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Abstract

The reconstruction of a volumetric image from Digital Breast Tomosynthesis (DBT) mea-
surements is an ill-posed inverse problem, for which existing iterative regularized ap-
proaches can provide a good solution. However, the clinical task is somehow omitted
in the derivation of those techniques, although it plays a primary role in the radiologist
diagnosis. In this work, we address this issue by introducing a novel variational formu-
lation for DBT reconstruction, tailored for a specific clinical task, namely the detection
of microcalcifications. Our method aims at simultaneously enhancing the detectability
performance and enabling a high-quality restoration of the background breast tissues.
Our contribution is threefold. First, we introduce an original task-based reconstruction
framework through the proposition of a detectability function inspired from mathematical
model observers. Second, we propose a novel total-variation regularizer where the gradi-
ent field accounts for the different morphological contents of the imaged breast. Third,
we integrate the two developed measures into a cost function, minimized thanks to a
new form of the Majorize Minimize Memory Gradient (3MG) algorithm. We conduct
a numerical comparison of the convergence speed of the proposed method with those of
standard convex optimization algorithms. Experimental results show the interest of our
DBT reconstruction approach, qualitatively and quantitatively.

Keywords

3D image reconstruction; Detectability; Digital Breast Tomosynthesis;Inverse problem;Majorize-
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1 Introduction

Nowadays, breast cancer is the most prominent cancer among women and the second
leading cause of death among them. According to the World Health Organization, it
impacts 2.1 millions of women each year. Early screening and diagnosis can make a life-
changing shift in the mortality rates. For years, full field digital mammography (FFDM)
has been the gold standard for screening and early detection of breast cancer. It has
significantly reduced breast cancer mortality in a cost-effective way. Nevertheless, as a
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2D imaging technique its sensitivity is affected by breast tissue overlapping [32], in a
particularly severe way for highly dense breasts.

Digital Breast Tomosynthesis (DBT) was introduced to partially alleviate the major
limitation of FFDM, induced by the tissue overlap [53]. The acquisition geometry is
very similar to that used in mammography. However, in DBT, several projections of
the breast are used for the reconstruction of a stack of images parallel to the detector
plane, corresponding to breast slices. A limited number of low-dose projection images
is acquired so that the total dose to the patient in DBT remains comparable to the one
in FFDM. From the acquired DBT two-dimensional projection images, the sought three-
dimensional volume is computed, using a reconstruction algorithm. The resulting volume
consists of slices that present less superimposition of tissues compared to a standard X-ray
mammography. Hence, thanks to this 3D nature of the reconstructed volume, DBT offers
a great potential to help reducing recall rates, to improve the accuracy of breast cancer
detection, and therefore to improve the clinical diagnosis performance, particularly for
dense breasts.

The diagnosis accuracy in breast cancer screening highly depends on the ease for the
radiologist to detect microcalcifications within the analysed images. The detectability of
microcalcifications remains an open challenge in the context of DBT, as emphasized in
many recent research studies [57, 41, 48, 34, 25]. First, microcalcifications detection is a
particularly challenging task due to their small size and the fact of potential occlusion of
those objects in highly dense breasts. Second, the high number of images to be reviewed
in DBT (3D scans in DBT versus 2D images in FFDM) increases the time and complexity
of the interpretation for the radiologist, which may negatively affect his/her performance
in terms of visual detection accuracy. Third, due to inherent geometric limitations, the
reconstructed DBT volumes remain characterized by anisotropic spatial resolution, with
high resolution in the planes parallel to the detector and much lower resolution in the
perpendicular direction.

One promising research direction to enhance microcalcification detectability perfor-
mance in DBT is to investigate over the reconstruction process of DBT volumes. As
DBT volume reconstruction is an ill-posed inverse problem, iterative reconstruction al-
gorithms have demonstrated their superiority over analytical ones [54]. In particular,
regularized iterative algorithms have the potential to incorporate prior knowledge aiming
at mitigating the missing information issue [56, 55, 40, 46, ?, 51, 23]. Even though these
regularized approaches yield smoother DBT reconstructed volumes, they do not account
for the aforementioned clinical task, i.e. microcalcification detection. Furthermore, it is
well known that the breast is composed by several anatomical components with very dif-
ferent attenuation properties compared with the ones of the microcalcifications. Resorting
to classical regularization approaches, such as the celebrated total-variation (TV), may
not be enough to cope with such heterogeneity within the DBT images.

In this work, we introduce a novel variational formulation for DBT reconstruction
which is specifically adapted to the targeted clinical task. Our contribution is threefold.
First, we formulate a new detectability function as a prior term aiming at maximizing
the detectability of microcalcifications in predefined regions of interest. Second, we in-
troduce a novel TV-based regularization strategy, involving an original discretization of
the gradient field of the image that incorporates prior knowledge on the morphological
contents of our image. Third, we propose an efficient algorithm, based on the Majorize-
Minimize Memory Gradient (3MG) scheme, to minimize the resulting objective function.
Numerical experiments, conducted on phantom and clinical data, assess qualitatively the
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performance on the proposed reconstruction approach. Finally, a visual evaluation study,
performed on fourteen qualified readers demonstrates the interest of our proposed ap-
proach.

The paper is organized as follows: Section 2 introduces the reconstruction problem
and motivates our proposed approach. Section 3 presents our proposed task-based ap-
proach, relying on the formulation of a novel microcalcification detectability term. Sec-
tion 4 introduces the new spatially adaptive total variation (SATV) regularization term.
Section 5 depicts the application of 3MG algorithm, including several numerical improve-
ments tailored to our DBT reconstruction problem. The conducted experimental results
are presented in Section 6. Section 7 concludes this work.

2 Reconstruction problem in DBT

2.1 Problem statement

The objective of DBT reconstruction is to recover a volumetric estimation of the imaged
object from a limited set of measurements. Those are linked to the imaged object through
a linear forward projector, so that

p = Ad+ e (1)

where p ∈ Rn represents the n ≥ 1 acquired projections data, d = (di)1≤i≤m ∈ Rm

represents the DBT volume of m ≥ 1 voxels to be reconstructed, A ∈ Rn×m is the forward
projection matrix describing the geometry of the DBT system, and e ∈ Rn is the noise.
Mathematically, DBT reconstruction is a linear inverse problem. Under zero-mean white
Gaussian noise assumptions, the maximum likelihood solution leads to the minimization
of the least squares cost function

(∀d ∈ Rm) f(d) =
1

2
‖p− Ad‖2

2. (2)

However, the minimization of (2) is likely to provide a poor quality DBT reconstruction.
This is due to the ill-conditioning of the projection matrix A. The noise tends to be
amplified even if present in a small amount in the input projection data. The key is to
regularize the problem so that the solution is less sensitive to perturbations. A common
efficient regularization strategy consists in minimizing a penalized least squares function,
that is

minimize
d∈Rm

1

2
‖p− Ad‖2

2 + ϕ(d), (3)

where ϕ : Rm → R denotes a regularization function that aims at improving the robust-
ness to noise [54, 52, 51, 23]. Herein, ϕ can take several possible forms to enforce spatial
regularity, range constraints, or sparsity in a possibly transformed domain [49]. In essence,
it can be any function that encodes prior knowledge on the solution.

2.2 Proposed task-based regularization

The detection of microcalcifications represents a challenge in DBT [57]. Since DBT is
not yet approved as stand-alone, DBT exam typically combines reviewing DBT and 2D
mammography. Interpreting a DBT volume requires sifting through and analysing the
DBT image slices whose number depends on the breast thickness. The time spent by
the radiologist is higher than for the FFDM exam since there are more images to be
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reviewed. It is thus of main importance to ease the microcalcifications detection task for
the radiologist, while reconstructing DBT volumes to mitigate practical error rates.

To this aim, the DBT reconstructed volume should not only be regular but also ac-
count for the image review workflow and thus for the morphological content of the imaged
breast. The breast is composed by several anatomical components which have different at-
tenuation properties than the microcalcifications. The DBT reconstructed volume should
not only be regular but also account for the image review workflow and thus for the
morphological content of the imaged breast. Resorting to standard image regularization
techniques may not be enough to meet with this specificity. In this work, we propose an
original formulation of the penalty function ϕ in the minimization problem (3), taking
the form:

(∀d ∈ Rm) ϕ(d) = −αD(d) + Φ(d) +
γ

2
‖d‖2

2 + κQ(d). (4)

Hereabove, D : Rm → R denotes the detectability function with weight α ≥ 0, that will
be tailored to enhance the visibility of microcalcifications in some pre-defined regions of
interest. Moreover, Φ: Rm → R represents a spatially adaptive total variation (SATV)
regularization term that will be constructed with the aim to enable a more adequate
spatial regularization in the DBT volume accounting for some prior knowledge on the
various regions of the volume. An elastic net regularization term ‖.‖2

2 with weight γ ≥ 0 is
included to ensure the uniqueness of the solution. Finally, the values of the reconstructed
volume are encouraged to lie in a specific range of values [0, dmax], with dmax > 0, through
the introduction of the penalty function Q scaled with κ > 0, that reads

(∀d = (di)1≤i≤m ∈ Rm) Q(d) =
m∑
i=1

inf
a∈[0,dmax]

(di − a)2. (5)

It is worth mentioning that, when κ goes to infinity, κQ tends to the indicator function
for the convex domain [0, dmax]m.

We will describe in a detailed manner the construction of functions D and Φ in Sec-
tions 3 and 4. Then, Section 5 will be dedicated to the proposition of an efficient iterative
algorithm for the resolution of (3)-(4).

3 Construction of the detectability function

We present in this section the mathematical definition of the proposed detectability func-
tion D in (4). The aim of this term is to adapt the reconstruction procedure in order
to help the radiologist in the microcalcification detection task. A typical workflow that
involves the latter task in DBT, includes all the steps from the data acquisition step to
the detection task at the very final step (Figure 1). Once the DBT volume is recon-
structed and post-processed, if needed, the radiologist searches over regions of interest
within the DBT volume with multiple eye movements looking for highlighted structures.
Then, he/she decides whether a cluster of microcalcifications is present or absent (yes/no
decision). Nonetheless, there are several downsides when performing these different steps
independently. Within this configuration, the reconstruction step does not account for
the microcalcification detection task in the sense that the latter task is performed in an
independent manner by the radiologist at the very final step.

It is thenceforth natural to be raise the question of how to integrate the microcalci-
fication detectability task in the reconstruction process so as to improve the radiological
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Figure 1: A schematic of a typical worflow involving microcalcification detection task in DBT.
In the first row, raw data is acquired and pre-processed. In the second row, the pre-processed
data is used as input to a reconstruction algorithm then potentially post-processed, if needed
in the aim of delivering a DBT volume with a certain image quality. The final outcome will be
used to perform the detection task presented under the dotted rectangular part. The latter part
outlines the steps of microcalcification detection task performed by the radiologist in DBT.

performance for this clinical task. This work will provide a potential answer by proposing
a new DBT reconstruction approach that is designed in order to maximize the visibility of
microcalcifications. The microcalcifications detectability task can be efficiently assessed
by using anthropomorphic model observers [59, 47]. Anthropomorphic model observers
refer to mathematical observer models that were developed to assess image quality for a
specific clinical task [3]. These observers mimic the human observer for such a task, in
contrast with ideal observers (IOs) which assume a full knowledge of the statistics of the
image [45]. In essence, by applying an anthropomorphic model observer to a given image,
one would obtain as an output a scalar decision variable that determines how detectable
is the lesion for the radiologist. Here, we propose to introduce a new penalty function
in our reconstruction method whose formulation takes its roots into the framework of
anthropomorphic model observers. The construction of this novel function, acting as an
enhancer for the microcalcifications detectability, is explained hereafter.

3.1 Introduction of an anthropomorphic model observer

Let us consider a set of q vectors (ri)1≤i≤q of intensity values in regions of interest (ROIs)
where, for every i ∈ {1, . . . , q}, ri ∈ Rk with k < m is the vector defining a zone where
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a microcalcification is potentially present. For every i ∈ {1, . . . , q}, let us introduce the
decimation operator Si that extracts a region of interest ri from a given volume d ∈ Rm

as follows:

Si : Rm → Rk

d 7→ ri = (dj)j∈Ii , (6)

where each Ii denotes the set of indices of k voxels related to each region of inter-
est ri. For simplicity, we will assume that these regions do not overlap, i.e., ∀(i, j) ∈
{1, . . . , q}2, Ii ∩ Ij = ∅ if i 6= j. Following the approach used in Channelized Hotelling
observer (CHO) [47], itself an extension of Hotelling observer (HO) [3], each ri is channel-
ized into c discriminative features through a decomposition matrix U ∈ Rk×c where each
column denotes a single channel with size equal to the one of the original region of inter-
est. Thereby, we obtain a feature vector vi = U>ri. The channelization process is crucial
for two reasons. First, it allows to simplify the computation complexity in HO by greatly
reducing the dimension of the input images when c� k [42]. Second, it was demonstrated
that the channelization mechanism enables to model characteristics of the human visual
system in certain conditions by choosing adequate channel filters [44, 59, 30].

Let us consider a ROI index i ∈ {1, . . . , q}, and associated vectors ri and vi. The detec-
tion task is formulated as a binary hypothesis test whereH0 denotes microcalcification-free
hypothesis and H1 is microcalcification-presence hypothesis:{

H0 : ri = bi + γi

H1 : ri = µi + bi + γi
(7)

where bi, µi, and γi are real-valued variables which model the background, the signal
of interest (i.e., microcalcification) and the noise, respectively. Under the assumption of
a zero-mean multivariate Gaussian noise, the detectability is defined by maximizing the
log-likelihood ratio under the hypotheses (7),

R =

q∑
i=1

log
(p(vi | H1)

p(vi | H0)

)
. (8)

Hereabove, p(vi | H1) (resp. p(vi | H0)) designate for the probability density function of
vi in the presence (resp. absence) of microcalcification, that read

p(vi | H1) =
1√

(2π)c|Σ|

× exp

(
−1

2

(
(vi − U>(bi + µi))>Σ−1(vi − U>(bi + µi))

))
,

p(vi | H0) =
1√

(2π)c|Σ|

× exp

(
−1

2

(
(vi − U>bi)>Σ−1(vi − U>bi)

))
,

(9)

where Σ denotes the covariance matrix of the channelized noise. In order to compute the
latter matrix, we need to estimate the sample means of the feature vectors vi conditioned
to both hypotheses. This enables the computation of the maximum likelihood ratio R
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in (8). It is worth noticing that computing this ratio for a single image is similar to
computing the template of Channelized model observer which is obtained by linear dis-
criminant analysis [27]. Let us consider two training datasets F0 and F1 with cardinalities
t0 and t1 respectively:

F0 = {r̃j|H0
∈ Rk | j ∈ {1, . . . , t0}}

F1 = {r̃j|H1
∈ Rk | j ∈ {1, . . . , t1}}.

(10)

We can then infer, for every ` ∈ {0, 1} and j ∈ {1, . . . , tl}, the channelized image as
follows:

ṽj|H`
= U>r̃j|H`

. (11)

The estimation of the covariance matrix Σ of the channelized noise is deduced as

Σ =
1

t0 + t1

1∑
`=0

t∑̀
j=1

(
ṽj|H`
− ¯̃v|H`

)(
ṽj|H`
− ¯̃v|H`

)>
, (12)

where

¯̃v|H`
=

1

t`

t∑̀
j=1

ṽj|H`
, ` ∈ {0, 1}. (13)

As mentioned before the channel mechanism enables a simpler computation of the inverse
covariance matrix compared to HO by greatly reducing the dimension of the training
regions of interest [42] and requires fewer training images than HO [62]. Now, based on
the expression (7), we are able to calculate the log-likelihood ratio (8) as follows:

R =

q∑
i=1

−1

2

(
vi − U>(bi + µi))>Σ−1(vi − U>(bi + µi)

)
+

1

2

(
vi − U>bi

)>
Σ−1

(
vi − U>bi

)
=

q∑
i=1

1

2

(
(bi + µi)>UΣ−1vi + (vi)>Σ−1U>(bi + µi)

)
− 1

2

(
(bi)>UΣ−1vi − (vi)>Σ−1U>bi + (µi)>UΣ−1U>µi

)
.

(14)

The fact that Σ−1 is a symmetric matrix leads to the following simplification:

R =

q∑
i=1

(µi)>UΣ−1U>ri − 1

2
(µi)>UΣ−1U>µi. (15)

Since the µi’s are fixed, the quantity to be maximized using (6) is

(∀d ∈ Rm) D(d) =

q∑
i=1

(µi)>UΣ−1U>Sid

= µ>
q∑
i=1

S>i UΣ−1U>Si, (16)

where µ =
∑q

i=1 S
>
i µ

i. The last equality has been derived from the properties of the
operators Si and the assumption that the ROIs do not overlap. This yields our micro-
calcification detectability function designed for any reconstructed volume d ∈ Rm. In
practice, the ROIs location as well as the signal of interest vector µ will be derived from
an intermediate reconstructed volume d∗ as detailed next.
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3.2 Computer-aided microcalcification detection

The evaluation of function (16) requires the setting of (i) the ROIs determining the lo-
cation of potential microcalcifications, (ii) the signal of interest µ and the associated
covariance matrix Σ. The covariance matrix Σ will be learnt using training datasets as
described in Section 3.1. The construction of the signal of interest with the associated
regions of interest will be based on the post-processing of a total-variation-based recon-
structed volume, followed by a Computer-Aided Detection methodology [18].

3.2.1 Signal estimation

We first solve the following constrained optimization problem:

minimize
d∈[0,+∞[m

∆d∈B1,2(0,ζ)

1

2
‖p− Ad‖2

2, (17)

where ∆ ∈ R3m×m is the discretized gradient operator along the 3 spatial dimensions,

B1,2(0, ζ) = {δ ∈ R3m | ‖δ‖1,2 ≤ ζ}, (18)

‖ ·‖1,2 denotes the `1,2 norm, and ζ > 0 is a preset constraint bound on the total-variation
of the volume.

The objective function in Problem (17) is convex, but it has to be minimized under
constraints. To solve this minimization problem, we propose to resort to a parallel forward-
backward based Primal-Dual approach [33]. This approach presents the advantage of a
reduced complexity per iteration as no linear operator inversion is required, while ensuring
convergence guarantees. In the context of the resolution of Problem (17), we end up with
Algorithm 1, where PC denotes the projection onto a nonempty closed convex set C and
Jmax > 0 is the total number of iterations.

Algorithm 1: General formulation of Parallel Forward-Backward based Primal-
Dual Algorithm for Problem (17)

1 Set λ ∈]0, 1], τ ∈]0,+∞[.
2 Compute σ using (20).

3 Set primal and dual variables: d(0) ∈ Rm, y(0) ∈ R3m

4 for j = 1, . . . , Jmax do

5 d̃(j) = P[0,+∞[m(d(j) − τ(A>(Ad(j) − p) + ∆>y(j)))

6 d(j+1) = d(j) + λ(d̃(j) − d(j))

7
ỹ(j) = y(j) + σ∆(2d̃(j) − d(j))

−σ PB1,2(0,ζ)(σ
−1y(j) + ∆(2d̃(j) − d(j)))

8 y(j+1) = y(j) + λ(ỹ(j) − y(j))

9 end

The algorithm parameter (σ, τ) are chosen so as to satisfy the theoretical requirements
in [33] in order to guarantee the convergence of Algorithm 1:

τ−1 − σ‖∆‖2 ≥ 1

2‖A‖2
(19)
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where ‖A‖ (resp. ‖∆‖) denotes the spectral norm of A (resp. ∆). To set the algorithm
parameters in practice, we simply fix τ ∈]0, 2‖A‖2[ and compute σ as follows:

σ =
1

‖∆‖2

(
τ−1 − 1

2‖A‖2

)
. (20)

Starting from the resulting regularized TV-based solution d∗, we apply morphological
operations in order to detect the voxels containing structures suspected to be microcal-
cifications whose size lies in a specific range, in the line of the method from [60]. As we
are interested in preserving small particles with no specific spatial orientation, we use
an opening operator using a disk with a small radius as the structuring element that we
apply slice per slice. In order to keep structures with radius size in the range [ρmin, ρmax]
where 0 < ρmin < ρmax, we apply the following steps:

1. Apply opening with radius ρmin on d∗ to generate d∗|ρmin
.

2. Apply an opening with radius ρmax on d∗|ρmin
to generate d∗|ρmax

.

3. µ = d∗|ρmin
− d∗|ρmax

.

The output of the above method leads to our estimated µ which is expected to contain
high intensity voxels in zones where structures are present in the predefined radius range,
and very low intensity ones otherwise.

3.2.2 Construction of the ROIs

The estimated signal µ will also be useful for the construction of the ROIs themselves, as
the local maxima of µ correspond to sought areas for microcalcifications. We propose to
extract local maxima from a MaxTree [4] representation computed using 26-connectivity.
This approach allows to represent the volume as a tree where each node corresponds to
a connected component of similar graylevel. The nodes are then connected hierarchically
depending on their intensity. By construction, the leaves present the highest graylevel
intensities, that are the local maxima. Determining the set of pixels included in each leaf
allows us to construct a list of q representative pixels that we define to be the centers of
our ROIs. We then deduce the (Ii)1≤i≤q sets by imposing a given ROI size enabling the
inversion of the covariance matrix while minimizing the overlap of ROIs.

4 Spatially Adaptive TV-based regularization

In literature, most DBT reconstructions have used total variation (TV) as a spatial regu-
larization function [56, 55, 40]. The TV regularizer has demonstrated great performance
in several applications of image processing [21, 10, 1, 22]. However, the staircasing ef-
fect inherent to TV [43] is not desirable as it rarely fits with the natural textures and
shapes arising in real images. Several research studies have suggested alternative TV-
based penalties, by proposing smooth approximation of it [2, 6, 12, 11], by introducing
non-local similarity measures [13], by considering the posterior mean estimate instead
of the standard maximum a posteriori one [37], or by investigating anisotropic gradient
operators [38, 39, 36, 63, 5]. The aforementioned works gave rise to promising results,
but may however not be adapted to the restoration of very heterogeneous areas, such
as the breast volume imaged in DBT. We thus propose to formulate a new Spatially
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Adaptive TV (SATV) regularization function which will take into consideration the dif-
ferent morphological contents of the breast. Different regularizers are applied, depending
if microcalcifications are expected or not in the considered image zones. To this aim, we
introduce a new definition of the gradient field allowing to involve heterogeneous prior
knowledge on the structural content of each voxel of the sought volume.

4.1 Mathematical formulation

Let us consider the detection map µ ∈ Rm obtained as an output of the construction of
the previously introduced detectability regularization function (16), which is normalized
between 0 and 1. This map is of great interest, as it provides a good estimate for the
location of the potential microcalcifications in the volume. This allows us to define the
following weight parameters,

(∀i ∈ {1, . . . ,m}) λi =


1 if µi ≤ ν − θ
θ+ν−µi

2θ
if ν − θ ≤ µi ≤ ν + θ

0 otherwise,

(21)

with ν ∈ [0,+∞[ and θ ∈]0,min(ν, 1−ν)] some threshold values which allow to transition
between the breast texture and the detected microcalcifications, and that will be set so
as to preserve the geometric shape of the detected microcalcifications. By construction,
(λi)1≤i≤m ∈ [0, 1]m. The latter weight vector will allow us to address differently the
regularization of the plain healthy tissue and of the critical zones potentially containing
microcalcification objects.

For this purpose, we formulate our SATV regularization function as follows,

(∀d ∈ Rm) Φ(d) =
m∑
i=1

ψ
(
(1− η)λi∆id+ η(1− λi)δdi

)
, (22)

where δ = [1 1 1]>, ψ : R3 → R represents a sparsity promoting function which applies
either on the image intensity or on its gradients, η ∈ [0, 1] controls the overall contribution
of each regularizing term, and ∆i denotes the 3D gradient operator at voxel i ∈ {1, . . . ,m},
that is expressed as

(∆i)
> = [∆x

i ∆y
i ∆z

i ]
> (23)

with ∆x
i (resp. (∆y

i ) and (∆z
i )) discrete horizontal, (resp. vertical and depth) gradient

operators assuming zero-boundaries. It is worthy to point out that if λi = 0 for every
i ∈ {1, . . . ,m}, and ψ = ‖ · ‖1, then Φ corresponds to the `1 regularization, while if λi = 1
for every i ∈ {1, . . . ,m}, and ψ = ‖ · ‖, then Φ reduces to the standard isotropic TV
regularizer. For a suitable weight vector (λi)1≤i≤m, the norm of the gradient of the image
will be penalized in regions where no microcalcifications are expected, while the intensity
of the microcalcifications will be penalized in the complementary regions.

Equivalently, we can reformulate (22) as,

(∀d ∈ Rm) Φ(d) = Ψ(Ld), (24)

with (
∀u = (ui)1≤i≤m ∈ (R3)m

)
Ψ(u) =

m∑
i=1

ψ
(
ui), (25)
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and
L = (1− η)(Λ⊗ I3)∆ + η(Im − Λ)⊗ δ ∈ R3m×m, (26)

where ⊗ denotes the Kronecker product, Im states for the identity matrix of dimension
m×m and

Λ = Diag(λ1, . . . , λm). (27)

Different strategies can be adopted for the choice of the sparsity promoting function ψ,
which will have an impact on the reconstruction algorithm used to solve Problem (3)-
(4). For instance, if ψ is convex, and its proximity operator has a closed form expression
(e.g., ψ is the `1 or `2 norm), proximal algorithms [19, 20] which include ADMM [7] and
primal-dual methods [33] can be used. If ψ is Lipschitz-differentiable, but not necessarily
convex (e.g. smooth approximations of `1 or `0), then the problem can be solved using
majoration-minimization (MM) schemes [58, 31], which have shown their efficiency in the
context of image tomography [17, 14]. In this work, we will adopt the latter approach,
and we will set

(∀u ∈ R3) ψ(u) = β
√
‖u‖2

2 + ε2, (28)

where β > 0 is the regularization weight, and ε > 0 controls the smoothness of the penalty
function. Since all the involved terms of Problem (3)-(4) are now differentiable, we will
resort to an MM algorithm tailored for such smooth function, that will be detailed in the
next section.

5 Majorize-minimize memory gradient algorithm for

DBT reconstruction

The DBT reconstruction problem amounts to minimizing the objective function:

(∀d ∈ Rm) f(d) =
1

2
‖p− Ad‖2

2 − αD(d)

+ Ψ(Ld) +
γ

2
‖d‖2

2 + κQ(d). (29)

MM algorithms rely on successive majorizing approximations of function f in order to pro-
duce a sequence of iterates that will converge to a solution to the problem, under suitable
assumptions. The MM framework gives rise to a class of efficient and flexible optimiza-
tion algorithms that is grounded on solid theoretical foundations. MM algorithms are very
popular in the field of medical image reconstruction [24, 26, 28]. The Majorize-Minimize
Memory Gradient (3MG) algorithm falls within this class. Integrating a subspace accel-
eration strategy in the standard quadratic MM algorithm indeed constitutes one of the
most efficient strategies for smooth optimization at large scales [15] and one of the few
benefiting from convergence guarantees in the non-convex case [16, 14]. In this section,
we make explicit the formulation of 3MG algorithm when applied to Problem (3)-(4).
Furthermore, we propose two numerical improvements of the algorithm, which aim to
further improve the speed of the reconstruction process.

5.1 Majorize-Minimize Memory Gradient method

The 3MG algorithm [17] consists of building a sequence (d(j))j∈N ∈ Rm of approximation
to the sought volume, which is defined as

(∀j ∈ N) d(j+1) = d(j) +B(j)u(j). (30)
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d(0) ∈ Rm is an initial volume, B(j) ∈ Rm×2 stacks the set of memory gradient directions:

(∀j ∈ N) B(j) =

{
[−∇f(d(j)) 0] if j = 0

[−∇f(d(j)) d(j) − d(j−1)] if j > 0,
(31)

and u(j) ∈ R2 is a stepsize designed to minimize a quadratic majorizing approximation
for u 7→ f(d(j) +B(j)u), whose construction is detailed hereafter.

5.1.1 Construction of the majorizing approximation

Let d′ ∈ Rm. A function q(., d
′
) is said to be a tangent majorant for f at d′, if for every

d ∈ Rm,
q(d, d′) ≥ f(d) and q(d′, d′) = f(d′). (32)

Following the 3MG approach [14], we construct a quadratic tangent majorant function
for f at d′, taking the form:

(∀d ∈ Rm) q(d, d′) = f(d′) +∇f(d′)>(d− d′)

+
1

2
(d− d′)>M(d′)(d− d′) (33)

where M(d′) ∈ Rm×m denotes a symmetric positive semi-definite matrix that ensures
Properties (32). Using the same procedure than in [14], we can show that this matrix can
be defined as

(∀d ∈ Rm) M(d) = A>A+ L>Diag{b(d)⊗ δ}L+ (γ + 2κ)Im. (34)

Hereabove, b(d) = (bi(d))1≤i≤m ∈ Rm is such that, for every i ∈ {1, . . . ,m},

bi(d) = β(‖(Ld)i‖2
2 + ε2)−1/2 (35)

where (Ld)i is the i-th block of 3 components of Ld.

5.1.2 Algorithm

At each iteration j ∈ N, the step size u(j) is obtained by minimizing the quadratic function
u 7→ q(d(j) +B(j)u, d(j)), which yields the following closed form expression:

u(j) = −((B(j))>M(d(j))B(j))†(B(j))>∇f(d(j)), (36)

where † denotes the pseudo-inverse operation. The 3MG algorithm iterates over Steps (31), (36),
and (30). The convergence of the sequence (d(j))j∈N produced by 3MG to a minimizer of
f is secured [14]. In practice, we intialize the 3MG algorithm by using d(0) as the Filtered
Backprojection (FBP) reconstruction and we implement a maximum iteration number
Jmax, leading to Algorithm 2.

5.2 Practical implementation

Function Q defined in (5) penalizes the distance of each component of d to the hypercube
[0, dmax]m. The strength of this penalization is controlled through the weight κ. The
greater κ, the closer to the indicator function of the constrained domain κQ is, hence the
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Algorithm 2: 3MG Algorithm for DBT reconstruction

1 Initialization with d(0) obtained by FBP,
2 for j = 1, . . . , Jmax do
3 For all i ∈ {1, . . . ,m}, set bi(d

(j)) using (35);

4 Construct M(d(j)) using (34);

5 Build B(j) using (31);

6 Calculate u(j) using (36);

7 Update d(j+1) = d(j) +B(j)u(j);

8 end

more faithfully the constraints are fulfilled. However, increasing κ also induces an increase
of the curvature of the majorizing function q, leading to a slow down of the convergence
of the 3MG algorithm, in practice. To address this issue, we propose two modifications
to the algorithm.

We first substitute (34) by

(∀d ∈ Rm) M̃(d) = A>A

+ L>Diag{b(d)⊗ δ}L+ γIm + Diag{s(d)}, (37)

where, for every i ∈ {1, . . . ,m}, the i-th component of vector s(d) is

si(d) =

{
0 if di ∈ [0, dmax]

2κ otherwise.
(38)

This amounts to relaxing the majorizing assumption (32) by considering only a local
majoration for f in the neighborhood of the current iterate.

Second, in order to further mitigate the negative impact of a large value of κ on
the convergence speed, we consider to progressively increase this weight along iterations
according to the following rule

(∀j ∈ N) κ(j) = κmax
j

j + ξ
(39)

where κmax is a maximum value for (κ(j))j∈N and ξ ≥ 0 is a parameter controlling the
evolution of this sequence along iterations. When j goes to infinity, κ(j) → κmax. For
small values of ξ, a large penalization weight is obtained from the very beginning of the
algorithm whereas, large values of ξ yields a more gradual penalization over the range of
the pixel intensities. When ξ = 0, a constant parameter κ(j) ≡ κmax is retrieved.

6 Experimental results

We now present experimental results to assess the performance of our proposed method
on physical phantoms and clinical datasets, that will be further detailed in Sections 6.2.1
and 6.2.2. For each considered volume, we simulate the 9 projections obtained using a
DBT commercial system (Senographe Essential, GE Healthcare) with an angular range of
25°. The detector is composed of 3062× 2394 detector elements of 100 µm2 size. The vol-
umes are reconstructed on a 100 µm×100 µm×1 mm sampling grid. We aim at enhancing
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the detectability of microcalcifications with size ranging from 0.2 mm to 0.4 mm. This
amounts to focusing on a specific group of microcalcification surrogates included in the
physical accreditation phantom Model 015 (CIRS). The detection map µ is generated as
explained in Section 3.2.1, using the aforementioned size range. The size of the ROIs is
51×51×5 pixels. The total number q of ROIs depends on each considered dataset. In our
experiments, q varies from 105 to 106. Then we derive the volume (λi)1≤i≤m as explained
in Section 4.1. We set up experimentally the threshold ν in (21) so that the geomet-
ric shape of the detected microcalcifications is preserved. The parameter θ is manually
finetuned so as to preserve an optimized transition between breast background and mi-
crocalcifications. We now describe the learning process that we use to set the covariance
matrix Σ. We consider a database of 400 ROIs generated by using a simulation software
developed by GE Healthcare [35]. The ROIs contain a predefined type of background
(e.g., uniform, textured). Furthermore, half of the ROIs contain lesions of 0.2 mm in size,
while the others do not contain any. Laguerre-Gauss channels [44] are employed to define
matrix U =

[
u1 u2 . . . uc

]
∈ Rk×c where, for every p ∈ {1, . . . , c}, the p-th column of

the matrix, up = (u`,p)1≤`≤k represents a k−dimensional Laguerre-Gauss channel whose
components are given by

(∀ ` ∈ {1, . . . , k}) u`,p =
√

2

au
exp

(
−2π‖z`‖2

2

a2
u

)
Lp−1

(2π‖z`‖2
2

a2
u

)
, (40)

with z` the 3D spatial coordinates of the `-th voxel of the ROI (with spatial origin defined
at the center of the ROI), au ∈ R+ the spread of the Gaussian kernel, and Lp−1 the
Laguerre polynomial of degree p− 1, defined as

(∀x ∈ R) Lp−1(x) =

p−1∑
j=0

(−1)j
(
p− 1

j

)
xj

j!
. (41)

A range of values for au and c are considered depending on the background type. More
precisely, we selected the optimal combination maximizing the area under ROC curve,
by following the CHO framework [47]. Values of (au, c) equal to (0.8, 30) and (0.6, 30)
are used, for uniform and textured background respectively, following previous research
works [35]. The parameter ζ in (17) is chosen equal to 3

2
‖∆d0‖1,2, leading to satisfying

visual results where d0 is taken as the FBP solution. Finally, the SATV parameters are
adjusted for each dataset, as further detailed in Sections 6.2.1 and 6.2.2.

6.1 Numerical performance of 3MG algorithm

We illustrate the practical convergence profile of the proposed reconstruction algorithm
on a BI-RADS d clinical dataset. Note that class d corresponds to extremely dense
breasts [50]. We solve the optimization Problem (3)-(4) with 3MG method, either using
its initial form described in Algorithm 2, or its variants proposed in Section 5.2. We also
perform comparisons with two state-of-the-art optimization methods, namely FISTA [9]
and the projected gradient descent (PGD) [8], where we imposed the range constraint
d ∈ [0, dmax]m. All the algorithms have been initialized with FBP solution and ran until
104 iterations. We set the elastic net weight γ = 1 for all the experiments, which allows
to ensure the uniqueness of the solution d∗ while not degrading the overall image quality
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Figure 2: Convergence rate comparison between PGD, FISTA and 3MG with its variants on
clinical data in terms of ‖d(j) − d∗‖ where d∗ is the reconstructed volume for each algorithm at
iteration 104.

of DBT. We refer to Algorithm 2 with modified majorant (37) as 3MG+. Moreover, we
distinguish the cases when κ(j) ≡ κmax, designated by 3MG-κmax or 3MG+-κmax, from the
cases when the varying rule (39) is adopted, designated by 3MG-κ+ and 3MG+-κ+. We
set κmax = 103, since it was observed to lead to the same image quality at convergence
as when using FISTA and PGD algorithms. Furthermore, we set ξ = 75 in (39) since it
was observed to achieve the best trade-off between convergence speed and image quality.
Figure 2 illustrates the evolution of the distance to the solution d∗, computed after a
large number of iterations equal to 104. We notice that 3MG-κmax, that corresponds
to the standard 3MG implementation, leads to the slowest convergence, while 3MG+-
κmax reaches similar performance to FISTA. Finally, 3MG+-κ+ outperforms the other
competitors in terms of convergence speed.

6.2 Qualitative assessment of the proposed DBT reconstruction
approach

We now illustrate the visual quality of the results obtained by using the proposed DBT
reconstruction approach. In the remainder of this section, we will make use of 3MG+-

15



κ+, as a minimization algorithm, for the resolution of Problem (3)-(4). The algorithm is
initialized with FBP solution and run until a maximum number of iterations (here equal
to 200), which is sufficient to ensure a practical convergence in our experiments. For all
of them, we set the weight of the elastic net γ = 1.

6.2.1 Physical phantom data

(a) (b) (c) (d)

(e) (f) (g)

Figure 3: Region of ACR phantom slice containing 6 ROIs : (a) Detection map µ. (b) Weights
(λi)1≤i≤m. (c) Non regularized least squares solution (NRLS). (d) DBT reconstruction with
classical TV regularization and no detectability function (TV). (e) NRLS with detectability
function (dNRLS). (f) DBT reconstruction with and classical TV regularization (dTV). (g)
DBT reconstruction with detectability function and SATV regularization (dSATV).

We first assessed our method when using the physical accreditation phantom Model
015 (CIRS) with dimension 45mm × 102mm × 108mm. For the sake of illustration, we
only display a zoomed region containing 6 Al2O3 specks simulating microcalcifications of
size 0.32 mm. We first show in Fig. 3(a) the detection map derived from our method
presented in Section 3.2.1. Note that the background is merely equal to 0 and that
all the 6 microcalcifications have been detected. Following our SATV approach, for each
microcalcification intensity, a different regularization level is applied. The obtained values
for (λi)1≤i≤m described in Section 4.1 are shown in Fig. 3(b). We set ν = 1.5 × 10−3,
θ = ν/3, and α = 750.

As expected, the non regularized least squares solution (NRLS) leads to a highly noisy
DBT reconstruction (Fig. 3(c)). DBT reconstruction with classical TV and no detectabil-
ity function (TV) leads to smoother background but reduces microcalcification intensity
and sharpness (Fig. 3(d)). When the detectability function is used, without additional
regularization (dNRLS), we enhance and sharpen microcalcifications but a noisy back-
ground is still present (Fig. 3(e)). By combining the detectability function and the classic
TV regularization (dTV), (Fig. 3(f)), we both reduce the noise in the background and
enhance microcalcification visibility. However, the enhanced microcalcifications appear
less sharp and with a slight spreading effect, when compared to Fig. 3(e). Therein lies the
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interest of our novel SATV regularization. SATV regularization combined with the de-
tectability function (dSATV) significantly enhances the visibility as well as the sharpness
of the detected microcalcifications, while ensuring a proper denoising of the background
(Fig. 3(g)). This comparison between the SATV-based reconstruction and a classical
TV-based reconstruction was conducted with regularization parameters, namely β and η,
set to restore the background with the same level of quality in both approaches. In this
example, β = 600, ε = 10 for classical TV while β = 630, ε = 10 and η = 0.048 in the
case of the new SATV regularization.

6.2.2 Clinical data

(a) (b) (c) (d)

(e) (f) (g)

Figure 4: Selected slice of a DBT reconstruction with size 2344×868×44 (voxels) (a) Detection
map µ. (b) Weights (λi)1≤i≤m. (c) NRLS. (d) TV. (e) dNRLS. (f) dTV. (g) dSATV.

We have also evaluated our proposed approach on clinical images. In Figs. 4 and 5, we
present results for two cases presenting a BI-RADS d breast composition (the breasts are
extremely dense) containing an isolated microcalcification and a cluster of microcalcifica-
tions respectively. In Fig. 6, we show a case presenting a BI-RADS c breast composition
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5: Selected slice of a DBT reconstruction with size 2227×594×44 (voxels) (a) Detection
map µ. (b) Weights (λi)1≤i≤m.(c) NRLS. (d) TV. (e) dNRLS. (f) dTV. (g) dSATV.

(the breasts are heterogeneously dense) comprising a potentially malignant cluster of mi-
crocalcifications. The corresponding detection maps are shown in Fig. 4(a), Fig. 5(a)
and Fig. 6(a), respectively. The constructed maps for (λi)1≤i≤m obtained following the
approach described in Section 4.1 are shown in Fig. 4(b), Fig. 5(b) and Fig. 6(b). Re-
garding the hyper-parameters, we used β = 600 and ε = 10, for classical TV and β = 660,
η = 0.09, and ε = 10 when SATV regularization is applied. Furthermore, we set θ = ν/3,
with (ν, α) = (0.09, 1500) for the first example, (ν, α) = (0.03, 2500) for the second volume
and (ν, α) = (0.009, 500) for the third one.

Similar conclusions as for the physical phantom case, can be drawn from visual in-
spection of those images. We notice again two drawbacks of DBT reconstructions using a
detectability function and no TV regularization. First, it may yield saturated microcal-
cifications since no penalization is applied on their gray level values (Fig. 4(e)). Second,
some false positives in the detection map may also lead to enhanced microcalcification-
like structures when no regularization is applied (Fig. 5(e) and Fig. 6(e)). By combining
the detectability function and TV regularization (Fig. 4(f), Fig. 5(f) and Fig. 6(f)), we
observe similar results as for the physical phantom case, enhanced but unsharp micro-
caclifications and a denoised background. Hereagain, we highlight the advantage of our
proposed approach (Fig. 4(g), Fig. 5(g) and Fig. 6(g)) that simultaneously enables a
robust preservation of the enhanced microcalcification shape and a high quality restora-
tion of the background. It is worth mentioning that the reconstruction with SATV and
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6: Selected slice of a DBT reconstruction with size 3062×994×67 (voxels) (a) Detection
map µ. (b) Weights (λi)1≤i≤m. (c) NRLS. (d) TV. (e) dNRLS. (f) dTV. (g) dSATV.

classical TV can provide the same breast texture quality, after a suitable choice for the
regularization parameters η and β.

6.3 Quantitative assessment of the proposed DBT reconstruc-
tion approach

We finally perform a quantitative evaluation of our proposed dSATV reconstruction ap-
proach on clinical data. To this aim, we conduct a visual experiment trial where experts
compare dSATV and NRLS reconstructions, regarding several aspects including micro-
calcification conspicuity, rendering of breast structures, presence of potential artifacts
and overall visual preference. The methodology and the results of our experiment are
presented hereafter.

6.3.1 Image data set

We have extracted 19 regions of interest from 16 clinical cases presenting BI-RADS c
and d breast compositions, acquired with the same DBT system (Senographe Essential,
GE Healthcare). Each of the 19 trial image was 220 × 220 × 7 voxels in size, four of
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them contain isolated microcalcifications while the remaining ones display various types of
microcalcification groups. We then reconstructed each case with both the NRLS solution
and our proposed dSATV solution. For the latter, the parameters were set following
the same approach as detailed in Sections 6.1 and 6.2. For each test case, we built visual
trials displaying side by side (with random left/right side assignation) both reconstruction
results.

(a)

(b)

(c)

Figure 7: Examples of slices of different image pairs used in the visual experimental study. (a)
Left image : dSATV. Right image : NRLS. (b) Left image : NRLS. Right image : dSATV. (c)
Left image : dSATV. Right image : NRLS.

6.3.2 Image review

Fourteen qualified participants, namely nine radiologists and five GE Healthcare image
quality experts in mammography, participated in our visual experiment. No training
session was conducted before the actual experiment. Each reader saw sequentially, in the
same order, the 19 trial image pairs. The 7 slices of each image pair were displayed using
cine-loop review mode. Between two consecutive trials, a uniform neutral gray image was
displayed. For each trial, the reader was asked to choose between right or left image (see
slice examples in Figure 7) by answering the following questions :

• Q1: In which image the microcalcifications are more conspicuous ? (Right/Left)
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• Q2: In which image do you see a better representation of the breast structures ?
(Right/Left)

• Q3: In which image do you see more artifacts ? Describe them. (Right/Left, then
description)

• Q4: Which image do you prefer overall ? (Right/Left)

The readers had no time limitations to answer the questions.

6.3.3 Results

Figure 8: Results of the visual experiment pooled over all the readers: positive scoring is in
favor of dSATV, negative scoring is in favor of NRLS.

We opt for a descriptive analysis regarding the limited number of images used in
this experiment. First, for each question, we show in Fig. 8 the scoring percentage in
favor of dSATV and NRLS approaches pooled over all the readers. The positive end
of each box corresponds to the mean-reader preference for dSATV, while the negative
end corresponds to the mean-reader preference for NRLS. The top of the positive bar
indicates the maximum preference score obtained over the fourteen readers for dSATV,
while the top of the negative bar indicates the maximum preference score obtained over
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Figure 9: Inter-reader agreement (Gwet’s AC1 coefficients) between all the readers.

the fourteen readers for NRLS. By averaging over all the readers, our proposed method
provides more conspicuous microcalcifications with 82%[63% − 100%] of scores, a better
representation of the breast structures with 87%[58%−100%] of scores, less artifacts with
81%[47%−100%] of scores and an overall preference of 83%[58%−100%] of scores. Pooling
over all the fourteen readers, the most frequent artifacts observed in our proposed dSATV
approach were (i) some undershooting around the microcalcifications and (ii) the presence
of enhanced structures not identified as microcalcifications (false positives). Replication
artifacts, presence of off-focal artifact and presence of noise were most frequently noted
in the DBT images reconstructed with the non-regularized algorithm NRLS.

To assess the inter-reader agreement between all the readers, we computed the Gwet’s
AC1 agreement coefficient [29] for each asked question, as displayed in Figure 9. The
highest response consensus is found for breast background restoration (with a substantial
inter-reader agreement) [61] and the lowest one for the presence of potential artifacts
(with a moderate inter-reader agreement). We notice also that the Gwet’s AC1 coefficient
indicates a substantial inter-reader agreement for microcalcification conspicuity and the
overall preference of the DBT reconstruction in favor of dSATV. It is worthy to point
out that the two latter inter-reader agreements was found to be the highest between
the radiologists, while the inter-reader agreement for breast background restoration was
observed to be slightly better between the GE Healthcare experts in mammography.
The inter-reader agreement for the observed artifacts was comparable between the two
reader populations. This would tend to show that radiologists may scrutinize the DBT
reconstruction in favor of the clinical task, which is directly related to the conspicuity of
microcalcifications, whereas, GE Healthcare experts may be more sensitive towards the
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overall image quality in the DBT reconstruction.

7 Conclusion

We have proposed a novel reconstruction approach for DBT, which aims at improving
the radiological diagnosis associated with microcalcification detection task (dSATV). The
introduction of a new detectability function, an original SATV regularization function,
and an improved 3MG optimization algorithm lead to an approach showing good perfor-
mance on both phantom and clinical data when compared to classical DBT reconstruction
techniques. The main advantage of this task-based approach is to yield more conspicuous
and enhanced microcalcifications while increasing robustness to noise and improving the
overall quality in the imaged volume. A visual experiment trial, conducted on fourteen
experts, confirms the superiority of our proposed approach.

A future direction for further improvements would be to investigate a more automatic
setting of the different parameters involved in SATV, depending on the targeted task and
images to be processed. Another leading idea would be to pursue the improvement of the
detection map, to better distinguish between True and False Positives.
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