The problem of the sign of the wave speed for finite values of k is the object of a recent
survey paper by the first author [18].

The paper [19] used extensively the ideas of the wide literature on the spatial segre-
gation limit of parabolic or elliptic competition–diffusion systems in bounded domains
(e.g. [3–8,36] and references therein).

These ideas were also used in a collection of works by Liu and various collaborators
[42,44,45] studying the spatial segregation limit of the strongly coupled elliptic system
(4) with self- and cross-diffusion of Shigesada–Kawasaki–Teramoto type [35], where
(19), H = 0,

D = Jac

(
u(d1 + a1,1u+ a1,2v)
v(d2 + a2,1u+ a2,2v)

)
=

(
d1 + 2a1,1u+ a1,2v a1,2u

a2,1v d2 + a2,1u+ 2a2,2v

)
,

all parameters above being constant and positive. The main idea there was to change
variables in order to recover an elliptic system with linear diffusion. We point out
that although our system can be seen as an elliptic one, the unboundedness of the
domain and the generality of the functions D and H make the problem quite different.
Although the Cauchy problem for the cross- and self-diffusion system in an unbounded
domain has been studied more than ten years ago by Dreher [11], we believe that the
traveling wave problem is still largely open (e.g., [41]).

Bistable traveling waves for the competition–diffusion–cross-taxis system (3), where

(19), H = 0, D =

(
1 −γ1u
−γ2v 1

)
.

and with finite, but large, values of k were numerically investigated by Potts and
Petrovskii in [31]. The cross-taxis is attractive if γi > 0 and repulsive if γi < 0. The
point there was to show that appropriate choices of γi can change the sign of the wave
speed, or equivalently the invader: roughly speaking, aggressivity can compensate
unity. The authors called this conclusion a “Fortune favors the bold”-type result. The
well-posedness of this system with γ1 = γ1(u, v) and γ2 = 0 was studied independently
in a collection of works by Wang and various collaborators [38–40,43] (refer also to [24]
for a case where v does not diffuse at all).

We also point out a recent analytical and numerical study by Krause and Van Gorder
[23] of traveling wave solutions to a closely related non-local system with advection
toward resource gradients and where each resource density solves an elliptic PDE
involving the two population densities (modeling the consumption of resources). Since
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the resource density converges to a linear combination of both population densities in
the vanishing viscosity limit, our model (1) can be understood as a singular limit of
that model (see [23, Section 2.1]).

3.1.2. Fully nonlinear scalar equations. Equations of the form

−(d(z)z′)′ − (c+ h(z))z′ = g(z),

are the object of a specific wide literature (e.g. [1, 14, 25–30, 32, 33] and references
therein). Generically, the important features of the semilinear equations (existence
and uniqueness of waves, estimates for the minimal wave speed, etc.) are recovered
but in a loose sense.

We point out that in this literature, it is typically assumed that d, g and h are at
least continuous. This is true in our case when considering the underlying monostable
fronts (i.e., connecting 0 and α or 0 and −1) but, when considering the bistable fronts
(connecting α and −1), our functions d and h have a jump discontinuity at z = 0. It
turns out this obstacle can be easily overcome and we will show in Appendix A how
the previously known results can be extended to such cases. Our method of proof uses
extensively the results of Malaguti and her collaborators [27, 28] to characterize the
singular limit.

3.2. On the standing assumptions.

3.2.1. (A1). This is a very standard regularity assumption. Although it seems to us
that the results might remain true with less regularity, our aim here is not to focus on
regularity issues and we prefer to assume that everything is “smooth enough”. Besides,
our proof really needs the continuity of D, H, g and ω. The continuous differentiability
of D is not explicitly used in our proof but is required for the continuity result of [29]
(which is used in the proof of Theorem A.1).

3.2.2. (A2). This is a very standard ellipticity assumption. Although the main part of
our proof does not rely upon the sign of d1,1 and d2,2, we need a strong characterization
of the limit points (uniqueness in particular) that is available indeed in the elliptic
framework but might be unavailable in a degenerate elliptic or aggregative framework.
Furthermore, the compactness assumption (A9) is natural in the elliptic framework
but might be contradictory in an aggregative framework.

We believe that our results, and especially the formula (11), remain true in a weakly
degenerate setting. On the very special case where d1,1(•, 0) vanishes at 0 and at 0
only, we refer for instance to [30, 32, 33], and references therein. We point out that
our results would extend indeed to such a degenerate diffusivity provided a result
analogous to Theorem A.1 can be established.

Finally, we point out that there are no sign conditions on the cross-diffusion rates
d1,2 and d2,1.
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3.2.3. (A3). This assumption ensures that the system (1) is well-posed in the following
sense: if u = 0 initially, it should not spontaneously appear, so that

−∂x(d1,2(0, v)∂xv)− h1,2(0, v)∂xv = 0 for all v.

Taking for instance V (x) = v−x2, for some v ∈ [0, 1], and evaluating at the maximum
x = 0, we get d1,2(0, v) = 0. Subsequently, we deduce h1,2(0, v) = 0. Similarly,
d2,1(u, 0) = h2,1(u, 0) = 0 for any u.

Naturally, all applications we have in mind satisfy this assumption.
Note that with such an assumption, D and H are constant if and only if they are

constant and diagonal.

3.2.4. (A4). This is a loose monostability assumption, ensuring that if v = 0 then u
follows a monostable equation, and vice versa. The instability of 0 and the stability
of 1 are not understood here in the linear sense (hyperbolicity of the equilibrium), but
truly in the nonlinear sense (say, α-limit set and ω-limit set of the associated ODE
u′ = ug1(u, 0)). It is also in that sense that the function g is of bistable type.

The fact that both carrying capacities are unitary is assumed without loss of gen-
erality, up to a nondimensionalization of both densities.

Recall that monostable reaction terms can be either of Fisher–KPP type (g is max-
imal at 0, e.g. g(z) = 1 − z) or have a weak Allee effect (max[0,1] g > g(0), e.g.
g(z) = z(1− z)).

3.2.5. (A5). This assumption generalizes the interpopulation competition of Lotka–
Volterra type, where ω(u, v) = uv. In view of the proof, it might in fact be weakened
in several ways. However, we do not know any reasonable model that satisfies only
such a weakened assumption. Since ω does not play an important role in the paper
and since we mostly have in mind ω(u, v) = upvq with p, q ≥ 1, we choose to keep the
more explicit stronger assumption.

3.2.6. (A6). The assumption −c−? < c+? is very natural and we actually expect it to be
necessary, in the sense that if it is not satisfied, the existence of bistable waves (A7)
should fail, as will be discussed below in Section 3.2.8.

This assumption basically means that, in a situation where the species u comes from
x ' −∞ and the species v comes from x ' +∞, with negligible strong couplings due
to the distance between the two species, their invasion fronts move one toward the
other and will eventually meet and form a bistable traveling wave.

Marcelli and Papalini [30] recently showed that the minimal wave speeds c+? and c−?
satisfy the following upper estimates:

c+? ≤ 2

√
sup
z∈(0,α]

1

z

∫ z

0

g1

(
ẑ

α
, 0

)
d(ẑ)dẑ − inf

z∈(0,α]

1

z

∫ z

0

h1,1(
ẑ

α
, 0)dẑ,

c−? ≤ 2

√
sup

z∈[−1,0)

1

−z

∫ 0

z

g2(0,−ẑ)d(ẑ)dẑ + sup
z∈[−1,0)

1

−z

∫ 0

z

h2,2(0,−ẑ)dẑ.
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Therefore (A6) fails if, for instance, h2,2 is a large negative constant whereas h1,1 is
a large positive constant. Having in mind the preceding heuristics, this is natural:
such an advection term h slows down the invasion of both u and v so strongly that
the two fronts never meet, with a buffer zone that is linearly increasing in time.
Instead of a traveling wave, this describes the formation of what is nowadays called
a propagating terrace [12]. Such a phenomenon is standard in bistable dynamics and
was first reported by Fife and McLeod [15].

On the contrary, various simple conditions can ensure −c−? < c+? . Indeed, Malaguti
and Marcelli [27] established the following lower estimates:

c+? ≥ 2
√
d1,1(0)g1(0, 0)− h1,1(0, 0), c−? ≥ 2

√
d2,2(0)g2(0, 0) + h2,2(0, 0).

For instance, −c−? < c+? as soon as h1,1 = h2,2 = 0 (no self-advection), g1(0, 0) > 0 and
g2(0, 0) > 0. In particular, the systems (2), (3), (4) all satisfy (A6).

3.2.7. (A7). This is the first truly restrictive assumption. Indeed, for a system as
general as (1), the existence of bistable traveling waves connecting (1, 0) and (0, 1) is a
completely open and difficult problem and it might very well be false in full generality.

More precisely, although the existence of traveling waves (u, v)(t, x) = (φ, ψ)(x−ct)
connecting (1, 0) and (0, 1) is to be expected under fairly reasonable assumptions, we
expect that in some cases their profiles φ and ψ will not be monotonic. In general,
non-monotonic traveling waves connecting (1, 0) and (0, 1) do not satisfy any uniform
L∞ bounds or L1 bounds for the profile derivatives. Clearly, from our proof, we need
such bounds. We also used several times the fact that the profile derivatives do not
change sign. In particular, the monotonicity of the profiles implies (almost directly)
that the free boundary is a point or an interval. With non-monotonic profiles, the
free boundary problem will be in general much more difficult. Even though we believe
our approach can be successful when studying some specific non-monotonic traveling
waves, for which convenient bounds can be a priori established, the setting in the
present paper is already quite abstract and we deliberately choose to exclude non-
monotonic traveling waves.

It seems to us that there are mainly three ways to solve, at least partially, this
problem of existence of monotonic traveling waves.

(1) Direct construction: this is what was done in the scalar case by Malaguti,
Marcelli and Matucci [28]. However the proof there relies upon phase-plane
arguments and therefore does not extend easily to systems.

(2) Perturbative arguments starting from the semilinear case with (19): using a
standard implicit function theorem approach for bistable waves in monotone
systems (presented in detail in, for instance, [34,37]), this approach would give
the existence of a neighborhood of any constant pair (D,H) in which traveling
waves exist (see also [41] for another type of perturbative result). However
the diameter of this neighborhood will depend on k and it is quite difficult
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to bound it from below. Therefore such an approach is hardly suitable if our
ultimate goal is to pass to the limit k → +∞.

(3) Homotopy arguments starting from the limit k = +∞: such an approach
has been used repeatedly in the literature on strongly competitive systems
(e.g., [6,21]). It requires first a good knowledge of the limit. The present paper
can therefore be understood as a first step toward existence results proved with
this approach.

Consequently, the proof of existence is left as a difficult but interesting open problem
and, in this paper, we simply assume a priori the existence.

3.2.8. (A8). This is a technical assumption that should always be satisfied as soon as
traveling waves exist (A7). Indeed, it is a quite general feature of bistable waves that
their speed is stuck between the minimal wave speeds of the two underlying monostable
problems (e.g., [13, 16, 22, 28]). Here, these two bounds are precisely c+? and −c−? . In
other words, we actually expect that −c−? < ck < c+? is true for all k > k?.

Nevertheless, since the existence of waves is unclear and since the system does
not satisfy the comparison principle (which is the main tool used to prove the above
inequalities in the semilinear competition–diffusion case (2)), we have no choice but
to add this likely superfluous assumption.

3.2.9. (A9). This is the second truly restrictive assumption. It is for instance satisfied
if an L2

loc estimate on Φ′k can be proved, but it seems that in general such an estimate
is false. Below we give important examples where such an estimate can be proved
indeed.

(1) If both d1,2 and d2,1 are nonpositive (this applies in particular to the sys-
tem (3) with min(γ1, γ2) ≥ 0), then we can multiply the first, respectively
second, equation of the system (5) by φkχR, respectively ψkχR, where χR
is a cut-off function equal to 1 in [−R,R], smooth and valued in (0, 1) in
[−R−1,−R]∪ [R,R+ 1], and equal to 0 in R\(−R−1, R+ 1). Just as in [19],
a few integrations by parts lead to an L2([−R,R]) estimate on φ′k, respectively
ψ′k. For completeness, the detailed calculation for the first equation – where
subscripts R and k are dropped for ease of reading – follows. Together, the
inequality

∫
d1,2(Φ)ψ′φ′χ ≥ 0 (where d1,2 ≤ 0 and ψ′φ′ ≤ 0 are used) and the

equality∫
d1,1(Φ)φ′φ′χ+

∫
d1,1(Φ)φ′φχ′ +

∫
d1,2(Φ)ψ′φ′χ+

∫
d1,2(Φ)ψ′φχ′

−
∫
h1,1(Φ)φ′φχ−

∫
h1,2(Φ)ψ′φχ− c

∫
φ′φχ

=

∫
φ2g1(Φ)χ− k

∫
ω(Φ)φχ
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imply ∫ R

−R
d1,1(Φ)(φ′)2 ≤ −

∫
d1,1(Φ)φ′φχ′ −

∫
d1,2(Φ)ψ′φχ′

+

∫
h1,1(Φ)φ′φχ+

∫
h1,2(Φ)ψ′φχ

+ c

∫
φ′φχ+

∫
φ2g1(Φ)χ.

It just remains to verify that each term on the right-hand side is bounded
uniformly with respect to k. The last term is bounded as follows:∣∣∣∣∫ φ2g1(Φ)χ

∣∣∣∣ ≤ ∫ ∣∣φ2g1(Φ)χ
∣∣

≤ ‖g1‖L∞([0,1]2)‖φ2‖L∞(R)‖χ‖L1(R)

= ‖g1‖L∞([0,1]2)‖χ‖L1(R).

All the other terms are handled similarly, using the facts that (ck)k>k? is
bounded (A8) and that φ′ and ψ′ both have a unitary L1(R)-norm. For in-
stance,∣∣∣∣∫ d1,2(Φ)ψ′φχ′

∣∣∣∣ ≤ ∫ |d1,2(Φ)ψ′φχ′|

≤ ‖d1,2‖L∞([0,1]2)‖φ‖L∞(R)‖χ′‖L∞(R)‖ψ′‖L1(R)

= ‖d1,2‖L∞([0,1]2)‖χ′‖L∞(R).

In the end, using the boundedness from below of d1,1, there exists a constant
C > 0 that does not depend on k or R such that∫ R

−R
(φ′)2 ≤ C(‖χ‖W 1,∞(R) + ‖χ‖L1(R)).

Remark that necessarily ‖χ‖W 1,∞ + ‖χ‖L1 depends on R. We also point out
that further integration by parts are possible but do not improve the estimate.

(2) If (19) and D is the Jacobian matrix of a C 2-diffeomorphism

d : [0,+∞)2 → [0,+∞)2,

then we can multiply the first, respectively second, equation by d1(Φk)χR, re-
spectively d2(Φk)χR, and discover similarly an L2([−R,R]) estimate on (d(Φk))

′,
that is on Φ′k by invertibility of d. This idea is borrowed from [42, 44, 45]. As
such, this applies to the system (4).

A very important remark is required here: similar estimates cannot be obtained for
the general evolution parabolic problem or for the general diffusion–advection elliptic
problem, as here we heavily use the monotonicity and the L∞-boundedness of the
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profiles for the calculations. More details on the difficult estimates for the evolution
problem can be found for instance in [9, 11] and references therein.

Actually, the monotonicity of the profiles and the uniform L∞ bounds induced by
the traveling wave form, that are heavily used in the above calculations, directly yield
some regularity, compactness and convergence properties. Unfortunately, these are
not sufficient to derive the limiting problem and (A9) seems to be truly required. Still,
for possible future reference, we list some of these properties below.

(1) Since the wave profiles are all of bounded variation and uniformly bounded,
we can directly apply Helly’s selection theorem: up to extraction, (Φk)k>k?
converges pointwise and locally in L1 to some limit Φ∞. This does not depend
on the equations.

(2) The families (−φ′kdξ)k>k? and (ψ′kdξ)k>k? are families of probability measures
in R. By the Banach–Alaoglu theorem, a bounded family of Radon measures
in R is relatively compact in the weak-? topology of the set of bounded Radon
measures, namely the topology of pointwise convergence on the space of con-
tinuous functions in R that converge to 0 at ±∞. Again, this does not depend
on the equations.

(3) A monotone function is differentiable almost everywhere, with a number of dis-
continuities at most countable, and each discontinuity is a jump discontinuity.

3.3. On the results.

3.3.1. The limiting equation. The limiting equation in (7) does not have classical so-
lutions (namely, solutions of class C 2) in general. In fact, the unique weak solution
z is of class C 1 if and only if the left-sided and right-sided limits of d at 0 coincide
(that is d1,1(0, 0) = d2,2(0, 0)) and of class C 2 if and only if it is of class C 1 and
the left-sided and right-sided limits of h at 0 coincide (that is h1,1(0, 0) = h2,2(0, 0)).
Nevertheless, since the equation implies that d(z)z′ ∈ W 1,∞(R), d(z)z′ is at least
Lipschitz-continuous. This is where the free boundary relation comes from.

As they are defined in (8) and (9), the functions d and h both have a zero at z = 0.
However, Theorem 1.1 does not depend on how the piecewise-continuous functions d
and h are defined at z = 0. This is classical in such problems (e.g., [5, 7, 19]).

Note that the positivity of the left-sided and right-sided limits of d at 0, that is the
positivity of the essential infimum of d, still matters.

3.3.2. The convergence. The space where the convergence of the profiles occurs might
be improved by bootstrap in special cases, using more deeply the structure of the
equations. We point out that, in view of the regularity of the limit, the best that can be
proved is a uniform Lipschitz bound (implying convergence in all Hölder spaces C 0,γ)
for (Φk)k and (D(Φk)Φ

′
k)k. This is consistent with the literature on the semilinear

problem (refer to Soave–Zilio [36] for a detailed review).
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3.3.3. The sign of the effective wave speed when the self-advection is constant. The
formula (11) is the extension of the “Disunity is strength”-type result for the semilinear
competition–diffusion system (2) established in [19].

It shows for instance that, if h0 = 0, g1(•, 0) = g2(0, •), α = 1 and d1,1(•, 0) <
d2,2(0, •), so that the two populations differ only in diffusivity and the diffusivities
obtained in absence of the other are strictly ordered, then c∞ < 0: again, a strong
diffusivity is a competitive advantage.

Quite interestingly, the formula (11) does not depend on the cross-diffusion rates
d1,2 and d2,1, on the cross-advection rates h1,2 and h2,1 and on the competition rate ω.
In fact, it only depends on the parameter α and on the dynamics of each population
in absence of the other: although the system is arbitrarily strongly coupled, its spatial
segregation limit is mostly decoupled (more precisely, it is coupled only at the free
boundary).

In order to illustrate more directly our result, below, we apply the formula (11) to
the specific cases studied in the aforementioned earlier literature [9, 31, etc.]. This
mostly amounts to comparing dispersal strategies, but clearly we can also use the
formula (11) to compare growth strategies and determine, for instance, the effect of a
weak Allee effect.

First, we consider self- and cross-diffusion systems with logistic growth, namely
systems generalizing (4), where (19) holds, H = 0 and D(u, v) is the following Jacobian
matrix:

D(u, v) = Jac

(
u(d1 + a1,1u

β1,1 + a1,2v
β1,2)

v(d2 + a2,1u
β2,1 + a2,2v

β2,2)

)
=

(
d1 + a1,1(β1,1 + 1)uβ1,1 + a1,2v

β1,2 a1,2β1,2uv
β1,2−1

a2,1β2,1vu
β2,1−1 d2 + a2,2(β2,2 + 1)vβ2,2 + a2,1u

β2,1

)
.

In such a case, the formula (11) reads

sign (c∞) = sign

(
α2

(
d1
6

+
a1,1(β1,1 + 1)

β2
1,1 + 5β1,1 + 6

)
− r

(
d2
6

+
a2,2(β2,2 + 1)

β2
2,2 + 5β2,2 + 6

))
.

In the special case β1,1 = β2,2 = 1, this reads

sign (c∞) = sign
(
α2 (d1 + a1,1)− r (d2 + a2,2)

)
.

Hence the sign of the wave speed is determined by the self-diffusivities in absence
of the other and at carrying capacity. This illustrates quite interestingly the fact that
the coupling at the free boundary is not just local but takes also into account what
happens far away from the free boundary. The above formula also shows that there
are cases where a population wins despite a smaller linear diffusivity (say, for instance,
α = r = 1, d1 + a1,1 > d2 + a2,2 and d1 < d2).

Note that we can apply formally the formula to the case d1 = 0 or d2 = 0 (no linear
diffusion, just porous-medium type self-diffusion). Although our proof does not apply
in such a case (see (A2)), we conjecture that this formula is indeed the correct one.
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Second, we consider cross-taxis systems with logistic growth, namely systems of the
form (3), where (19) holds, H = 0 and

D(u, v) =

(
d1 −γ1u
−γ2v d2

)
.

It turns out that for such a system, we recover exactly the same formula as in the
case of constant D: the sign of c∞ is that of α2d1 − rd2. The values of γ1 and γ2
have no effect. Hence “Disunity is strength” again, whatever the strength or the sense
(attraction or repulsion) of the cross-taxis.

This conclusion is in sharp contrast with the “Fortune favors the bold” conclusion
suggested numerically by Potts and Petrovskii in [31]. The contrast is not contradic-
tory and is explained by the fact that their simulations take finite values of k whereas
we focus on the limit k → +∞, where the effect of the aggressive taxis becomes
negligible due to spatial segregation.

Let us end this discussion by relating this work to the wide literature on mathemat-
ical models for the evolution of dispersal in nature (we refer for instance to [2, Chapter
11] and references therein). Adopting such a viewpoint, our result tends to show that,
for a species trying to survive a strong competitor, the formation by means of muta-
tions of an aggressive phenotype – in the cross-taxis sense of Potts and Petrovskii –, or
more generally of a phenotype whose dispersal strategy accounts for the competitor,
should actually not help, and therefore such a mutant should not be selected. This
might seem counter-intuitive at first, yet it can be explained heuristically at the indi-
vidual scale: the infinite competition limit means that as soon as two individuals of
adversary populations meet, both die, instantaneously. Since no one will ever survive
such an encounter, even for the tiniest amount of time, it is therefore useless to try to
learn how to deal with these encounters. As a matter of fact, according to the model,
the fittest mutations in such a situation are those that improve the diffusion of the
species, be it linear diffusion or nonlinear self-diffusion. This is of course in sharp con-
trast with the well-known “Unity is strength”-type result in spatially heterogeneous
environments without strong competitor proved by Dockery et al. [10] and this might
lead to evolutionary traps, as explained by the first author in [18, Section 3.5].

Appendix A. The fully nonlinear bistable scalar equation with
piecewise-continuous diffusion and advection rates

In this appendix, we sketch briefly the proof of the following theorem that confirms
that the functions d and h can be defined arbitrarily at 0. This theorem extends the
main result of Malaguti–Marcelli–Matucci [28].

Theorem A.1. Let U± ∈ R such that U− < 0 < U+ and let

(1) d : [U−, U+] → R be continuously differentiable and positive in [U−, U+]\ {0}
with positive limits at 0±;

(2) h : [U−, U+]→ R be continuous in [U−, U+]\ {0} with limits at 0±;
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(3) g : [U−, U+] → R be continuous with g(U−) = g(0) = g(U+) = 0 and g < 0 in
(U−, 0) and g > 0 in (0, U+).

Let c±? be the minimal wave speed of nonincreasing classical solutions (z, c) of

(20) − (d(z)z′)′ − (c+ h(z))z′ = g(z)

with limits 0 at +∞ and U± at −∞.
Then, if −c−? < c+? , the equation (20) supplemented with the constraints

(1) z admits U+ and U− as limits at −∞ and +∞ respectively;
(2) z is nonincreasing;
(3) z is continuous;

admits a unique (up to shifts) weak solution (z, c), and its wave speed c satisfies −c−? <
c < c+? .

Conversely, if −c−? ≥ c+? , no such solution exists.

Proof. The existence of the wave, its monotonicity, its continuity and its limits when
−c−? < c+? directly follow from a standard regularization of the functions d and h, from
a locally uniform L2 estimate on the regularized profile derivative (see [19] or Section
3.2.9 above) and from the continuity with respect to d and h of the minimal wave
speed for monostable equations [29]. When passing to the limit, the nontriviality of
the limit z has to be verified, as in the main proof of the paper. In order to do so, a
normalization z(0) = 1

2
U± depending on the limiting wave speed can be used, as in

the main proof of this paper. Note that at this point, we have −c−? ≤ c ≤ c+? but not
the strict inequalities.

In the sequel, we will need the continuity of d(z)z′. Although it is not assumed a
priori, it can be established by integrations by parts, exactly as in the main proof of
this paper. In fact, our proof actually shows that any monotonic continuous traveling
wave weak solution necessarily satisfies d(z)z′ ∈ C (R).

The uniqueness (up to shifts) can be established by contradiction, assuming that
there are two different nonincreasing continuous waves (z1, c1) and (z2, c2) with, for
instance, c1 ≤ c2. Then we have two different positive semi-waves (z+1 , c1) and (z+2 , c2)
or two different negative semi-waves (−z−1 , c1) and (−z−2 , c2). The positive semi-waves
are solutions of


−(d(z)z′)′ − (c+ h(z))z′ = g(z) in (−∞, 0)

z(0) = 0

z > 0 in (−∞, 0)

lim−∞ z = U+
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and the negative semi-waves are solutions of
−(d(z)z′)′ − (c+ h(z))z′ = g(z) in (0,+∞)

z(0) = 0

z < 0 in (0,+∞)

lim+∞ z = U−

For both sub-problems, the functions d and h are continuous, so that the uniqueness
result for semi-waves [28, Lemma 10] implies directly that c1 < c2, and then the
comparison principle [28, Lemma 10] implies

0 > lim
z→0+

d(z) lim
ξ→0−

z′1(ξ) > lim
z→0+

d(z) lim
ξ→0−

z′2(ξ),

0 > lim
z→0−

d(z) lim
ξ→0+

z′2(ξ) > lim
z→0−

d(z) lim
ξ→0+

z′1(ξ),

so that the continuity of either d(z1)z
′
1 or d(z2)z

′
2 is contradicted:

limz→0+ d(z)

limz→0− d(z)
=

limξ→0+ z
′
1(ξ)

limξ→0− z
′
1(ξ)

>
limξ→0+ z

′
2(ξ)

limξ→0− z
′
2(ξ)

=
limz→0+ d(z)

limz→0− d(z)
.

The strict inequalities −c−? < c < c+? are obtained with the same argument (the
uniqueness result [28, Lemma 10] does not distinguish semi-waves and regular traveling
waves, so that the two cannot coexist).

The nonexistence when −c−? ≥ c+? follows similarly from [28, Lemma 10]. �
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[18] Léo Girardin. The effect of random dispersal on competitive exclusion – A review. Math. Biosci.,
318:108271, 2019.

[19] Léo Girardin and Grégoire Nadin. Travelling waves for diffusive and strongly competitive sys-
tems: relative motility and invasion speed. European J. Appl. Math., 26(4):521–534, 2015.
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