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Machine learning deals with datasets characterized by high dimensionality. However,

in many cases, the intrinsic dimensionality of the datasets is surprisingly low. For

example, the dimensionality of a robot’s perception space can be large and multi-modal

but its variables can have more or less complex non-linear interdependencies. Thus

multidimensional data point clouds can be effectively located in the vicinity of principal

varieties possessing locally small dimensionality, but having a globally complicated

organization which is sometimes difficult to represent with regular mathematical objects

(such as manifolds). We review modern machine learning approaches for extracting

low-dimensional geometries frommulti-dimensional data and their applications in various

scientific fields.
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1. INTRODUCTION : HIGH-DIMENSIONAL BRAIN vs. LIZARD
BRAIN IN HIGH-DIMENSIONAL WORLD

The space of robotic perception or human-robot-control interfaces formed by features extracted
from raw sensor measurements (including self-perception recorded, for example, by force/torque
sensors, and perception of other active players such as humans) is high-dimensional (multi-modal)
and can be characterized by non-trivial geometry and topology (Artemiadis and Kyriakopoulos,
2010; Droniou et al., 2015). Planning and taking decisions requires active unsupervised learning
of perception space structure and, if necessary, correction of the learnt models on the fly without
destroying accumulated experience (Li et al., 2019). This might require the emergence of specialized
functions in the robot “brain.”

Tackling the complexity of high-dimensional data spaces is a central challenge in machine
learning. The famous notion of curse of dimensionality recapitulates difficulties with treating high-
dimensional datasets, related to the mathematical theory of measure concentration (Giannopoulos
and Milman, 2000; Gromov, 2003). In machine learning, among other manifestations it can refer
to a distance measure’s loss of discriminatory power as the intrinsic dimension of data increases,
due to a concentration of pairwise distances between points toward the same mean value. In
this setting, machine learning approaches which rely on the notion of neighboring data points
perform badly. In practical applications, treating high-dimensional data can be challenging in
terms of computational and memory demands. On the other hand, the curse can also be a
blessing: essentially high-dimensional data point clouds possess surprisingly simple organization,
which has been recently exploited in the framework of high-dimensional brain in high-dimensional
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world (Gorban et al., 2019b). High-dimensional brain is a model
for the codification of memories composed from many sparsely
connected neurons, each of which only deals with few high-
dimensional data points, separating them from the rest of the
data point cloud (Gorban et al., 2019b). It was applied to
construct highly efficient error correctors of legacy AI systems,
using non-iterative learning (Gorban et al., 2018).

The majority of unsupervised machine learning methods
aim at reducing data’s dimensionality or decomposing it into
low-dimensional factors. This is opposite to the task of the
high-dimensional brain, so we will call by analogy lizard brain
a learning algorithm which is able to extract a useful low-
dimensional representation of a high-dimensional data point
cloud. Matching the level of data complexity, this representation
can be complex and characterized by such features as non-
linearity, discontinuity (e.g., coarse-grained clusters or other
types of deviation from sampling independence and uniformity),
bifurcations, non-trivial topologies and varying local intrinsic
dimension (ID). By usefulness we mean that the extracted
representation would improve downstream learning tasks; for
example, by modifying point neighborhood relations and data
space metrics. The name lizard brain is inspired by the triune
brain theory, stating the existence of several layered mammalian
brain substructures sequentially evolved and specialized in
different types of animal behaviors (MacLean, 1990). We do not
claim that the real reptilian brain or the reptilian complex is
of low-dimensional nature: here we use this metaphor only to
underline that an effective learning system should be composed
of several parts, built on top of each other and dealing with
opposite aspects of the high-dimensional world.

Distinct tasks of lizard and high-dimensional brains in
machine learning reflect the complementarity principle (Gorban
and Tyukin, 2018; Gorban et al., 2019a): the data space can
be split into a low volume (low dimensional) subset, which
requires nonlinear methods for constructing complex data
approximators, and a high-dimensional subset, characterized
by measure concentration, and simplicity allowing the effective
application of linear methods. Machine learning methodology
should suggest a method for making such splitting in real-
life datasets, and propose tools specialized in dealing with
intrinsically low- and high-dimensional data parts.

In this short review, we focus on methods for quantifying
intrinsic dimensionality and constructing useful summaries of
the data, by projection into low-dimensional space, or projection
onto principal geometrical objects of lower complexity that
approximate the structure of the data point cloud. We introduce
a classification of these methods based on the notions of
mathematical projection theory.

2. DEFINING AND MEASURING INTRINSIC
DIMENSION

The notion of intrinsic dimension (ID) intuitively refers to the
minimal number of variables needed to represent data with
little information loss. This concept, introduced in the field of
signal analysis (Bennett, 1969), is largely used but doesn’t have

a consensus mathematical definition (Campadelli et al., 2015).
In the context of the manifold hypothesis, i.e., when the data are
considered to be a sample from an underlying n-dimensional
manifold, the goal of ID estimation is to recover n.

Methods for ID estimation can be grouped by operating
principle (Campadelli et al., 2015). The correlation dimension is
an example of fractal method based on the fact that the number of
points contained in a ball of growing radius r scales exponentially
with the dimension of the underlying manifold (Grassberger and
Procaccia, 1983). Topological methods estimate the topological
dimension (e.g., as defined by the Lebesgue covering dimension)
of a manifold. Projective methods look at the effect of mapping
the points onto a lower-dimensional subspace, and set a threshold
dimension based on a cost function and various heuristics (e.g.,
looking at variance gaps in the eigenspectra) (Fukunaga and
Olsen, 1971; Bruske and Sommer, 1998; Little et al., 2009b; Fan
et al., 2010). Graph-based methods exploit scaling properties of
graphs, such as the length of the minimum spanning tree (Costa
and Hero, 2004). Nearest neighbors methods rely on scaling
properties of the distribution of local distances or angles, due
for example to measure concentration (Levina and Bickel, 2004;
Ceruti et al., 2014; Johnsson, 2016; Facco et al., 2017;Wissel, 2018;
Amsaleg et al., 2019; Díaz et al., 2019; Gomtsyan et al., 2019).
It has also been recently proposed to use the Fisher separability
statistic (i.e., the probability of a data point to be separated from
the rest of the data point cloud by a Fisher discriminant) for the
estimation of ID (Gorban and Tyukin, 2018; Albergante et al.,
2019). The observed distribution is compared in terms of this
statistic to the one expected for i.i.d. samples from a uniform
distribution of given dimension to find the one with closest
properties (e.g., the distribution of the “equivalent sphere”).

Many ID estimators provide a single global ID value for the
whole dataset but can be adapted to the case of varying local
dimensionality by estimating the ID in data neighborhoods. The
data contained in each neighborhood is usually assumed to be
uniformly distributed over an n-dimensional ball (Levina and
Bickel, 2004; Ceruti et al., 2014; Johnsson, 2016; Wissel, 2018;
Díaz et al., 2019). In practice, ID proves sensitive to deviations
from uniformity and neighborhood size (Little et al., 2009a;
Campadelli et al., 2015). Benchmarks have shown that no single
estimator today is ideal and using an ensemble of them is
recommended (Campadelli et al., 2015; Camastra and Staiano,
2016).

3. LEARNING LOW-DIMENSIONAL
STRUCTURES OF HIGH-DIMENSIONAL
DATA POINT CLOUDS

The task of the lizard brain is to learn the low-dimensional
structure of a data point cloud xi, i = 1 . . .m, existing in high-
dimensional space RN . The principal mathematical approach to
solve this task consists in defining a map (projection) φ from
RN to some base space B which is characterized by intrinsic
dimension smaller than N. The large variety of algorithms
learning low-dimensional data structures can be grouped with
respect to the details of φ implementation and the structure
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of B. If B is Euclidean space Rk, k << N then the approach
is usually related to the manifold learning framework (Ma and
Fu, 2011). However, B can be characterized by a more complex
structure than simple Euclidean space: for example, it can have
a non-trivial topology (of torus, sphere, dendroid, ...). The base
space can be discontinuous, such as a set of principal points
learnt by K-means clustering. The algorithm can learn the base
space structure as in the elastic principal graph method (Gorban
et al., 2008b) or in the Growing Self-Organizing Maps (GSOM)
(Alahakoon et al., 2000). Sometimes, these approaches are also
named manifold learning techniques even though what is learnt
can be more complex than a simple single manifold.

Below we classify a method by whether it assumes the base
space B to be embedded or injected into the total space RN . In
this case, we call a method injective, otherwise it is classified
as projective (only the projection function to the base space is
learnt). In the injective case, the base space B represents a subset
of the initial data space RN . Typically, in injective methods we
assume that the injected B is an approximation of data and use a
nearest point for projection on B.

3.1. Injective Methods With Simple
Euclidean Base Space
The classical method for extracting low-dimensional data
structure is Principal Component Analysis (PCA) in which
case B is simply a linear manifold in RN , φ is orthogonal
projection onto B, and the sum of Euclidean distance squares
||xi − φ(xi)||

2 is minimized (Jolliffe, 1993). Some non-linear
extensions of PCA such as Hastie’s principal curves (Hastie, 1984)
or the piece-wise linear principal curves (Kégl and Krzyzak,
2002) are also injective methods as well as the popular Self-
Organizing Map (SOM) (Kohonen, 1990). The SOM follows a
stochastic approximation approach, while some of its descendant
approaches optimize explicit functions: e.g., the Generative
TopographicMapmaximizes the likelihood of a low-dimensional
Gaussian mixture distribution (Bishop et al., 1998), while the
Elastic Map is based on optimization of the elastic energy
functional (Gorban and Rossiev, 1999; Zinovyev, 2000; Gorban
and Zinovyev, 2005, 2010; Gorban et al., 2008a), defined on
a regular grid of nodes embedded into the data space. The
Elastic Map approach can approximate data by manifolds with
arbitrarily chosen topologies, e.g., by closed principal curves or
spherical manifolds (Gorban and Zinovyev, 2005, 2009). For
methods fitting a set of nodes to the data, the base space is
either defined in the nodes of the grid or by linear interpolation
between nodes: for example, a curve is defined as a set of nodes
and linear segments connecting them, a 2D manifold is defined
by triangulation of the grid and using linear segments, etc. The
projection operator is frequently defined as a projection onto the
nearest point of the manifold.

Currently we face a rapidly increasing interest in unsupervised
learning methods based on artificial neural networks (ANNs).
For example, the autoencoder ANNs, proposed in the early
90s, are trained to reproduce input data and are characterized
by an hourglass organization, with a middle bottleneck layer
containing few neurons and constraining the network to generate

the output from a compressed input representation (Kramer,
1991; Hinton and Salakhutdinov, 2006). The base space is
represented by the signals on the bottleneck layer neurons and
usually is a simple Euclidean space. ANN-based autoencoders
can be considered injective methods since any combination of
signals at the bottleneck layer can be mapped back into the data
space by the demapping ANN layers. Variational autoencoders
learn in the bottleneck layer parameters of some intrinsically
low-dimensional probabilistic graphical model generating the
data (Kingma and Welling, 2013). Moreover, graph neural
networks, including graph autoencoders, are able to perform
dimensionality reduction by producing summarized graph-based
embeddings of data (Scarselli et al., 2008), a feature related to the
next section.

3.2. Injective Methods With Base Space
Having Complex Structure
Injective methods with Euclidean base space help representing
the intrinsic dataset complexity by reducing dimensionality but
do not reflect this complexity in the structure of the base
space. Other methods learn the structure of the base space such
that it reflects that of the data point cloud. Initially (growing),
neural gas algorithms used Hebbian learning to reconstruct
summaries of data topology which can, however, remain too
complex (Martinetz et al., 1991; Fritzke, 1995). The growing SOM
derives regular base space structure which can have varying ID
(Alahakoon et al., 2000).

Principal graphs together with methods for fitting them to
data are a flexible framework for learning low-dimensional
structures (Gorban and Zinovyev, 2010). In practice, the graph
complexity should be constrained. For example, principal trees
construct base spaces having dendroid topologies, which is
achieved, in the Elastic Principal Graph (ElPiGraph) approach,
by the application of topological grammar rules, transforming
trees into trees and thus exploring only a space of trees (Gorban
et al., 2007). A richer set of grammar rules can explore larger
graph families (Albergante et al., 2018). Other methods are
based on heuristics to guess the graph structure; for example,
extracting the Minimal Spanning Tree from the kNN-graph in
the Simple Principal Tree (simplePPT) method (Mao et al., 2015)
automatically imposes the tree-like structure on the base space.
Principal complexes combine the advantages of using regular grid
(too restricted) and arbitrary graph (too complex) structures to
approximate data. Here the graph grammar rules are applied to
a small number of factor graphs, while the resulting structure of
the approximating object is defined by the Cartesian product of
factors (Gorban et al., 2007). For example, the Cartesian product
of two linear graphs produces a 2D rectangular grid, and the
Cartesian product of a tree-like graph with a linear graph will fit
a branching sheet-like structure to the data. This approach allows
constructing complex principal objects with ID larger than one
controlling the complexity of graph factors only.

3.3. Projective Methods
In projective methods, the base space B which can possess
more or less complex internal structure is not assumed to be
a subset of the total space RN . This provides flexibility in the
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algorithm’s construction but limits the capability for mapping
new objects not participating in the definition of the projection
(out-of-sample objects) from RN into B. In other words, the
mapping is learnt only for a subset of points in B corresponding
to the data vectors xi ∈ RN and not the rest of the data
space. We note that the majority of projective methods start
by computing an object similarity or dissimilarity matrix or
offshoots of it, such as k-nearest neighbors (kNN) graph or ǫ-
graph. The predecessor of many modern projective methods is
the classical Multi-Dimensional Scaling (MDS) which is a linear
projective alternative of PCA (Torgerson, 1952).

The most popular representatives of non-linear projective
methods are ISOMAP (Tenenbaum et al., 2000), Laplacian and
Hessian Eigenmaps (Belkin and Niyogi, 2003; Donoho and
Grimes, 2003) and Diffusion maps (Coifman and Lafon, 2006),
in which the main idea is to define object dissimilarity reflecting
the geodesic distances along the kNN- or ǫ-graph (see Figure 1).
Local Linear Embedding (LLE) aims at reproducing, in the low-
dimensional space, local linear relations between objects in the
total space and assemble them into a global picture (Roweis
and Saul, 2000; Zhang and Wang, 2007). Kernel PCA exploits
the kernel trick and applies MDS on a kernel-modified Gram
matrix (Schölkopf et al., 1998; Bengio et al., 2004a; Ham et al.,
2004). On top of the original formulations, many generalizations
of these methods have been produced recently. For example,
the vector diffusion map (Singer and Wu, 2012) doesn’t use
operators on the manifold itself but differential operators on
fiber bundles over the manifold. Grassmann&Stiefel Eigenmaps
require proximity between the originalmanifold and its estimator
but also between their tangent spaces (Bernstein and Kuleshov,
2012; Bernstein et al., 2015). The limitations of the projective
methods are partially overcome in some of their out-of-sample
extensions that allow the mapping of new points without having
to recompute eigenvectors (Bengio et al., 2004b; Qiao et al., 2012).

Several methods for projective dimensionality reduction,
such as t-distributed stochastic neighboring embedding (t-SNE)
(Maaten and Hinton, 2008) or more recent Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018)
found overwhelming number of applications in applied data
science, e.g., for visualizing large-scale molecular profiling data in
biology. One of the reasons for their popularity is their focus on
more accurate representation of small distances (rather than large
ones as in PCA) between data vectors, which frequently match
better the purpose of data visualization/representation.

Projective methods are extremely popular in modern
machine learning for non-linear dimensionality reduction, and
new ideas are constantly explored: here we can mention
kernel density estimation (Mohammed and Narayanan, 2017),
genetic programming (Lensen et al., 2019), parallel transport
(Budninskiy et al., 2019), triplet information (TRIMAP) (Amid
and Warmuth, 2019).

While the vast majority of methods use projection onto
Euclidean base space, some authors have also suggested the use
of classical algorithms for non-Euclidean embeddings, such as
hyperbolic or spherical spaces (Begelfor and Werman, 2005;
Cvetkovski and Crovella, 2017). Recently, several works have
shown benefits of non-Euclidean embeddings for the particular

case of graph data, which can have intrinsic curvature (Walter
and Ritter, 2002; Chamberlain et al., 2017; Muscoloni et al., 2017;
Nickel and Kiela, 2017).

3.4. Multi-Manifold and Manifold Alignment
Learning
The complex and sometimes discontinuous organization of real-
life data can be a challenge for the single manifold hypothesis,
which underlies many algorithms. In some cases, data is better
described as sampled from multiple manifolds. For example, the
task of face recognition can be described by the identification of
different manifolds, each corresponding to a different person’s
facial images (Yang et al., 2007). Another example is LIDAR
technology, which generates 3D point clouds in the form of the
surrounding terrain (e.g., a bridge will result in a flat 2D surface
for the road, 1D cables, etc.) (Medina et al., 2019).

The existence of such data motivates approaches that
account for the presence of multiple and potentially intersecting
manifolds. A first idea to deal with such scenario is to measure
local ID to identify structures with variable ID in a dataset. As a
natural next step, the data can be segmented accordingly to the
local ID (see Allegra et al., 2019 and references therein). Beyond
such segmentation, one can integrate classical algorithms into a
complete framework to perform the detection and reconstruction
of manifold structures. Such frameworks have been recently
introduced based on well-known algorithms, such as spectral
clustering and local tangent space estimation (Wang et al., 2010,
2011; Gong et al., 2012), LLE (Hettiarachchi and Peters, 2015),
ISOMAP (Fan et al., 2012; Yang et al., 2016; Li et al., 2017;
Mahapatra and Chandola, 2017) and local PCA (Arias-Castro
et al., 2017). Other approaches use less classical techniques such
as tensor voting (Mordohai and Medioni, 2010; Deutsch and
Medioni, 2015, 2016), variational autoencoders (Ye and Zhao,
2019), or multi-agent flow (Shen and Han, 2016).

Another task which becomes important in some scientific
domains is to learn distinct maps from several data spaces to
the common base space. The general idea here is to align,
according to some criteria, multiple projections of the data
point clouds; therefore, this family of methods is sometimes
termed “manifold alignment” (Ma and Fu, 2011). Details of the
problem formulation are important here and can constrain the
method applicability. For example, Generalized Unsupervised
Manifold Alignment (GUMA) assumes a possibility of one-to-
one mapping between two data spaces (Cui et al., 2014). The
Manifold Alignment Generative Adversarial Network (MAGAN)
uses generative adversarial networks (GAN) to use one data
space as a base space for a second data space, and vice versa
(Amodio and Krishnaswamy, 2018); it assumes either some
shared variables or partly matched pairs of points between two
data spaces.

4. DISCUSSION

In this short review we highlight that many globally multi-
dimensional datasets used in the field of machine learning and
artificial intelligence can possess intrinsically low-dimensional
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FIGURE 1 | A simple inspiration example of a dataset, possessing low-dimensional intrinsic structure, which, however, remains hidden in any low-dimensional linear

projection. The dataset is generated by a simple branching process, filling the volume of an n-dimensional hypercube: one starts with a non-linear (parabolic) trajectory

from a random point inside the cube which goes up to one of its faces. Then it stops, a random point from the previously generated points is selected, and a new

non-linear trajectory starts in a random direction. The process continues to generate k branches; then the data point cloud is generated by adding a uniformly

distributed noise around the generated trajectories. If k is large enough then the global estimate of the dataset dimensionality will be close to n: however, the local

intrinsic dimension of the dataset remains one (or, between one and two, in the vicinity of branch junctions or intersections). The task of the lizard brain is to uncover

the low-dimensional structure of this dataset: in particular, classify the data points into the underlying trajectory branches and uncover the tree-like structure of branch

connections. The figure shows how various unsupervised machine learning methods mentioned in this review capture the complexity of this dataset having only

k = 12 branches generated with n = 10 (each shown in color) in 2D projections. Most of the methods here use simple Euclidean base space, besides ElPiGraph, in

which case the structure of the base space (tree-like) is shown by a black line and the 2D representation is created by using the force-directed layout of the graph.

structure, which yet can be highly complex. The task of a lizard
brain (methaphoric opposite to the high-dimensional brain,
composed of sparsely connected concept neurons) is to detect

which parts of the data are essentially low-dimensional and to
extract the low-dimensional structure from high-dimensional
space. Well-established manifold learning frameworks can
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be used for this purpose, taking into account some recent
developments mentioned above. At the same time, new
approaches learning structures more general than simple
connected manifolds are needed in concrete applications. Thus,
the structure of real-life datasets can be characterized by
strong noise, bifurcation-like patterns, self-intersecting flows,
variable local ID, fine-grained lumping, and other features
not easily captured by the manifold-type objects. There
exists candidate methodologies such as data approximation by
principal cubic complexes, using topological grammar approach,
which can overcome some limitations of the simple manifold-
based approaches.

There are scientific fields where the data possessing complex
yet locally low-dimensional structure are generated at large scale.
One example of this is molecular profiling of single cells in
molecular biology, where the generated clouds of data points are
characterized by many of the above mentioned complex features.
Today we face a boom of machine learning-based methodology
development aiming at treating this data type (Chen et al.,
2019; Saelens et al., 2019). Another well-known example is
reconstructing the surrounding environment from point clouds
generated by LIDAR technology.

Further efforts are needed to supply the lizard brain with
algorithmic approaches suitable in the various contexts of
real-life data. The development of benchmark datasets and
new benchmarking methodologies is also needed to assess the
efficiency and applicability of the existing toolbox for extracting
low-dimensional structures from high-dimensional data.
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