
HAL Id: hal-02972297
https://hal.science/hal-02972297v1

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of the Portals 4 protocol, and case study on
the BXI interconnect

Julien Emmanuel, Matthieu Moy, Ludovic Henrio, Grégoire Pichon

To cite this version:
Julien Emmanuel, Matthieu Moy, Ludovic Henrio, Grégoire Pichon. Simulation of the Portals 4
protocol, and case study on the BXI interconnect. HPCS 2020 - International Conference on High
Performance Computing & Simulation, Dec 2020, Barcelona, Spain. pp.1-8. �hal-02972297�

https://hal.science/hal-02972297v1
https://hal.archives-ouvertes.fr


Simulation of the Portals 4 protocol, and case study
on the BXI interconnect

Julien Emmanuel∗†, Matthieu Moy∗, Ludovic Henrio∗, Grégoire Pichon†

∗ Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France
first.last@ens-lyon.fr

† Atos, Échirolles, France
first.last@atos.net

Abstract—We present a new network simulator, which models
the Portals 4 communication protocol used in High Performance
Computing (HPC). It is built on top of SimGrid and uses
cooperative actors to model the interactions between compute
nodes in a supercomputer. Unlike most simulators in HPC, it
models both communications on the interconnect and on the
PCIe network inside each compute node, whithout going for
a full emulation of the hardware. The simulator can be used
to optimize or debug an application without having to use
an actual supercomputer. This is made possible by leveraging
SimGrid’s flow model and it enables accurate simulation with
good performances, even when running the model on a laptop.
We test this simulator with custom experiments as well as existing
Portals code, and compare the results with Portals executions on
an actual cluster using Atos’ BXI interconnect.

I. INTRODUCTION

Because of physical limitations, it becomes increasingly
difficult to design better CPUs, which is why today’s
supercomputers improve their performance by augmenting
the number of compute nodes. These nodes need to be able
to communicate as fast as possible in order to use the full
potential of CPUs and accelerators, using interconnection
networks as performant as possible. Even though many
efforts are made to design hardware that allows faster
communications on the high-speed network (Section II gives
an overview of mechanisms commonly used for this purpose),
the interconnect is still a bottleneck for the performance of
most HPC applications. Application developers must allow
parallelism between computation and communication to
fully exploit the capacities of the hardware. The workloads
generated by these applications can be very diverse, and
modern interconnects are generally made of complex
hardware, which makes the performance of an application on
a specific cluster hard to predict, and the optimal configuration
difficult to determine. In particular, the interconnect needs
to provide mechanisms that guarantee the reliability of
communications, but an inadequate configuration of such
mechanisms can cause a loss in performance. Influencing the
behaviour of the interconnect to improve performance can
also be done at the "fabric" level (i.e. the configuration of the
whole cluster on management machines), using mechanisms
such as adaptive routing for example, which makes studying

the performance of an interconnection network even harder.
This is why designing performant yet accurate simulators to
model Network Interface Controllers (NIC) and switches is
still an active research topic. Because of the complexity of
the hardware, and the growing number of nodes in a typical
cluster, such a model has to make a compromise between
speed and accuracy. This choice depends mainly on the
problem that the simulator needs to solve: for example, if the
model will be used to make decisions when designing new
hardware, it must be as accurate as possible otherwise some
effects will not be detected, but if the goal is to determine
the performance of an application across a whole cluster, the
model needs to trade some accuracy for speed (otherwise an
even bigger cluster will be needed to run the simulation). Our
study’s final aim is to be able to model a realistic application
running on a whole cluster (potentially thousands of nodes),
because the diversity and complexity of communication
patterns in existing scientific applications don’t allow us to
obtain accurate results by studying the behaviour of only a
few machines. Our simulator should therefore be able to help
developpers of scientific applications in the optimization and
debugging of their code, by allowing them to understand
what limits the performance of their application, and how the
interconnect might be configured to make the execution faster.

In this paper we present a cooperative actor-based simulator
which models the Portals 4 protocol [1], specified by Sandia
National Laboratories and commonly used in HPC. This sim-
ulator is especially suited to model the BXI interconnect [2],
which provides a hardware implementation of Portals 4 and
is used in some of the best european supercomputers. Our
simulator has the following features:

• it enables the online simulation of Portals code, without
any need for pre-existing traces,

• the simulation of several nodes can be achieved on a
regular laptop, thanks to SimGrid’s [3] flow model,

• the model accounts for PCIe transfers between the NIC
and the RAM of each machine, which have durations of
the same orders of magnitude as interconnect transfers,

• the platform’s configuration can be tuned to predict the



performance of NICs with different characteristics.

The paper is organized as follows: Section II presents the
context regarding supercomputers’ interconnect and existing
simulators, Section III explains the design of our simulator,
Section IV shows a validation of our model by comparing its
predictions with executions on a real cluster using the BXI
interconnect, and Section V concludes the paper.

II. RELATED WORK

In the HPC field, manufacturers of interconnection networks
use different protocols to ensure an optimal performance and
quality of service. The most famous are InfiniBand [4][5],
uGNI, DMAPP and Portals [1]. InfiniBand is mainly im-
plemented by Mellanox’ hardware, uGNI and DMAPP are
APIs exposed by Cray’s interconnects [6] (for generic commu-
nications and distributed memory applications respectively),
and Portals is currently implemented by Bull’s interconnect
(BXI) [2]. Older versions of Portals were implemented in the
XT series of Cray’s supercomputers (XT3 to XT5) through
their Seastar interconnect [7] as well as in the ASCI Red
supercomputer.

Our work focuses on Portals 4: while there are already
several studies and simulators for InfiniBand [8] and Cray’s
interconnect [9], there is (to our knowledge) no available
model of the Portals 4 API, although it is a standard protocol
represented by the BXI interconnect in the Top500 rank-
ing [10].

Portals, as well as most other HPC protocols, allows remote
direct memory accesses (RDMA) between compute nodes. It
is reliable, connectionless (unlike TCP for example), and it
enables a good overlap between computation on the CPU
and communication on the NIC. This last feature comes
from the offloading of the network processing on the NIC,
which allows the CPU to be involved as little as possible
in these data transfers. Portals semantics allow for zero-copy
communications: data can be streamed to (or from) user’s
memory without being stored in intermediate buffers, along
with OS-bypass: no system call is needed to communicate on
the network, to save CPU time.

Along with performance, the interconnect must guarantee a
good quality of service through end-to-end reliability (E2E),
fabric management, and allow efficient implementations of
common HPC APIs, such as the message passing interface
(MPI), partitioned global adress space (PGAS) models, etc.

Existing simulators of supercomputer’s interconnect use var-
ious methods and models, which allow for different tradeoffs
between precision and execution speed.

We can differentiate two main types of simulators: online
and offline. An online simulator runs an application step by
step on a virtual platform (which is usually described in a
configuration file given as an input to the model) to analyze
it, whereas an offline simulator replays a trace obtained in
an execution of the application on an actual platform. Even
though running an offline simulation is usually faster, it has a

few disavantages: a supercomputer must be available to obtain
the trace that the simulation requires, which limits the ability
to model future platforms, that are not yet usable. Moreover,
trace files can be extremely large due to the number of nodes
in a supercomputer, which makes them difficult to store and
analyze. On the other hand, online simulators allow more
realistic predictions for clusters that are not available, and
are generally easier to run since they don’t require any prior
execution of the application.

While some simulators, like the SMPI interface [11] in
Simgrid, are able to run both online and offline simulations,
the majority of them are designed to support only one of
those methods. Because we want to be able to explore a range
of configurations of the interconnect as wide as possible, and
to make prediction for any cluster easily, we focus on online
simulation in order not to have to deal with traces.

Existing network models have different levels of preci-
sion: some of them, such as ns-3 [12], OMNeT++ [13] or
SST/macro’s packet models [14], model each network packet
individually. This makes them very precise, but also orders of
magnitude slower than real-life executions of the considered
application. These simulators are useful to emulate the be-
haviour of a few nodes, but they cannot be used to model
efficiently a whole cluster running a complex application,
because of the amount of time that it would require.

On the other hand, some simulators choose a simpler
model, which allows better scaling, and enables the simu-
lation of thousands of nodes. For example, the LogP is a
family of analytical models commonly used to make scalable
simulators such as LogGOPSim [15] or analytical models in
SST/macro [14]. The downside of this family of models is that
to be as fast as possible they use simplistic approximations
to estimate the duration of network transfers. In particular,
these heuristics don’t take some effects into account, such
as congestion, although it can have a great impact on the
performance of a cluster.

Finally, some models try to be more complete while
staying faster than packet-level simulators. For example,
in this category, SimGrid [3] uses a flow-based model at
message-level to account for congestion in the network. This
is achieved by using an analytical model (similar to the LogP
family), which handles congestion by solving a Max-Min
optimization problem: the sum of all activities on a specific
resource (such as a network link or CPU) cannot exceed the
maximum capacity for this resource, while each activity must
get a resource share as big as possible. So if no priority is set
for any activity, each one sharing the same resource will get
an equal share (of bandwidth for links, or CPU for compute
activities).

Models for existing HPC protocols (such as Portals) are
often very precise, to capture every detail of the protocol
and of the processing in the hardware, at the cost of slow
executions. In this category, Mellanox provides an OMNeT++
model of their InfiniBand interconnect [16] and studies have



Fig. 1. Actors placement on the simulated hosts

been conducted to model accurately the OmniPath intercon-
nect [17]. Unfortunately, running a realistic application on
such a simulator is orders of magnitude slower than an execu-
tion on a real cluster, which makes optimizing the application
through simulation very hard (if not impossible).

On the other hand, some simulators (such as SMPI [11])
model communications at MPI-level, and apply fixed factors
to links’ bandwidth and latency depending on message size to
account for the specificities of protocols at the lower level and
of the underlying hardware. The problem with this technique
is that tuning the simulator to find optimal parameters is
challenging, and it isn’t as precise as modeling the real
behaviour at a lower level.

Since the goals of our study is to tune low-level config-
uration parameters depending on high-level communication
patterns, we chose to model communications at message-level
(which is orders of magnitudes faster than packet or flit level),
but to account for every message issued by the NIC, including
Portals’ and E2E’s acknowledgements (ACK ; more details
on this mechanism are given in Section III-D), and for PCIe
transfers between the NIC and the CPU (or RAM). This makes
the simulation precise enough for our needs while being able
to model a whole cluster, and it allows users to tune Portals’
behaviour through simulation.

III. USING SIMGRID FOR PORTALS SIMULATION

The simulator that we present is built on top of SimGrid, and
aims at modeling Portals behaviour. We use SimGrid because
it allows us to build scalable simulations while modeling
congestion on the network. For our needs the simulator has
been tuned to model the BXI interconnect, which offers a
hardware implementation of Portals, but our work can be
extended to other Portals implementations. In this simulator,
Portals’ API is made available to the user’s code, to make
the simulation of existing Portals code as easy as possible. So
far we have used it to build online simulators, even though
in the future this work could be extended to replay traces

of instrumented Portals applications. In this section we will
present the global architecture of the simulation, how we used
the framework SimGrid to represent real-world behaviour, and
how original Portals code is integrated in a simulation using
our model.

A. Global architecture

Because modern interconnects can sustain bandwidths of
several gigabytes per second, network transfers can have
a latency of the same order of magnitude as PCI transfers
between CPUs (or RAM) and NICs. This is why each node
in the cluster is modeled as two distinct pieces of simulated
hardware (which are called Hosts in SimGrid’s vocabulary),
which represent the CPU (with the RAM) and the NIC,
connected by a PCI express link. This allows to model PCI
transfers as well as communications between nodes (on
the interconnect), and in the future it could also allow to
model more precisely the processing time of message on
the NIC independently from the computations on the main
host. On these two hosts, four types of cooperative actors
are created: the "application logic" actors on the compute
host, and the TX, RX and E2E (which stands for End-to-End
reliability) actors on the NIC host. This configuration of
actors is represented in Figure 1, in which the "User code"
is unmodified Portals code given by the user of our simulator
(in the future we plan to support MPI code using OpenMPI
and its Portals 4 byte transfer layer), the topology of switches
connecting the machines in the cluster is specified in the
platform’s configuration file using SimGrid’s built-in routers,
and the other layers (Portals API and NIC host’s actors) are
programmed in our simulator using the SimGrid framework.

On the compute host, which models the main CPU and
RAM of the compute node, "application logic" actors
represent the behaviour the current application. These actors
will run the user’s code, to which they provide the Portals
API as if the app was running on an actual system, and the



API calls will be handled by the simulator. It is possible to
create several actors of this type on a node, to model several
threads running on the same hardware.

On the second host, which models the NIC, three types of
actors represent the behaviour of the NIC:

TX actors represent the transmission logic of the NIC,
by receiving commands created by application logic actors
through Portals calls and processing them. This processing
involves making any Direct Memory Access (DMA) to fetch
data from memory if necessary, sending a copy of the message
to the E2E actor if it is enabled on this node, generating Portals
events if necessary, and finally transmitting the message on the
interconnect.

RX actors model the reception logic of the NIC, to process
incoming messages from the interconnect. Depending on the
type of message, RX will create an ACK or a complete
response (with a payload) and pass it to TX actors to send
it back on the interconnect. It also issues a DMA to write
data to memory if needed, and generates any event that is
required by Portals’ specification.

Finally the E2E actor is responsible for the retransmission
logic of lost messages, and its full behaviour is detailed in
section III-D.

B. Mapping with SimGrid’s mailboxes

In Simgrid, the prefered way to exchange messages between
actors is through Mailboxes, which act as rendezvous points
between actors: each actor can either put messages or get them
from a mailbox, which will trigger a transfer in SimGrid’s
model. Mailboxes in SimGrid are not inherently linked with a
specific host of the simulated platform, but by defining some
actors as permanent receivers for specific mailboxes we can
give the illusion that mailboxes are queues located on a specific
host, which makes reasoning with them easier. In practice,
this means that any communication issued to a mailbox will
flow directly towards the receiver actor, instead of waiting
for a corresponding "receive" on the mailbox. This allows
commands to be transferred from "application logic" actors
to the NIC even if the receiver on the NIC is not ready to
"consume" the commands yet (for example).

In the proposed model, there are four types of mailboxes:
on the compute host, a mailbox is bound to each Portals
Event Queue (EQ), which makes it easy to send events from
any actor on the NIC up the PCIe link. The three remaining
mailboxes are on the NIC, and are used to send commands
to each type of actor: one of them receives commands to
be processed by TX actors, another one receives incomming
messages from the BXI network (to be processed by RX
actors), and the last one receives a copy of each message
before it is transmitted on the network (so that the E2E actor
can process it, and retransmit it if necessary).

The interaction between actors and mailboxes is depicted
on Figure 2.

C. Modeling parallel processing of messages

In an actual NIC, most of the time several messages can
be processed in parallel or at least in a pipelined way. At the
lowest level, messages are usually split into packets of various
size. For example, on the BXI NIC, there are circuits for
DMA processing which have their own packet size for PCIe
communications, and other circuits for transmission on the
BXI link with a different packet size. The complete processing
of a message involves going through each of these circuits, by
using command queues at each step, which enables a pipelined
progression of several messages. This low-level processing
is designed this way because of the physical constraints of
hardware components, but it is very complex, and modeling it
entirely would make the simulations extremely slow. It would
also make the model very tied to a specific NIC and take a
lot of time to develop, for an improvement in accuracy that
might not be necessary for our needs.

Since our model doesn’t have the same constraints as
the actual hardware, we use a simpler approach in order to
model parallel or pipelined processing: RX and TX actors are
responsible for the whole processing of a message, and we
instanciate both of them several times on each NIC instead
of modeling every hardware component and their interactions
(which enable a pipelined processing of the messages in the
actual hardware). We don’t need to duplicate mailboxes, since
several actors can fetch commands from a single mailbox.
Although this is not as precise as a complete emulation of the
hardware, it gives similar overall timing when measuring speed
over several messages, while making the simulation faster.

D. End-to-End (E2E) reliability modeling

To ensure the quality of service and reliable communica-
tions, most modern interconnects use a retransmission system,
which allows messages to eventually get to their destination
even in the event of hardware failure on the interconnect.
On the BXI NIC this mechanism is a dedicated hardware
component, which has access to a small memory to store the
contexts (also called "E2E entries") which will keep track of
the state of ongoing communications.

In our simulator the retransmission logic is modeled using
a dedicated actor on each NIC host, which follows this
algorithm: each time a TX actor sends a message across
the network, a copy of the message (only the metadata, not
the whole user payload) is sent to the E2E actor using the
dedicated mailbox. This actor then waits until the delay for
retransmission (timeout) is reached, and checks if we got
an ACK for the considered message yet or not. If no ACK
was received, a retry counter is incremented in the message
structure, and it is passed to a TX actor to be retransmitted. If
the message was acknowledged in time, the E2E actor discards
it and moves on to the next one (wait until the retransmission
date is reached, etc.).

On most interconnects, the timeout before retransmitting a
message is constant throughout the whole application execu-
tion. This is an important property, because it allows us to
have only one E2E actor on each NIC (instead of creating a



Fig. 2. Complete architecture with actors and mailboxes

new one for each message): indeed, because of this property,
messages will always need to be retransmitted in the same
order as they were created, which means a single E2E actor
can process every message sequentially without missing any
potential retransmission.

One of the difficulties in this E2E system is that Portals’
ACKs are important messages which also need to be transfered
in a reliable way, which is why the BXI interconnect has lower
level ACKs to confirm the successful transfer of a Portals’
ACK (or a GET response). This mechanism is fully modeled
in our simulator and can be configured using either global or
node-specific parameters, which allows users to get different
tradeoffs between precision and speed, or explore what could
happen for different E2E behaviours.

E. Exposing Portals API to simulated code

One of the main goals of our simulator is to allow the
simulation of existing Portals code, with as few modifications
to the original sources as possible. Unlike SMPI [11], which
provide tools to compile existing MPI code with SimGrid
in a single command, we do not yet have a compiler to
make the process of simulating existing Portals application
completely automated, but a simulation can easily be created
from the original code using a simple C++ build configuration.
This is made possible because the simulator exposes the
Portals API (as specified in [1]), implemented in C++, in
which function calls trigger operations in our model instead of
writing commands to a real NIC. In order to achieve this, we
created wrapper classes for most of the Portals C structures
(network interfaces, event queues, portals tables, list entries,
etc.), in order to keep the metadata needed by the model and
have each structure’s logic (mostly creation and destruction)
well isolated.

Integrating the user code in our actor model is challeng-
ing: in an execution on a real cluster, each process is well

isolated from the others, thanks to the operating system and
the distributed hardware. This is not as straight-forward in
simulation: every actor (and SimGrid’s simulation kernel) runs
in the same Linux process, and even though SimGrid natively
has a very efficient mechanism to switch between contexts
when waking up an actor [3], it is not sufficient to isolate
the global variables of the user’s code between "application
logic" actors (which represent the different processes in the
execution on a real cluster).

We considered several approaches to handle this difficulty: a
naive solution is to make a specific "application logic" actors’
implementation for each application. This means importing the
user’s code by transforming the application’s functions into
member functions of the actor class, and global variables into
attributes of the class. This process works well because trans-
forming global variables into attributes makes them private for
each actor, as they would be if running the application on a
real system, but it is not an easy process to automate, because
it requires building a robust source-to-source tool, and we still
have a problem if the user’s code depends on an external
library that uses global variables (such as OpenMPI [18] for
example). Finally, it requires the user code to be valid C++
(some C code might not necessarily be compatible).

The approach we propose to solve these issues is similar to
how SMPI [11] exposes the MPI API to its simulation actors:
the user’s code is compiled as a shared library, separately from
the simulator (which allows the use of C code which would not
be C++ compatible). It is then loaded by a generic "application
logic" actor using the dlopen and dlsym functions (which allow
us to open the library, fetch the main symbol and run it).
The problem of making global variables and external libraries
private to each actor can be solved by loading the user code’s
library and any external library several times with different
names (so that the linker thinks they are different), but this is
already well explained by the SMPI authors in [11], so we



Fig. 3. Performance of Portals’ PtlPut operation

Fig. 4. Performance of Portals’ PtlGet operation

won’t go into any more detail in this paper.
In addition to Portals API calls, we implemented our

own version of functions which manipulate time, such as
gettimeofday, sleep, nanosleep, etc. Our implementation uses
SimGrid Engine’s simulated time, which enables users to use
the exact same code to measure the performance of code on
a real cluster or in simulation for example.

F. Options of the simulation

To allow faster simulations, the model has a few options,
most of which can be configured globally using environment
variables or locally for each actor in the XML deployment file
(which specifies which actor gets executed on which host of
the simulated platform): it is possible to skip the actual copy
of the payload between actors when messages are exchanged,
which saves time if most messages are big and the actual data
is not important for the simulation (i.e. it doesn’t change the
execution flow). It is also possible to simplify the model to

make its execution faster, by not modeling some PCI transfers
(mainly commands from the compute node to the NIC, which
are very small and sometimes have little impact on the results).

IV. EXPERIMENTAL VALIDATION

Validation experiments aim at comparing simulation results
with real-world experiment on a BXI cluster. The nodes
on this cluster use Intel® Xeon Phi™ Processor 7250 with
a single BXI V2 NIC on each node. All the nodes used
on the experiments are connected to the same BXI switch.
The experiments that we present are point-to-point (between
two nodes only), but we plan to design new ones to test
the collective behaviour of a big number of nodes (using
combinations of point-to-point operations since Portals doesn’t
have native collective operations, unlike MPI for example).

A. Portals’ primitives

First we tested the model with the two basic Portals
operations: PtlPut and PtlGet (results are shown respectively



Fig. 5. Performance of ptlperf in match mode

on Figure 3 and 4). To have results as precise as possible
we measured 10,000 operations (Put or Get), for 100 random
sizes (between 1B and 4MB). For the real-life experiment
each size was measured five times, but only one time in
simulation: it is not relevant to repeat the same measurement
since the simulation is deterministic.

PtlPut operations are more complex than PtlGet: because
the payload is sent by the initiator of the request, the NIC uses
several optimizations depending on message size to improve
performance (such as caching the payload to reuse the user
buffer faster, or sending the payload directly in the request to
avoid a DMA from the NIC). These optimizations are specific
to BXI (i.e. not mandatory according to the Portals specifica-
tion), therefore modeling a different Portals NIC would require
to modify this code, but we designed these specificities to
be as separated as possible from the main Portals semantics’
implementation.

On the other hand, with PtlGet requests, the NIC’s
algorithm is always the same: the initiator sends a header-
only request, and the target always has to issue a DMA
through its PCIe bus to fetch the payload and send the
response.

In both cases we can see that the model gives good results
even though we chose not to go for a full emulation of the
NIC. There is still some room for improvement, but we believe
that it can be done by adjusting the numerical parameters of
the platform (such as PCIe latency for example), without any
major model refactoring.

B. Simulation of real Portals code

We then tried to model more realistic code, taken from a
tool used in production and written with Portals: ptlperf. It is
used to measure the performance of a BXI cluster, and has
various modes: "as fast as possible", or "realistic workload",
etc.

As explained in Section III-E, we imported the original
code of ptlperf in an "application logic" actor of the simulator,
and tested it for 100 randomly chosen messages sizes between
1B and 4MB. Unlike the first tests, ptlperf doesn’t send a
fixed amount of messages while measuring the time, it sends
as many messages as possible in five seconds while counting
them. We used the "match" mode of ptlperf, which means
that it will imitate the way a real application would send
messages, instead of blindly sending as many as possible
without waiting for completion events (which would be the
"fast" mode). The results are displayed on Figure 5.

We can see that the performance estimation made by the
simulation is not as good as for our first tests: in particular,
the model is too optimistic for small messages. Our hypothesis
is that ptlperf is a more complex tool than the previous
experiments, and therefore that it spends a significant amount
of time in CPU operations, which explains why the smallest
messages always have the same duration regardless of their
size: CPU is the bottleneck. Since the simulator doesn’t
have a model for compute time yet, the difference we see
seems normal, and the bigger the messages get, the better the
prediction is.

C. Performance of the simulator

For all the experiments the simulation was executed on a
laptop with an Intel® Core™ i5-7300HQ and 8 GB of RAM,
with every actor and the simulation kernel running in a single
Linux process. In each case the simulation was executed twice,
to see the influence of its configuration on the performance:
the first time with the complete model, and the second time
with the E2E processing disabled (in these simple examples
we know there aren’t any retransmission of messages so it
doesn’t affect the prediction). We recorded the execution time
of the PtlPut and PtlGet experiments on the real cluster and
on the simulator (as a reminder each test sends a million



messages: 10,000 for each message size with 100 different
message sizes), which gives the following results:

• The PtlPut test took 35 seconds on the BXI cluster, and
in simulation it took 39 seconds of wall-clock-time with
E2E disabled and 209 seconds with E2E enabled.

• The PtlGet test took 34 seconds on the BXI cluster, and
in simulation it took 87 seconds of wall-clock-time with
E2E disabled and 276 seconds with E2E enabled.

As we can see, the E2E model is very costly (enabling
it causes a factor of approximately 5 in execution time in
the PtlPut test). Since the logic of this actor is very simple
and shouldn’t use the simulation kernel in an intensive way,
we don’t have any satisfying explanation, and optimizing this
processing will be our next objective.

We also observe that simulating PtlGet operations is slower
than PtlPut ones, although it takes the same amount of time
to run on the BXI cluster. We suspect that our PtlGet code
allows more requests to be in flight on the network at the
same time, which doesn’t matter in the real-life experiment
(the performance is only bounded by the latency of the link
for small messages, and the bandwidth for bigger ones), but
could stress the simulation kernel excessively.

Finally, none of the simulations manage to be as fast as
the execution on the BXI cluster (even though some are of
the same order of magnitude in term of execution time). It
is not alarming since these experiments are close to a worst-
case scenario for the model: they are composed exclusively of
network transfers, with no computation that we could skip on
the simulation (whereas they would be executed on the real-
life cluster). Nonetheless, scalability is going to be a challenge
when modeling several (hundreds) of machines at the same
time, and we plan to address this problem by allowing each
machine to be modeled with a different level of precision: this
will allow the simulator to simplify the model for the nodes of
the cluster that are not subject to a heavy workload, therefore
making the simulation faster while losing little in accuracy.

V. CONCLUSION

In this paper, we presented a new simulator, built on top of
SimGrid to model the Portals 4 protocol used in HPC. It pro-
vides a standard Portals interface, and enables the simulation
of unmodified application code, which allows developpers to
run and optimize scientific applications in simulation, and to
determine the influence of the interconnect’s configuration on
the performance of their code. We tested it for different types
of operations, using both specific tests and existing Portals
code, which demonstrated that the model gives good results
for point-to-point operations, even though a CPU model could
improve these results.

In the future we plan to extend the validation tests to
collective operations, and also allow the simulation of MPI
code, since few applications are written using native Portals
directly.

REFERENCES

[1] B. Barrett, R. Brightwell, R. E. Grant, K. S. Hemmert, K. Pedretti,
K. Wheeler, K. Underwood, R. Riesen, A. B. Maccabe, and T. Hudson,
“Portals 4.1 network programming interface,” Sandia National Labora-
tories, Tech. Rep., 2014.

[2] S. Derradji, T. Palfer-Sollier, J. P. Panziera, A. Poudes, and F. Wellenre-
iter, “The BXI Interconnect Architecture,” Proceedings - 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects, HOTI
2015, pp. 18–25, 2015.

[3] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available:
http://hal.inria.fr/hal-01017319

[4] “Infiniband Architecture Specification Volume 1 Release 1.4,” Tech.
Rep., 2020. [Online]. Available: https://cw.infinibandta.org/document/
dl/8567

[5] “Infiniband Architecture Specification Volume 2 Release 1.4,” Tech.
Rep., 2020. [Online]. Available: https://cw.infinibandta.org/document/
dl/8566

[6] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray ® XC™
Series Network Cost-Effective, High-Bandwidth Networks,” 2012.
[Online]. Available: https://www.alcf.anl.gov/files/CrayXCNetwork.pdf

[7] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K. D. Underwood,
“Implementation and performance of Portals 3.3 on the Cray XT3,”
Proceedings - IEEE International Conference on Cluster Computing,
ICCC, 2005.

[8] G. Maglione-Mathey, P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia,
and F. J. Quiles, “Combining OpenFabrics Software and Simulation
Tools for Modeling InfiniBand-Based Interconnection Networks,” Pro-
ceedings - 2nd IEEE International Workshop on High-Performance
Interconnection Networks in the Exascale and Big-Data Era, HiPINEB
2016, pp. 55–58, 2016.

[9] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling
Parallel Simulation of Large-Scale HPC Network Systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 87–100,
2017.

[10] (2020) Top500 list - june 2020. [Online]. Available: https://www.
top500.org/lists/top500/list/2020/06/

[11] A. Degomme, A. Legrand, G. S. Markomanolis, M. Quinson, M. Still-
well, and F. Suter, “Simulating MPI Applications: The SMPI Approach,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 8,
pp. 2387–2400, 2017.

[12] G. F. Riley and T. R. Henderson, “The ns–3 Network Simulator,”
Modeling and Tools for Network Simulation, pp. 15–34, 2010.

[13] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” 2008. [Online]. Available: https://doc.omnetpp.org/
workshop2008/omnetpp40-paper.pdf

[14] “SST/macro 10.0: User’s Manual,” 2020. [Online]. Avail-
able: https://raw.githubusercontent.com/sstsimulator/sst-macro/v10.0.0_
beta/manual-sstmacro-10.0.pdf

[15] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
large-scale applications in the LogGOPS model,” HPDC 2010 - Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing, pp. 597–604, 2010.

[16] E. G. Gran and S.-A. Reinemo, “InfiniBand Congestion Control,
Modelling and validation,” vol. 1, no. 2, pp. 390–397, 2012. [Online].
Available: https://www.simula.no/sites/default/files/publications/Simula.
simula.362.pdf

[17] J. Cano, G. T. Fernández, F. J. Alfaro, and J. L. Sánchez, “OpaSim:
an OPA Simulator for High-Performance Interconnections,” Tech.
Rep., 2018. [Online]. Available: https://www.dsi.uclm.es/descargas/
technicalreports/DIAB-18-12-1/TechnicalReport.pdf

[18] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3241,
pp. 97–104, 2004.

http://hal.inria.fr/hal-01017319
https://cw.infinibandta.org/document/dl/8567
https://cw.infinibandta.org/document/dl/8567
https://cw.infinibandta.org/document/dl/8566
https://cw.infinibandta.org/document/dl/8566
https://www.alcf.anl.gov/files/CrayXCNetwork.pdf
https://www.top500.org/lists/top500/list/2020/06/
https://www.top500.org/lists/top500/list/2020/06/
https://doc.omnetpp.org/workshop2008/omnetpp40-paper.pdf
https://doc.omnetpp.org/workshop2008/omnetpp40-paper.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/v10.0.0_beta/manual-sstmacro-10.0.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/v10.0.0_beta/manual-sstmacro-10.0.pdf
https://www.simula.no/sites/default/files/publications/Simula.simula.362.pdf
https://www.simula.no/sites/default/files/publications/Simula.simula.362.pdf
https://www.dsi.uclm.es/descargas/technicalreports/DIAB-18-12-1/TechnicalReport.pdf
https://www.dsi.uclm.es/descargas/technicalreports/DIAB-18-12-1/TechnicalReport.pdf

	Introduction
	Related Work
	Using Simgrid for Portals simulation
	Global architecture
	Mapping with SimGrid's mailboxes
	Modeling parallel processing of messages
	End-to-End (E2E) reliability modeling
	Exposing Portals API to simulated code
	Options of the simulation

	Experimental validation
	Portals' primitives
	Simulation of real Portals code
	Performance of the simulator

	Conclusion
	References

