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Abstract 21 

The health-promoting effects of physical activity to prevent and treat metabolic disorders are 22 

numerous. However, the underlying molecular mechanisms are not yet completely 23 

deciphered. In recent years, studies have referred to the liver as an endocrine organ,  since it 24 

releases specific proteins called hepatokines. Some of these hepatokines are involved in 25 

whole-body metabolic homeostasis and are theorised to participate in the development of 26 

metabolic disease. In this regard, the present review describes the role of FGF21, Fetuin-A, 27 

Angiopoietin-like protein 4 and Follistatin in metabolic disease and their production in 28 

response to acute exercise. Also, we discuss the potential role of hepatokines in mediating the 29 

beneficial effects of regular exercise and the future challenges to the discovery of new 30 

exercise-induced hepatokines. 31 

  32 



Introduction 33 

The prevalence of metabolic disorders is increasing worldwide and appears as a major public 34 

health concern. Management of these pathologies is complicated as practitioners are facing a 35 

wide range of new co-morbidities. This is exemplified by the increase of non-alcoholic fatty 36 

liver diseases (NAFLD), a spectrum of chronic liver conditions including non-alcoholic fatty 37 

liver (NAFL) and non-alcoholic steatohepatitis (NASH) (22). NAFL is defined as a presence 38 

of  ≥ 5% hepatic steatosis without any sign of hepatocyte injury while NASH is present  with 39 

≥ 5% hepatic steatosis with inflammation and hepatocyte injury (ballooning) with or without 40 

fibrosis (22). For example, it has been underlined that 75 to 100 million people in the United 41 

States are suffering from NAFLD (131) and it is the most common liver abnormality in 42 

children aged 2 to 19 years (166). While it is well accepted that genetic factors play a 43 

significant role, poor quality of life in terms of physical activity and nutrition are also major 44 

risk factors in the aetiology of these pathologies (25, 117). In most cases, changing these 45 

unhealthy habits is sufficient to significantly improve the physiological profile of patients 46 

with obesity, type 2 diabetes (T2D) or NAFLD  (2, 95, 161). Also, emerging hypothesis 47 

associate NAFLD and the pathogenesis of extrahepatic diseases such as T2D or 48 

cardiovascular diseases (CVD). Indeed, elegant reviews report that NAFLD represents an 49 

independent risk factor for the incidence of T2D or CVD (1, 113, 151). Moreover, it appears 50 

that ectopic fat in the liver represents a stronger risk factor of different stages of prediabetes, 51 

insulin resistance or CVD than total or visceral fat mass (37, 74, 153). While hepatic 52 

inflammation represents a good candidate (3), the underlying mechanisms linking NAFLD 53 

and extrahepatic diseases remain to be deciphered.  54 

  55 

The beneficial effects of exercise at the whole-body level are numerous, with particular 56 

reference, here, to the adaptive responses occurring in many organs conferring protection 57 



against metabolic diseases, such as obesity and T2D (16). In order to optimise the prescription 58 

of physical activity, investigators seek to better understand the underlying mechanisms 59 

involved in the beneficial effects of exercise. Recent studies suggest that myokines, released 60 

by the skeletal muscle at rest and/or during exercise, might be partially involved (35, 123, 61 

165). Exercise-induced myokines can act locally to regulate skeletal muscle energy 62 

metabolism by improving insulin sensitivity, mitochondrial function or inflammation. 63 

Myokines also participate in the cross talk during and after exercise between skeletal muscles 64 

and other organs (ie: adipose tissues, liver, prancreas). Furthermore, studies show that the 65 

liver can also release proteins, referred to here as hepatokines, which may alter whole-body 66 

homeostasis at rest and during exercise. Hepatokines can be either beneficial or deleterious in 67 

the context of metabolic disease by regulating signalling pathways involved in energy 68 

metabolism (109, 149). Interestingly, recent evidence suggests that exercise can modulate the 69 

expression of some hepatokines, suggesting that the liver might also participate in tissue 70 

cross-talk during physical activity (57, 60, 68).  71 

 72 

This review aims to summarise the current literature on hepatokines and their regulation by 73 

acute and chronic exercise in the context of metabolic disorders such as obesity, insulin-74 

resistance, T2D, NAFL and NASH. 75 

 76 

Hepatokines and metabolic diseases 77 

Liver is a major metabolic organ. It serves as a site of storage and supply of nutrients to 78 

ensure metabolic homeostasis. Also, evidence supports that hepatocytes can produce and 79 

secrete proteins named as hepatokines (109, 149). Early studies in the area reported that a 80 

liver-derived protein, alpha 2-HS Glycoprotein, also known as fetuin-A, can inhibit insulin 81 

tyrosine kinase activation and might play a role in the pathogenesis of metabolic disorders (9, 82 



145). However, it is only recently that the progression of NAFLD worldwide (131)  has 83 

generated great interest in hepatokines. Recent study from Xiong and collaborators compared 84 

the liver transcriptome and proteome of control and mice with diet-induced NASH (170). 85 

RNA-sequence and proteomic analyses revealed that a total of 156 targets were altered at both 86 

mRNA and protein levels. Moreover, the authors reported a profound reprogramming of the 87 

hepatic secretome and membrane receptor gene expression during diet-induced NASH. Thus, 88 

these results suggest that hepatokine production could remodel metabolic homeostasis. This is 89 

exemplified by a number of studies revealing that hepatokines play a pivotal role in 90 

metabolism and contribute to the development of obesity, insulin-resistance, T2D, NAFL and 91 

NASH (109, 149). So far, about twenty hepatokines have been described to be involved in the 92 

regulation of energy and nutrient metabolism by acting directly on the liver or on distal target 93 

tissues (Table 1). These proteins regulate glucose and lipid metabolism in the liver, but also in 94 

the skeletal muscle or the adipose tissue. Moreover, hepatokines participate in inflammation, 95 

beta cell function or mitochondrial function and could participate in the development of CVD. 96 

For example, the hepatokine selenoprotein P has been reported to be increased in patients with 97 

NAFLD or visceral obesity (27) and to contribute to the development of insulin resistance 98 

(110). Selenoprotein P also inhibits vascular endothelial growth factor-stimulated cell 99 

proliferation, tubule formation, and migration in human umbilical vein endothelial cells (69). 100 

Thus, hepatokines can participate in inter-tissue crosstalk and play an influential role in 101 

hepatic and extra hepatic diseases. 102 

 103 

Hepatokines and exercise 104 

The beneficial effects of exercise in the context of metabolic disorders are numerous. A recent 105 

meta-analysis revealed that exercise, independently of weight loss, improves hepatic steatosis 106 

(154). Researches are hence focusing on understanding the molecular mechanism mediating 107 



the health promoting effect of regular exercise. One plausible explanation resides in exercise 108 

secreted factors. Firstly, due to its role in locomotion, research has focused on skeletal 109 

muscle. The most well-characterized myokine is Interleukin-6 (IL-6) (118, 148). Initial work 110 

reported that IL-6 is released and secreted by the contracting skeletal muscle during exercise 111 

and stimulates hepatic glucose production to ensure the energy demands of the contracting 112 

muscle are adequately met (39). Thus, muscle‐ derived IL‐ 6 works as an energy sensor to 113 

increase release of energy substrates from liver and adipose tissues (124). Secondly, due to its 114 

central role in obesity-associated disorders, adipose tissue and adipokines have been 115 

investigated. While the effects of a single bout of exercise are modest, exercise training can 116 

remodel adipokine expression and secretion. In patients with type 2 diabetes, a recent meta-117 

analysis showed that an aerobic exercise program was associated with a significant change in 118 

leptin but did not alter adiponectin levels (63). Finally, studies reported that exercise can 119 

trigger the secretion of liver-derived proteins in response to exercise. Using hepatic arterial-120 

to-venous difference, it has been shown that a 1-h single bout of cycling increases HSP72 121 

release from the liver (41). Also, transcriptomic analyses in the liver revealed that exercise 122 

induces changes in the mRNA of secreted proteins suggesting that exercise can impact liver 123 

secretome (64). It is now clear that a single session of exercise is accompanied by the 124 

production of liver-secreted proteins. Hepatokines can also mediate the beneficial effects of 125 

chronic exercise or, at least, represent biomarkers of training-induced metabolic 126 

improvements (table 1). Interestingly, it has also been reported that selenoprotein-P deficiency 127 

increases responsiveness to exercise in mice through upregulation of reactive oxygen species 128 

and AMP-activated protein kinase in muscle (111), suggesting that liver-secreted proteins can 129 

influence exercise capacity. 130 

Here, we review the current literature on exercise-induced hepatokines implicated in the 131 

regulation of metabolism and metabolic diseases. Hepatokines with i) proven release from the 132 



liver using arterial-to-venous difference over the splanchnic bed and increased hepatic mRNA 133 

expression (FGF21, Follistatin ANGPTL4) and/or ii) a clear role in the beneficial adaptation 134 

to chronic exercise (Fetuin-A) were specifically studied in this review. 135 

 136 

Fibroblast growth factor 21 (FGF21) 137 

FGF21 is a 24kDa protein that signals through a cell-surface receptor complex composed of a 138 

classic FGF receptor, FGFR1c, and the FGF coreceptor, β-klotho (87, 115). It appears that 139 

FGF21 is highly expressed in the liver in both rodent and human (115, 126). Also, while a 140 

broad range of tissues are expressing FGF21 (45), it should be specified that, under 141 

physiological conditions, FGF21 gene expression is increased in the liver and to a lesser 142 

extent the brain (156) and the pancreas (79).  143 

 144 

A/ FGF21 in metabolic diseases 145 

Since circulating FGF-21 concentrations increase with obesity (14, 179), T2D (24, 103)and 146 

NAFLD (91), FGF21 levels have been reported as a marker of metabolic disorders (122).  147 

Also, it is important to notice that, independently of BMI, hepatic triglyceride content is the 148 

strongest determinant of hepatic FGF21 production and circulating FGF21 (91, 173). 149 

Mechanistically, it appears that high fructose consumption leads to an increase of FGF21 in 150 

mice and humans through the activation of ChREBP in the liver (42). Lessons from transgenic 151 

mice have contributed considerably to our understanding of the role of FGF21 in energy 152 

metabolism regulation. Whole body FGF21 KO mice present with an impairment of glucose 153 

metabolism and an excessively abnormal body weight (11). Moreover, in diet-induced obese 154 

(DIO) mice, insulin and glucose tolerance is more impaired when mice are conditionally 155 

lacking FGF21 in the liver compared with their age- and sex-matched control littermates 156 

(101). Also, FGF21 KO mice exhibit severe hepatic insulin resistance when fed with a 157 



ketogenic diet compared with WT controls, when assessed by the gold-standard technique, the 158 

hyperinsulinemic–euglycemic clamp. This was associated with an increase in hepatic 159 

diacylglycerol content, leading to protein kinase C ε activation, a well-known kinase involved 160 

in insulin signalling impairments (19, 136). Moreover, FGF21 KO mice exhibited increased 161 

hepatic steatosis and VLDLR protein content through the activation of the eIF2a-ATF4 162 

pathway (178). Conversely, some studies have investigated the potential role for FGF21 as a 163 

therapeutic target to prevent and treat metabolic disorders. A first study revealed that 3 to 7 164 

days of subcutaneous administration of FGF-21 to diabetic rodents led to a significant 165 

lowering of circulating glucose and triglycerides, as well as a reduction in fasted insulin levels 166 

and improved glucose clearance during an oral glucose tolerance test (80). Moreover, 167 

treatment for 12 weeks with escalating doses of FGF21 decreased body weight, improved 168 

glucose tolerance and reduced concentrations of plasma triglycerides in high fat-fed, obese 169 

monkeys (4). Amongst the effects of FGF21 upon the liver, continuous, two week infusion of 170 

FGF21 with a miniosmotic pump to diabetic rodents led to a significant decrease in 171 

hepatosteatosis (29). It appears that FGF21 treatment abolished de novo lipogenesis through 172 

the reduction of SREBP-1 and fatty acid synthase in DIO mice (172). Also, in vivo 173 

hyperinsulinemic-euglycemic clamps in obese, leptin deficient (ob/ob) mice, revealed that 8 174 

days of FGF21 injections improved hepatic insulin sensitivity and decreased hepatic glucose 175 

output (13).  In a mice model of NASH, Lee and colleagues reported that 3 weeks of 176 

injections with the FGF21 analog LY2405319 prevented oxidative stress in the liver, a key 177 

component in the development of insulin resistance (30, 82, 89). Finally, clinical trials in 178 

patients with T2D revealed that 28 days of treatment with the FGF21 analog LY2405319 179 

decreases low-density lipoprotein cholesterol and triglycerides, increases high-density 180 

lipoprotein cholesterol and improves fasting insulin (48). These data provide a scenario 181 

whereby metabolic health might be improved via the manipulation of systemic FGF21. 182 



 183 

B/ Effect of exercise on FGF21 184 

Given the aforementioned possible role of FGF21 in mediating metabolic health, it is of 185 

interest to identify ways in which FGF21 secretion can be altered. Exercise alters the 186 

expression of FGF21 with initial investigations suggesting that FGF21 is a myokine (71, 72). 187 

Indeed, transgenic mice (overexpressing Akt) characterized with increased muscle mass and 188 

strength exhibited a significant increase in systemic FGF21 compared with littermate controls. 189 

Moreover, in cultured skeletal muscle cells, FGF21 expression and secretion was regulated by 190 

Akt transduction supporting the idea that FGF21 is a myokine (71). However, recent studies 191 

have questioned this. Hansen et al. analysed the direct production of FGF21 using hepatic and 192 

femoral vein and artery catherization (59). They demonstrated, in healthy men, that FGF21 193 

was secreted from the hepatosplanchnic bed but not in the leg during and after a prolonged 194 

bout of endurance exercise. In line with these results, investigations involving rodents support 195 

the contention that FGF21 is produced by liver. A single bout of endurance exercise 196 

significantly increases hepatic FGF21 mRNA expression, while the results are divergent in 197 

skeletal muscle (59, 81, 97, 159). Interestingly, when healthy male subjects were infused with 198 

glucagon and somatostatin to mimic exercise (6 ng.kg-1.min-1 and 100 ng.kg
-1

.min
-1

 199 

respectively) splanchnic FGF21 levels were significantly increased compared to saline infusion 200 

(59). Conversely, exercise with a pancreatic clamp (somatostatin, 100 ng.kg
-1

.min
-1

) 201 

completely blunted the exercise-induced increase in plasma FGF21, suggesting a role for 202 

pancreatic hormones in the regulation of hepatic FGF21 (60). In line with these results, 203 

glucagon receptor knockout mice have a blunted induction of FGF21 mRNA in the liver in 204 

response to exercise (12). Also, resistance exercise, which elicits an increase in plasma 205 

insulin, does not induce FGF21 release in the bloodstream (114). Moreover, circulating 206 

FGF21 is also under the control of free fatty acids (FFA) levels during exercise in healthy 207 



men (60, 81). Mechanistically, incubation of the FaO cell line with palmitic acid triggered 208 

FGF21 transcription through the concomitant action of the activating transcription factor 4 209 

(ATF4) and peroxisome proliferator-activated receptor alpha (PPARα). It could be 210 

hypothesized that exercise-induced lipolysis favours FGF21 production by the liver through 211 

an ATF4/PPARα pathway. Thus, FGF21 production by the liver during exercise appears to be 212 

regulated by a synergetic action of glucagon to insulin ratio and FFA levels. A caveat is that 213 

all these experiments were mainly performed in healthy subjects. A recent study revealed that 214 

exercise-induced plasma FGF21 elevation was abolished in patients with T2D (60) suggesting 215 

that FGF21 production in response to acute exercise is altered in patients with metabolic 216 

disruption. While basal FGF21 was higher in T2D patients compared with healthy subjects 217 

(60), it appears that hyperinsulinemia or hepatic insulin-resistance would rather impair 218 

exercise-induced FGF21 secretion. Indeed, it has been reported that FGF21 secretion is lower 219 

in obese patients with hyperinsulinemia compared with healthy subjects (143). Interestingly, 220 

there was no difference in basal FGF21 concentrations between both groups, but the clear 221 

mechanism affecting FGF21 secretion during exercise in the context of metabolic disease 222 

remain to be elucidated. 223 

 224 

Other studies have assessed the impact of chronic exercise on circulating levels of FGF21 in 225 

the context of metabolic disorders. In humans, the results seem controversial. Some studies 226 

support the idea that chronic exercise, combined or not with diet intervention, can 227 

significantly decrease circulating FGF21 in obese or elderly people (157, 158, 174) while 228 

others did not observe any effect in obese or diabetic patients (5, 15, 84). It is important to 229 

note that some methodological issues might explain these discrepancies. Firstly, these studies 230 

were performed in heterogeneous populations with respect to metabolic disruption. Also, 231 

FGF21 systemic levels are affected by various stimuli such as nutrient intake (98), fasting 232 



status (38) or circadian rhythm (177) that were not specified in these studies. Finally, not all 233 

these studies examined  changes in systemic levels of insulin or FFA, hepatic fat content, or 234 

cardiorespiratory fitness which are seemingly important factors affecting FGF21 levels (60, 235 

157).  236 

 237 

In a rodent model of T2D (OLETF), Fletcher et al. have investigated the effect of voluntary 238 

wheel running on FGF21 expression (43). The authors observed that active rats had a 239 

preserved hepatic mRNA and circulating FGF21 response compared to their sedentary 240 

littermates. Additionally, some studies in transgenic mice investigated whether FGF21 is 241 

necessary to mediate the effects of chronic exercise on improved energy metabolism. 242 

However, voluntary wheel running reduced adiposity, adipose tissue inflammation, 243 

hyperinsulinemia, and hepatic fatty acid content and oxidation in both FGF21 KO mice and 244 

their control littermates (44, 129). On the contrary, in mice fed with a high fat diet (HFD), 245 

voluntary wheel running did not improve hepatic triglyceride content and glucose tolerance 246 

but prevented weight and fat mass gain independently of genotype (97). The authors 247 

concluded that FGF21 KO mice exhibited an impaired adaptation to exercise training, 248 

including reduced AMP-activated protein kinase activity in skeletal muscle. Based on these 249 

findings, FGF21 may be necessary for the health-benefits associated with regular exercise 250 

under high fat, but not normal, dietary conditions. As the liver is the main source of FGF21 251 

(101), further examinations in liver specific deletion models of FGF21 would help to better 252 

understand the cellular adaptations to physical activity. 253 

 254 

To sum up, FGF21 plays a pleiotropic role in lipid and glucose metabolism and can improve 255 

metabolic-related disorders. It is now well accepted that exercise contributes to the prevention 256 

of chronic diseases, but the underlying mechanisms are not well understood. Interestingly, the 257 



metabolic actions of FGF21 share those observed in response to exercise. Thus, the exercise-258 

induced production of FGF21 by the liver might represent one of the cellular mechanisms 259 

involved in the metabolic adaptations to exercise. Also, FGF21 interacts with many tissues 260 

and its production during exercise might facilitate inter-organ crosstalk. 261 

 262 

Fetuin-A 263 

Fetuin-A is a 64 kDa glycoprotein known as an endogenous ligand for Toll-like receptor 4 264 

(TLR4) and encoded by the AHSG gene (121). This receptor is expressed in several organs 265 

and more specifically in tissues involved in substrate metabolism such as the liver (54), 266 

adipose tissue (127) and skeletal muscle (47). Fetuin-A has also been shown to bind the β 267 

subunit of the insulin receptor (52). 268 

 269 

A/ Fetuin A in metabolic disease 270 

Much like FGF21, Fetuin-A has been proposed as a biomarker for metabolic diseases (122). 271 

For example, in a large cohort of  3170 community-living elderly individuals, a ten year 272 

follow up revealed that higher plasma Fetuin-A was associated with an increased incidence of 273 

T2D (70). More generally, it has been reported that circulating levels of Fetuin-A are 274 

positively correlated with impaired glucose tolerance, insulin resistance, T2D and liver 275 

fibrosis (119, 120, 152, 175), while an association with hepatic fat accumulation remains 276 

unclear (7). Significantly, several works assert that Fetuin-A might play a pivotal role in the 277 

pathogenesis of metabolic disorders. Firstly, data from transgenic mice demonstrate that 278 

Fetuin-A participates in the onset of metabolic dysfunction (106, 107). Indeed, Fetuin-A KO 279 

mice were protected from the deleterious effects of high fat diet with improved glucose 280 

clearance rate. This was associated with a higher insulin-stimulated phosphorylation of insulin 281 

receptor and the downstream signalling molecules MAPK and Akt in both liver and skeletal 282 



muscle (107). Secondly, it has been reported that a single injection of fetuin-A inhibits 283 

insulin-stimulated insulin receptor autophosphorylation and IRS-1 phosphorylation in the 284 

liver and skeletal muscle of rats suggesting that fetuin-A may participate in the development 285 

of insulin resistance. Finally, in vivo and in vitro models of insulin resistance reinforce the 286 

idea that Fetuin-A is upregulated and released in the context of metabolic disruption. In vivo, 287 

it was observed that the expression of Fetuin-A mRNA in liver was increased by a high fat 288 

diet in rats (96). Also, F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin 289 

protein ligase involved in Fetuin-A ubiquitination and degradation, is markedly 290 

downregulated in the liver of obese patients (181). In vitro, Takata and colleagues reported 291 

that glucose infusion increased Fetuin-A protein expression and AHSG transcription through 292 

the activation of ERK1/2 signalling in HepG2 cells (155). Also, palmitate incubation 293 

increased Fetuin-A protein expression and secretion through activation of NF-κB in HepG2 294 

cells and rat hepatocytes (33). When secreted, Fetuin-A represents an endogenous ligand for 295 

TLR4 through which FFA induces insulin resistance, macrophage infiltration and 296 

inflammation in adipocytes (121, 150). It is important to note that TLR4 KO mice have been 297 

shown to be protected from insulin resistance induced by lipid infusion or by HFD (139). 298 

Similarly, TLR4 activation in adipocytes resulted in insulin resistance (144). An effect of 299 

Fetuin-A has also been shown in the pancreas. While Fetuin-A promotes lipotoxicity of β-300 

cells through a TLR4-signaling pathway (138), it also impairs glucose-induced insulin 301 

secretion in a TLR-4-independent manner (49). Finally, Fetuin-A may also promote insulin 302 

resistance by direct binding to the β subunit of insulin receptors, leading to decreased tyrosine 303 

kinase activity of the receptor (52, 105). Together, these results support that Fetuin-A affects 304 

insulin secretion and resistance, adipose tissue inflammation and thus may participate in the 305 

pathogenesis of metabolic disorders.  306 

 307 



B/ Effect of exercise on Fetuin-A 308 

There are only two published articles that have investigated the effect of a single bout of 309 

exercise on Fetuin-A. The results show that a 60min session of cycling/treadmill exercise 310 

(60% of VO2max) does not modify circulating levels of Fetuin-A in both healthy and obese 311 

subjects (137). In obese individuals, serum phosphofetuin-A (Ser312) levels were 312 

immediately increased after a single bout of exercise (60-70% VO2max expending 500 kcals) 313 

which decreased to baseline in 24 hours (104). Interestingly, glucose and insulin during 314 

OGTT were significantly decreased 24 hours after the session of exercise suggesting that 315 

exercise-induced lowering of Fetuin-A might participate in this acute health-benefit of 316 

exercise. 317 

All other studies assessed the effect of chronic exercise on Fetuin-A. In rodents, Sakr et al. 318 

(2014) have shown that 16 weeks of swimming exercise in male Sprague Dawley rats 319 

suffering from metabolic syndrome significantly decreases Fetuin-A serum levels and 320 

improves HOMA-IR index (135). Similar findings were reported in human by Malin et al 321 

(2013) who studied the effect of 7 days of endurance training (60min at 85%HRmax) on 322 

plasma Fetuin-A concentrations in obese patients with NAFLD (99). The authors observed a 323 

significant decrease in circulating Fetuin-A which was positively correlated with a reduced 324 

insulin resistance index and improved glucose tolerance. Later, the same team revealed that 325 

12 weeks of endurance training induced a significant decrease of plasma Fetuin-A, which 326 

correlated with a decrease in hepatic, but not skeletal muscle or adipose insulin resistance 327 

(100). Interestingly, the effect of exercise on the decrease of Fetuin-A levels was not 328 

associated with a change in hepatic triglyceride content (99). One plausible explanation would 329 

be that exercise-induced changes in fetuin-A may relate to changes in blood lipids rather than 330 

liver fat content. Indeed, Lee and colleagues reported that the decrease in plasma fetuin-A and 331 

FFA interacted to improve glucose infusion rate in sedentary and overweight disglycemic 332 



men in response to 12 weeks of concurrent training (90). Importantly, the decrease in plasma 333 

concentration of fetuin-A predicted changes in gene expression related to inflammatory TLR-334 

signalling in macrophages in adipose tissue.  335 

 336 

It is now well established that chronic exercise is beneficial for diseases associated with low-337 

grade inflammation such as obesity, T2D, NAFLD or NASH (18, 75, 76). Altogether, we 338 

could hypothesize that exercise-induced lowering of fetuin-A through the downregulation of 339 

TLR4 pathway is one mechanism that participates in this anti-inflammatory process. Also, 340 

these studies suggest that regular exercise improves whole body and liver insulin sensitivity in 341 

patients with metabolic disease by decreasing circulating Fetuin-A levels. Thus, if exercise 342 

regulates Fetuin A expression, this might thus be one mechanism by which physical activity 343 

can influence the development of metabolic disease. One major limitation is that we are 344 

lacking studies examining the effect of a single bout of exercise on hepato-splanchnic 345 

production of fetuin-A. Also, it would be interesting to investigate the cellular modifications 346 

of the Fetuin-A signalling pathway in the liver in response to exercise.  347 

 348 

Angiopoietin-like protein 4 (ANGPTL4) 349 

Angiopoietin like protein 4 (ANGPTL4) a 45–65 kDa glycosylated and secreted protein 350 

which belongs to the angiopoietin-like gene family. ANGPTL4 mRNA is expressed in liver 351 

but also in adipose tissue and to a lesser extent in skeletal muscle (78).  352 

 353 

A/ ANGPTL4 in metabolic disease 354 

Little is known about the determinants of plasma ANGPTL4 and its clinical relevancy in 355 

metabolic disorders. So far, a clear, positive relationship with plasma FFA has been shown 356 

(78, 83, 132). Furthermore, obese subjects generally have higher levels of plasma ANGPTL4 357 



while an association with OGTT- and hyperinsulinemic-euglycemic clamp–derived indexes of 358 

insulin sensitivity are not clear (146). It is well established that ANGPTL4 participates in the 359 

regulation of lipid metabolism via the stimulation of lipolysis in adipocytes in a fasting state 360 

(53) and the inhibition of lipoprotein lipase (LPL) activity (88). LPL is an enzyme responsible 361 

for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins resulting in 362 

FFA which can be either stored or oxidized. Thus, overexpression of ANGPTL4 in mice 363 

resulted in a dramatic increase in circulating triglycerides and cholesterol, associated with a 364 

decrease in LPL activity, compared with wild-type littermates (85). Concerning glucose 365 

metabolism, the role of ANGPTL4 is unclear. Overexpression of Angptl4 by adenovirus 366 

improved glucose tolerance in mice compared with control, and reduced hepatic glucose 367 

production in rat hepatocytes (171). On the contrary, hyperinsulinemic-euglycemic clamp 368 

analyses revealed that whole-body transgenic overexpression of ANGPTL4 causes impaired 369 

glucose utilisation and insulin resistance, and higher insulin-mediated suppression of glucose 370 

production in the liver (94). Recently, Janssen and colleagues investigated the effect of whole-371 

body deletion of ANGPTL4 on glucose homeostasis and metabolic function using a diet-372 

induced obesity model (73). The authors observed that ANGPTL4
−/−

 mice exhibited elevated 373 

fat mass, visceral fat mass and inflammation but, interestingly, improved glucose tolerance 374 

compared with wild type controls. Specific adipose tissue deletion of ANGPTL4 also resulted 375 

in improved glucose metabolism, associated with decreased ectopic lipid deposition in the 376 

liver and skeletal muscle (8). Overall, ANGPTL4 seems to display a dichotomous effect on 377 

lipid and glucose metabolism. 378 

 379 

B/ Effect of exercise on ANGPTL4 380 

Kersten and colleagues (2009) first reported that endurance cycling exercise (50% VO2max for 381 

2 h) increased ANGPTL4 circulating levels in fasted but not fed young healthy males (78). 382 



Lately, micro-array analysis of vastus lateralis samples following a single bout of one-legged 383 

cycle exercise (60min at 50% of maximum workload (Wmax)) revealed a significant increase 384 

in ANGPLT4 mRNA, interestingly in both legs with a more pronounced elevation in the non-385 

exercising limb (21). To better understand this difference and the role of ANGPTL4 in 386 

exercise-induced metabolic adaptations, Catoire and colleagues repeated this one leg exercise 387 

protocol to bring to light the regulatory mechanism (20). The authors revealed that induction 388 

of ANGPTL4 in non-exercising muscle is mediated by elevated plasma free fatty acids via 389 

PPARδ, presumably leading to prevent fat overload and provide fatty acids to the active 390 

skeletal muscle. However, it is unclear whether the increase in circulating ANGPTL4 levels is 391 

triggered by an increased mRNA and production of ANGPTL4 from skeletal muscle or 392 

whether other tissues contribute as well. Recently, an elegant investigation from Ingerslev and 393 

colleagues depicted the mechanism of ANGPTL4 production in response to exercise (68). By 394 

assessing arterial-to-venous differences over the leg and the hepato-splanchnic bed, the 395 

authors revealed that the increase in plasma ANGPTL4 in exercising humans is liver-derived 396 

with no contribution of the exercising muscles. Moreover, when exercise was performed 397 

under pancreatic clamp to inhibit the increase in glucagon-to-insulin ratio and FFA, 398 

ANGPTL4 production was blunted. This suggests that glucagon-to-insulin ratio and FFA 399 

plays a pivotal role in ANGPTL4 production. In vitro, hormonal infusions revealed that the 400 

glucagon-to-insulin ratio through the activation of the cAMP-PKA pathway triggered 401 

ANGPTL4 mRNA production in hepatocytes (68). Together, these data suggest that 402 

ANGPTL4 is an exercise-induced hepatokine and that the skeletal muscle is not involved in 403 

the increase of the plasma concentration. Notwithstanding, ANGPTL4 production by the 404 

skeletal muscle during exercise may have an autocrine function (20, 146). Furthermore, while 405 

a single bout of endurance exercise (60min at 14m.min−1 and 14° inclination) increased 406 

mRNA expression of ANGPLT4 in liver of mice (65), it is unclear whether hepatocytes are 407 



responsible for the increase of the serum protein level in response to exercise in this rodent 408 

model. Also, Norheim and colleagues observed a significant increase in serum concentration 409 

of ANGPTL4 in response to 60min of cycling (70% of VO2max) which was even more 410 

pronounced in dysglycemic subjects compared to controls (116).   411 

 412 

Regarding chronic exercise, little is known about the impact of endurance training on 413 

circulating ANGPTL4. In healthy humans, Catoire et al. (2014) observed that 2 weeks (a 414 

session of 45 min, 3-min intervals at 70% and 35% Wmax alternated with a session of 120 415 

min at 50% Wmax) or 12 weeks of endurance training (three times per week for 47.5 ± 2.5 416 

min at 40% VO2max) did not alter circulating ANGPTL4 (20). In obese patients, it has been 417 

shown that 6 months of endurance training (3 times per week for 60-75 min at 70% of heart 418 

rate (HR) reserve) resulted in a significant weight loss and an increase of serum ANGPTL4 419 

(31).  420 

 421 

Physical activity triggers short- and long-term adaptations to supply the energetic demands of 422 

the body. Lipid metabolism is one of the key components and multiple mechanisms underpin 423 

the adaptive responses to acute and chronic exercise. We describe here work suggesting that 424 

ANGPTL4 regulates LPL activity and thus, plays a pivotal role in lipid metabolism. As 425 

ANGPTL4 is an exercise-induced hepatokine, this mechanism could participate in the 426 

adaptation of lipid metabolism to physical activity. However, it is now necessary to decipher 427 

whether production of ANGPTL4 during exercise participates in the health-benefits of 428 

physical activity to prevent and treat metabolic disease. Finally, as ANGPTL4 appears to play 429 

an important role in skeletal muscle lipid metabolism (20), this hepatokine might participate 430 

in exercise-induced inter-organ crosstalk between the liver and the skeletal muscle.  431 

 432 



Follistatin (Fst) 433 

Fst is a glycosylated plasma protein, which is a member of the TGFβ superfamily. Fst was 434 

first described for its role in reproduction (86), but is also implicated in the regulation of the 435 

skeletal muscle mass (134). Recently, it was reported that Fst is highly expressed in the liver 436 

but also in skeletal muscle and white and brown adipose tissues (17, 57). There are two Fst 437 

isoforms: Fst 288 and Fst 315 (140). 438 

 439 

A/ Fst in metabolic disease 440 

It is thought that Fst levels are increased in patients with T2D, NAFLD and NASH compared 441 

with control subjects and that they correlate positively with HbA1c, fasting blood glucose, 442 

and impaired glucose tolerance (58, 60, 176). Also, Polyzos and colleagues assessed the 443 

circulating levels of Fst in lean and obese subjects and patients with NAFLD or NASH (128). 444 

There was no difference between subjects but Fst levels were associated with NASH within 445 

NAFLD patients. The authors suggested that Fst may underlie the progression from NAFLD 446 

to NASH (128). Finally, recent findings reported that bariatric surgery significantly decreased 447 

Fst and this correlates with improved Hba1c in obese patients with diabetes (160). In line with 448 

these observations, in vivo and in vitro investigations support the idea that Fst plays a pivotal 449 

role in glucose metabolism. It has been shown that Fst participates in systemic metabolic 450 

dysregulation by hepatic FoxO1 activity (160). Also, during HFD, overexpression of Fst315 451 

by adenovirus in mice impaired the glycaemic response to OGTT compared with control mice 452 

(160). Interestingly, Fst315-KO mice exhibit steatosis while hepatic insulin signalling, as 453 

assessed by phospho-Akt in response to insulin injection, was improved (163). Recently, an 454 

elegant study from Tao and colleagues suggested that Fst targets hepatic glucose production 455 

(160). In a mouse model of insulin resistance (LDKO), silencing the hepatic Fst allele 456 

restored glucose tolerance and insulin levels compared with control LDKO. Also, 457 



hyperinsulinemic-euglycemic clamps revealed an improvement in insulin sensitivity, through 458 

an increase in Akt signalling in white adipose tissue and a decrease in hepatic glucose 459 

production. Thus, it appears that Fst is a hepatokine which participates in the development of 460 

metabolic disorders. However, further clinical studies are needed to clearly establish the role 461 

of Fst in metabolic disorders. Also, it is important to note that Fst seems to have opposite 462 

functions depending on the tissues. For example, overexpression of Fst in pancreatic β-cells 463 

improved fasting blood glucose in db/db mice (180) suggesting a complex role of Fst in 464 

metabolism. 465 

 466 

B/ Effect of exercise on Fst 467 

Fst was studied in the area of exercise because of its role in regulating skeletal muscle 468 

hypertrophy by antagonizing myostatin (32, 34, 51). Recent findings reported that Fst is 469 

released in the bloodstream in response to an acute bout of exercise. A first study performed 470 

by Hansen and colleagues revealed that 3h of cycling at 50% of VO2max increased circulating 471 

levels of Fst but not Fst mRNA content in the vastus lateralis of healthy subjects (57). When 472 

the authors assessed the response of 1h of swimming in mice in several tissues, they observed 473 

a marked increase of mRNA content and protein level of Fst in the liver but not in skeletal 474 

muscle. This prompted the authors to determine the source of Fst during exercise in humans 475 

using liver vein catheterization (61). A significant increase in Fst in both hepatic vein and 476 

artery in response to 2h of cycling at 60% of VO2max was observed. More importantly, 477 

arterial-to-venous differences was negative during the exercise session demonstrating a 478 

constant hepatic secretion of Fst from the splanchnic bed. This secretion can partly be 479 

explained by an increase in glucagon to insulin ratio during exercise (60). Indeed, combined 480 

somatostatin-glucagon infusion increased plasma Fst while its secretion in response to 481 

exercise during a pancreatic clamp was partially blunted in humans (60, 61). This hypothesis 482 



was reinforced by in vitro investigations that revealed that glucagon increases, and insulin 483 

inhibits Fst production through the secondary messenger cAMP in hepatocytes (61). It is 484 

important to note that Fst secretion during exercise is impaired in patients with T2D (60) but 485 

not in obese subjects (137). Together, these studies suggest that an acute bout of exercise 486 

leads to Fst liver secretion.  487 

While the acute regulation of Fst by exercise is partially characterised, the relationship 488 

between chronic exercise and Fst has not been extensively studied. It has been reported that 489 

resistance training is associated with an increase in circulating Fst in elderly overweight 490 

women (66). Also, high-intensity interval training (HIIT) increase Fst levels in sedentary but 491 

not life-long active elderly subjects (36). Regarding hepatic Fst, one study observed that 4 492 

weeks of swimming training decreased similarly mRNA content of Fst in both lean and obese 493 

rats when compared with controls (141).  494 

 495 

Regular physical activity is well known to promote glucose control and insulin sensitivity. We 496 

summarize here that Fst may participate in the regulation of these processes and in the 497 

development of metabolic disorders. Evidence suggests that Fst is an exercise-induced 498 

hepatokine, but little is known about its long-term adaptation to regular exercise. However, 499 

due to its biological properties mentioned above, it could be speculated that Fst participates in 500 

the cellular adaptation to exercise and to metabolic disease prevention. Also, Fst is involved 501 

in skeletal muscle mass hypertrophy and in β-cell function, and could mediate exercise-502 

induced inter-organ crosstalk. 503 

 504 

Methodological limitations and future directions. 505 

In this review, we aimed to summarize the current literature regarding some proposed 506 

hepatokines involved in metabolic functions that are secreted in response to an acute session 507 



of exercise and their regulation in response to training. While results are promising to better 508 

understand the cellular and molecular adaptations to exercise, several challenges need to be 509 

overcome. From a methodological point of view, key points need to be addressed before 510 

considering a protein as an exercise-induced hepatokine that participates in the health-511 

promoting benefits of exercise. Firstly, clearly demonstrating a protein is secreted by the liver 512 

is technically challenging and we have mentioned how researchers have used arterial-venous 513 

difference analyses to overcome this (59, 61, 68). Secondly, determining the key function of a 514 

protein released from the liver is difficult. However, the generation of hepatocyte-specific 515 

gene knockout mouse models is a useful approach. For example, employing the Cre/Lox 516 

system, Markan and colleagues generated a model of mice lacking FGF21 specifically in the 517 

liver (101) which could be used to assess if FGF21 is necessary for the beneficial metabolic 518 

adaptions to exercise. Similarly, liver specific adenoviral overexpression of FGF21 (93) could 519 

help clarify the role of FGF21 in training.  520 

Another challenge is to discover new exercise-responsive hepatokines that are released from 521 

the liver to influence whole-body glucose or lipid homeostasis. To do so, deep proteomic 522 

analyses associated with mass spectrometry may allow identification of new hepatokine 523 

candidates. Recently, Meex and colleagues suggested that purified hepatocytes can secrete 524 

more than 500 proteins with 114 differentially expressed under steatotic conditions (108). A 525 

similar approach could be envisaged to test the effect of exercise upon the liver secretome. 526 

When identified, specific attention should be paid on the cellular mechanisms involved in 527 

hepatokine expression, secretion and action. For instance, there are two proposed mechanisms 528 

that trigger hepatokine release in response to exercise: glucagon to insulin ratio and FFA 529 

levels (Fig. 1). The hormonal changes during exercise generally occur to ensure 530 

cardiovascular adjustments, energy substrate disposal and/or hydration (55). Thus, it could be 531 

hypothesized that hepatokine secretion acts as a conduit for the adaptation to exercise. 532 



Regarding their actions, we reported here that hepatokines are secreted in to the bloodstream 533 

in response to a single bout of endurance exercise. As hepatokines can interact with other 534 

tissues, we can speculate that exercise-induced secreted protein from the liver participates in 535 

inter-tissue crosstalk. 536 

It is well accepted that whole body homeostasis is influenced differently by exercise 537 

depending on its modality and the conditions in which it is performed. There exists a broad 538 

range of resistance or aerobic exercises such as classical moderate intensity continuous 539 

training (MICT), as well as the more recently proposed HIIT programs or sprint interval 540 

training (SIT) (77). Interestingly, it appears that short period HIIT training is well tolerated by 541 

patients and has a pronounced impact on glycemic control in patients with T2D (46). Thus, 542 

further studies are warranted to determine the optimal modalities of exercise that trigger 543 

hepatokine secretion to help the clinician to prescribe physical activity. In addition, nutritional 544 

status (fed vs fasted) or strategies (ie post exercise carbohydrate consumption) should be 545 

investigated in the context of hepatokine secretion. For example, exercise-induced plasma 546 

ANGPTL4 increases were blunted in the fed compared with the fasted state (78).  547 

Finally, the aforementioned studies regarding exercise and hepatokines were performed in a 548 

broad range of subjects with respect to sex, age and metabolic disruptions. Thus, clinical 549 

studies are warranted in large cohort of patients with a long term follow up to decipher the 550 

contribution of hepatokines in metabolic adaptations to physical activity and, ultimately, 551 

improve the management of obesity, insulin-resistance, T2D, NAFLD and NASH through 552 

adapted training programs.  553 

 554 

Review criteria 555 

Searches for original articles or  abstracts published between 1990 and December 2018 556 

focusing on hepatokines in metabolic diseases and in exercise were performed in MEDLINE 557 



and PubMed. The search terms used were “liver”, “exercise”, “physical activity”, 558 

“hepatokine”, “fetuin‑ A”, “follistatin”, “fibroblast growth factor 21”, “angiopoietin-like 559 

protein 4”, “obesity”, “inflammation”, “type 2 diabetes”, “nonalcoholic fatty liver disease” 560 

and “insulin resistance”. All articles identified were in the English-language. We apologise in 561 

advance to any researchers whose relevant work may have been missed using this criteria. 562 
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 Table 1. Metabolic roles of hepatokines and their systemic regulation by metabolic diseases and exercise. 1124 

Hepatokines Metabolic roles 

Biomarkers in 

metabolic 

diseases 

Acute 

exercise 

Chronic 

exercise 

(metabolic 

diseases) 

Refs 

Healthy 
Metabolic 

diseases 

α1-microglobulin Promotes adipose tissue inflammation - - - - (56) 

Activin βE 

Stimulates energy expenditure and increases insulin 

sensitivity through brown and beige 

adipocyte activation 

- - - - (62) 

ANGPTL4 
Major role in lipid metabolism, systemic levels of lipids 

and liver steatosis. 
? ↗ ↗ ↗ 

(68, 116, 

164, 171)  

DPP4 
Promotes adipose tissue inflammation and insulin 

resistance 

↗ (if 

inflammation) 
- - ↘ (50, 130) 

EDA Promotes insulin resistance 
↗ (mouse 

only) 
- - - (10) 

Fam3C 
Improves insulin resistance and fatty liver, suppressing 

hepatic gluconeogenesis 
- - - - (26) 

Fetuin A 
Promotes adipose tissue inflammation, lipotoxicity of β-

cells and insulin resistance 
↗ - ↔  (137, 162) 

Fetuin B Impairs glucose tolerance ↗ - - - (108, 125) 

FGF21 

Improves glucose tolerance, insulin sensitivity, steatosis, 

lipids profile and β-cell function. Promote adipose tissue 

browning 

↗ ↗ ↔ ? 
(59, 60, 

143, 147) 

Follistatin 
Promotes glucose metabolism disruption by enhancing 

hepatic glucose production 
↗ ↗ ↔  - 

(57, 58, 

60, 160) 

Hepassocin/ 

HFREP1 
Promotes insulin resistance and hepatic lipid accumulation ↗ - - - (167, 168) 

HSP72 
Promotes insulin sensitivity and mitochodrial function, 

reduces hepatic lipid accumulation and inflammation 
↘ ↗ - - 

(6, 28, 40, 

102) 



LECT2 
Promotes insulin resistance, hepatic lipid accumulation 

and inflammation 
↗ ↔ ↔  (67, 137) 

MSP 

Promotes hepatic inflammation but conversely inhibit 

hepatic lipid accumulation and regulates hepatic 

gluconeogenesis 

- - - - (23) 

RBP 4 
Promotes hepatic lipid accumulation and adipose tissue 

inflammation 
↗ ↔ ↗ ? 

(92, 112, 

169) 

Selenoprotein P 

Impair insulin signalling and secretion, and dysregulate 

glucose metabolism. Deficiency of selenoprotein P 

increases exercise responsiveness through upregulation of 

reactive oxygen species in muscle. 

↗ ↔ ↔ ↔ (111, 137) 

SHBG 
Prevent obesity and fatty liver suppresses inflammation 

and lipid accumulation in adipose tissue 
↘ - - ↗ (133, 142) 

Tsukushi Decrease adipose tissue thermogenesis 
↗ (mouse 

only) 
- - - (170) 

 1125 

↗ Systemic increase; ↘ Systemic decrease; ↔ No change; - No data; ? Conflicting results; ANGPTL4, angiopoietin-like protein 4; DPP4, 1126 

Dipeptidyl peptidase 4; EDA, ectodysplasin A; Fam3C, Family with sequence similarity 3C; FGF21, Fibroblast growth factor 21; HFREP1, 1127 

Hepatocyte-derived fibrinogen-related protein 1; HSP72, Heat shock protein 72; LECT2,  Leukocyte cell-derived chemotaxin-2; MSP, 1128 

Macrophage stimulating protein; RBP4, Retinol-binding protein 4; SHBG, Sex Hormone Binding Globulin.  1129 



Figure legend 1130 

 1131 

Fig. 1 Exercise-induced hepatokines production and release. Prolonged endurance 1132 

exercise promotes an increase in glucagon-to-insulin ratio and FFA. This results in the 1133 

activation of two distinct pathways ATF4/cAMP/PPARα and cAMP that trigger FGF21, Fst 1134 

and ANGPTL4 production and release. This secretion is altered by metabolic diseases and 1135 

nutritional state (fasting vs fed). Other mechanisms might participate in the production of 1136 

exercise-induced hepatokine such as FGF21, Fst, ANGPTL4 and Fetuin-A.  1137 
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 1139 


