
HAL Id: hal-02972434
https://hal.science/hal-02972434

Submitted on 1 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Restricted optimal paths to transition in a plane
Couette flow

Frédéric Alizard, Lionel Le Penven, Anne Cadiou, Bastien Di Pierro, Marc
Buffat

To cite this version:
Frédéric Alizard, Lionel Le Penven, Anne Cadiou, Bastien Di Pierro, Marc Buffat. Restricted optimal
paths to transition in a plane Couette flow. European Journal of Mechanics - B/Fluids, 2021, 85,
pp.261-275. �10.1016/j.euromechflu.2020.10.004�. �hal-02972434�

https://hal.science/hal-02972434
https://hal.archives-ouvertes.fr


Restricted optimal paths to transition in a plane
Couette flow

Frédéric Alizard, Lionel Le Penven, Anne Cadiou, Bastien Di Pierro and Marc
Buffat
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Abstract

To identify laminar/turbulent transition paths in plane Couette flow, a varia-

tional formulation incorporating a restricted nonlinear (RNL) system that re-

tains a single streamwise Fourier mode, is used. Considering the flow geome-

try originally used by Monokrousos et al (Phys. Rev. Lett., vol. 106, 2011,

134502 ) and Duguet et al (Phys. of Fluids, vol. 25, 2013, 084103) and the

same Reynolds numbers (Re), we show that initial perturbations obtained by

RNL optimizations exhibit spatial localization. Two optimal states are found

with comparable initial energy levels above which the flow structure evolves to

turbulence. It is found that this level is twice that of the minimal threshold

energy which has been obtained using the full nonlinear equations (Duguet et

al Phys. of Fluids, vol. 25, 2013, 084103 ). Especially, the Re dependence of

energy thresholds is studied within a RNL optimization framework for the first

time, with evidence for a O
(
Re−2.65

)
scaling close to the one found using the

full Navier-Stokes equations O
(
Re−2.7

)
. The first state is obtained for a short

target time. It is symmetric with respect to the mid-plane y = 0 and spanwise

localized. For a long target time, the optimal appears to be localized in both

spanwise and wall-normal directions. The mechanisms highlighted within the

scope of nonlinear nonmodal theory (Kerswell Ann. Review of Fluid Mech., vol.

50, 2018, 319-345 ): Orr mechanism, oblique wave interaction, lift-up, streak
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breakdown, localized pocket of turbulence and turbulence spreading, are also

observed in the RNL simulations. Although greatly simplified, the RNL sys-

tem provides a good approximation of these different fundamental mechanisms.

The analysis gives then some insight into the potential of RNL optimizations

for estimating Re scaling laws and routes to turbulence for shear flows.

Keywords: RNL optimisations, subcritical transition.

1. Introduction

Streamwise streaks are elongated regions of defect or excess of streamwise

velocity. They play a fundamental role in the laminar-turbulent transition pro-

cess for all canonical wall-bounded flows (Couette, channel or flat-plate bound-

ary layer flows, Klebanoff (1971); Reddy et al. (1998); Andersson et al. (2001)).5

Streaks are generated by rolls through the linear lift-up mechanism (Landhal,

1980). This mechanism constitutes a key element to explain transition in sub-

critical conditions, i.e. in the absence of linear modal instability (see for a

recent review Brandt (2014)). For parallel flows, nonmodal linear theory has re-

vealed that streamwise invariant streaks are the perturbations which experience10

the largest transient energy growth (Schmid and Henningson, 2001). However,

nonlinearities have a stabilizing effect on the growth of streaks (Joseph, 1976)

which is the reason why purely linear optimal modes cannot completely explain

subcritical transition.

The experiments of Swearingen and Blackwelder (1987) have first shown that15

streaks may undergo secondary instability, either spanwise symmetric (varicose)

or anti-symmetric (sinuous), and subsequently break down into turbulence (Asai

et al., 2002; Brandt, 2007; Vaughan and Zaki, 2011; Hack and Zaki, 2014). Then,

the determination of the lower bound in kinetic energy threshold for inducing

subcritical transition in shear flows and the corresponding Re-scaling laws have20

been the object of many studies.

A first attempt at establishing the kinetic energy threshold for canonical

flows has been carried out by Reddy et al. (1998). These authors have in-
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vestigated streak instability considering initial optimal perturbations with the

greatest potential for linear transient growth over all possible target times. For25

this streamwise vortex (SV) scenario, they have found that the initial kinetic

energy of rolls causing streak breakdown scales as O(Re−2.2) for plane Cou-

ette flow (pCf). Similarly, Reddy et al. (1998) have found that the kinetic

energy threshold for transition initiated by a pair of oblique waves (OW) scales

as O(Re−2.5). These scalings have been refined by Duguet et al. (2010) with30

evidence for a O(Re−2) scaling for both OW and SV scenarios

More recently, Karp and Cohen (2014, 2017) showed that the onset of sec-

ondary instability is not necessarily correlated with initial condition maximiz-

ing the linear energy growth. The authors have shown that the optimal set of

parameters are rather associated with initial disturbances which generate the35

strongest inflection point due to nonlinearities. In particular, Karp and Cohen

(2014, 2017) concluded that both the spanwise wavenumber and initial threshold

energy differ from the values based on optimal transient energy growth. Follow-

ing this line of thought, Cossu et al. (2011) explored the streak breakdown in

a two-dimensional parameter space consisting to the amplitude of streaks and40

their secondary perturbation. Their numerical experiments on subcritical shear

flows illustrate that the maximal energy growth condition is not an essential

criterion for transition. It is rather about whether or not finite-amplitude

disturbances can approach the edge of chaos before being repelled towards the

turbulent attractor (Skufca et al., 2006). For parallel flows, the trajectory evolv-45

ing on the edge of chaos is organized around relative attractors known as edge

states, which are invariant solutions of the Navier-Stokes equations, and their

heteroclinic connections (Duguet et al., 2008).

Invariant solutions also called exact coherent states (ECS) have been found

in various shear flows including pCf (Nagata, 1990; Clever and Busse, 1997),50

channel flow (Itano and Toh, 2001), pipe flow (Duguet et al., 2008) or boundary

layers (Khapko et al., 2016). For narrow periodic boxes, ECS arise through a

saddle-node bifurcation at some critical Reynolds number Re = Rs (Nagata,

1990). For Re > Rs, the ECS separate into upper and lower branches. From
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a dynamical system point of view, the lower branch solutions are embedded55

in the laminar-turbulent boundary and correspond to the edge states. These

solutions share some basic features that are well described by the self-sustaining

process (SSP) (Benney, 1984; Waleffe and Kim, 1997; Waleffe, 2003, 1998):

streamwise vortices induce streaks by lift-up effect and by quadratic interactions

of a travelling wave (an unstable eigenmode or a superposition of eigenmodes60

of the streak), these streaks in turn regenerate rolls. It should be noted that

the fundamental mechanism enabling the self-sustainment of the vortices is still

a subject of debate (either due to a vortex stretching mechanism, Schoppa and

Hussain (2002) or an advection term, Hamilton et al. (1995)).

Within the SSP theory, Waleffe (2003) recovered the Nagata/Clever equilib-65

rium state for pCf (Nagata, 1990; Clever and Busse, 1997). DNS of Wang et al.

(2007) illustrated that lower branch states in pCf have an asymptotic struc-

ture that consists of O(1) streaks, streamwise rolls and a superimposed wave

of O(Re−1) with negligible higher harmonics. For large Re, the fundamental

mode concentrates along the critical layer. However, these pioneering studies70

have been carried out in constrained computational boxes that cannot describe

space-time dynamics observed experimentally in large domains (Bottin et al.,

1997). In this context, Schneider et al. (2010); Duguet et al. (2009) first found

edge states in wide and long domains that are localized in spanwise or both

spanwise and downstream directions for pCf. For the same flow case, Pershin75

et al. (2019) characterized the inherent dynamics of spanwise localized states.

For low Re, they showed that the flow exhibits very long-lived chaotic transient

dynamics before relaminarizing.

This geometrical picture suggests that the estimation of the lower bound in

kinetic energy threshold for subcritical shear flows could be improved. Within80

this scope, the concept of minimal perturbation, that represents the point where

the distance (for a given norm) between the edge and the basic laminar state is

the shortest, has been introduced by Viswanath and Cvitanovic (2009); Kerswell

(2018). This “minimal seed” has the lowest energy on the edge (noted Ec, here-

after) and can only be computed using nonlinear optimization methods. Pringle85
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and Kerswell (2010); Pringle et al. (2012) conjectured that the minimal seed is

associated with the perturbation of initial energy E0 that experiences the largest

energy growth for asymptotically large target time and which is such that for any

E0 exceeding a critical threshold Ec, the optimization problem fails to converge

to a smooth solution (i.e. a turbulent end state). A picture that has emerged90

for all flows is that the minimal seed is always spatially localized in all directions

(Monokrousos et al., 2011; Rabin et al., 2012; Cherubini and De Palma, 2015;

Pringle and Kerswell, 2010; Cherubini et al., 2015). The flow perturbation is

characterized by an initial pattern that opposes the underlying mean shear di-

rection. Under the action of the Orr mechanism, the disturbance unpacks and95

gains in energy over a fast time scale as it rotates and aligns with the mean flow

direction. This is followed by an oblique wave interaction mechanism that feeds

energy into rolls. Then, the streamwise vortices generate streaks through the

lift-up effect. For an initial amplitude just below Ec, the streak field is linearly

stable and the flow is attracted towards the laminar state. For an initial condi-100

tion just above Ec, the streak field is unstable and breaks down to turbulence

(Kerswell, 2018). The laminar/turbulent process for the minimal seed in pCF

have been thoroughly investigated by (Monokrousos et al., 2011; Rabin et al.,

2012; Duguet et al., 2013) where the preferential route to transition exhibits all

the different steps described above. Duguet et al. (2013) have also suggested a105

new scaling law for the minimal energy perturbation Ec = O
(
Re−2.7

)
, which is

significantly smaller than previous estimates (O
(
Re−2

)
). In that same spirit,

Cherubini et al. (2015) found a new scaling law for the kinetic energy threshold

associated with asymptotic suction boundary layers (Ec = O
(
Re−2

)
). This

scaling differs from classical subcritical transition paths based on oblique waves110

(OW) or streamwise vortices (SV). What is notably fascinating is the fact that

both the edge state and minimal seed exhibit well-known linear mechanisms

(Orr, lift-up, secondary streak instability) that interact nonlinearly through the

Navier-Stokes equations (Kerswell, 2018). This observation confirms the inter-

est for the development of a simplified set of equations that aims at modeling115

the dynamics close to the edge state.
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A first attempt at simplifying the description of ECS in shear flows (pCf

or plane channel flow) is given by Hall and Sherwin (2010); Blackburn et al.

(2013) within the framework of the vortex/wave interaction (VWI) theory (Hall

and Smith, 1991). In the limit of large Re, they reproduced the ECS found by120

Nagata (1990) by reduction of the Navier-Stokes equations to a two-dimensional

problem for the streamwise-averaged velocity coupled to a linear inviscid eigen-

value problem for the instability wave where only a single streamwise Fourier

mode is retained. The nonlinear feedback term is present in the streamwise-

averaged part and maintains the amplitude of the streak. It further emphasized125

the predominant role of the critical layer of thickness O(Re−1/3) by providing

the appropriate interaction between the wave and the mean flow. In particular,

Hall and Sherwin (2010) have shown that VWI theory is in perfect agreement

with the numerical simulations of Wang et al. (2007). In that respect, the

mechanism behind SSP can be seen as a finite-Reynolds number interpretation130

of the high-Re VWI theory. For a pCf, Deguchi et al. (2013); Deguchi (2015)

made further theoretical progress to connect some asymptotical states given by

VWI theory with localized ECS. The authors derived an energy scaling associ-

ated with a localized minimal state which closely matches the one found for the

minimal seed (O(Re−2.5) to compare with O(Re−2.7)). Beaume et al. (2014,135

2015) extend the previous approach by retaining the leading-order diffusion

terms in the streamwise perturbation equation. Interestingly, the formulation

derived by Beaume et al. (2014, 2015) proved to be efficient at low Reynolds

numbers and captures remarkably well the saddle-node bifurcation where the

ECS separates into upper and lower branch states. Similar conclusions have re-140

cently been made by Pausch et al. (2019); Rosenberg and McKeon (2019) using

analogous approximations for plane channel flow and pCf. In the same spirit,

Alizard (2017); Alizard and Biau (2019) showed that this reduced system allows

the computation of spanwise localized ECS and periodic orbits. Thomas et al.

(2015); Farrell et al. (2017) have shown that this restricted nonlinear model145

(RNL) is also able to reproduce essential features of wall-bounded turbulent

flows. In particular, Bretheim et al. (2015, 2018) showed that RNL models with
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only a few number of selected streamwise Fourier modes (i.e. the band-limited

RNL) are successful in predicting both mean flow and second-order statistics.

Such reduction of wall-turbulence confirms the ability of RNL models to capture150

ECS embedded in the phase-space of the turbulent attractor.

Biau and Bottaro (2009) carried out nonlinear optimizations based on RNL

equations to identify an optimal path to transition in a linearly stable duct

flow. Using DNS, the authors proved that the resulting nonlinear optimal per-

turbation is able to reach self-sustained turbulence. By varying the value of the155

streamwise wavelength of the perturbation, they identified a cut-off around 300

wall units, below which no transition can be observed. The latter value is of the

same order of magnitude as the minimal flow unit (Jiménez and Moin, 1991) for

turbulence. Finally, the optimal solution exhibits strong similarities with the

nonlinear solution lying on the edge. In the same way as in Biau and Bottaro160

(2009), Pralits et al. (2015) have found that nonlinear optimizations based on

a RNL system with a single streamwise Fourier mode and two spanwise Fourier

modes are successful in finding an optimal path according to the oblique wave

scenario.

While previous studies have significantly enhanced our understanding of165

laminar/turbulent transition for subcritical flows, the minimal threshold en-

ergy obtained through nonlinear optimizations based on the RNL system has

yet to be compared with the one corresponding to the minimal seed. How does

the evolving flow structure of the corresponding nonlinear optimal perturbation

compare with the one computed using RNL optimizations ? Furthermore, the170

generation of streamwise-independent vortices is a fundamental element in the

laminar/turbulent transition process. However, it is not clear if the vortex gen-

eration mechanism is driven by the advection term (Hamilton et al., 1995) or

the vortex stretching term (Schoppa and Hussain, 2002). Finally, most studies

dealing with RNL models focused either on initial steps of transition (Biau and175

Bottaro, 2009) or on fully turbulent flow (Farrell and Ioannou, 2012). Can RNL

models provide the whole picture of laminar/turbulent transition ? The scope

of this paper is to shed some light on these major points. For that purpose, the
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pCf case studied by Monokrousos et al. (2011); Duguet et al. (2013) is investi-

gated. A single Fourier mode for the fluctuation will be retained hereafter that180

prevents any streamwise localization.

The paper is organized as follows. In section 2, we recall the equations of

the RNL model. After presenting the Lagrangian functional to be maximized

and numerical methods in section 3, we compare the kinetic energy thresholds

found using RNL optimizations with those of the literature (Monokrousos et al.,185

2011; Duguet et al., 2013) and analyze the different steps of laminar/turbulent

transition in section 4. A specific attention will be devoted to give physical

insight into the initial streamwise vortex formation mechanism. Finally, section

5 is dedicated to conclusions and perspectives.

2. Restricted non-linear system190

We denote by x, y and z the coordinates in the streamwise, wall-normal

and spanwise directions, respectively. We consider the plane Couette flow of

an incompressible fluid with kinematic viscosity ν between two parallel plates

located at y = ±h. The two plates move in opposite directions with velocity

(±U0, 0, 0). The Reynolds number is defined as Re = U0h/ν. The over-bar will

be used to distinguish quantities which are averaged over a streamwise distance

Lx:

φ (y, z, t) =
1

Lx

∫ Lx

0

φ (x, y, z, t) dx. (1)

The velocity perturbation to the Couette laminar solution (Ub = y, 0, 0) is

decomposed into its streamwise-averaged part U = u and its fluctuation ũ:

u (x, y, z, t) = U (y, z, t) + ũ (x, y, z, t) . (2)

The components u = (u, v, w) will be called streamwise, wall-normal and span-

wise velocities, respectively. For simplicity, U will be referred to as the mean

flow and (U, V,W ) the components of the mean flow distortion: U correspond-

ing to the streak and V,W to the roll components. The pressure is similarly
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split into: p(x, y, z, t) = P (y, z, t) + p̃(x, y, z, t). Using the scales h and U0, vari-

ables and equations will be expressed hereafter in non-dimensional form. We

will consider a minimal RNL system where only a single streamwise component

is retained. The fluctuation is thus expressed as: ũ = ûeiαx + û?e−iαx, where

α = 2π/Lx is the streamwise wave number. Under this hypothesis, only the

components having streamwise wave numbers equal to ±2α contribute to the

nonlinear terms in the equation ũ · ∇ũ − ũ · ∇ũ. These terms are neglected

in the present RNL model which can thus be viewed as a Galerkin truncation

of the Navier-Stokes equations restricted to one streamwise Fourier mode. The

system of equations governing the streamwise-averaged flow reads:

Vy +Wz = 0,

Ut + V (U + Ub)y +WUz = Dv (U)− ∂y (v̂∗û+ v̂û∗)− ∂z (ŵ∗û+ ŵû∗) ,

Vt + V Vy +WVz = −Py + Dv (V )− ∂y (2v̂v̂∗)− ∂z (ŵ∗v̂ + ŵv̂∗) ,

Wt + VWy +WWz = −Pz + Dv (W )− ∂y (v̂∗ŵ + v̂ŵ∗)− ∂z (2ŵ∗w) ,

where Dv = Re−1
(
∂2/∂y2 + ∂2/∂z2

)
,

(3)

associated with homogeneous boundary conditions U = V = W = 0 on the

walls. The Navier-Stokes equations, linearized around the mean flow, are:

iαû+ v̂y + ŵz = 0,

ût + iα (U + Ub) û+ v̂ (U + Ub)y + V ûy + ŵUz +Wûz = −iαp̂+ dv (û) ,

v̂t + iα (U + Ub) v̂ + v̂Vy + V v̂y + ŵVz +Wv̂z = −p̂y + dv (v̂) ,

ŵt + iα (U + Ub) ŵ + v̂Wy + V ŵy + ŵWz +Wŵz = −p̂z + dv (ŵ) ,

where dv = Re−1
(
−α2 + ∂2/∂y2 + ∂2/∂z2

)
,

(4)

together with û = v̂ = ŵ = 0 on the walls. Biau and Bottaro (2009) used

a simplified version of the system (3,4) obtained by considering the following

scaling: streaks are O (1), rolls and the fundamental mode of the instability

wave are O
(
Re−1

)
and its harmonics are o

(
Re−1

)
. However, while the previ-

ous scaling is verified for the lower branch solution, it is not consistent when195

the whole process leading to turbulence is of interest. Indeed, the terms boxed
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in equations (3) have to be balanced in equations (4) to guarantee total energy

conservation. For that, the terms boxed in (4) have to be added. As a conse-

quence, the roll can no longer be negligible in front of streak component and

must also be considered. For the sake of conciseness, (3) will be denoted by200

(F (U, P ) ,∇ ·U) = 0 and (4) as (H (ũ, p̃) ,∇ · ũ) = 0.

3. Optimization based on the RNL system and numerical methods

In the present context, the nonlinear optimization consists in finding the

initial perturbation that, for a fixed level of initial kinetic energy, has the largest

growth for a given target time. First, we introduce the scalar product:〈
u,v

〉
=

1

D

∫
D
u · v dD (5)

whereD is a rectangular parallelepiped bounded by the two plates and having Lx

and Lz as streamwise and spanwise side lengths. The volume ofD isD = 2Lx Lz

and dD = dxdy dz.205

The function to maximize is the total kinetic energy for the perturbation

which is divided in two parts:

Etot (T ) = E (T ) + e (T ) =
1

2

〈
U (T ) ,U (T )

〉
+

1

2

〈
ũ (T ) , ũ (T )

〉
. (6)

associated with the mean flow distortion and the fluctuating part (a sinusoidal

function along x), respectively. The initial time is t = 0 and the target time

at which the energy growth is maximized is noted t = T . Following Biau and

Bottaro (2009); Olvera and Kerswell (2017), we search for the maximum of the

constrained Lagrangian L defined as

L = Etot (T ) + λ

(〈
U0,U0

〉
− 2E0

)
+ ζ

(〈
ũ0, ũ0

〉
− 2e0

)
+

[A,F (U, P )] + [a,H (ũ, p̃)] + [Π,∇ ·U] + [π,∇ · ũ] ,

(7)

with U0 = U (t = 0), ũ0 = ũ (t = 0) and

[u,v] =
1

T

∫ T

0

〈
u,v

〉
dt.
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In the Lagrangian, a = (a, b, c) , A = (A,B,C) , π, Π and λ, ζ are the La-

grange multipliers. To determine the optimal initial perturbation, we write the

first variations of L with respect to the Lagrange multipliers, physical states (u,

U) and the initial perturbations (ũ0, Ũ0) and set them to zero. We recover

equations (3), (4) and their adjoint counterparts. Adjoint equations and tem-210

poral initial and end conditions that close the system of equations are detailed

in the appendix A. The strategy to converge to the solution corresponding to

the maximum energy growth is based on successive time integration of direct

and adjoint systems (similar to the power iteration method used in the linear

framework) starting with an initial guess for the initial perturbation. Finally,215

at each step, both λ and ζ are chosen to ensure that E (0) = E0 and e (0) = e0

are satisfied. In the following, only the case E0 = 0 is considered. Hereafter, the

nonlinear optimal provided by the RNL model will be called either restricted

nonlinear optimal or RNLOPT. One may remark that the function to maximize

used by Biau and Bottaro (2009) and Pralits et al. (2015) is e(t), the kinetic220

energy associated with the fluctuation. Nevertheless, for long times and close

the threshold, the total kinetic energy is mainly driven by its mean flow contri-

bution (see for instance (Duguet et al., 2013)). The restriction to e(t) for the

optimal gain is therefore not fully relevant for large target times.

For numerical integration of the RNL system (either direct or adjoint equa-225

tions), spectral approximations of the velocity field are adopted, using Fourier

expansions in both streamwise and spanwise directions and Chebyshev polyno-

mials in wall-normal direction. The numerical methods are described in Alizard

(2015) and the code has been validated in Alizard (2017). For the full Navier-

Stokes equations, the spectral code developed by Buffat et al. (2011) is used.230

Finally, dealiasing with the 2/3 rule is implemented in the streamwise and span-

wise directions for DNS and only in the spanwise direction for RNL simulations.

In the following, the flow cases investigated by Monokrousos et al. (2011);

Duguet et al. (2013) are considered. The flow is simulated inside a computa-

tional box (Lx, Ly, Lz) = (4π, 2, 2π) with periodic boundary conditions in x and235

z. Four Reynolds numbers are investigated Re = 750, 1500, 2000 and 3000.
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Figure 1: Convergence history for RNL optimizations for Re = 3000, T = 140 and e0 =

9× 10−8. Left: kinetic energy gains e(T ) and E(T ). Right: residual r.

Before dealiasing, accurate resolutions are used with (Ny, Nz) = (81, 64) for

Re = 750, (Ny, Nz) = (81, 96) for Re = 1500 and (Ny, Nz) = (101, 128) for

Re = 2000 and 3000 for RNL simulations. For the DNS, the number of Fourier

modes in the streamwise direction is fixed to Nx = 192.240

4. Results

4.1. Nonlinear optimizations and minimal threshold energy

First, an example of the convergence history is provided in figure 1 for

Re = 3000, T = 140 and e0 = 9 × 10−8. e0 is chosen close to the kinetic

energy threshold. We introduce the residual r =
(
Entot − En−1tot

)
/Entot where the245

superscript n denotes the nth iterate. A similar residual parameter is used by

Cherubini and De Palma (2013). The figure shows that both e(T ) and E(T )

increase rapidly and reach a plateau in 60 iterations. For this target time, the

kinetic energy is dominated by its streamwise averaged part. Then, a slow and

smooth decrease is observed for r. For the present study, the stopping criterion250

has been fixed to r = 5×10−6. For R = 3000, figure 2 shows the distributions of

e(t) and E(t) for the same e0 and various target times T . For T < 80, the total
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Figure 2: RNL optimizations: Re = 3000 and e0 = 9 × 10−8. Time evolution of the to-

tal kinetic energy E(t) + e(t) (full line), mean flow kinetic energy E(t) (dashed lines) and

fluctuation kinetic energy e(t) (dotted lines) for various target times T .

kinetic energy is seen to grow before decaying. No breakdown is observed. When

the target time is increased up to 80, both E (t) and e (t) are seen to increase

for long times. This behavior is clearly observed for T > 100 in figure 2. {For255

T < 40, the total kinetic energy Etot (T ) is mainly driven by e (T ). For larger

target times T , the dominant contribution of Etot (T ) is associated with E (T ).

It is consistent with the results reported in figure 1(a) for T = 140. This a

posteriori observation justifies the use of both contributions in the optimization

process. For larger e0, e(T ) and E(T ) can reach equivalent gains. Nevertheless,260

being interested in the critical energy threshold, this case is not reported here.

When the breakdown exists, e(t) exhibits an exponential behavior for t > T .

This is an indication that the state obtained at t = T is linearly unstable and

is driven along its unstable direction toward a chaotic saddle. Finally, the fig-

ure also suggests that, as T increases, the amount of initial kinetic energy e0265

necessary for the streak breakdown is slightly decreasing. {This behaviour is

further illustrated in figure 3. For target times varying from T = 30 to 140, a

bisection method together with the optimization algorithm is used to find the

critical energy threshold ec by listing whether or not a breakdown is observed

13
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Figure 3: RNL optimizations: Re = 3000. Full line: critical initial energy threshold versus

target time T . In dashed lines, the critical energy threshold for the oblique wave scenario is

represented.

for long times. For e0 just below ec, the flow relaminarizes as t increases. For270

e0 just above ec, the perturbation breaks down to turbulence (within the RNL

approximation) for large t. Figure 3 shows that for T < 40, ec is close to the

value given by Duguet et al. (2013) for the OW scenario. When T > 50, an

abrupt change takes place with a strong decrease in ec. Then, ec exhibits a slow

decay.275

In figure 4, the kinetic energy of the perturbation is shown in the cross

plane (y, z) at t = 0. It is seen that for T = 40, the perturbation is spatially

extended in the spanwise direction and is symmetric with respect to the mid-

plane y = 0. We recall that for this time, the critical energy threshold is close the

one reported in the OW scenario (see figure 3). When increasing T , the optimal280

perturbation at the initial time becomes spanwise localized. This behavior is

accompanied by a strong decrease in critical energy threshold ec (figure 3). For

T greater than 100, the mirror symmetry is broken. We observe a shift of

the perturbation towards the lower wall associated with a slight decrease in ec

(figure 3) It is consistent with findings of Cherubini and De Palma (2014) who285

observed successive broken symmetries with an increase in target time within a

14
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Figure 4: RNL optimizations: Re = 3000 and e0 = 9×10−8. Kinetic energy of the fluctuation

at t = 0 for T = 40, T = 80 and T = 120 (from top to bottom).
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fully nonlinear optimization framework. Localized solutions in the wall-normal

direction have also been observed in plane channel flow by Farano et al. (2016).

We now investigate the Reynolds number scaling for ec. For that purpose,

we have fixed T = 110 for both cases. For Re = 3000, we observe only a slight290

decrease in ec when T > 110 (figure 3). This restricted minimal threshold ec is

shown in figure 5 for the same values of Reynolds numbers as those investigated

by Duguet et al. (2009). Kinetic energy thresholds are also calculated by DNS.

For that purpose, restricted nonlinear optimals are integrated forward in time

using DNS for various values of the initial kinetic energy. Figure 5 shows that295

RNL simplification provides a good approximation of the threshold. It is also

interesting to notice that we observe a power-law scaling ec = O(Reγ) with

γ ≈ −2.65. The exponent is close to the one found using the full set of equations

γ = −2.7 (Duguet et al., 2013). Especially, the restricted minimal perturbations

found here have lower energy thresholds than those found for OW scenario.300

These results are also consistent with the theoretical analysis carried out by

Deguchi (2015) (γ = −2.5). Part of this difference may be explained by the

fact that Deguchi (2015) used an asymptotic theory designed for large Reynolds

numbers.

4.2. Different paths associated with short and long target times.305

We choose here to focus on the temporal evolution of RNLOPT for Re =

2000. Two target times are investigated T = 50 and T = 110. For T = 50, the

initial energy is fixed to e0 ≈ 2.64 × 10−7; for T = 110, e0 ≈ 2.54 × 10−7. For

both target times, e0 is fixed close to the threshold ec. For T = 50, the initial

perturbation is symmetric with respect to y = 0. For T = 110, the mirror310

symmetry is broken, and the perturbation shows asymmetry with respect to

the mid-plane y = 0 (similar to what is found for Re = 3000 as shown in

figure 4). The restricted nonlinear optimal for T = 50 is referenced hereafter as

RNLOPTS. The one obtained for T = 110 will be denoted by RNLOPTNS. The

time integration is carried out using the RNL system (3, 4). Time evolutions of315

e(t), E(t) and Etot are illustrated in figure 6. For both optimals, the breakdown
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Figure 5: Energy threshold versus the Reynolds number Re for Re = 750, 1500, 2000 and 3000

found using RNL optimizations (full line). Symbols represent tested values of e0 below/above

which transition to turbulence never occurs when restricted nonlinear optimals are integrated

forward in time using DNS. The fit 148Re−2.654 is compared to the fit 4Re−2 obtained for

the oblique wave scenario for the same computational box and to the fit 125Re−2.7 associated

with fully nonlinear optimizations (values given by Duguet et al. (2013)).

is observed for long times.

For RNLOPTS and RNLOPTNS, the kinetic energy thresholds are also

computed using DNS. The two RNLOPT are rescaled by bisection until an

equilibrium is approached. The two threshold energy levels are not very dif-320

ferent: e0 ≈ 3.0 × 10−7 and e0 ≈ 3.12 × 10−7, values to be compared with

e0 ≈ 2.54 × 10−7 and e0 ≈ 2.64 × 10−7, respectively. For the minimal seed

obtained using a fully non-linear approach, we recall that Duguet et al. (2013)

found an energy threshold ≈ 1.53 × 10−7. This level is thus about half the

value provided by the restricted non-linear system. Figure 6 also compares325

e(t), E(t) and Etot(t) obtained either by the RNL system or the full Navier-

Stokes equations. The two pairs of curves keep in close correspondence quite a

long time, with a slight shift in amplitude for the DNS. In particular, RNLOPTS

and RNLOPTNS exhibit different behaviors. While for the non-symmetric per-

turbation, a continuous increase in E(t) is observed with an overshoot around330

t = 600, the symmetric perturbation shows a slight decrease in mean flow kinetic
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Figure 6: RNL simulations: e0 ≈ 2.54× 10−7 and e0 ≈ 2.64× 10−7 (for T = 110 and T = 50,

respectively). The time evolution of e(t) (dashed lines), E(t) (dotted lines) and Etot (t) (full

line) are shown. Results provided by DNS are also represented.

energy until it reaches a plateau near t = 600. These behaviors are found either

using DNS or RNL simulation. It suggests that RNLOPTS and RNLOPTNS

pass along different edge states before the breakdown.

In figure 7, we compare transverse cross-sections for the spanwise vorticity335

component for the two optimals at the earliest times. While the first optimal

exhibits symmetry with respect to the mid-plane y = 0, the other one is shifted

to the lower side. The time evolution of the two flows is very similar. At the

initial time, the fluctuation is characterized by a flow pattern that opposes the

mean shear direction. As time evolves from t = 0 to t = 20, the perturbation340

tilts downstream thus causing transient growth of energy. At t = 20, an increase

in kinetic energy of the streamwise velocity component is also observed (not

shown here). This suggests that a combination of Orr and lift-up mechanisms

leads to enhance energy gain for these times (Butler and Farrell, 1992).

For t = 30, the figures 8(a,b) show that the streamwise-averaged part has a345

simple form that involves spanwise localized streamwise rolls and low- and high-
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Figure 7: RNL simulation. RNLOPTNS (a,c) and RNLOPTS (b,d) for e0 = 2.54 × 10−7

(T = 50) and e0 = 2.64 × 10−6 (T = 110). Spanwise vorticity fluctuation at t = 0 (a,b) and

t = 20 (c,d) in the (x, y) plane at z = Lz/4. For t = 0 levels ±20, for t = 20 levels ±100. The

profiles of the streamwise-averaged velocity are also shown in black dashed lines.

speed streaks on both walls. However, for RNLOPTNS, the symmetry breaking

has enhanced the development of the high-speed streak in the upper-half of the

domain (panel (b)). For t = 400, this high-speed streak has moved towards the

lower (y = −1) wall. For this time, the mean flow associated with RNLOPTNS350

is mainly driven by a single high-speed streak sandwiched between two low-

speed streaks (figure 8(d)). On the contrary, RNLOPTS is characterized by a

mirror symmetry about the plane y = 0. Especially, the figures 8(a,c) show that

the streaks are centered with a similar distance from both walls for t = 30 and

t = 400. We recall that at the initial time E0 = 0, meaning that the streamwise355

averaged part is null at t = 0. The only source for generating rolls (V,W ) is

due to the nonlinear feedback term that represents the quadratic interaction

of the fluctuating part. Rolls then redistribute the streamwise component of

momentum and create streaks (U). RNLOPTS and RNLOPTNS exhibit then

two fundamentals elements of the SSP (Hamilton et al., 1995; Waleffe and Kim,360

1997).

In figure 9, we show a reconstruction of three-dimensional flow fields at

t = 700. For this specific time, an almost equilibrium is observed for both opti-
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Figure 8: RNL simulation. RNLOPTS (a,c) and RNLOPTNS (b,d) for e0 = 2.64 × 10−7

(T = 50) and e0 = 2.54×10−7 (T = 110), respectively. Isolevels of the streamwise component

of the mean flow distortion U and vectors for the cross-stream components at t = 30 (a,b)

and t = 400 (c,d).

mals. For RNLOPTS, the structure consists of undulated streaks on both walls.

The solution associated with RNLOPTNS exhibits an isolated bent high-speed365

streak sandwiched between two low-speed streaks. The observed motion for

both optimals shares similarities with travelling wave solutions associated with

lower branch states (Waleffe, 1998; Gibson and Brand, 2014). The time evolving

flow structures associated with both RNLOPTS and RNLOPTNS obtained by

DNS are shown in figure 10. Similar patterns are observed confirming, at least370

quantitatively, the good approximation provided by the RNL system. On one

hand, the time-evolving structure for RNLOPTNS bears a striking resemblance

to the time evolution of the minimal perturbation identified by Monokrousos

et al. (2011); Rabin et al. (2012); Duguet et al. (2013). On the other hand,

the symmetric optimal exhibits a pattern similar to the lower branch spanwise-375

localized solutions found by Gibson and Brand (2014). For this perturbation,

the state found by Monokrousos et al. (2011); Rabin et al. (2012); Duguet et al.
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Figure 9: RNL simulation. RNLOPTS (a) and RNLOPTNS (b) for e0 ≈ 2.64×10−7 (T = 50)

and e0 ≈ 2.54× 10−7 (T = 110), respectively. Snapshots of the solution extracted at t = 700.

The instantaneous streamwise velocity u = U + ũ is considered. Isosurfaces ±0.1 are shown

in red and blue.
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Figure 10: DNS results. (a) RNLOPTS, e0 ≈ 3.12×10−7 and (b) RNLOPTNS, e0 ≈ 3×10−7.

Snapshots of the solution extracted at t = 700. Isosurfaces ±0.1 are shown in red and blue.
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Figure 11: RNL simulation. Energy input/dissipation rate trajectories starting from

RNLOPTS and RNLOPTNS. Values are scaled by their laminar states (Ilam, εlam). Time

direction is indicated by arrows. Arrow length corresponds to a time interval ∆t = 10. A

zoom area of (a) is shown in (b). For both optimals bottom arrow positions are fixed at

t = 750, 800, 850, 900 in panel (a) and at t = 100, 300, 600 and 700 in panel (b).

(2013) is never recovered because the streaks on the upper wall and on the lower

wall develop secondary instability at the same time.

To further characterize the dynamics associated with the two optimals and

their connection with results reported in the literature, the phase space trajecto-

ries are studied in the energy input / dissipation rate plane. The rate of change

of energy equation is equal to I − ε, where the energy input I and dissipation

rate ε read

I =
1

Re
+

1

DRe

∫ Lx

0

∫ Lz

0

(
∂u

∂y

∣∣∣∣
y=1

+
∂u

∂y

∣∣∣∣
y=−1

)
dxdz,

and ε =
1

Re
+

1

DRe

∫
D
∇u : ∇u dD.

The trajectories for both optimals are shown in figure 11.380

For RNLOPTS, the perturbation spends a long time close to (I/Ilam, ε/εlam) ≈
(1.03, 1.03) where the energy input is balanced by the dissipation rate. Es-

pecially, figure 11(b) shows that between 100 < t < 700, the corresponding

points in the phase space (I/Ilam, ε/εlam) are sitting in the neighborhood of
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Figure 12: RNL simulation for RNLOPTS. Cross-sections of the full velocity field in

the plane x = 6, for times t = 100, 700, 750 and 800. Contours: iso-levels of Ub + u

(−0.8,−0.4, 0, 0.4, 0.8); arrows: (v, w) vectors. The vectors are normalized by the square of

the total kinetic energy for each time.

(1.03, 1.03). Cross-sections of the full velocity field (u + Ub, v, w) in the plane385

x = 6 are shown in figure 12 for t = 100, 700, 750 and 800. Some iso-contours

of the streamwise velocity are reported along with the corresponding cross-flow

vectors. The choice of x = 6 is arbitrary. The figure shows that the flow re-

mains symmetric with respect to the horizontal axis y = 0 until t ≈ 700. It

corresponds to a pair of low- and high-speed streaks on both walls that are390

almost steady (the vortex motion in the plane x = 6 have the same orientation

for both t = 100 and 700). For t = 750, the mirror symmetry associated with

the plane y = 0 is broken. In figure 13, cross-section of the velocity fields is

shown in the plane y = −0.5 for t = 750. For this specific time, both streaks

exhibit a sinuous motion. For 750 < t < 800, the flow follows a trajectory395

characterized by high values of the dissipation rate (≈ 16 see figure 11(a)). For

these times, the flow breaks down to RNL turbulence and is rapidly spreading

in the spanwise direction until the whole computational domain is filled by un-

steady vortex motions (see figure 12(d)). For t > 900, the flow is attracted to

a chaotic saddle (figure 11(a)). This behaviour corresponds to a bursting400
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Figure 13: RNL simulation for RNLOPTS. Cross-sections of the full velocity field in the

plane y = −0.5, for time t = 750. Contours: iso-levels of Ub + u.

event characterized by highly dissipative perturbations as shown by Cherubini

and De Palma (2013). However, Cherubini and De Palma (2013) have found

that the highly dissipative nonlinear optimal disturbances pass closer to an

edge-state and they are rapidly repelled away from it. For the symmetric RNL

optimal, the trajectory seems to spend a long time in the vicinity of an edge405

state. Nevertheless, before drawing hasty conclusions, such a state should be

computed using Newton algorithm. For the second optimal mode (i.e. T = 110

corresponding to RNLOPTNS), the flow structure passes close to the point

(I/Ilam, ε/εlam) ≈ (1.03, 1.03) (t ≈ 100) and is rapidly repelled away from it

(see time t = 300 in figure 11(b)). However, for t ≈ 700, the trajectory ex-410

hibits a typical cusp-like behavior when approaching the point (1.35, 1.35) on

the diagonal (figure 11(b)). Near this state, the structure is shown in figure

9(b). Cross-sections of the full velocity field are shown in figure 14 at x = 6 for

t varying from 100 to 850. The figure shows that for t = 100, the pattern is

almost similar as the one associated with RNLOPTS . For t = 300, the streak in415

the upper-half of the domain has developed more rapidly that the one located

on the other side. In addition, the flow, for 100 < t < 600 ,is characterized

by an unsteady vortex in the plane x = 6 which differs from the behavior ob-
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Figure 14: RNL simulation for RNLOPTNS. Cross-sections of the full velocity field in the

plane x = 6, for times t = 100, 300, 600, 750, 800, and 850. Contours: iso-levels of Ub + u

(−0.8,−0.4, 0, 0.4, 0.8); arrows: (v, w) vectors. The vectors are normalized by the square of

the total kinetic energy for each time.
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Figure 15: RNL simulation for RNLOPTNS. Cross-sections of the full velocity field in the

plane y = 0, for time t = 800. Contours: iso-levels of Ub + u.

served for RNLOPTS . For t = 750, the two low-speed streaks have developed

on the sides of the high-speed streak. For t = 800, the pattern is mainly driven420

by the low-speed streaks. In figure 15, cross-section of the full velocity fields:

(Ub + u, v, w) in the plane y = 0 is shown for t = 800. For this time, the low

speed streaks exhibit a varicose symmetry. For 800 < t < 810, the trajectory is

seen to reach high values of dissipation and is rapidly attracted to the chaotic

saddle (figure 11(a)). In contrast with the symmetric perturbation, the flow425

passes close to the edge state (for 700 < t < 750), but it is rapidly repelled away

from it. Hence, the bursting event associated with the breakdown of the low

speed streaks appears to be closely related to the bursting scenario investigated

by Cherubini and De Palma (2013). For the non-symmetric perturbation, the

path leading to RNL turbulence closely resembles the one corresponding to the430

minimal seed (Duguet et al., 2013) except that the optimal is not localized in

the streamwise direction at the earliest times. In particular, a striking resem-

blance of the patterns shown in figure 14 with those displayed in figure 8 in

Duguet et al. (2013) can be observed. In addition, the varicose symmetry is

also observed by the previous authors.435

To further compare RNL simulations and DNS, the paths in the energy
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Figure 16: DNS. Energy input/dissipation rate trajectories starting from RNLOPTS and

RNLOPTNS. Values are scaled by their laminar states (Ilam, εlam). Time direction is in-

dicated by arrows. Arrow length corresponds to a time interval ∆t = 10. Bottom arrow

positions are fixed at t = 100, 300, 600 and 700.

input/dissipation rate plane provided by the DNS are also shown in figure

16. From a geometrical viewpoint, trajectories exhibit the same character-

istics as the ones found using RNL system. Especially, the trajectory as-

sociated with RNLOPTNS also exhibits an almost equilibrium point around440

(I/Ilam, ε/εlam) ≈ (1.35, 1.35). For RNLOPTS, the path in the plane (I/Ilam, ε/εlam)

is seen to approach the point (1.03, 1.03) before being repelled.

The space-time diagram associated with the DNS and RNL simulations are

displayed in figure 17 for RNLOPTNS (the case RNLOPTS is not shown here).

The figure shows the time evolution of the spanwise distribution for the wall-445

shear stress on the lower wall, normalized with the laminar value. Figures 17(a)

and (b) show that while the streak breakdown takes place in a narrow region

at t ≈ 700 along the spanwise direction, it spreads rapidly along z for larger

times for both DNS and RNL simulations. We also observe that the spanwise

spreading is similar whether the RNL system or the full Navier-Stokes equations450

are used. Nevertheless, some differences can be observed. The streak breakdown

seems to start at different times (t > 600 for RNL and t < 600 for DNS). It

is consistent with the results shown in figure 6 where the increase in E (t) (the

kinetic energy associated with the streamwise averaged part) starts near t ≈ 550

for DNS and t ≈ 650 for RNL. The friction at the wall appears also to reach455
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Figure 17: Spatiotemporal diagram obtained using (a) RNL simulation and (b) DNS for

RNLOPTNS near the threshold. Isocontours of the wall shear stress based on the streamwise-

averaged velocity field normalized with the laminar value.
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Figure 18: RNL simulation. Energy in selected Fourier components for RNLOPTNS

(T = 110) for the kinetic energy threshold e0 ≈ 2.54 × 10−7. Left: streamwise mean flow

components, right: modes for the fundamental streamwise wavenumber.

higher values when using DNS.

4.3. Modal energy and origin of streamwise independent rolls and streaks

First, we analyze the spectral energy distribution of the Fourier modes for

the time evolving flow structure associated with RNLOPTNS. Aiming to discuss

the physical mechanisms in the light of those associated with the minimal seed,460

only RNLOPTNS is considered. Fourier modes corresponding to the wavevector

components (nα,mβ) with (α, β) = (2π/Lx, 2π/Lz) are hereafter labeled with

couples (m,n). The time evolution of the disturbance energy for 8 selected

Fourier components can be seen in figure 18. The flow is symmetric in spanwise

direction implying that the energy of the modes (n,−m) are equal to their465

positive counterpart (n,m).

At initial time, the most energetic modes are (1,±1), (1,±2) and (1,±3).

Later, the oblique waves experience transient growth while generating stream-

wise rolls associated with the (0, 2) and (0, 3) components. For t ≈ 50, most

of the energy is transferred into (0, 2) and (0, 3). At about this time, stream-470

wise rolls and streaks located on the upper and the lower walls are identified as

the dominant flow pattern (see figure 8(b)). As time increases up to 600, the

mode (0, 1) reaches the same level as (0, 3) and the perturbation maintains an

almost constant trend. At this time, the flow dynamics is driven by a single
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high-speed streak (see figure 14(c)). Due to the loss of symmetry with respect475

to the plane y = 0, the mean rolls located near the upper wall displace high-

speed fluid towards the central region and amplify the high-speed streak (for

100 < t < 600). Then, modes (1, 2) and (1, 3) grow significantly. For t > 750,

the pair of low-speed streaks appears to contribute mainly to the flow dynamics

(see figure 14(d,e)). It should then indicate that at t = 600, the high-speed480

streak fields is unstable. This has for consequence to amplify modes (1, 2) and

(1, 3). Nonlinear interactions of these waves modify the streamwise rolls that,

in turn, generate the pair of low-speed streaks. The dynamics exhibits then a

strong interplay between the time varying meanflow and the superimposed per-

turbation. For the minimal seed, the most energetic modes at t = 0 are of the485

type (0,m) with also a significant contribution of (1,±1), (2,±1), (3,±1) and

(4,±1) (Duguet et al., 2013). At the early stage, Duguet et al. (2013) indicate

that modal interactions are driven by oblique waves. Then, most of the energy

is transferred to n = 0 modes with a major contribution for m = 2, m = 3

and m = 4. In particular, for these times, the kinetic energy associated with490

the fundamental n = 1 and its harmonics are less important. In the present

work, we prevent any contribution of the streamwise-averaged component and

its harmonics in α at t = 0. Hence, the initial perturbation obtained within the

RNL approximation cannot reproduce the true nonlinear optimal. This may

explain the differences observed in the critical energy thresholds. However, the495

dynamics for short times is also driven by oblique wave interactions that gener-

ate (0, 2) and (0, 3). At this time, we also observe a minor contribution of the

mode n = 1.

The streamwise vortices generation mechanisms are now addressed for RNLOPTNS

for t < 50. This time interval corresponds to the initial stages for rolls produc-

tion. For these times (t < 50), we see no notable differences in modal kinetic

energies for RNLOPTS and RNLOPTNS (see figure 6) and the mechanisms

behind mean rolls production are quite identical (not shown here). The mech-

anisms are examined on the basis of vorticity considerations. In the following,
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we consider the equation for the mean streamwise vorticity:

∂Ωx
∂t

+ V
∂Ωx
∂y

+W
∂Ωx
∂z

=
1

Re

(
∂2

∂y2
+

∂2

∂z2

)
Ωx + Ωy

∂U

∂y
+ Ωz

∂U

∂z
+

∂2

∂y∂z

(
ṽ2 − w̃2

)
︸ ︷︷ ︸

P1

+

(
∂2

∂y2
− ∂2

∂z2

)
ṽw̃.︸ ︷︷ ︸

P2

(8)

This equation (8) was also studied by Gessner (1973) in order to explain the

nature of the streamwise eddies observed in turbulent flows along corners. In500

equation (8), the term Ωy∂U/∂y+Ωz∂U/∂z is null (we recall that the streamwise

averaged flow is independent of x). As a result, the only source terms in (8) are

P1 and P2. Note that P1 and P2 have the same physical origin and it is simple

to show that P1 + P2 can be reduced to the form P1 after projection on the

principal axes of the Reynolds tensor (restricted to the plane (y, z)) (Perkins,505

1970).

In figure 19, we show the cross-sections of ṽ2, w̃2 and ṽw̃ at t = 30. The com-

ponent w̃2 has a maximum value ≈ 6×10−4. The contour peaks are ≈ 2×10−5

and ≈ 4× 10−6 for ṽw̃ and ṽ2, respectively. Hence, the component w̃2 appears

as the most important contribution, thereby reflecting the sinuous character510

of the perturbation at t = 30. For this time, it can be noted that the criti-

cal layer is almost horizontal near y = 0. According to the VWI theory, the

wave’s Reynolds stress is mainly amplified within the critical layer through the

action of w̃ in agreement with our observations (Hall and Sherwin, 2010). Fig-

ure 20 shows the cross-derivative of w̃2 along y and z: −∂2w̃2/∂y∂z together515

with P1 + P2. The figure shows a close correspondence between both contours

indicating that −∂2w̃2/∂y∂z mainly contributes to P1 + P2. Thus, we can

observe that the nonlinear self-interaction of the streamwise-varying mode pro-

duces mean streamwise vorticity in exactly the right place where streamwise

rolls are identified in figure 8.520

Equation (8) is obtained by straightforward application of curl operator on

the streamwise-averaged momentum equation (the term P1 + P2 is simply the

curl of the Reynolds stress term). The role of Reynolds stress in generating
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Figure 19: RNL simulation. Reynolds stress components for RNLOPTNS (T = 110) and

e0 ≈ 2.54× 10−7 extracted at t = 30. ṽṽ (a), w̃w̃ (b) and ṽw̃ (c).
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Figure 20: RNL simulation. RNLOPTNS (T = 110) and e0 = 2.54 × 10−7. Snapshots

extracted at t = 30. Production term: P1 +P2 (a) and contribution −∂2w̃2/∂y∂z to P1 +P2

(b).
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Figure 21: RNL simulation. RNLOPTNS for T = 110 and e0 = 2.54× 10−7. Gain or loss of

mean streamwise vorticity due to the fluctuating components. Snapshots extracted at t = 30.

(a) stretching term Ps; (b) tilting term Pt; (c) convective term Pc.

mean vorticity can be grasped by thinking of it in terms of anisotropic pressure

i.e. a pressure whose the mean value depends on orientation. An alternative for

getting the transport equation of Ωx is to start from the local vorticity equation

and take the average of it in the streamwise direction. For a discussion of

the obtained equation that offers a description in terms of vorticity dynamics,

the reader may consult Tennekes and Lumley (1972). The method leads to

an alternative expression of P1 + P2 involving correlations between fluctuating

vorticity components (ω̃x, ω̃y, ω̃z) = ∇× ũ and the associated strain rates:

P1 + P2 = ω̃x
∂ũ

∂x︸ ︷︷ ︸
Ps

+ ω̃y
∂ũ

∂y
+ ω̃z

∂ũ

∂z︸ ︷︷ ︸
Pt

−∂ṽω̃x
∂y

− ∂w̃ω̃x
∂z︸ ︷︷ ︸

Pc

(9)

In (9), Ps and Pt, the so-called vortex stretching and vortex tilting terms,

respectively, represent amplification and rotation of the vorticity vector by the

strain rate. The convective term Pc represents the mean transport of ω̃x by

the fluctuating velocity. Cross-sections of Ps, Pt and Pc are shown in figures 21

for t = 30. All terms are mainly localized in the area where mean streamwise525
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vortices are generated (see figure 8). Besides that, the figure 21 shows that

levels associated with Pc are nearly three times higher than those of Ps and Pt.

For this time, Pc contributes then mainly to rolls production. We recall that

Hamilton et al. (1995) proposed a streamwise vortex generation mechanism, in

which the advection term Pc plays the dominant role (see also for a review Kim530

(2011)). Then, the mechanism behind the streamwise vortices generation at the

initial time appears closer to the one identified by Hamilton et al. (1995).

The term Pc is analogous to the Reynolds-stress term in the equation of the

mean velocity. It appears with the opposite sign in the transport equation of the

fluctuating vorticity and is hence responsible of an exchange of mean enstrophy535

between the component attached to the mean velocity and that related to the

fluctuation. This term is mainly driven by the correlation ṽω̃x (not shown

here). In the context of fully developed turbulence, it has been proposed to

relate the velocity-vorticity correlations to the mean vorticity gradient through

a Boussinesq diffusion-like model (Tennekes and Lumley, 1972). In the present540

case, however, this kind of model does not predict the right sign for the mean

vorticity flux.

5. Discussion and perspectives

A RNL system, for which a single streamwise Fourier mode is retained for the

fluctuation, is used to identify laminar/turbulent transition paths that require545

the minimum energy. Using a Lagrangian formulation for the constrained RNL

system, two types of initial perturbations can be considered. While the first

set only involves the initial energy of the fluctuation, the second one uses a

combination of the mean and the fluctuating parts. Only the first category is

investigated in this study.550

The same pCf case as the one studied by Duguet et al. (2013) is considered.

We have identified two optimals, one for moderate target times and one for

large target times. Both of them exhibit spanwise localization. While the first

optimal appears symmetric with respect to the mid-plane y = 0, the second
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optimal is non-symmetric. The dynamics in the physical space displays all the555

mechanisms identified in a fully nonlinear framework (Kerswell, 2018). For both

optimals, mean streamwise vortices are generated from nonlinear interaction of

three-dimensional oblique modes that get amplified through the Orr and lift-up

mechanisms. At the earliest times, the generation of mean streamwise vortices is

dominated by the convective term. The mean streamwise vortices generate low-560

and high-speed streaks on both walls by lift-up effect. For the first optimal,

streaks are symmetric with respect to the mid-plane y = 0. For the second

one, the streak near the upper wall develops more rapidly than the one near the

lower wall in the early stages. Turbulence first develops locally, before spreading

in spanwise direction. We show that all mechanisms are quantitatively well565

approximated by the RNL model.

From a geometrical viewpoint, both trajectories appear to approach an edge

state. The edge state for the first optimal shows symmetry with respect to the

channel mid-plane and exhibits strong similarities with the class of spanwise-

localized invariant solutions given by Gibson and Brand (2014). However, fur-570

ther investigations are needed in order to draw firm conclusions. For the second

optimal, the symmetry breaking leads the flow structure to evolve near a differ-

ent edge state. It consists of an isolated high-speed streak sandwiched between

two low-speed streaks. This restricted nonlinear optimal and the minimal seed

investigated by Monokrousos et al. (2011); Rabin et al. (2012); Duguet et al.575

(2013) for the same computational box and the same Reynolds numbers show

numerous similarities. The minimal seed is characterized by a pattern oriented

in a direction pointing against the shear inside a three-dimensionally localized

region (in all directions). Apart from the fact that the RNL optimal obtained for

a large target time is extended in the streamwise direction, the non-symmetric580

RNL optimal is also localized in spanwise and wall normal directions. For

the corresponding time evolving flow, both trajectories pass close to a similar

spanwise-localized edge state. Furthermore, the routes to turbulence present

the same known mechanisms: Orr mechanism, oblique wave interaction, lift-up,

streak secondary instability, streak breakdown, and spanwise spreading, that are585
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found to occur one after the other. Notably, the threshold energy found using

RNL optimizations is only twice the one found using the full DNS. In particular,

the scaling law obtained by RNL optimizations is quite similar to the one asso-

ciated with the minimal seed (O(Re−2.65) to be compared with O(Re−2.7)). For

the true nonlinear optimal found by Duguet et al. (2013), the perturbation at590

the initial time is mainly driven by oblique wave interaction associated with the

fundamental streamwise Fourier mode and harmonics. The RNL approximation

prevents any contribution of harmonics. This major difference may explain the

change in the kinetic energy threshold. Further work is then required to include

harmonics using RNL systems. This issue is currently under investigation.595

This work was granted access to the HPC resources of the FLMSN, “Fédération

Lyonnaise de Modélisation et Sciences Numériques”, partner of EQUIPEX EQUIP@MESO.

Appendix A. Optimisation. Adjoint system.

As in the approaches of Biau and Bottaro (2009); Olvera and Kerswell

(2017), the equations governing the optimal RNL system solution are deduced

from the condition of extremality of the constrained Lagrangian (7). We recover

equations (3), (4) and their adjoint counterparts:

−At = Re−1 (Ayy +Azz) + GA

−Bt +A (Ub + U)y +BVy + CWy = −Πy +Re−1 (Byy +Bzz)

−Ct +AUz +BVz + CWz = −Πz +Re−1 (Cyy + Czz) ,

(A.1)

−ât − iαâUb − V ây −Wâz = −iαπ̂ +Re−1
(
−α2â+ âyy + âzz

)
+ ga

−b̂t − iαb̂Ub + âUby − V by −Wbz = −π̂y +Re−1
(
−α2b̂+ b̂yy + bzz

)
+ gb

−ĉt − iαĉUb − V ĉy −Wĉz = −π̂z +Re−1
(
−α2ĉ+ ĉyy + ĉzz

)
+ gc

(A.2)
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with the following notations

GA = iα
(
âû∗ + â∗û+ b̂v̂∗ + b̂∗v̂ + ĉŵ∗ + ĉ∗ŵ

)
+ (âv̂∗ + â∗v̂)y + (âŵ∗ + â∗ŵ)z

ga = ṽAy + w̃Az, gb = ṽBy + w̃Bz and gc = ṽCy + w̃Cz.

Note that the function GA characterizes the sensitivity to variations in the base

flow (Marquet et al., 2008) and the functions ga, gb and gc are associated with

variations in the perturbation (Biau and Bottaro, 2009). Temporal initial and

end conditions close the system of equations:

a (T ) = ũ (T ) , A (T ) = U (T ) ,

ζũ (0) = a (0) , λU (0) = A (0) .
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