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To identify laminar/turbulent transition paths in plane Couette flow, a variational formulation incorporating a restricted nonlinear (RNL) system that retains a single streamwise Fourier mode, is used. Considering the flow geometry originally used by Monokrousos et al (Phys. Rev. Lett., vol. 106, 2011, 134502 ) and Duguet et al (Phys. of Fluids, vol. 25, 2013, 084103) and the same Reynolds numbers (Re), we show that initial perturbations obtained by RNL optimizations exhibit spatial localization. Two optimal states are found with comparable initial energy levels above which the flow structure evolves to turbulence. It is found that this level is twice that of the minimal threshold energy which has been obtained using the full nonlinear equations (Duguet et al Phys. of Fluids, vol. 25, 2013, 084103 ). Especially, the Re dependence of energy thresholds is studied within a RNL optimization framework for the first time, with evidence for a O Re -2.65 scaling close to the one found using the full Navier-Stokes equations O Re -2.7 . The first state is obtained for a short target time. It is symmetric with respect to the mid-plane y = 0 and spanwise localized. For a long target time, the optimal appears to be localized in both spanwise and wall-normal directions. The mechanisms highlighted within the scope of nonlinear nonmodal theory (Kerswell Ann. Review of Fluid Mech., vol. 50

Introduction

Streamwise streaks are elongated regions of defect or excess of streamwise velocity. They play a fundamental role in the laminar-turbulent transition process for all canonical wall-bounded flows (Couette, channel or flat-plate boundary layer flows, [START_REF] Klebanoff | Effect of freestream turbulence on the laminar boundary layer[END_REF]; [START_REF] Reddy | On stability of streamwise streaks and transition thresholds in plane channel flows[END_REF]; [START_REF] Andersson | On the breakdown of boundary layer streaks[END_REF]).

Streaks are generated by rolls through the linear lift-up mechanism [START_REF] Landhal | A note on an algebraic instability of invscid parallel shear flow[END_REF]. This mechanism constitutes a key element to explain transition in subcritical conditions, i.e. in the absence of linear modal instability (see for a recent review [START_REF] Brandt | The lift-up effect: the linear mechanism behind transition and turbulence in shear flows[END_REF]). For parallel flows, nonmodal linear theory has revealed that streamwise invariant streaks are the perturbations which experience the largest transient energy growth [START_REF] Schmid | Stability and Transition in Shear Flows[END_REF]. However, nonlinearities have a stabilizing effect on the growth of streaks [START_REF] Joseph | Stability of Fluid Motions I[END_REF] which is the reason why purely linear optimal modes cannot completely explain subcritical transition.

The experiments of [START_REF] Swearingen | The growth and breakdown of streamwise vortices in the presence of a wall[END_REF] have first shown that streaks may undergo secondary instability, either spanwise symmetric (varicose) or anti-symmetric (sinuous), and subsequently break down into turbulence [START_REF] Asai | The instability and breakdown of a near-wall low-speed streak[END_REF][START_REF] Brandt | Numerical studies of the instability and breakdown of a boundary-layer low-speed streak[END_REF][START_REF] Vaughan | Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks[END_REF][START_REF] Hack | Streak instabilities in boundary layers beneath free-stream turbulence[END_REF]. Then, the determination of the lower bound in kinetic energy threshold for inducing subcritical transition in shear flows and the corresponding Re-scaling laws have been the object of many studies.

A first attempt at establishing the kinetic energy threshold for canonical flows has been carried out by [START_REF] Reddy | On stability of streamwise streaks and transition thresholds in plane channel flows[END_REF]. These authors have in-vestigated streak instability considering initial optimal perturbations with the greatest potential for linear transient growth over all possible target times. For this streamwise vortex (SV) scenario, they have found that the initial kinetic energy of rolls causing streak breakdown scales as O(Re -2.2 ) for plane Couette flow (pCf). Similarly, [START_REF] Reddy | On stability of streamwise streaks and transition thresholds in plane channel flows[END_REF] have found that the kinetic energy threshold for transition initiated by a pair of oblique waves (OW) scales as O(Re -2.5 ). These scalings have been refined by [START_REF] Duguet | Towards minimal perturbations in transitional plane Couette flow[END_REF] with evidence for a O(Re -2 ) scaling for both OW and SV scenarios More recently, Karp andCohen (2014, 2017) showed that the onset of secondary instability is not necessarily correlated with initial condition maximizing the linear energy growth. The authors have shown that the optimal set of parameters are rather associated with initial disturbances which generate the strongest inflection point due to nonlinearities. In particular, Karp andCohen (2014, 2017) concluded that both the spanwise wavenumber and initial threshold energy differ from the values based on optimal transient energy growth. Following this line of thought, [START_REF] Cossu | Secondary threshold amplitudes for sinuous streak breakdown[END_REF] explored the streak breakdown in a two-dimensional parameter space consisting to the amplitude of streaks and their secondary perturbation. Their numerical experiments on subcritical shear flows illustrate that the maximal energy growth condition is not an essential criterion for transition.

It is rather about whether or not finite-amplitude disturbances can approach the edge of chaos before being repelled towards the turbulent attractor [START_REF] Skufca | Edge of chaos in a parallel shear flow[END_REF]. For parallel flows, the trajectory evolving on the edge of chaos is organized around relative attractors known as edge states, which are invariant solutions of the Navier-Stokes equations, and their heteroclinic connections [START_REF] Duguet | Transition in pipe flow: the saddle structure on the boundary of turbulence[END_REF].

Invariant solutions also called exact coherent states (ECS) have been found

in various shear flows including pCf [START_REF] Nagata | Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity[END_REF][START_REF] Clever | Tertiary and quaternary solutions for plane Couette flow[END_REF], channel flow [START_REF] Itano | The Dynamics of Bursting Process in Wall Turbulence[END_REF], pipe flow [START_REF] Duguet | Transition in pipe flow: the saddle structure on the boundary of turbulence[END_REF] or boundary layers [START_REF] Khapko | Edge states as mediators of bypass transition in boundary-layer flows[END_REF]. For narrow periodic boxes, ECS arise through a saddle-node bifurcation at some critical Reynolds number Re = R s [START_REF] Nagata | Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity[END_REF]. For Re > R s , the ECS separate into upper and lower branches. From a dynamical system point of view, the lower branch solutions are embedded in the laminar-turbulent boundary and correspond to the edge states. These solutions share some basic features that are well described by the self-sustaining process (SSP) [START_REF] Benney | The evolution of disturbances in shear flows at high Reynolds numbers[END_REF][START_REF] Waleffe | How streamwise rolls and streaks self-sustain in a shear flow[END_REF][START_REF] Waleffe | Homotopy of exact coherent structures in plane shear flows[END_REF][START_REF] Waleffe | Three-dimensional coherent states in plane shear flows[END_REF]:

streamwise vortices induce streaks by lift-up effect and by quadratic interactions of a travelling wave (an unstable eigenmode or a superposition of eigenmodes of the streak), these streaks in turn regenerate rolls. It should be noted that the fundamental mechanism enabling the self-sustainment of the vortices is still a subject of debate (either due to a vortex stretching mechanism, [START_REF] Schoppa | Coherent structure generation in near-wall turbulence[END_REF] or an advection term, [START_REF] Hamilton | Regeneration mechanisms of nearwall turbulence structures[END_REF]).

Within the SSP theory, [START_REF] Waleffe | Homotopy of exact coherent structures in plane shear flows[END_REF] recovered the Nagata/Clever equilibrium state for pCf [START_REF] Nagata | Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity[END_REF][START_REF] Clever | Tertiary and quaternary solutions for plane Couette flow[END_REF]. DNS of [START_REF] Wang | Lower Branch Coherent States in Shear Flows: Transition and Control[END_REF] illustrated that lower branch states in pCf have an asymptotic structure that consists of O(1) streaks, streamwise rolls and a superimposed wave of O(Re -1 ) with negligible higher harmonics. For large Re, the fundamental mode concentrates along the critical layer. However, these pioneering studies have been carried out in constrained computational boxes that cannot describe space-time dynamics observed experimentally in large domains [START_REF] Bottin | Intermittency in a locally forced plane Couette flow[END_REF]. In this context, [START_REF] Schneider | Localized edge states nucleate turbulence in extended plane Couette cells[END_REF]; [START_REF] Duguet | Localized edge states in plane Couette flow[END_REF] first found edge states in wide and long domains that are localized in spanwise or both spanwise and downstream directions for pCf. For the same flow case, [START_REF] Pershin | Dynamics of spatially localized states in transitional plane couette flow[END_REF] characterized the inherent dynamics of spanwise localized states.

For low Re, they showed that the flow exhibits very long-lived chaotic transient dynamics before relaminarizing.

This geometrical picture suggests that the estimation of the lower bound in kinetic energy threshold for subcritical shear flows could be improved. Within this scope, the concept of minimal perturbation, that represents the point where the distance (for a given norm) between the edge and the basic laminar state is the shortest, has been introduced by [START_REF] Viswanath | Stable manifolds and the transition to turbulence in pipe flow[END_REF][START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF]. This "minimal seed" has the lowest energy on the edge (noted E c , hereafter) and can only be computed using nonlinear optimization methods. [START_REF] Pringle | Using nonlinear transient growth to construct the minimal seed for shear flow turbulence[END_REF]; [START_REF] Pringle | Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos[END_REF] conjectured that the minimal seed is associated with the perturbation of initial energy E 0 that experiences the largest energy growth for asymptotically large target time and which is such that for any E 0 exceeding a critical threshold E c , the optimization problem fails to converge to a smooth solution (i.e. a turbulent end state). A picture that has emerged for all flows is that the minimal seed is always spatially localized in all directions [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF][START_REF] Rabin | Triggering turbulence efficiently in plane Couette flow[END_REF]Cherubini and De Palma, 2015;[START_REF] Pringle | Using nonlinear transient growth to construct the minimal seed for shear flow turbulence[END_REF]Cherubini et al., 2015). The flow perturbation is characterized by an initial pattern that opposes the underlying mean shear direction. Under the action of the Orr mechanism, the disturbance unpacks and gains in energy over a fast time scale as it rotates and aligns with the mean flow direction. This is followed by an oblique wave interaction mechanism that feeds energy into rolls. Then, the streamwise vortices generate streaks through the lift-up effect. For an initial amplitude just below E c , the streak field is linearly stable and the flow is attracted towards the laminar state. For an initial condition just above E c , the streak field is unstable and breaks down to turbulence [START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF]. The laminar/turbulent process for the minimal seed in pCF have been thoroughly investigated by [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF][START_REF] Rabin | Triggering turbulence efficiently in plane Couette flow[END_REF][START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] where the preferential route to transition exhibits all the different steps described above. [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] have also suggested a new scaling law for the minimal energy perturbation E c = O Re -2.7 , which is significantly smaller than previous estimates (O Re -2 ). In that same spirit, Cherubini et al. (2015) found a new scaling law for the kinetic energy threshold associated with asymptotic suction boundary layers (E c = O Re -2 ). This scaling differs from classical subcritical transition paths based on oblique waves (OW) or streamwise vortices (SV). What is notably fascinating is the fact that both the edge state and minimal seed exhibit well-known linear mechanisms (Orr, lift-up, secondary streak instability) that interact nonlinearly through the Navier-Stokes equations [START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF]. This observation confirms the interest for the development of a simplified set of equations that aims at modeling the dynamics close to the edge state.

A first attempt at simplifying the description of ECS in shear flows (pCf or plane channel flow) is given by [START_REF] Hall | Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures[END_REF]; [START_REF] Blackburn | Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows[END_REF] within the framework of the vortex/wave interaction (VWI) theory [START_REF] Hall | On strongly nonlinear vortex/wave interactions in boundary-layer transition[END_REF]. In the limit of large Re, they reproduced the ECS found by [START_REF] Nagata | Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity[END_REF] by reduction of the Navier-Stokes equations to a two-dimensional problem for the streamwise-averaged velocity coupled to a linear inviscid eigenvalue problem for the instability wave where only a single streamwise Fourier mode is retained. The nonlinear feedback term is present in the streamwiseaveraged part and maintains the amplitude of the streak. It further emphasized the predominant role of the critical layer of thickness O(Re -1/3 ) by providing the appropriate interaction between the wave and the mean flow. In particular, [START_REF] Hall | Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures[END_REF] have shown that VWI theory is in perfect agreement with the numerical simulations of [START_REF] Wang | Lower Branch Coherent States in Shear Flows: Transition and Control[END_REF]. In that respect, the mechanism behind SSP can be seen as a finite-Reynolds number interpretation of the high-Re VWI theory. For a pCf, [START_REF] Deguchi | The emergence of localized vortex-wave interaction states in plane Couette flow[END_REF]; [START_REF] Deguchi | Self-sustained states at Kolmogorov microscale[END_REF] made further theoretical progress to connect some asymptotical states given by VWI theory with localized ECS. The authors derived an energy scaling associated with a localized minimal state which closely matches the one found for the minimal seed (O(Re -2.5 ) to compare with O(Re -2.7 )). [START_REF] Beaume | Exact coherent structures in an asymptotically reduced description of parallel shear flows[END_REF][START_REF] Beaume | Reduced description of exact coherent states in parallel shear flows[END_REF] extend the previous approach by retaining the leading-order diffusion terms in the streamwise perturbation equation. Interestingly, the formulation derived by [START_REF] Beaume | Exact coherent structures in an asymptotically reduced description of parallel shear flows[END_REF][START_REF] Beaume | Reduced description of exact coherent states in parallel shear flows[END_REF] proved to be efficient at low Reynolds numbers and captures remarkably well the saddle-node bifurcation where the ECS separates into upper and lower branch states. Similar conclusions have recently been made by [START_REF] Pausch | Quasilinear approximation for exact coherent states in parallel shear flows[END_REF]; [START_REF] Rosenberg | Computing exact coherent states in channels starting from the laminar profile: a resolvent-based approach[END_REF] using analogous approximations for plane channel flow and pCf. In the same spirit, [START_REF] Alizard | Invariant solutions in a channel flow using a minimal restricted nonlinear model[END_REF]; [START_REF] Alizard | Restricted nonlinear model for high-and low-drag events in plane channel flow[END_REF] showed that this reduced system allows the computation of spanwise localized ECS and periodic orbits. [START_REF] Thomas | A minimal model of self-sustaining turbulence[END_REF]; [START_REF] Farrell | A statistical state dynamics approach to wall-turbulence[END_REF] have shown that this restricted nonlinear model (RNL) is also able to reproduce essential features of wall-bounded turbulent flows. In particular, [START_REF] Bretheim | Standard logarithmic mean velocity distribution in a band-limited restricted nonlinear model of turbulent flow in a half-channel[END_REF][START_REF] Bretheim | A restricted nonlinear large eddy simulation model for high Reynolds number flows[END_REF] showed that RNL models with only a few number of selected streamwise Fourier modes (i.e. the band-limited RNL) are successful in predicting both mean flow and second-order statistics.

Such reduction of wall-turbulence confirms the ability of RNL models to capture ECS embedded in the phase-space of the turbulent attractor. [START_REF] Biau | An optimal path to transition in a duct[END_REF] carried out nonlinear optimizations based on RNL equations to identify an optimal path to transition in a linearly stable duct flow. Using DNS, the authors proved that the resulting nonlinear optimal perturbation is able to reach self-sustained turbulence. By varying the value of the streamwise wavelength of the perturbation, they identified a cut-off around 300 wall units, below which no transition can be observed. The latter value is of the same order of magnitude as the minimal flow unit [START_REF] Jiménez | The minimal flow unit in near-wall turbulence[END_REF] for turbulence. Finally, the optimal solution exhibits strong similarities with the nonlinear solution lying on the edge. In the same way as in [START_REF] Biau | An optimal path to transition in a duct[END_REF], [START_REF] Pralits | Weakly nonlinear optimal perturbations[END_REF] have found that nonlinear optimizations based on a RNL system with a single streamwise Fourier mode and two spanwise Fourier modes are successful in finding an optimal path according to the oblique wave scenario.

While previous studies have significantly enhanced our understanding of laminar/turbulent transition for subcritical flows, the minimal threshold energy obtained through nonlinear optimizations based on the RNL system has yet to be compared with the one corresponding to the minimal seed. How does the evolving flow structure of the corresponding nonlinear optimal perturbation compare with the one computed using RNL optimizations ? Furthermore, the generation of streamwise-independent vortices is a fundamental element in the laminar/turbulent transition process. However, it is not clear if the vortex generation mechanism is driven by the advection term [START_REF] Hamilton | Regeneration mechanisms of nearwall turbulence structures[END_REF] or the vortex stretching term [START_REF] Schoppa | Coherent structure generation in near-wall turbulence[END_REF]. Finally, most studies dealing with RNL models focused either on initial steps of transition [START_REF] Biau | An optimal path to transition in a duct[END_REF] or on fully turbulent flow [START_REF] Farrell | Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow[END_REF]. Can RNL models provide the whole picture of laminar/turbulent transition ? The scope of this paper is to shed some light on these major points. For that purpose, the pCf case studied by [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF]; [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] is investigated. A single Fourier mode for the fluctuation will be retained hereafter that prevents any streamwise localization.

The paper is organized as follows. In section 2, we recall the equations of the RNL model. After presenting the Lagrangian functional to be maximized and numerical methods in section 3, we compare the kinetic energy thresholds found using RNL optimizations with those of the literature [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF][START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] and analyze the different steps of laminar/turbulent transition in section 4. A specific attention will be devoted to give physical insight into the initial streamwise vortex formation mechanism. Finally, section 5 is dedicated to conclusions and perspectives.

Restricted non-linear system

We denote by x, y and z the coordinates in the streamwise, wall-normal and spanwise directions, respectively. We consider the plane Couette flow of an incompressible fluid with kinematic viscosity ν between two parallel plates located at y = ±h. The two plates move in opposite directions with velocity (±U 0 , 0, 0). The Reynolds number is defined as Re = U 0 h/ν. The over-bar will be used to distinguish quantities which are averaged over a streamwise distance

L x : φ (y, z, t) = 1 L x Lx 0 φ (x, y, z, t) dx. (1) 
The velocity perturbation to the Couette laminar solution (U b = y, 0, 0) is decomposed into its streamwise-averaged part U = u and its fluctuation u:

u (x, y, z, t) = U (y, z, t) + u (x, y, z, t) . (2) 
The components u = (u, v, w) will be called streamwise, wall-normal and spanwise velocities, respectively. For simplicity, U will be referred to as the mean flow and (U, V, W ) the components of the mean flow distortion: U corresponding to the streak and V, W to the roll components. The pressure is similarly split into: p(x, y, z, t) = P (y, z, t) + p(x, y, z, t). Using the scales h and U 0 , variables and equations will be expressed hereafter in non-dimensional form. We 

V y + W z = 0, U t + V (U + U b ) y + W U z = D v (U ) -∂ y (v * û + vû * ) -∂ z ( ŵ * û + ŵû * ) , V t + V V y + W V z = -P y + D v (V ) -∂ y (2vv * ) -∂ z ( ŵ * v + ŵv * ) , W t + V W y + W W z = -P z + D v (W ) -∂ y (v * ŵ + v ŵ * ) -∂ z (2 ŵ * w) ,
where

D v = Re -1 ∂ 2 /∂y 2 + ∂ 2 /∂z 2 , (3) 
associated with homogeneous boundary conditions U = V = W = 0 on the walls. The Navier-Stokes equations, linearized around the mean flow, are:

iαû + vy + ŵz = 0, ût + iα (U + U b ) û + v (U + U b ) y + V ûy + ŵU z + W ûz = -iαp + d v (û) , vt + iα (U + U b ) v + vV y + V vy + ŵV z + W vz = -p y + d v (v) , ŵt + iα (U + U b ) ŵ + vW y + V ŵy + ŵW z + W ŵz = -p z + d v ( ŵ) , where d v = Re -1 -α 2 + ∂ 2 /∂y 2 + ∂ 2 /∂z 2 , (4) 
together with û = v = ŵ = 0 on the walls. [START_REF] Biau | An optimal path to transition in a duct[END_REF] used a simplified version of the system (3,4) obtained by considering the following scaling: streaks are O (1), rolls and the fundamental mode of the instability wave are O Re -1 and its harmonics are o Re -1 . However, while the previous scaling is verified for the lower branch solution, it is not consistent when the whole process leading to turbulence is of interest. Indeed, the terms boxed in equations (3) have to be balanced in equations ( 4) to guarantee total energy conservation. For that, the terms boxed in (4) have to be added. As a conse-

quence, the roll can no longer be negligible in front of streak component and must also be considered. For the sake of conciseness, (3) will be denoted by

200 (F (U, P ) , ∇ • U) = 0 and (4) as (H ( u, p) , ∇ • u) = 0.
3. Optimization based on the RNL system and numerical methods

In the present context, the nonlinear optimization consists in finding the initial perturbation that, for a fixed level of initial kinetic energy, has the largest growth for a given target time. First, we introduce the scalar product:

u, v = 1 D D u • v dD (5)
where D is a rectangular parallelepiped bounded by the two plates and having L x and L z as streamwise and spanwise side lengths. The volume of

D is D = 2 L x L z
and dD = dx dy dz.
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The function to maximize is the total kinetic energy for the perturbation which is divided in two parts:

E tot (T ) = E (T ) + e (T ) = 1 2 U (T ) , U (T ) + 1 2 u (T ) , u (T ) . (6) 
associated with the mean flow distortion and the fluctuating part (a sinusoidal function along x), respectively. The initial time is t = 0 and the target time at which the energy growth is maximized is noted t = T . Following [START_REF] Biau | An optimal path to transition in a duct[END_REF]; [START_REF] Olvera | Optimizing energy growth as a tool for finding exact coherent structures[END_REF], we search for the maximum of the constrained Lagrangian L defined as

L = E tot (T ) + λ U 0 , U 0 -2E 0 + ζ u 0 , u 0 -2e 0 + [A, F (U, P )] + [a, H ( u, p)] + [Π, ∇ • U] + [π, ∇ • u] , (7) 
with

U 0 = U (t = 0), u 0 = u (t = 0) and [u, v] = 1 T T 0 u, v dt.
In the Lagrangian, a = (a, b, c) , A = (A, B, C) , π, Π and λ, ζ are the Lagrange multipliers. To determine the optimal initial perturbation, we write the first variations of L with respect to the Lagrange multipliers, physical states (u, U) and the initial perturbations ( u 0 , U 0 ) and set them to zero. We recover equations ( 3), ( 4) and their adjoint counterparts. Adjoint equations and temporal initial and end conditions that close the system of equations are detailed in the appendix A. The strategy to converge to the solution corresponding to the maximum energy growth is based on successive time integration of direct and adjoint systems (similar to the power iteration method used in the linear framework) starting with an initial guess for the initial perturbation. Finally, at each step, both λ and ζ are chosen to ensure that E (0) = E 0 and e (0) = e 0 are satisfied. In the following, only the case E 0 = 0 is considered. Hereafter, the nonlinear optimal provided by the RNL model will be called either restricted nonlinear optimal or RNLOPT. One may remark that the function to maximize used by [START_REF] Biau | An optimal path to transition in a duct[END_REF] and Pralits et al. ( 2015) is e(t), the kinetic energy associated with the fluctuation. Nevertheless, for long times and close the threshold, the total kinetic energy is mainly driven by its mean flow contribution (see for instance [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF]). The restriction to e(t) for the optimal gain is therefore not fully relevant for large target times.

For numerical integration of the RNL system (either direct or adjoint equations), spectral approximations of the velocity field are adopted, using Fourier expansions in both streamwise and spanwise directions and Chebyshev polynomials in wall-normal direction. The numerical methods are described in [START_REF] Alizard | Linear stability of optimal streaks in the log-layer of turbulent channel flows[END_REF] and the code has been validated in [START_REF] Alizard | Invariant solutions in a channel flow using a minimal restricted nonlinear model[END_REF]. For the full Navier-Stokes equations, the spectral code developed by [START_REF] Buffat | An efficient spectral method based on an orthogonal decomposition of the velocity for transition analysis in wall bounded flow[END_REF] is used.

Finally, dealiasing with the 2/3 rule is implemented in the streamwise and spanwise directions for DNS and only in the spanwise direction for RNL simulations.

In the following, the flow cases investigated by [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF]; 

Results

Nonlinear optimizations and minimal threshold energy

First, an example of the convergence history is provided in figure 1 It is consistent with the results reported in figure 1(a) for T = 140. This a posteriori observation justifies the use of both contributions in the optimization process. For larger e 0 , e(T ) and E(T ) can reach equivalent gains. Nevertheless, being interested in the critical energy threshold, this case is not reported here.

When the breakdown exists, e(t) exhibits an exponential behavior for t > T .

This is an indication that the state obtained at t = T is linearly unstable and is driven along its unstable direction toward a chaotic saddle. for long times. For e 0 just below e c , the flow relaminarizes as t increases. For e 0 just above e c , the perturbation breaks down to turbulence (within the RNL approximation) for large t. In figure 4, the kinetic energy of the perturbation is shown in the cross plane (y, z) at t = 0. It is seen that for T = 40, the perturbation is spatially extended in the spanwise direction and is symmetric with respect to the midplane y = 0. We recall that for this time, the critical energy threshold is close the one reported in the OW scenario (see figure 3). When increasing T , the optimal perturbation at the initial time becomes spanwise localized. This behavior is accompanied by a strong decrease in critical energy threshold e c (figure 3). For

T greater than 100, the mirror symmetry is broken. We observe a shift of the perturbation towards the lower wall associated with a slight decrease in e c 15 fully nonlinear optimization framework. Localized solutions in the wall-normal direction have also been observed in plane channel flow by [START_REF] Farano | Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow[END_REF].

We now investigate the Reynolds number scaling for e c . For that purpose,

we have fixed T = 110 for both cases. For Re = 3000, we observe only a slight decrease in e c when T > 110 (figure 3). This restricted minimal threshold e c is shown in figure 5 for the same values of Reynolds numbers as those investigated by [START_REF] Duguet | Localized edge states in plane Couette flow[END_REF]. Kinetic energy thresholds are also calculated by DNS.

For that purpose, restricted nonlinear optimals are integrated forward in time using DNS for various values of the initial kinetic energy. Figure 5 shows that RNL simplification provides a good approximation of the threshold. It is also interesting to notice that we observe a power-law scaling e c = O(Re γ ) with γ ≈ -2.65. The exponent is close to the one found using the full set of equations γ = -2.7 [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF]. Especially, the restricted minimal perturbations found here have lower energy thresholds than those found for OW scenario.

These results are also consistent with the theoretical analysis carried out by [START_REF] Deguchi | Self-sustained states at Kolmogorov microscale[END_REF] (γ = -2.5). Part of this difference may be explained by the fact that [START_REF] Deguchi | Self-sustained states at Kolmogorov microscale[END_REF] used an asymptotic theory designed for large Reynolds numbers.

4.2. Different paths associated with short and long target times.

We choose here to focus on the temporal evolution of RNLOPT for Re = 2000. Two target times are investigated T = 50 and T = 110. For T = 50, the initial energy is fixed to e 0 ≈ 2.64 × 10 -7 ; for T = 110, e 0 ≈ 2.54 × 10 -7 . For both target times, e 0 is fixed close to the threshold e c . For T = 50, the initial perturbation is symmetric with respect to y = 0. For T = 110, the mirror symmetry is broken, and the perturbation shows asymmetry with respect to the mid-plane y = 0 (similar to what is found for Re = 3000 as shown in figure 4). The restricted nonlinear optimal for T = 50 is referenced hereafter as RNLOPT S . The one obtained for T = 110 will be denoted by RNLOPT NS . The time integration is carried out using the RNL system (3, 4). Time evolutions of e(t), E(t) and E tot are illustrated in figure 6. For both optimals, the breakdown is observed for long times.

For RNLOPT S and RNLOPT NS , the kinetic energy thresholds are also computed using DNS. The two RNLOPT are rescaled by bisection until an equilibrium is approached. The two threshold energy levels are not very different: e 0 ≈ 3.0 × 10 -7 and e 0 ≈ 3.12 × 10 -7 , values to be compared with e 0 ≈ 2.54 × 10 -7 and e 0 ≈ 2.64 × 10 -7 , respectively. For the minimal seed obtained using a fully non-linear approach, we recall that [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] found an energy threshold ≈ 1.53 × 10 -7 . This level is thus about half the value provided by the restricted non-linear system. Figure 6 energy until it reaches a plateau near t = 600. These behaviors are found either using DNS or RNL simulation. It suggests that RNLOPT S and RNLOPT NS pass along different edge states before the breakdown.

In figure 7, we compare transverse cross-sections for the spanwise vorticity component for the two optimals at the earliest times. While the first optimal exhibits symmetry with respect to the mid-plane y = 0, the other one is shifted to the lower side. The time evolution of the two flows is very similar. At the initial time, the fluctuation is characterized by a flow pattern that opposes the mean shear direction. As time evolves from t = 0 to t = 20, the perturbation tilts downstream thus causing transient growth of energy. At t = 20, an increase in kinetic energy of the streamwise velocity component is also observed (not shown here). This suggests that a combination of Orr and lift-up mechanisms leads to enhance energy gain for these times [START_REF] Butler | Three-dimensional optimal perturbations in viscous shear flow[END_REF]. ). On the contrary, RNLOPT S is characterized by a mirror symmetry about the plane y = 0. Especially, the figures 8(a,c) show that the streaks are centered with a similar distance from both walls for t = 30 and t = 400. We recall that at the initial time E 0 = 0, meaning that the streamwise averaged part is null at t = 0. The only source for generating rolls (V, W ) is due to the nonlinear feedback term that represents the quadratic interaction of the fluctuating part. Rolls then redistribute the streamwise component of momentum and create streaks (U ). RNLOPT S and RNLOPT NS exhibit then two fundamentals elements of the SSP [START_REF] Hamilton | Regeneration mechanisms of nearwall turbulence structures[END_REF][START_REF] Waleffe | How streamwise rolls and streaks self-sustain in a shear flow[END_REF].

In figure 9, we show a reconstruction of three-dimensional flow fields at t = 700. For this specific time, an almost equilibrium is observed for both opti- mals. For RNLOPT S , the structure consists of undulated streaks on both walls.

The solution associated with RNLOPT NS exhibits an isolated bent high-speed streak sandwiched between two low-speed streaks. The observed motion for both optimals shares similarities with travelling wave solutions associated with lower branch states [START_REF] Waleffe | Three-dimensional coherent states in plane shear flows[END_REF][START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF]. The time evolving flow structures associated with both RNLOPT S and RNLOPT NS obtained by DNS are shown in figure 10. Similar patterns are observed confirming, at least quantitatively, the good approximation provided by the RNL system. On one hand, the time-evolving structure for RNLOPT NS bears a striking resemblance to the time evolution of the minimal perturbation identified by [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF][START_REF] Rabin | Triggering turbulence efficiently in plane Couette flow[END_REF]; [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF]. On the other hand, the symmetric optimal exhibits a pattern similar to the lower branch spanwiselocalized solutions found by [START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF]. For this perturbation, the state found by [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF]; [START_REF] Rabin | Triggering turbulence efficiently in plane Couette flow[END_REF]; Duguet et al. served for RNLOPT S . For t = 750, the two low-speed streaks have developed on the sides of the high-speed streak. For t = 800, the pattern is mainly driven by the low-speed streaks. In figure 15, cross-section of the full velocity fields:

(U b + u, v, w) in the plane y = 0 is shown for t = 800. For this time, the low speed streaks exhibit a varicose symmetry. For 800 < t < 810, the trajectory is seen to reach high values of dissipation and is rapidly attracted to the chaotic saddle (figure 11(a)). In contrast with the symmetric perturbation, the flow passes close to the edge state (for 700 < t < 750), but it is rapidly repelled away from it. Hence, the bursting event associated with the breakdown of the low speed streaks appears to be closely related to the bursting scenario investigated by [START_REF] Cherubini | Nonlinear optimal perturbations in a Couette flow: bursting and transition[END_REF]. For the non-symmetric perturbation, the path leading to RNL turbulence closely resembles the one corresponding to the minimal seed [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] except that the optimal is not localized in the streamwise direction at the earliest times. In particular, a striking resemblance of the patterns shown in figure 14 with those displayed in figure 8 in [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] can be observed. In addition, the varicose symmetry is also observed by the previous authors.

To further compare RNL simulations and DNS, the paths in the energy input/dissipation rate plane provided by the DNS are also shown in figure 16. From a geometrical viewpoint, trajectories exhibit the same characteristics as the ones found using RNL system. Especially, the trajectory associated with RNLOPT NS also exhibits an almost equilibrium point around (I/I lam , ε/ε lam ) ≈ (1.35, 1.35). For RNLOPT S , the path in the plane (I/I lam , ε/ε lam ) is seen to approach the point (1.03, 1.03) before being repelled.

The space-time diagram associated with the DNS and RNL simulations are displayed in figure 17 for RNLOPT NS (the case RNLOPT S is not shown here).

The figure shows the time evolution of the spanwise distribution for the wallshear stress on the lower wall, normalized with the laminar value. Figures 17(a)

and (b) show that while the streak breakdown takes place in a narrow region at t ≈ 700 along the spanwise direction, it spreads rapidly along z for larger times for both DNS and RNL simulations. We also observe that the spanwise spreading is similar whether the RNL system or the full Navier-Stokes equations are used. Nevertheless, some differences can be observed. The streak breakdown seems to start at different times (t > 600 for RNL and t < 600 for DNS). It is consistent with the results shown in figure 6 where the increase in E (t) (the kinetic energy associated with the streamwise averaged part) starts near t ≈ 550 for DNS and t ≈ 650 for RNL. The friction at the wall appears also to reach (1, 1)

(1, 2)

(1, 3) higher values when using DNS. At initial time, the most energetic modes are (1, ±1), (1, ±2) and (1, ±3).

Later, the oblique waves experience transient growth while generating streamwise rolls associated with the (0, 2) and (0, 3) components. For t ≈ 50, most of the energy is transferred into (0, 2) and (0, 3). At about this time, streamwise rolls and streaks located on the upper and the lower walls are identified as the dominant flow pattern (see figure 8(b)). As time increases up to 600, the mode (0, 1) reaches the same level as (0, 3) and the perturbation maintains an almost constant trend. At this time, the flow dynamics is driven by a single high-speed streak (see figure 14(c)). Due to the loss of symmetry with respect to the plane y = 0, the mean rolls located near the upper wall displace highspeed fluid towards the central region and amplify the high-speed streak (for 100 < t < 600). Then, modes (1, 2) and (1, 3) grow significantly. For t > 750, the pair of low-speed streaks appears to contribute mainly to the flow dynamics (see figure 14(d,e)). It should then indicate that at t = 600, the high-speed streak fields is unstable. This has for consequence to amplify modes (1, 2) and

(1, 3). Nonlinear interactions of these waves modify the streamwise rolls that, in turn, generate the pair of low-speed streaks. The dynamics exhibits then a strong interplay between the time varying meanflow and the superimposed perturbation. For the minimal seed, the most energetic modes at t = 0 are of the type (0, m) with also a significant contribution of (1, ±1), (2, ±1), (3, ±1) and (4, ±1) [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF]. At the early stage, [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] indicate that modal interactions are driven by oblique waves. Then, most of the energy is transferred to n = 0 modes with a major contribution for m = 2, m = 3 and m = 4. In particular, for these times, the kinetic energy associated with the fundamental n = 1 and its harmonics are less important. In the present work, we prevent any contribution of the streamwise-averaged component and its harmonics in α at t = 0. Hence, the initial perturbation obtained within the RNL approximation cannot reproduce the true nonlinear optimal. This may explain the differences observed in the critical energy thresholds. However, the dynamics for short times is also driven by oblique wave interactions that generate (0, 2) and (0, 3). At this time, we also observe a minor contribution of the mode n = 1.

The streamwise vortices generation mechanisms are now addressed for RNLOPT NS for t < 50. This time interval corresponds to the initial stages for rolls production. For these times (t < 50), we see no notable differences in modal kinetic energies for RNLOPT S and RNLOPT NS (see figure 6) and the mechanisms behind mean rolls production are quite identical (not shown here). The mechanisms are examined on the basis of vorticity considerations. In the following, we consider the equation for the mean streamwise vorticity:

∂Ω x ∂t + V ∂Ω x ∂y + W ∂Ω x ∂z = 1 Re ∂ 2 ∂y 2 + ∂ 2 ∂z 2 Ω x + Ω y ∂U ∂y + Ω z ∂U ∂z + ∂ 2 ∂y∂z v 2 -w 2 P1 + ∂ 2 ∂y 2 - ∂ 2 ∂z 2 v w. P2 (8) 
This equation ( 8) was also studied by [START_REF] Gessner | The origin of secondary flow in turbulent flow along a corner[END_REF] in order to explain the nature of the streamwise eddies observed in turbulent flows along corners. In equation ( 8), the term Ω y ∂U/∂y+Ω z ∂U/∂z is null (we recall that the streamwise averaged flow is independent of x). As a result, the only source terms in (8) are P 1 and P 2 . Note that P 1 and P 2 have the same physical origin and it is simple to show that P 1 + P 2 can be reduced to the form P 1 after projection on the principal axes of the Reynolds tensor (restricted to the plane (y, z)) [START_REF] Perkins | The formation of streamwise vorticity in turbulent flow[END_REF].

In figure 19, we show the cross-sections of v 2 , w 2 and v w at t = 30. The component w 2 has a maximum value ≈ 6 × 10 -4 . The contour peaks are ≈ 2 × 10 -5

and ≈ 4 × 10 -6 for v w and v 2 , respectively. Hence, the component w 2 appears as the most important contribution, thereby reflecting the sinuous character of the perturbation at t = 30. For this time, it can be noted that the critical layer is almost horizontal near y = 0. According to the VWI theory, the wave's Reynolds stress is mainly amplified within the critical layer through the action of w in agreement with our observations [START_REF] Hall | Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures[END_REF]. Fig-

ure 20 shows the cross-derivative of w 2 along y and z: -∂ 2 w 2 /∂y∂z together with P 1 + P 2 . The figure shows a close correspondence between both contours indicating that -∂ 2 w 2 /∂y∂z mainly contributes to P 1 + P 2 . Thus, we can observe that the nonlinear self-interaction of the streamwise-varying mode produces mean streamwise vorticity in exactly the right place where streamwise rolls are identified in figure 8.

Equation ( 8) is obtained by straightforward application of curl operator on the streamwise-averaged momentum equation (the term P 1 + P 2 is simply the curl of the Reynolds stress term). The role of Reynolds stress in generating vortices are generated (see figure 8). Besides that, the figure 21 shows that levels associated with P c are nearly three times higher than those of P s and P t .

For this time, P c contributes then mainly to rolls production. We recall that [START_REF] Hamilton | Regeneration mechanisms of nearwall turbulence structures[END_REF] proposed a streamwise vortex generation mechanism, in which the advection term P c plays the dominant role (see also for a review Kim ( 2011)). Then, the mechanism behind the streamwise vortices generation at the initial time appears closer to the one identified by [START_REF] Hamilton | Regeneration mechanisms of nearwall turbulence structures[END_REF].

The term P c is analogous to the Reynolds-stress term in the equation of the mean velocity. It appears with the opposite sign in the transport equation of the fluctuating vorticity and is hence responsible of an exchange of mean enstrophy between the component attached to the mean velocity and that related to the fluctuation. This term is mainly driven by the correlation v ω x (not shown here). In the context of fully developed turbulence, it has been proposed to relate the velocity-vorticity correlations to the mean vorticity gradient through a Boussinesq diffusion-like model [START_REF] Tennekes | A First Course in Turbulence[END_REF]. In the present case, however, this kind of model does not predict the right sign for the mean vorticity flux.

Discussion and perspectives

A RNL system, for which a single streamwise Fourier mode is retained for the fluctuation, is used to identify laminar/turbulent transition paths that require the minimum energy. Using a Lagrangian formulation for the constrained RNL system, two types of initial perturbations can be considered. While the first set only involves the initial energy of the fluctuation, the second one uses a combination of the mean and the fluctuating parts. Only the first category is investigated in this study.

The same pCf case as the one studied by [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] is considered.

We have identified two optimals, one for moderate target times and one for large target times. Both of them exhibit spanwise localization. While the first optimal appears symmetric with respect to the mid-plane y = 0, the second optimal is non-symmetric. The dynamics in the physical space displays all the mechanisms identified in a fully nonlinear framework [START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF]. For both optimals, mean streamwise vortices are generated from nonlinear interaction of three-dimensional oblique modes that get amplified through the Orr and lift-up mechanisms. At the earliest times, the generation of mean streamwise vortices is dominated by the convective term. The mean streamwise vortices generate lowand high-speed streaks on both walls by lift-up effect. For the first optimal, streaks are symmetric with respect to the mid-plane y = 0. For the second one, the streak near the upper wall develops more rapidly than the one near the lower wall in the early stages. Turbulence first develops locally, before spreading in spanwise direction. We show that all mechanisms are quantitatively well approximated by the RNL model.

From a geometrical viewpoint, both trajectories appear to approach an edge state. The edge state for the first optimal shows symmetry with respect to the channel mid-plane and exhibits strong similarities with the class of spanwiselocalized invariant solutions given by [START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF]. However, further investigations are needed in order to draw firm conclusions. For the second optimal, the symmetry breaking leads the flow structure to evolve near a different edge state. It consists of an isolated high-speed streak sandwiched between two low-speed streaks. This restricted nonlinear optimal and the minimal seed investigated by [START_REF] Monokrousos | Nonequlibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF][START_REF] Rabin | Triggering turbulence efficiently in plane Couette flow[END_REF]; [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF] for the same computational box and the same Reynolds numbers show numerous similarities. The minimal seed is characterized by a pattern oriented in a direction pointing against the shear inside a three-dimensionally localized region (in all directions). Apart from the fact that the RNL optimal obtained for a large target time is extended in the streamwise direction, the non-symmetric RNL optimal is also localized in spanwise and wall normal directions. For the corresponding time evolving flow, both trajectories pass close to a similar spanwise-localized edge state. Furthermore, the routes to turbulence present the same known mechanisms: Orr mechanism, oblique wave interaction, lift-up, streak secondary instability, streak breakdown, and spanwise spreading, that are found to occur one after the other. Notably, the threshold energy found using RNL optimizations is only twice the one found using the full DNS. In particular, the scaling law obtained by RNL optimizations is quite similar to the one associated with the minimal seed (O(Re -2.65 ) to be compared with O(Re -2.7 )). For the true nonlinear optimal found by [START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF], the perturbation at 590 the initial time is mainly driven by oblique wave interaction associated with the fundamental streamwise Fourier mode and harmonics. The RNL approximation prevents any contribution of harmonics. This major difference may explain the change in the kinetic energy threshold. Further work is then required to include harmonics using RNL systems. This issue is currently under investigation.
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  will consider a minimal RNL system where only a single streamwise component is retained. The fluctuation is thus expressed as: u = ûe iαx + û e -iαx , where α = 2π/L x is the streamwise wave number. Under this hypothesis, only the components having streamwise wave numbers equal to ±2α contribute to the nonlinear terms in the equation u • ∇ uu • ∇ u. These terms are neglected in the present RNL model which can thus be viewed as a Galerkin truncation of the Navier-Stokes equations restricted to one streamwise Fourier mode. The system of equations governing the streamwise-averaged flow reads:

Figure 1 :

 1 Figure 1: Convergence history for RNL optimizations for Re = 3000, T = 140 and e 0 = 9 × 10 -8 . Left: kinetic energy gains e(T ) and E(T ). Right: residual r.

Figure 2 :

 2 Figure 2: RNL optimizations: Re = 3000 and e 0 = 9 × 10 -8 . Time evolution of the total kinetic energy E(t) + e(t) (full line), mean flow kinetic energy E(t) (dashed lines) and fluctuation kinetic energy e(t) (dotted lines) for various target times T .

Figure 3 :

 3 Figure 3: RNL optimizations: Re = 3000. Full line: critical initial energy threshold versus target time T . In dashed lines, the critical energy threshold for the oblique wave scenario is represented.

  Figure 3 shows that for T < 40, e c is close to the value given by Duguet et al. (2013) for the OW scenario. When T > 50, an abrupt change takes place with a strong decrease in e c . Then, e c exhibits a slow decay.

(figure 3 )Figure 4 :

 34 Figure 4: RNL optimizations: Re = 3000 and e 0 = 9×10 -8 . Kinetic energy of the fluctuation at t = 0 for T = 40, T = 80 and T = 120 (from top to bottom).

Figure 5 :

 5 Figure 5: Energy threshold versus the Reynolds number Re for Re = 750, 1500, 2000 and 3000found using RNL optimizations (full line). Symbols represent tested values of e 0 below/above which transition to turbulence never occurs when restricted nonlinear optimals are integrated forward in time using DNS. The fit 148Re -2.654 is compared to the fit 4Re -2 obtained for the oblique wave scenario for the same computational box and to the fit 125Re -2.7 associated with fully nonlinear optimizations (values given by[START_REF] Duguet | Minimal transition thresholds in plane Couette flow[END_REF]).

Figure 6 :

 6 Figure 6: RNL simulations: e 0 ≈ 2.54 × 10 -7 and e 0 ≈ 2.64 × 10 -7 (for T = 110 and T = 50, respectively). The time evolution of e(t) (dashed lines), E(t) (dotted lines) and Etot (t) (full line) are shown. Results provided by DNS are also represented.

ForFigure 7 :

 7 Figure 7: RNL simulation. RNLOPT NS (a,c) and RNLOPT S (b,d) for e 0 = 2.54 × 10 -7 (T = 50) and e 0 = 2.64 × 10 -6 (T = 110). Spanwise vorticity fluctuation at t = 0 (a,b) and t = 20 (c,d) in the (x, y) plane at z = Lz/4. For t = 0 levels ±20, for t = 20 levels ±100. The profiles of the streamwise-averaged velocity are also shown in black dashed lines.

Figure 8 :

 8 Figure 8: RNL simulation. RNLOPT S (a,c) and RNLOPT NS (b,d) for e 0 = 2.64 × 10 -7 (T = 50) and e 0 = 2.54 × 10 -7 (T = 110), respectively. Isolevels of the streamwise component of the mean flow distortion U and vectors for the cross-stream components at t = 30 (a,b) and t = 400 (c,d).
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 91011 Figure 9: RNL simulation. RNLOPT S (a) and RNLOPT NS (b) for e 0 ≈ 2.64×10 -7 (T = 50) and e 0 ≈ 2.54 × 10 -7 (T = 110), respectively. Snapshots of the solution extracted at t = 700. The instantaneous streamwise velocity u = U + u is considered. Isosurfaces ±0.1 are shown in red and blue.
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 2013 is never recovered because the streaks on the upper wall and on the lower wall develop secondary instability at the same time.To further characterize the dynamics associated with the two optimals and their connection with results reported in the literature, the phase space trajectories are studied in the energy input / dissipation rate plane. The rate of change of energy equation is equal to Iε, where the energy input I and dissipation rate ε read both optimals are shown in figure11.380For RNLOPT S , the perturbation spends a long time close to (I/I lam , ε/ε lam ) ≈ (1.03, 1.03) where the energy input is balanced by the dissipation rate. figure 11(b) shows that between 100 < t < 700, the corresponding points in the phase space (I/I lam , ε/ε lam ) are sitting in the neighborhood of

Figure 12 :

 12 Figure 12: RNL simulation for RNLOPT S . Cross-sections of the full velocity field in the plane x = 6, for times t = 100, 700, 750 and 800. Contours: iso-levels of U b + u (-0.8, -0.4, 0, 0.4, 0.8); arrows: (v, w) vectors. The vectors are normalized by the square of the total kinetic energy for each time.
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 11315 Figure 13: RNL simulation for RNLOPT S . Cross-sections of the full velocity field in the plane y = -0.5, for time t = 750. Contours: iso-levels of U b + u.

Figure 16 :

 16 Figure 16: DNS. Energy input/dissipation rate trajectories starting from RNLOPT S and RNLOPT NS . Values are scaled by their laminar states (I lam , ε lam ). Time direction is indicated by arrows. Arrow length corresponds to a time interval ∆t = 10. Bottom arrow positions are fixed at t = 100, 300, 600 and 700.

Figure 17 :

 17 Figure 17: Spatiotemporal diagram obtained using (a) RNL simulation and (b) DNS for RNLOPT NS near the threshold. Isocontours of the wall shear stress based on the streamwiseaveraged velocity field normalized with the laminar value.

Figure 18 :

 18 Figure 18: RNL simulation. Energy in selected Fourier components for RNLOPT NS (T = 110) for the kinetic energy threshold e 0 ≈ 2.54 × 10 -7 . Left: streamwise mean flow components, right: modes for the fundamental streamwise wavenumber.
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 3 Modal energy and origin of streamwise independent rolls and streaks First, we analyze the spectral energy distribution of the Fourier modes for the time evolving flow structure associated with RNLOPT NS . Aiming to discuss the physical mechanisms in the light of those associated with the minimal seed, only RNLOPT NS is considered. Fourier modes corresponding to the wavevector components (nα, mβ) with (α, β) = (2π/L x , 2π/L z ) are hereafter labeled with couples (m, n). The time evolution of the disturbance energy for 8 selected Fourier components can be seen in figure 18. The flow is symmetric in spanwise direction implying that the energy of the modes (n, -m) are equal to their positive counterpart (n, m).

mean vorticity can be grasped by thinking of it in terms of anisotropic pressure i.e. a pressure whose the mean value depends on orientation. An alternative for getting the transport equation of Ω x is to start from the local vorticity equation and take the average of it in the streamwise direction. For a discussion of the obtained equation that offers a description in terms of vorticity dynamics, the reader may consult [START_REF] Tennekes | A First Course in Turbulence[END_REF]. The method leads to an alternative expression of P 1 + P 2 involving correlations between fluctuating vorticity components ( ω x , ω y , ω z ) = ∇ × u and the associated strain rates:

In (9), P s and P t , the so-called vortex stretching and vortex tilting terms, respectively, represent amplification and rotation of the vorticity vector by the strain rate. The convective term P c represents the mean transport of ω x by the fluctuating velocity. Cross-sections of P s , P t and P c are shown in figures 21 for t = 30. All terms are mainly localized in the area where mean streamwise

525

As in the approaches of [START_REF] Biau | An optimal path to transition in a duct[END_REF]; [START_REF] Olvera | Optimizing energy growth as a tool for finding exact coherent structures[END_REF], the equations governing the optimal RNL system solution are deduced from the condition of extremality of the constrained Lagrangian (7). We recover equations (3), (4) and their adjoint counterparts:

with the following notations

g a = vA y + wA z , g b = vB y + wB z and g c = vC y + wC z .

Note that the function G A characterizes the sensitivity to variations in the base flow [START_REF] Marquet | Sensitivity analysis and passive control of cylinder flow[END_REF] and the functions g a , g b and g c are associated with variations in the perturbation [START_REF] Biau | An optimal path to transition in a duct[END_REF]. Temporal initial and end conditions close the system of equations:

ζ u (0) = a (0) , λU (0) = A (0) .