Jean-Michel Muller

Formalization of double-word arithmetic, and comments on "Tight and rigorous error bounds for basic building blocks of double-word arithmetic"

Keywords: Floating-point arithmetic, double-word arithmetic, double-double arithmetic, formalization, proof assistant, Coq

. We have formally proven all the theorems given in that paper, using the Coq proof assistant. The formal proof work led us to: i) locate mistakes in some of the original paper proofs (mistakes that, however, do not hinder the validity of the algorithms), ii) signi cantly improve some error bounds, and iii) generalize some results by showing that they are still valid if we slightly change the rounding mode. The consequence is that the algorithms presented in [16] can be used with high con dence, and that some of them are even more accurate than what was believed before. This illustrates what formal proof can bring to computer arithmetic: beyond mere (yet extremely useful) veri cation, correction and consolidation of already known results, it can help to nd new properties. All our formal proofs are freely available.

. For that algorithm, the authors of [16] could build a "bad case" with error around 2.25𝑢 2 (where 𝑢, the rounding unit, is de ned later on). We give an even worse case (close to 3𝑢 2) in this paper. To obtain such bad cases, one needs to build them: they are so rare that one can perform millions of random tests without nding relative errors larger than 2𝑢 2 .

It clearly appeared, when working on these formal proofs, that there are further bene ts. As we are going to see, the formal proof work also allows one to do more than just checking the validity of a proof or pointing-out and correcting the errors:

• beyond simply checking a paper-and-pencil proof, formalization helps to understand all details of a proof, sometimes it allows one to prove a stronger re-

Introduction

Double-word arithmetic, frequently called "double-double" arithmetic, consists of representing a real number as the unevaluated sum of two oating-point (FP) numbers, with some additional constraints needed to make sure that this is an accurate representation (see De nition 1 below). Double-word (and, more generally, multiple-word) arithmetic is useful when the largest FP format available in hardware on the system being used is not wide enough for some critical parts of a numerical algorithm. Typical examples occur in computational geometry [START_REF] Shewchuk | Adaptive precision oating-point arithmetic and fast robust geometric predicates[END_REF], in the design of accurate BLAS [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF], and the design of libraries for correctly rounded elementary functions [START_REF] Florent De Dinechin | Towards the postultimate libm[END_REF].

In all widely available distributions of double-word arithmetic, the underlying FP format is the binary64, a.k.a. "double precision" format of the IEEE 754-2019 Standard for Floating-Point Arithmetic [START_REF]IEEE standard for oating-point arithmetic. IEEE Std[END_REF], which explains the name "double-double". The rst double-word algorithms were given by Dekker [START_REF] Theodorus | A oating-point technique for extending the available precision[END_REF] as early as 1971. A largely used library that provides e cient double-word (and quad-word) arithmetic is the QD ("quad-double") library by Hida, Li, and Bailey [START_REF] Hida | Algorithms for quad-double precision oating-point arithmetic[END_REF][START_REF] Hida | C++/Fortran-90 double-double and quad-double package[END_REF]. A more recent library is Campary [START_REF] Joldeş | CAMPARY: Cuda multiple precision arithmetic library and applications[END_REF] (see also [START_REF] Isupov | Performance data of multiple-precision scalar and vector blas operations on cpu and gpu[END_REF] for a performance evaluation of Campary).

In [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], the authors (including one of us) consider several arithmetic algorithms for manipulating double-word numbers (some taken from the literature, some new), and give paper-and-pencil proofs of error bounds for these algorithms. We felt that building formal proofs of these algorithms was necessary for several reasons:

• These algorithms are speci cally designed to be used in critical parts of numerical programs, where a careful control of numerical error is important, so we need to be absolutely certain about the claimed error bounds;

• despite many "without loss of generality we assume that. . . " and the use of symmetries whenever possible, the paper-and-pencil proofs remain rather long, complex, and at times rather tedious to read (mainly because of unavoidable enumerations of many possible cases). This has two consequences: rst, it is quite possible that some errors remain hidden in the proofs and, second, few people will carefully read them;

sult, or to improve or simplify the proof. Especially, one can at times generalize the results, by checking if the proof (possibly with small modi cations) still holds with more general assumptions: in that case, it is not mere (yet useful!) veri cation of existing results, but discovery of new results.

• even once the paper proof is veri ed (and corrected if needed), the formal proof serves as a detailed appendix to the paper proof: shortcuts such as "the second case is symmetrical to the rst one. . . ", or "without loss of generality, we assume that. . . " are frequently necessary in a paper proof for the sake of clarity and/or brevity. The formal proof contains all the details (exhibition of symmetries, changes of values, . . .) that prove that these shortcuts were valid.

The use of formal proof tools for giving more con dence in computer arithmetic algorithms has a long history, that goes back at least to the years that followed the Pentium FDIV Bug [START_REF] Coe | It takes six ones to reach a aw[END_REF]. This is not surprising: all of numerical computing is built upon the underlying arithmetic of our computers. If the arithmetic cannot be trusted, nothing can be trusted. We therefore must have full con dence in that underlying arithmetic. In some cases (unary functions and very small values of the precision 𝑝), exhaustive testing of the programs is possible, 1 but in general, formal proof is the only way of obtaining that con dence.

Among these rst works on formal proof of oating-point algorithms, let us mention works by Harrison [START_REF] Harrison | Floating-point veri cation in HOL light: The exponential function[END_REF][START_REF] Harrison | A machine-checked theory of oating point arithmetic[END_REF], Moore et al. [START_REF] Strother | A mechanically checked proof of the correctness of the kernel of the AMD5K86 oating point division algorithm[END_REF], Daumas, Rideau and Théry [START_REF] Daumas | A generic library of oating-point numbers and its application to exact computing[END_REF]. Our formal proofs are built using Boldo and Melquiond's Flocq library [START_REF] Boldo | Flocq: A uni ed library for proving oating-point algorithms in Coq[END_REF][START_REF] Boldo | Computer Arithmetic and Formal Proofs[END_REF], built on the Coq proof assistant. 2 Coq (see for instance [START_REF] Boldo | Formalization of real analysis: A survey of proof assistants and libraries[END_REF]) is based on the calculus of inductive constructions. It provides interactive proof methods and a tactic language to help the user to de ne new proof methods. It also makes it possible to extract programs from proofs. The Flocq library was for instance used by Boldo et al. to show the correctness of the oating-point passes of the veri ed CompCert C compiler [START_REF] Boldo | Veri ed compilation of oating-point computations[END_REF].

In the following, we assume that the oating-point arithmetic upon which we build a double-word arithmetic is a radix-2, precision-𝑝 FP arithmetic system, with unlimited exponent range (which means that the results presented here apply to "real life" oating-point arithmetic provided that under ows and over ows do not occur). This means that an FP number 𝑥 is a number of the form

𝑥 = 𝑀 • 2 𝑒-𝑝+1 , (1)
where 𝑀 and 𝑒 are integers, with |𝑀 | ≤ 2 𝑝 -1. If 𝑥 ̸ = 0, there is a unique pair (𝑀 𝑥 , 𝑒 𝑥) that satis es both (1) and the additional requirement

2 𝑝-1 ≤ |𝑀 | ≤ 2 𝑝 -1.
The number 𝑒 𝑥 from that pair is called the oating-point exponent of 𝑥, and 𝑀 𝑥 is called the integral signi cand of 𝑥. We will say that a FP number is even if its integral signi cand is even.

The notation RN(𝑡) stands for 𝑡 rounded to the nearest FP number, and unless stated otherwise, we assume that we use the ties-to-even tie-breaking rule. It is de ned as follows:

• if there is only one FP number nearest to 𝑡 then RN(𝑡) is that number,

• and if 𝑡 is exactly halfway between two consecutive FP numbers, then RN(𝑡) is the one of these two numbers whose integral signi cand is even.

Round-to-nearest ties-to-even is the default rounding mode in the IEEE 754-2019 Standard [START_REF]IEEE standard for oating-point arithmetic. IEEE Std[END_REF], and it is by far the most used (few people consider changing the rounding mode, and programming environments do not always make that an easy task). Hence, when an arithmetic operation c⊤d is performed, the result that is actually returned is RN(𝑐⊤𝑑). Interestingly enough, the IEEE 754-2019 standard also de nes two other round-to-nearest functions: round-to-nearest ties-to-away (mainly needed in decimal arithmetic, for nancial applications), and round-to-nearest ties-to-zero (whose major purpose is to help implementing fast reproducible summation [START_REF] Riedy | Augmented arithmetic operations proposed for IEEE-754[END_REF]). The paper proofs of the double-word algorithms in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] assume round-to-nearest, ties-toeven. It might be interesting to see if the proofs remain valid (possibly with minor modi cations) with the other round-to-nearest functions: we consider this later on in this paper. We will even see that changing the tie-breaking rule can change the error bound of an algorithm (see Theorem 2.6).

Finally, two quantities are commonly used to express errors in oating-point arithmetic:

• the number ulp(𝑥), for 𝑥 ̸ = 0 is 2 ⌊log 2 |𝑥|⌋-𝑝+1 . Roughly speaking, ulp (𝑥) is the distance between two consecutive FP numbers in the neighborhood of 𝑥. If a scalar function 𝑓 is correctly rounded-i.e., if for any 𝑥 we always return RN (𝑓 (𝑥))-, then the absolute error when computing 𝑓 (𝑥) is bounded by 1 2 ulp (𝑓 (𝑥)) .

• 𝑢 = 2 -𝑝 denotes the roundo error unit. If a scalar function is correctly rounded then it is computed with relative error less than 𝑢/(1 + 𝑢) [START_REF] Jeannerod | On relative errors of oatingpoint operations: optimal bounds and applications[END_REF], which is very slightly less than 𝑢. A oating-point number between 2 𝑘 and 2 𝑘+1 is a multiple of 𝑢 • 2 𝑘+1 .

The bounds given in this paper and in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] are given as functions of 𝑢. If the bound for some algorithm is 𝐵(𝑢) and if we are able to show that there exist some inputs parametrized by 𝑢 for which the relative error 𝐸(𝑢) satis es 𝐸(𝑢)/𝐵(𝑢) → 1 as 𝑢 → 0, we will say that the bound 𝐵(𝑢) is asymptotically optimal.

Algorithms for double-word arithmetic

Let us now give a formal de nition of a double-word number.

De nition 1. [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]. A double-word (DW) number 𝑥 is the unevaluated sum 𝑥 ℎ + 𝑥 ℓ of two oating-point numbers 𝑥 ℎ and 𝑥 ℓ such that 𝑥 ℎ = RN(𝑥).

In other words, a DW number is a real number equal to the sum of its rounded to the nearest FP number 𝑥 ℎ and an error term 𝑥 ℓ that is also a oating-point number.

In [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], algorithms are given for adding, multiplying and dividing DW numbers, adding a FP number to a DW number, and multiplying or dividing a DW number by a FP number. All these algorithms return DW numbers. They are given with an error bound and a proof. They all use the following three basic building blocks, named "error-free transforms" by Ogita, Rump and Oishi [START_REF] Ogita | Accurate sum and dot product[END_REF], that are well-known in the FP literature, and that return DW numbers equal to the sum or product of two input FP numbers.

The basic building blocks: "error-free transforms"

The Fast2Sum algorithm (Algorithm 1) is due to Dekker [START_REF] Theodorus | A oating-point technique for extending the available precision[END_REF].

Algorithm 1 -Fast2Sum(𝑎, 𝑏). The Fast2Sum algorithm [START_REF] Theodorus | A oating-point technique for extending the available precision[END_REF].

𝑠 ← RN(𝑎 + 𝑏) 𝑧 ← RN(𝑠 -𝑎) 𝑡 ← RN(𝑏 -𝑧)
If 𝑎 and 𝑏 are FP numbers that can be written 𝑀 𝑎 •𝑒 𝑎 and 𝑀 𝑏 •𝑒 𝑏 , with |𝑀 𝑎 |, |𝑀 𝑏 | ≤ 2 𝑝 -1 and 𝑒 𝑎 ≥ 𝑒 𝑏 , then the result (𝑠, 𝑡) returned by Algorithm 1 satis es 𝑠+𝑡 = 𝑎+𝑏. Hence, 𝑡 is the error of the FP addition 𝑠 ← RN(𝑎 + 𝑏). In practice, the above given condition on 𝑒 𝑎 and 𝑒 𝑏 may be hard to check. However, if |𝑎| ≥ |𝑏| then that condition is satis ed. One can avoid having to perform a comparison of |𝑎| and |𝑏| by using the more complex Algorithm 2 below.

Algorithm 2 -2Sum(𝑎, 𝑏). The 2Sum algorithm [START_REF] Møller | Quasi double-precision in oating-point addition[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF].

𝑠 ← RN(𝑎 + 𝑏) 𝑎 ′ ← RN(𝑠 -𝑏) 𝑏 ′ ← RN(𝑠 -𝑎 ′) 𝛿 𝑎 ← RN(𝑎 -𝑎 ′) 𝛿 𝑏 ← RN(𝑏 -𝑏 ′) 𝑡 ← RN(𝛿 𝑎 + 𝛿 𝑏)
The result (𝑠, 𝑡) returned by Algorithm 2 satis es 𝑠 + 𝑡 = 𝑎 + 𝑏 for all FP inputs 𝑎 and 𝑏.

Finally, the following algorithm allows one to compute the error of a FP multiplication.

Algorithm 3 -2Prod(𝑎, 𝑏). The 2Prod algorithm (called Fast2Mult in [START_REF] William | Lecture notes on the status of IEEE-754[END_REF][START_REF] Nievergelt | Scalar fused multiply-add instructions produce oating-point matrix arithmetic provably accurate to the penultimate digit[END_REF][START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]). It requires the availability of a fused multiply-add (FMA) instruction for computing RN(𝑎

• 𝑏 -𝜋). 𝜋 ← RN(𝑎 • 𝑏) 𝜌 ← RN(𝑎 • 𝑏 -𝜋)
The result (𝜋, 𝜌) returned by Algorithm 3 satis es 𝜋 + 𝜌 = 𝑎 × 𝑏 for all FP inputs 𝑎 and 𝑏. That algorithm requires the availability of an FMA (fused multiply-add) instruction.

An example

Algorithm 4 below (which was Algorithm 6 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]) was presented in [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF][START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF]. It approximates the sum of two DW numbers by a DW number, with a relative error less than 3𝑢 2 + 13𝑢 3 as soon as 𝑝 ≥ 6, as shown in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF].

Algorithm 4 -AccurateDWPlusDW(𝑥 ℎ , 𝑥 ℓ , 𝑦 ℎ , 𝑦 ℓ). Calculation of (𝑥 ℎ , 𝑥 ℓ) + (𝑦 ℎ , 𝑦 ℓ) in binary, precision-𝑝, oating-point arithmetic.

1: (𝑠 ℎ , 𝑠 ℓ) ← 2Sum(𝑥 ℎ , 𝑦 ℎ) 2: (𝑡 ℎ , 𝑡 ℓ) ← 2Sum(𝑥 ℓ , 𝑦 ℓ) 3: 𝑐 ← RN(𝑠 ℓ + 𝑡 ℎ) 4: (𝑣 ℎ , 𝑣 ℓ) ← Fast2Sum(𝑠 ℎ , 𝑐) 5: 𝑤 ← RN(𝑡 ℓ + 𝑣 ℓ) 6: (𝑧 ℎ , 𝑧 ℓ) ← Fast2Sum(𝑣 ℎ , 𝑤) 7: return (𝑧 ℎ , 𝑧 ℓ)
Although the proved error bound for Algorithm 4 is close to 3𝑢 2 , we were not aware before this study, when the RN function is round-to-nearest ties to even, of examples for which the relative error is larger than 2.25𝑢 2 . The authors of [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] build an example, for 𝑝 = 53, for which the relative error is 2.24999999999999956 • • • ×2 -106 . Failing to obtain larger errors in extensive simulations, we were inclined to conjecture that the actual error bound for Algorithm 4 is 2.25𝑢 2 , but such conjectures are dangerous: the authors of [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF][START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF] already claimed that the bound, for 𝑝 = 53, was 2 × 2 -106 (i.e., 2𝑢 2).

Indeed, the error can be larger, more precisely, we have the following.

Property 2.1. Assuming that 𝑝 ≥ 3 and RN is round-to-nearest ties-to-even, the error bound 3𝑢 2 /(1 -4𝑢) = 3𝑢 2 + 12𝑢 3 + 48𝑢 4 + • • • for Algorithm 4, given by Joldes et al. in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], is asymptotically optimal.

Proof. Consider 𝑥 ℎ = 1

𝑥 ℓ = 𝑢 -𝑢 2 𝑦 ℎ = -1 2 + 𝑢 2 𝑦 ℓ = -𝑢 2 2 + 𝑢 3 .

We successively obtain:

𝑠 ℎ = RN(𝑥 ℎ + 𝑦 ℎ) = 1 2 (thanks to the ties-to-even tie-breaking rule)

𝑠 ℓ = 𝑥 ℎ + 𝑦 ℎ -𝑠 ℎ = 𝑢 2 , 𝑡 ℎ = RN(𝑥 ℓ + 𝑦 ℓ) = 𝑢 -𝑢 2 , 𝑡 ℓ = 𝑥 ℓ + 𝑦 ℓ -𝑡 ℎ = - 𝑢 2 2 + 𝑢 3 , 𝑐 = RN(𝑠 ℓ + 𝑡 ℎ) = 3𝑢 2 ,
(thanks to the ties-to-even tie-breaking rule, and because 𝑝 ≥ 3 implies that 3𝑢/2 is an "even" FP number)

𝑣 ℎ = RN(𝑠 ℎ + 𝑐) = 1 2 + 2𝑢, 𝑣 ℓ = 𝑠 ℎ + 𝑐 -𝑣 ℎ = - 𝑢 2 ,
and nally,

𝑧 = 𝑧 ℎ + 𝑧 ℓ = 𝑣 ℎ + 𝑤 = 1 2 + 3𝑢 2 ,
whereas the exact result is

𝑥 + 𝑦 = (𝑥 ℎ + 𝑥 ℓ) + (𝑦 ℎ + 𝑦 ℓ) = 1 2 + 3𝑢 2 - 3𝑢 2 2 + 𝑢 3 .
Therefore the relative error is

|(𝑥 + 𝑦) -(𝑧 ℎ + 𝑧 ℓ)| 𝑥 + 𝑦 = 3𝑢 2 -2𝑢 3 1 + 3𝑢 -3𝑢 2 + 2𝑢 3 = 3𝑢 2 -11𝑢 3 + 42𝑢 4 + • • •
For instance, if 𝑝 = 53 (double-precision arithmetic), the generic example used in the proof leads to a relative error equal to

2.99999999999999877875 • • • × 𝑢 2 .
That example has an interesting history. Being puzzled by the gap between the bound shown in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] and the largest observed error, we tried to show a smaller bound. We almost succeeded: the only case for which we could not prove that the relative error is less than 2.5𝑢 2 was when 𝑐 is of the form 3 • 2 𝑘 . This led us to focus only on cases for which 𝑐 has that form, and nally to build the example used in the proof. Obtaining such an example by random testing is hopeless. Figure 1 gives the repartition of the observed relative errors for a random sample of 4000000 input values: it is almost impossible to observe errors larger than around 2.5𝑢 2 .

The various algorithms of [16] we have formally proven

We have formally proven the 15 algorithms presented in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]. All these algorithms return DW numbers. All error bounds claimed in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] are correct (but we have found improvements for three of them). Table 1 summarizes the obtained results. Table 1: Summary of the results presented in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], and now formally proven, and of our own results. For each algorithm, we give the bound given in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], the bound we have formally proven, and the largest relative error experimentally observed. The bold face indicates improvements over the bounds given in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]. Unless stated otherwise, the largest errors observed in experiments are for RN being round-to-nearest ties-to-even.

Operation

Name of the Algorithm in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] Bound given in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] Bound formally proven

Largest relative error built or observed in experiments DW

+ FP DWPlusFP 2𝑢 2 2𝑢 2 2𝑢 2 -6𝑢 3 DW + DW SloppyDWPlusDW N/A N/A 1 AccurateDWPlusDW 3𝑢 2 + 13𝑢 3 3𝑢 2 + 13𝑢 3 3𝑢 2 -11𝑢 3 +𝒪(𝑢 4) DW × FP DWTimesFP1 3 2 𝑢 2 + 4𝑢 3 3 2 𝑢 2 + 4𝑢 3 1.5𝑢 2 DWTimesFP2 3𝑢 2 3𝑢 2 2.517𝑢 2 DWTimesFP3 2𝑢 2 2𝑢 2 1.984𝑢 2 DW × DW DWTimesDW1 7𝑢 2 5𝑢 2 5𝑢 2 5𝑢 2
(ties to even)

4.985𝑢 2 (ties to even) 5.5𝑢 2 5.5𝑢 2 5.5𝑢 2 (general) 5.4907𝑢 2 (ties to 0) DWTimesDW2 6𝑢 2 5𝑢 2 5𝑢 2 5𝑢 2 4.9433𝑢 2 DWTimesDW3 5𝑢 2 4𝑢 2 4𝑢 2 4𝑢 2 3.997𝑢 2 DW ÷ FP DWDivFP1 3.5𝑢 2 3.5𝑢 2 2.95𝑢 2 DWDivFP2 3.5𝑢 2 3.5𝑢 2 2.95𝑢 2 DWDivFP3 3𝑢 2 3𝑢 2 2.95𝑢 2 DW ÷ DW DWDivDW1 15𝑢 2 + 56𝑢 3 15𝑢 2 + 56𝑢 3 8.465𝑢 2 DWDivDW2 15𝑢 2 + 56𝑢 3 15𝑢 2 + 56𝑢 3 8.465𝑢 2 DWDivDW3 9.8𝑢 2 9.8𝑢 2 5.922𝑢 2

The major problems encountered

In the following, we focus on the two proofs for which we have encountered a major problem (one of them was in an early version of [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], and was corrected before nal publication, so it does not appear in the published paper). The rst of these two proofs is the proof of Algorithm DWPlusFP (Algorithm 5 in this paper, Algorithm 4 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]), which evaluates the sum of a DW number and a FP number.

Algorithm 5 -DWPlusFP(𝑥 ℎ , 𝑥 ℓ , 𝑦) (Algorithm 4 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). Computes (𝑥 ℎ , 𝑥 ℓ) + 𝑦. This algorithm is implemented in the QD library [START_REF] Hida | C++/Fortran-90 double-double and quad-double package[END_REF]. The number

𝑥 = (𝑥 ℎ , 𝑥 ℓ) is a DW number. 1: (𝑠 ℎ , 𝑠 ℓ) ← 2Sum(𝑥 ℎ , 𝑦) 2: 𝑣 ← RN(𝑥 ℓ + 𝑠 ℓ) 3: (𝑧 ℎ , 𝑧 ℓ) ← Fast2Sum(𝑠 ℎ , 𝑣) 4: return (𝑧 ℎ , 𝑧 ℓ)
The correctness and error bound of Algorithm DWPlusFP are claimed in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] by the following Theorem.

Theorem 2.2 (Theorem 2.2 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). The relative error

⃒ ⃒ ⃒ ⃒ (𝑧 ℎ + 𝑧 ℓ) -(𝑥 + 𝑦) 𝑥 + 𝑦 ⃒ ⃒ ⃒ ⃒ of Algorithm 5 (DWPlusFP) is bounded by 2 • 𝑢 2 .
As said above, the error in the proof of Theorem 2.2 was in an early version of [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], so it does not appear in the published version. Correcting that error just required a slight modi cation of the existing proof.

The second proof is the common proof (in fact, the proofs slightly di er but they share the same major steps) of Algorithms DWTimesDW1, DWTimesDW2 and DWTimesDW3 (Algorithms 6, 7, and 8 in this paper, Algorithms 10, 11 and 12 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]) which evaluate the product of two DW numbers.

Algorithm 6 -DWTimesDW1(𝑥 ℎ , 𝑥 ℓ , 𝑦 ℎ , 𝑦 ℓ) (Algorithm 10 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). Computes (𝑥 ℎ , 𝑥 ℓ) × (𝑦 ℎ , 𝑦 ℓ). This algorithm is implemented in the QD library [START_REF] Hida | C++/Fortran-90 double-double and quad-double package[END_REF]. [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). Algorithm for computing (𝑥 ℎ , 𝑥 ℓ) × (𝑦 ℎ , 𝑦 ℓ) in binary, precision-𝑝, oating-point arithmetic, assuming an FMA instruction is available. [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). Algorithm for computing (𝑥 ℎ , 𝑥 ℓ) × (𝑦 ℎ , 𝑦 ℓ) in binary, precision-𝑝, oating-point arithmetic, assuming an FMA instruction is available.

1: (𝑐 ℎ , 𝑐 ℓ1) ← 2Prod(𝑥 ℎ , 𝑦 ℎ) 2: 𝑡 ℓ1 ← RN(𝑥 ℎ • 𝑦 ℓ) 3: 𝑡 ℓ2 ← RN(𝑥 ℓ • 𝑦 ℎ) 4: 𝑐 ℓ2 ← RN(𝑡 ℓ1 + 𝑡 ℓ2) 5: 𝑐 ℓ3 ← RN(𝑐 ℓ1 + 𝑐 ℓ2) 6: (𝑧 ℎ , 𝑧 ℓ) ← Fast2Sum(𝑐 ℎ , 𝑐 ℓ3) 7: return (𝑧 ℎ , 𝑧 ℓ) Algorithm 7 -DWTimesDW2(𝑥 ℎ , 𝑥 ℓ , 𝑦 ℎ , 𝑦 ℓ) (Algorithm 11 in
1: (𝑐 ℎ , 𝑐 ℓ1) ← 2Prod(𝑥 ℎ , 𝑦 ℎ) 2: 𝑡 ℓ ← RN(𝑥 ℎ • 𝑦 ℓ) 3: 𝑐 ℓ2 ← RN(𝑡 ℓ + 𝑥 ℓ 𝑦 ℎ) 4: 𝑐 ℓ3 ← RN(𝑐 ℓ1 + 𝑐 ℓ2) 5: (𝑧 ℎ , 𝑧 ℓ) ← Fast2Sum(𝑐 ℎ , 𝑐 ℓ3) 6: return (𝑧 ℎ , 𝑧 ℓ) Algorithm 8 -DWTimesDW3(𝑥 ℎ , 𝑥 ℓ , 𝑦 ℎ , 𝑦 ℓ) (Algorithm 12 in
1: (𝑐 ℎ , 𝑐 ℓ1) ← 2Prod(𝑥 ℎ , 𝑦 ℎ) 2: 𝑡 ℓ0 ← RN(𝑥 ℓ • 𝑦 ℓ) 3: 𝑡 ℓ1 ← RN(𝑥 ℎ • 𝑦 ℓ + 𝑡 ℓ0) 4: 𝑐 ℓ2 ← RN(𝑡 ℓ1 + 𝑥 ℓ • 𝑦 ℎ) 5: 𝑐 ℓ3 ← RN(𝑐 ℓ1 + 𝑐 ℓ2) 6: (𝑧 ℎ , 𝑧 ℓ) ← Fast2Sum(𝑐 ℎ , 𝑐 ℓ3) 7: return (𝑧 ℎ , 𝑧 ℓ)
The correctness and error bound of Algorithms DWTimesDW1, DWTimesDW2 and DWTimesDW3 are claimed in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] by the following Theorems.

Theorem 2.3 (Theorem 5.1 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). If 𝑝 ≥ 4, the relative error of Algorithm 6 (DW-TimesDW1) is less than or equal to 7𝑢 2 /(1 + 𝑢) 2 < 7𝑢 2 . Theorem 2.4 (Theorem 5.3 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). If 𝑝 ≥ 5, the relative error of Algorithm 7 (DW-TimesDW2) is less than or equal to (6𝑢 2 + 1 2 𝑢 3)/(1 + 𝑢) 2 < 6𝑢 2 . Theorem 2.5 (Theorem 5.4 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). If 𝑝 ≥ 4, the relative error of Algorithm 8 (DW-TimesDW3) is less than or equal to

(5𝑢 2 + 1 2 𝑢 3)/(1 + 𝑢) 2 < 5𝑢 2 .
It turns out that these three theorems are correct, despite a aw in their original proof (as said above the proof is essentially the same, with small variants, for the three theorems). Our work on the formal proof of these theorems led us to nd and to remove the aw. It also led us to improvements of the bounds given by these Theorems and, interestingly enough, to see that the tie-breaking rule of the roundto-nearest function RN can have a signi cant in uence on the bound. More precisely, we now have, Theorem 2.6 (New error bound for Algorithm DWTimesDW1). If 𝑝 ≥ 6, the relative error of Algorithm 6 (DWTimesDW1) is less than or equal to

11 2 𝑢 2 (1 + 𝑢) 2 < 5.5𝑢 2 .
(2) Furthermore, if the rounding mode RN is round-to-nearest ties-to-even (which is the default in IEEE 754 arithmetic) then we have the better bound

5𝑢 2 (1 + 𝑢) 2 < 5𝑢 2 .
(3) Note that the proof assistant does not warn its user that better bounds can be obtained. However, it helped us to improve the bounds by allowing us to focus on the modi cation of critical parts of the proofs only. The formal proof is then run again, with the modi cations, to quickly check that the other parts of the proof remain valid with the modi cation.

Theorem 2.7 (New error bound for Algorithm DWTimesDW2). If 𝑝 ≥ 5, the relative error of Algorithm 7 (DWTimesDW2) is less than or equal to

5𝑢 2 (1 + 𝑢) 2 < 5𝑢 2 . (4
)
Theorem 2.8 (New error bound for Algorithm DWTimesDW3). If 𝑝 ≥ 5, the relative error of Algorithm 8 (DWTimesDW3) is less than or equal to

4𝑢 2 + 1 2 𝑢 3 (1 + 𝑢) 2 < 4𝑢 2 .
The proof of Theorems 2.3, 2.4, and 2.5 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] use the following Lemma, which turned out to be wrong (it su ces to try 𝑎 = 1 and 𝑏 = 2).

Incorrect Lemma 2.9 (Lemma 5.2 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] (wrong)). Let 𝑎 and 𝑏 be two positive real numbers.

If 𝑎𝑏 ≤ 2, 𝑎 ≥ 1 and 𝑏 ≥ 1, then 𝑎 + 𝑏 ≤ 2 √ 2.
For Theorems 2.3, 2.4, and 2.5 a signi cant modi cation was necessary. Let us now detail the proof of Theorem 2.5, to understand where the problem was. We will also prove Theorem 2.8 at the same time. The proofs of Theorems 2.6, and 2.7, more involved, will be given afterwards. Note that, although we have no proof of asymptotic optimality, the bounds given by Theorems 2.6, 2.7, and 2.8 are very tight and therefore cannot be signi cantly improved: for each of the corresponding algorithms we have input examples for which the attained error is very close to the bound.

First, we will need another lemma, to replace Lemma 2.9.

Lemma 2.10. Let 𝑎 and 𝑏 be two oating-point numbers satisfying

1 ≤ 𝑎 ≤ 2 -2𝑢 and 1 ≤ 𝑏 ≤ 2 -2𝑢. If 𝑎𝑏 ≤ 2 then 𝑎 + 𝑏 ≤ 3 -2𝑢.
Proof. First, let us show that 𝑎 + 𝑏 < 3. We have 𝑎 ≤ 2/𝑏, therefore 𝑎 + 𝑏 ≤ 2/𝑏 + 𝑏.

The number 2/𝑏+𝑏-3 has the sign of 𝑏 2 -3𝑏+2:

it is < 0 for 1 < 𝑏 < 2. Therefore, if 𝑏 ̸ = 1, 𝑎 + 𝑏 < 3. The case 𝑏 = 1 is easily dealt with: 𝑎 < 2 implies 𝑎 + 𝑏 = 𝑎 + 1 < 3.
Since 𝑎 and 𝑏 are oating-point numbers larger than 1 they are multiple of 2𝑢. Therefore 𝑎 + 𝑏 is a multiple of 2𝑢 strictly less than 3: this implies 𝑎 + 𝑏 ≤ 3 -2𝑢. Now let us give a proof of Theorems 2.5 and 2.8. In all our paper proofs, we explicitly or implicitly use the following properties:

1. if |𝑥| ≤ 2 𝑘 then |𝑥 -RN(𝑥)| ≤ 𝑢 • 2 𝑘-1 ; 2. 𝑥 ≤ 𝑦 ⇒ RN(𝑥) ≤ RN(𝑦); 3. RN(𝑥 • 2 𝑘) = 2 𝑘 • RN(𝑥); 4. RN(-𝑥) = -RN(𝑥); 5. if 𝑡 ≥ 0 then 𝑡(1 -𝑢) ≤ RN(𝑡) ≤ 𝑡(1 + 𝑢).

Proof of Theorems and 2.8

Without loss of generality, we assume that 1

≤ 𝑥 ℎ ≤ 2 -2𝑢 and 1 ≤ 𝑦 ℎ ≤ 2 -2𝑢. This implies |𝑥 ℓ | ≤ 𝑢 and |𝑦 ℓ | ≤ 𝑢.
We have 𝑥 ℎ 𝑦 ℎ < 4, and

𝑐 ℎ + 𝑐 ℓ1 = 𝑥 ℎ 𝑦 ℎ , with |𝑐 ℓ1 | ≤ 2𝑢. We also have |𝑥 ℓ 𝑦 ℓ | ≤ 𝑢 2 ,
therefore, since RN is an increasing function, and since 𝑢 2 is a oating-point number (which implies RN(𝑢 2) = 𝑢 2), we have

|𝑡 ℓ0 | ≤ 𝑢 2 , (5)
and

𝑡 ℓ0 = 𝑥 ℓ 𝑦 ℓ + 𝜖 0 , with |𝜖 0 | ≤ 𝑢 3 /2. (6)
Similarly, from

|𝑥 ℎ 𝑦 ℓ + 𝑡 ℓ0 | ≤ 2𝑢 -𝑢 2 ,
we deduce

|𝑡 ℓ1 | ≤ 2𝑢,
and

𝑡 ℓ1 = 𝑥 ℎ 𝑦 ℓ + 𝑡 ℓ0 + 𝜖 1 , with |𝜖 1 | ≤ 𝑢 2 . (7)
Since

|𝑥 ℓ 𝑦 ℎ | ≤ 2𝑢 -2𝑢 2 , we have |𝑡 ℓ1 + 𝑥 ℓ 𝑦 ℎ | ≤ 4𝑢 -2𝑢 2 , so that |𝑐 ℓ2 | ≤ 4𝑢
and

𝑐 ℓ2 = 𝑡 ℓ1 + 𝑥 ℓ 𝑦 ℎ + 𝜖 2 , with |𝜖 2 | ≤ 2𝑢 2 . (8
)
The number |𝑐 ℓ1 +𝑐 ℓ2 | is less than or equal to 6𝑢, and 6𝑢 is a oating-point number (as soon as 𝑝 ≥ 2), therefore

|𝑐 ℓ3 | ≤ 6𝑢,
and

𝑐 ℓ3 = 𝑐 ℓ1 + 𝑐 ℓ2 + 𝜖 3 , with |𝜖 3 | ≤ 4𝑢 2 . Since |𝑐 ℎ | ≥ 1 and |𝑐 ℓ3 | ≤ 6𝑢
, we can use Algorithm Fast2Sum at Line 6 of the algorithm, as soon as 6𝑢 ≤ 1 (i.e., as soon as 𝑝 ≥ 3). Therefore, 𝑧 ℎ + 𝑧 ℓ = 𝑐 ℎ + 𝑐 ℓ3 and (𝑧 ℎ , 𝑧 ℓ) is a DW-number.

We nally obtain

𝑧 ℎ + 𝑧 ℓ = 𝑥𝑦 + 𝜖 0 + 𝜖 1 + 𝜖 2 + 𝜖 3 ,
and the sum of the error terms satis es

|𝜖 0 + 𝜖 1 + 𝜖 2 + 𝜖 3 | ≤ 7𝑢 2 + 𝑢 3 2 . (9
)
Now we need to consider three cases:

• if 𝑥 ℎ 𝑦 ℎ > 2 then 𝑥𝑦 ≥ (𝑥 ℎ (1 -𝑢)) • (𝑦 ℎ (1 -𝑢)) > 2(1 -𝑢) 2 , therefore, from (9)
, the relative error

|𝑧 ℎ + 𝑧 ℓ -𝑥𝑦| |𝑥𝑦| is bounded by 7𝑢 2 + 𝑢 3 2 2(1 -𝑢) 2 , (10)
and we can check that the bound [START_REF] Harrison | A machine-checked theory of oating point arithmetic[END_REF] is less than the bound of Theorem 2.5 as soon as 𝑢 ≤ 1/16 (i.e., as soon as 𝑝 ≥ 4), and less than the bound of Theorem 2.8 as soon as 𝑢 ≤ 1/32 (i.e., as soon as 𝑝 ≥ 5).

• if 𝑥 ℎ = 1 or 𝑦 ℎ = 1, we obtain 𝑐 ℓ1 = 0, so that 𝑐 ℓ3 = 𝑐 ℓ2 and 𝜖 3 = 0. Hence

|𝜖 0 + 𝜖 1 + 𝜖 2 + 𝜖 3 | ≤ 3𝑢 2 + 𝑢 3 /2,
and the relative error is bounded by

3𝑢 2 + 𝑢 3 2 (1 -𝑢) 2 ,
which is less than the bound of Theorem 2.5 as soon as 𝑢 ≤ 1/8 (i.e., as soon as 𝑝 ≥ 3) and less than the bound of Theorem 2.8 as soon as 𝑢 ≤ 1/16 (i.e., as soon as 𝑝 ≥ 4).

• if 𝑥 ℎ 𝑦 ℎ ≤ 2, with 𝑥 ℎ > 1 and 𝑦 ℎ > 1, then some bounds can be improved, as we are going to see.

First, 𝑥 ℎ 𝑦 ℎ ≤ 2 implies |𝑐 ℓ1 | ≤ 𝑢. (11)
In [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], Lemma 2.9 was invoked to deduce a bound on 𝑥 ℎ + 𝑦 ℎ from the bound on 𝑥 ℎ 𝑦 ℎ . The goal was to deduce from that bound on 𝑥 ℎ + 𝑦 ℎ a new bound on |𝑐 ℓ1 + 𝑐 ℓ2 | small enough to guarantee that |𝜖 3 | becomes less than or equal to 2𝑢 2 . Unfortunately, Lemma 2.9 is wrong. As we are going to see, the bound given by Lemma 2.10 su ces.

From 𝑥 ℎ 𝑦 ℎ ≤ 2 and Lemma 2.10, we obtain 𝑥 ℎ + 𝑦 ℎ ≤ 3 -2𝑢. Hence, using the bounds on

|𝑥 ℓ | and |𝑦 ℓ |, |𝑥 ℎ 𝑦 ℓ + 𝑦 ℎ 𝑥 ℓ | ≤ 3𝑢 -2𝑢 2 ,
therefore, using [START_REF] Coe | It takes six ones to reach a aw[END_REF],

|𝑥 ℎ 𝑦 ℓ + 𝑦 ℎ 𝑥 ℓ + 𝑡 ℓ0 | ≤ 3𝑢 -𝑢 2 .
Therefore, using [START_REF] Florent De Dinechin | Towards the postultimate libm[END_REF],

|𝑦 ℎ 𝑥 ℓ + 𝑡 ℓ1 | ≤ 3𝑢,
from which we deduce,

|𝑐 ℓ2 | ≤ RN (3𝑢) = 3𝑢. (12)
Combining (11) and (12), we obtain

|𝑐 ℓ1 + 𝑐 ℓ2 | ≤ 4𝑢, (13)
so that |𝜖 3 | = |RN(𝑐 ℓ1 + 𝑐 ℓ2) -(𝑐 ℓ1 + 𝑐 ℓ2)
| is now less than or equal to 2𝑢 2 . An immediate consequence is that the sum of the error terms

|𝜖 0 + 𝜖 1 + 𝜖 2 + 𝜖 3 | is now bounded by 5𝑢 2 + 𝑢 3 /2. Since 𝑥 ℎ > 1 and 𝑦 ℎ > 1, we have 𝑥 ℎ ≥ 1 + 2𝑢
and 𝑥 ≥ 1 + 𝑢, and, similarly, 𝑦 ≥ 1 + 𝑢. The product 𝑥𝑦 is therefore lowerbounded by (1 + 𝑢) 2 , so that the relative error is bounded by

5𝑢 2 + 𝑢 3 2 (1 + 𝑢) 2 ,
which is the bound given by Theorem 2.5. Now, we can improve it by raising the following remarks:

-Since 𝑥 ℎ and 𝑦 ℎ are both multiple of 2𝑢, their product is a multiple of 4𝑢 2 = 2 2-2𝑝 . Since 𝑐 ℎ (which is a oating-point number larger than 1) is a multiple of 2𝑢 = 2 1-𝑝 , the number

𝑐 ℓ1 = 𝑥 ℎ 𝑦 ℎ -𝑐 ℎ is a multiple of 4𝑢 2 ; -if |𝑐 ℓ2 | < 2𝑢 (which implies |𝑡 ℓ1 + 𝑥 ℓ 𝑦 ℎ | ≤ 2𝑢 -𝑢 2), then |𝜖 2 | is bounded by 𝑢 2 ; -if |𝑐 ℓ2 | ≥ 2𝑢 then 𝑐 ℓ2 is a multiple of 4𝑢 2 . Therefore 𝑐 ℓ1 + 𝑐 ℓ2 is a multiple of 4𝑢 2 .
This and (13) imply that it is a oating-point number. Therefore RN(𝑐 ℓ1 + 𝑐 ℓ2) = 𝑐 ℓ1 + 𝑐 ℓ2 , so that 𝜖 3 = 0.

Therefore, either |𝜖 2 | ≤ 𝑢 2 or 𝜖 3 = 0. An immediate consequence is that |𝜖 0 +𝜖 1 +𝜖 2 +𝜖 3 | ≤ 4𝑢 2 +𝑢 3 /2.
𝑐 ℎ + 𝑐 ℓ1 = 𝑥 ℎ 𝑦 ℎ , with |𝑐 ℓ1 | ≤ 2𝑢.
Since 𝑥 ℎ and 𝑦 ℎ are both multiple of 2𝑢, their product is a multiple of 4𝑢 2 = 2 2-2𝑝 . Since 𝑐 ℎ (which is a oating-point number larger than or equal to 1) is a multiple of 2𝑢 = 2 1-𝑝 , the number

𝑐 ℓ1 = 𝑥 ℎ 𝑦 ℎ -𝑐 ℎ is a multiple of 4𝑢 2 . Since |𝑥 ℎ 𝑦 ℓ | ≤ 2𝑢 -2𝑢 2 , we have |𝑡 ℓ1 | ≤ RN(2𝑢 -2𝑢 2) = 2𝑢 -2𝑢 2 ,
and

𝑡 ℓ1 = 𝑥 ℎ 𝑦 ℓ + 𝜖 1 , 𝑤𝑖𝑡ℎ |𝜖 1 | ≤ 𝑢 2 .
Similarly, we have |𝑡 ℓ2 | ≤ 2𝑢 -2𝑢 2 , and

𝑡 ℓ2 = 𝑥 ℓ 𝑦 ℎ + 𝜖 2 , 𝑤𝑖𝑡ℎ |𝜖 2 | ≤ 𝑢 2 .
This gives

|𝑡 ℓ1 + 𝑡 ℓ2 | ≤ 4𝑢 -4𝑢 2 , so that |𝑐 ℓ2 | ≤ RN(4𝑢 -4𝑢 2) = 4𝑢 -4𝑢 2 ,
and

𝑐 ℓ2 = 𝑡 ℓ1 + 𝑡 ℓ2 + 𝜖 3 , 𝑤𝑖𝑡ℎ |𝜖 3 | ≤ 2𝑢 2 . Therefore, |𝑐 ℓ1 + 𝑐 ℓ2 | ≤ 6𝑢 -4𝑢 2 , which gives |𝑐 ℓ3 | ≤ 6𝑢, and
𝑐 ℓ3 = 𝑐 ℓ1 + 𝑐 ℓ2 + 𝜖 4 , 𝑤𝑖𝑡ℎ |𝜖 4 | ≤ 4𝑢 2 .
Since 𝑐 ℎ ≥ 1 and |𝑐 ℓ3 | ≤ 6𝑢, as soon as 6𝑢 ≤ 1 (which holds as soon as 𝑝 ≥ 3), we can use the Fast2Sum algorithm, and

𝑧 ℎ + 𝑧 ℓ = 𝑐 ℎ + 𝑐 ℓ3 . De ning 𝜂 = (𝑧 ℎ + 𝑧 ℓ) -𝑥𝑦, (14)
we obtain

|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 2 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 + 𝑢 2 + 2𝑢 2 + 4𝑢 2 = 9𝑢 2 . (15
)
Let us now give a case-by-case analysis, for obtaining a bound on the relative error |𝜂|/(𝑥𝑦) and, in some cases, improving the bound (15). 2 . So, that, using [START_REF] Jeannerod | On relative errors of oatingpoint operations: optimal bounds and applications[END_REF], the relative error is bounded by

If

𝑥 ℎ 𝑦 ℎ ≥ 2 In that case 𝑥𝑦 ≥ 𝑥 ℎ (1 -𝑢) • 𝑦 ℎ (1 -𝑢) > 2(1 -𝑢)
9𝑢 2 2(1 -𝑢) 2 ,
which is less than the bound (3) as soon as 𝑢 ≤ 1/64 (i.e., as soon as 𝑝 ≥ 6).

If 𝑥

ℎ 𝑦 ℎ < 2
We can observe that |𝑐 ℓ1 | ≤ 𝑢, and that Lemma 2.10 implies

|𝑡 ℓ1 +𝑡 ℓ2 | ≤ 𝑥 ℎ 𝑢+𝑦 ℎ 𝑢 ≤ 3𝑢 -2𝑢 2 , so that |𝑐 ℓ2 | ≤ 3𝑢. Therefore, |𝑐 ℓ1 + 𝑐 ℓ2 | ≤ 4𝑢, so that |𝜖 4 | ≤ 2𝑢 2 .
This rst improvement is at the origin of the "7𝑢 2 " in Theorem 2.3. However, we can improve the bound further by considering the following sub-cases:

• if |𝑐 ℓ2 | ≥ 2𝑢 then 𝑐 ℓ2 is a multiple of 4𝑢 2 , therefore 𝑐 ℓ1 +𝑐 ℓ2 is a multiple of 4𝑢 2 .
Since it has an absolute value less than or equal to 4𝑢, this means that it is a oating-point number. An immediate consequence is RN(𝑐 ℓ1 + 𝑐 ℓ2) = 𝑐 ℓ1 + 𝑐 ℓ2 and 𝜖 4 = 0. This gives

|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 2 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 + 𝑢 2 + 2𝑢 2 + 0 = 5𝑢 2 . • if |𝑐 ℓ2 | < 2𝑢, which implies |𝜖 3 | ≤ 𝑢 2 then -if |𝑡 ℓ1 | < 𝑢/2 then |𝜖 1 | ≤ 𝑢 2 /4 and |𝑦 ℓ | < 𝑢/2, so that |𝑥 ℓ 𝑦 ℓ | < 𝑢 2 /2, so that |𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 2 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 /2 + 𝑢 2 /4 + 𝑢 2 + 𝑢 2 + 2𝑢 2 = 4.75𝑢 2 ; -if |𝑡 ℓ2 | < 𝑢/2 then |𝜖 2 | ≤ 𝑢 2 /4 and |𝑥 ℓ | < 𝑢/2, so that |𝑥 ℓ 𝑦 ℓ | < 𝑢 2 /
|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 2 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 /2 + 𝑢 2 + 0 + 2𝑢 2 = 4.5𝑢 2 .
• if |𝑡 ℓ1 + 𝑡 ℓ2 | is larger than 𝑢 and is an odd multiple of 𝑢 2 , then it is halfway between two consecutive FP numbers, so that |𝜖 3 | = 𝑢 2 exactly and

|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 2 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 /2 + 𝑢 2 + 𝑢 2 + 2𝑢 2 = 5.5𝑢 2 .
Furthermore, if RN is round-to-nearest ties to even then 𝑡 ℓ1 +𝑡 ℓ2 is rounded to an even multiple of ulp(𝑡 ℓ1 + 𝑡 ℓ2) = 2𝑢 2 . This implies that 𝑐 ℓ2 is a multiple of 4𝑢 2 . Hence, 𝑐 ℓ1 + 𝑐 ℓ2 is a multiple of 4𝑢 2 of absolute value less than 4𝑢. It is therefore a oating-point number, so that 𝜖 4 = 0, and

|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 2 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 /2 + 𝑢 2 + 𝑢 2 + 0 = 3.5𝑢 2 . * nally, if |𝑡 ℓ1 | ≥ 𝑢 and |𝑡 ℓ2 | ≥ 𝑢,
then 𝑡 ℓ1 and 𝑡 ℓ2 are multiple of 2𝑢 2 , so that their sum is a multiple of 2𝑢 2 of absolute value less than 2𝑢. It is therefore a oating-point number, so that 𝜖 3 = 0, which implies

|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 2 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 + 𝑢 2 + 0 + 2𝑢 2 = 5𝑢 2 .
To sum up, we have shown that when 𝑥 ℎ 𝑦 ℎ < 2, the absolute error bound 𝜂 is less than 11 2 𝑢 2 in the general case, and less than 5𝑢 2 with the additional assumption that RN is "round-to-nearest ties to even". Let us now deduce relative error bounds from that. We can notice that if 𝑥 ℎ = 1 or 𝑦 ℎ = 1 then 𝑐 ℓ1 = 0, so that 𝜖 4 = 0, and either 𝜖 1 = 0 or 𝜖 2 = 0. Thus |𝜂| ≤ 𝑢 2 +0+𝑢 2 +2𝑢 2 +0 = 4𝑢 2 and the relative error bound is less than

4𝑢 2 (︀ 1 -𝑢 2)︀ 2 ,
which is less than the bound (3) as soon as 𝑢 ≤ 1/16 (i.e., as soon as 𝑝 ≥ 4). Now, if 𝑥 ℎ and 𝑦 ℎ are di erent from 1, they are larger than or equal to 1+2𝑢, so that 𝑥 and 𝑦 are larger than or equal to 1 + 𝑢, and the relative error is bounded by

11 2 𝑢 2 (1 + 𝑢) 2
in the general case, and by 5𝑢 2 (1 + 𝑢) 2 with the additional assumption that RN is "round-to-nearest ties to even".

It is worth mentioning that the bounds given by Theorem 2.6 are tight:

• With RN being " round-to-nearest ties to even" and 𝑝 = 24, relative error 4.98575990𝑢

𝑐 ℎ + 𝑐 ℓ1 = 𝑥 ℎ 𝑦 ℎ , with |𝑐 ℓ1 | ≤ 2𝑢.
Since 𝑥 ℎ and 𝑦 ℎ are both multiple of 2𝑢, their product is a multiple of 4𝑢 2 = 2 2-2𝑝 . Since 𝑐 ℎ (which is a oating-point number larger than or equal to 1) is a multiple of 2𝑢 = 2 1-𝑝 , the number

𝑐 ℓ1 = 𝑥 ℎ 𝑦 ℎ -𝑐 ℎ is a multiple of 4𝑢 2 . Since |𝑥 ℎ 𝑦 ℓ | ≤ 2𝑢 -2𝑢 2 , we have |𝑡 ℓ | ≤ RN(2𝑢 -2𝑢 2) = 2𝑢 -2𝑢 2 ,
and

𝑡 ℓ = 𝑥 ℎ 𝑦 ℓ + 𝜖 1 , 𝑤𝑖𝑡ℎ |𝜖 1 | ≤ 𝑢 2 .
This gives

|𝑡 ℓ + 𝑥 ℓ 𝑦 ℎ | ≤ 4𝑢 -4𝑢 2 , so that |𝑐 ℓ2 | ≤ RN(4𝑢 -4𝑢 2) = 4𝑢 -4𝑢 2 ,
and

𝑐 ℓ2 = 𝑡 ℓ + 𝑥 ℓ 𝑦 ℎ + 𝜖 3 , 𝑤𝑖𝑡ℎ |𝜖 3 | ≤ 2𝑢 2 .
Therefore,

|𝑐 ℓ1 + 𝑐 ℓ2 | ≤ 6𝑢 -4𝑢 2 , which gives |𝑐 ℓ3 | ≤ 6𝑢, and
𝑐 ℓ3 = 𝑐 ℓ1 + 𝑐 ℓ2 + 𝜖 4 , 𝑤𝑖𝑡ℎ |𝜖 4 | ≤ 4𝑢 2 .
Since 𝑐 ℎ ≥ 1 and |𝑐 ℓ3 | ≤ 6𝑢, as soon as 6𝑢 ≤ 1 (which holds as soon as 𝑝 ≥ 3), we can use the Fast2Sum algorithm, and

𝑧 ℎ + 𝑧 ℓ = 𝑐 ℎ + 𝑐 ℓ3 . De ning 𝜂 = (𝑧 ℎ + 𝑧 ℓ) -𝑥𝑦, (16)
we obtain

|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 + 2𝑢 2 + 4𝑢 2 = 8𝑢 2 . (17
)
Let us now give a case-by-case analysis, for obtaining a bound on the relative error |𝜂|/(𝑥𝑦) and, in some cases, improving the bound (17). 2 . So, that, using [START_REF] Joldeş | CAMPARY: Cuda multiple precision arithmetic library and applications[END_REF], the relative error is bounded by

If 𝑥

ℎ 𝑦 ℎ ≥ 2 In that case 𝑥𝑦 ≥ 𝑥 ℎ (1 -𝑢) • 𝑦 ℎ (1 -𝑢) ≥ 2(1 -𝑢)
4𝑢 2 (1 -𝑢) 2 ,
which is less than the bound (4) as soon as 𝑢 ≤ 1/32 (i.e., as soon as 𝑝 ≥ 5).

If 𝑥

ℎ 𝑦 ℎ < 2
We can observe that |𝑐 ℓ1 | ≤ 𝑢, and that Lemma 2.10 implies

|𝑡 ℓ +𝑥 ℓ 𝑦 ℎ | ≤ 𝑥 ℎ 𝑢+𝑦 ℎ 𝑢 ≤ 3𝑢 -2𝑢 2 , so that |𝑐 ℓ2 | ≤ 3𝑢. Therefore, |𝑐 ℓ1 + 𝑐 ℓ2 | ≤ 4𝑢, so that |𝜖 4 | ≤ 2𝑢 2 .
This rst improvement is at the origin of the "6𝑢 2 " in Theorem 2.4. However, we can improve the bound further by considering the following sub-cases:

• if |𝑐 ℓ2 | ≥ 2𝑢 then 𝑐 ℓ2 is a multiple of 4𝑢 2 , therefore 𝑐 ℓ1 +𝑐 ℓ2 is a multiple of 4𝑢 2 .
Since it has an absolute value less than or equal to 4𝑢, this means that it is a oating-point number. An immediate consequence is RN(𝑐 ℓ1 + 𝑐 ℓ2) = 𝑐 ℓ1 + 𝑐 ℓ2 and 𝜖 4 = 0. This gives

|𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 + 2𝑢 2 + 0 = 4𝑢 2 . • if |𝑐 ℓ2 | < 2𝑢, then |𝜖 3 | ≤ 𝑢 2 , so that |𝜂| ≤ |𝑥 ℓ 𝑦 ℓ | + |𝜖 1 | + |𝜖 3 | + |𝜖 4 | ≤ 𝑢 2 + 𝑢 2 + 𝑢 2 + 2𝑢 2 = 5𝑢 2 .
To sum up, we have shown that when 𝑥 ℎ 𝑦 ℎ < 2, the absolute error bound 𝜂 is less than 5𝑢 2 . We can notice that if 𝑥 ℎ = 1 or 𝑦 ℎ = 1 then 𝑐 ℓ1 = 0, so that 𝜖 4 = 0, so that |𝜂| ≤ 3𝑢 2 and the relative error bound is less than

3𝑢 2 (︀ 1 -𝑢 2)︀ 2 ,
which is less than the bound (4) as soon as 𝑢 ≤ 1/8 (i.e., as soon as 𝑝 ≥ 3). Now, if 𝑥 ℎ and 𝑦 ℎ are di erent from 1, they are larger than or equal to 1 + 2𝑢, so that 𝑥 and 𝑦 are larger than or equal to 1 + 𝑢, and the relative error is bounded by

5𝑢 2 (1 + 𝑢) 2

Formalization

We describe here our formalization in C of the major results published in the original paper [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] and the additional results presented in Section 2 (i.e., Theorems 2.6, 2.7, and 2.8), trying to keep the notations and theorem statements as close as possible to those of [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]. All our formal proofs, along with explanations for running them, are freely available at http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_ paper_release.zip.

We will not give all details of the mathematical proofs that the reader will nd in the original article and in Section 2 of this one, but we will focus on the problems we have encountered when doing the formalization.

Context of the formalized proofs

We rst de ne the various notions used in the proofs published in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]. For this purpose, we rely on the Flocq library [START_REF] Boldo | Flocq: A uni ed library for proving oating-point algorithms in Coq[END_REF][START_REF] Boldo | Computer Arithmetic and Formal Proofs[END_REF], which provides several de nitions and theories (properties and proofs) on oating-point arithmetic. Note that, in the Flocq library, the proof of correctness of Fast2Sum(𝑎, 𝑏) was based on the rather strong condition that |𝑎| ≥ |𝑏|. This was not su cient in some cases, for example for the proof of the AccurateDWPlusDW algorithm (Algorithm 4), and we had to formalize again the proof of correctness of Fast2Sum with the somehow weaker condition on the exponents given at the beginning of Section 2.1. This new, more general, proof should be soon included in the Flocq library.

Moreover, as some algorithms of [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] are used in other algorithms (for example DWDivDW1 uses DWTimesFP1, assuming of course that the pair returned by DW-TimesFP1 is a double-word number), we have also needed to formalize the proof that their result is a double-word number. In all algorithms, the result is a pair returned by a Fast2Sum. So we have to prove that the pair (𝑠, 𝑡) computed by a correct call to Fast2Sum (or by a call to TwoSum) is a double-word number. Incidentally, that proof is straightforward : 𝑠, 𝑡, and the outputs of the rounding function rnd 𝑝 are FP numbers, and the correctness of the algorithms implies that 𝑠 + 𝑡 = 𝑎 + 𝑏 with 𝑠 = 𝑟𝑛𝑑_𝑝 (𝑎 + 𝑏) so that 𝑟𝑛𝑑_𝑝 (𝑠 + 𝑡) = 𝑟𝑛𝑑_𝑝 (𝑎 + 𝑏) = 𝑠. With these de nitions, the correctness and error bound are stated in the following theorem (which is the C equivalent of Theorem 2.2): As explained above, the fact that the result is a double-word number is a direct consequence of the fact that the last instruction of the algorithm is a Fast2Sum, so DWPlusFP returns a double-word number (if the Fast2Sum is correct, i.e., if it is called with operands that satisfy the required conditions on the exponents). Incidentally, let us note that the proof of correctness of the use of Fast2Sum (condition on the operands) is closely linked to the proof of correctness of the error bound, so these proofs cannot be done independently: the formalization, like the paper proof, must combine the two, i.e., formalizing that the result is a DW number requires to unroll all the proof of the error bound until the call to Fast2Sum.

Formalization of the DWPlusFP algorithm

The proofs of [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] all follow the same pattern: rst of all they deal with particular cases: null operands, null intermediate sums, etc. Then, by using properties of the operation being implemented by the algorithm (+, ×, ÷), the domain where the operands lie (or the domain where at least one of the operands lies) is restricted by using an argument of the form "without loss of generality, we can assume P", where P is a arithmetic property on the operands.

In the case of the DWPlusFP algorithm, in the rst (unpublished) version submitted for review, the authors write: "Now, without loss of generality, we can assume |𝑥 ℎ | ≥ |𝑦|. If this is not the case, since 𝑥 ℎ and 𝑦 play a symmetrical role in the algorithm, we can exchange them in our proof: We add the double-word number (𝑦, 𝑥 ℓ) and the oating-point number 𝑥 ℎ ".

We encountered our rst problem of formalization while trying to prove that assertion in C . Let us rst focus on the wlog (without loss of generality) notion in mathematics, then we will try to understand its translation in a proof assistant.

Wlog in mathematics and in C

When, in a mathematical proof, we want to use an argument of symmetry, we express that "without loss of generality" we can assume an adequate hypothesis, which does not change the desired result. For example, to prove a property P(x,y) in which x and y play symmetrical roles, we can assume that x ≤ y, which sometimes simplies the proof (this is precisely that kind of assumption that was made in the case of DWPlusFP). This implicitly requires the reader to convince himself or herself of the equivalence of the result with or without this additional assumption. However, in the case of formal proofs, it is necessary to: i) prove rst the result assuming the added hypothesis, and ii) show that from the proof with the added hypothesis one can deduce the proof in the general case.

To do this we use a simple but e ective C tool: the "wlog" command. For example, to prove the proposal (P x y), the command:

wlog H: x y / x <= y will generate two sub-goals:

H : \forall x y, x <= y -> P x y, and3

H -> (P x y).

In addition, as we can see in the statement of hypothesis H, the variables x and y involved by the wlog extra assumption 𝑥 ≤ 𝑦, are generalized by the use of a "∀". The C system also detects the assumptions implying x or/and y in the context, and signals an error to the user, requiring that these hypotheses should also be generalized for the logical consistency of the proof context. In the wlog command, the generalized objects (variables or hypotheses) are provided by the user between the ":" and the "/" that precede the wlog hypothesis (x <= y in our example). For instance, if the context contains the hypotheses "x has a red nose", "y has blue eyes" and "x and y were born in the same year", C asks for the generalization of these three hypotheses. It is up to the user to decide for each hypothesis if it is useful for the proof of wlog (and in this case he or she must generalize it), or if it is not useful (and in this case he or she must remove it from the context before calling "wlog "). So, if the context contains assumptions about x or y (let us call them H1x, H2x, Hxy, and Hy), the wlog command will require the generalization of these four assumptions when generalizing the associated x and y variables. If H1x, Hxy and Hy only are useful for the following of the wlog proof, the user will rst remove H2x from the context (by calling the clear H2x command), then the call wlog H: x y H1x Hxy Hy / x <= y will generate as rst sub-goal: H : \forall x y H1x Hxy Hy, x<= y -> P x y, meaning that ∀𝑥 𝑦 such that H1x, Hxy and Hy hold, if 𝑥 ≤ 𝑦 then P(x,y) holds.

It is that generalization mechanism that allowed us to nd an error. Let us resume our work on the proof of the DWPlusFP algorithm. At this point of the proof, we know that (𝑥 ℎ , 𝑥 ℓ) is a DW number, 𝑦 is a FP number, 𝑥 ̸ = 0 and 𝑥 ℎ + 𝑦 ̸ = 0. The current context in C (the hypotheses are above the double line, and the current goal to be proven is below the double line) is the following: The symmetry of the formula is deduced from the commutativity of the sum (the variables 𝑠 ℎ 𝑠 ℓ and 𝑣 are symmetrical in 𝑥 ℎ and 𝑦, as are 𝑧 ℎ and 𝑧 ℓ , and the relative error). The same applies to the assumption 𝑦 + 𝑥 ℎ ̸ = 0. Moreover 𝑥 ℎ being a doubleword number, we get by de nition that 𝑥 ℎ is a FP number, and as 𝑥 ℎ ̸ = 0 and |𝑥 ℎ | ≤ |𝑦|, we get that 𝑦 ̸ = 0).

The last thing we need to prove is that the pair (𝑦, 𝑥 ℓ) is a double-word number. We know that 𝑦 and 𝑥 ℓ are oating point numbers (by hypothesis for 𝑦 and by de nition of (𝑥 ℎ , 𝑥 ℓ) being a DW number for 𝑥 ℓ). So we have just to prove that 𝑦 = RN(𝑦 + 𝑥 ℓ). The pair (𝑥 ℎ , 𝑥 ℓ) being a double-word number, 𝑥 ℓ is negligible with respect to 𝑥 ℎ , therefore it is negligible with respect to 𝑦, which is greater in absolute value than 𝑥 ℎ . So it seems reasonable to think that (𝑦, 𝑥 ℓ) is a DW number, which is what the authors assumed in a rst draft of the article. But the problem is that this is not always true: in the particular case where both (𝑥 ℎ + 𝑥 ℓ) and (𝑦 + 𝑥 ℓ) are exactly halfway between two consecutive FP numbers, the rounding of (𝑦, 𝑥 ℓ) could be the successor or the predecessor of 𝑦 depending of the tie-breaking rule, i.e., depending on the choice function. So it is not always true that (𝑦, 𝑥 ℓ) is a DW number and it was impossible to prove that hypothesis with C .

To solve the problem, the authors of [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] were able to add this little sentence as a footnote in the nal version:

(𝑦, 𝑥 ℓ) may not be a double-word number, according to de nition (. . .), in the case 𝑥 ℓ = 1/2 𝑢𝑙𝑝(𝑦) = 1/2.𝑢𝑙𝑝(𝑥 ℎ). However, one easily checks that in that case the algorithm returns an exact result. This assertion was correct, and the algorithm does return an exact result (and thus a null error), but this result was not so easy to formalize. Indeed, in the case where the sum (𝑥 ℎ + 𝑦) is not a oating number, there are several cases to consider to verify that the calculation of variable 𝑣 at Line 2 of Algorithm 5 is exact (it is that calculation that can produce the error of the DWPlusFP algorithm) and that the conditions for the Fast2Sum algorithm to return a correct result are satis ed.

This example illustrates that a simple step of a paper proof may require a more laborious formalization work than expected. This example shows also that the use of wlogs in proofs can be dangerous.

However, wlogs are very useful in proofs of algorithms of FP arithmetic. They make it possible to reduce, by successive re nements, the interval of study for the input variables. For example for the correctness of DWPlusFP, the "wlog" is used three times, with the hypotheses |𝑦| ≤ |𝑥 ℎ |; then 0 < 𝑥 ℎ ; and nally 1 ≤ 𝑥 ℎ ≤ 2-2𝑢. Note that, in reference [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], this form of proof was used several dozen times, and only the case presented here was incorrect.

Methodology for proofs with "wlog"

During this formalization work, we developed a methodology to facilitate proofs using "wlog". The idea is to treat separately the core of the proof, in the particular case where all the hypotheses resulting from all the "wlog"(s) are satis ed. This makes it possible, thanks to notations and xed operands, to follow as closely as possible the paper proof. Then we can treat the general case (with arbitrary operands: we generalize all the variables) which consists in treating rst the particular cases, then the successive wlog(s), in order to apply the previous theorem at the very end.

Formalisation of the DWTimesDW1, DWTimesDW2, and DWTimesDW3 algorithms

Let us now consider the second error, in the proof of the double-word multiplication algorithms DWTimesDW1, DWTimesDW2 and DWTimesDW3 (Algorithms 6, 7, and 8 in this paper, Algorithms 10, 11 and 12 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]). The original proof used the wrong lemma 2.9, and remained undetected before publication. When formalizing, we have to recognise that we rst tried to prove this wrong lemma! Then we thought it was just a typo in the statement and we continued the formalization to understand under which conditions it was used, this led us to be convinced that there really was an error. We rst proved a close (but right!) lemma which allowed us to formalize the proofs of correctness of the rst two theorems but which was not su cient for the third one.

Lemma 3.1 (First replacement of the (wrong) Lemma 5.2 in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF], now replaced by the more accurate Lemma 2.10 of this paper). Let 𝑎 and 𝑏 be two positive real numbers. If 𝑎𝑏 ≤ 2, 𝑎 ≥ 1 and 𝑏 ≥ 1, then 𝑎 + 𝑏 ≤ 3.

For the third theorem, we have needed the slightly stronger Lemma 2.10, given in Section 2.4.

The correct proofs (validated by C just by following the rationale of the paper proofs) are given in Section 2.4 of this paper (and with an improved error bound for each of the three algorithms).

Note that the paper [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] gave detailed proof, only of the rst theorem, and suggested to the reader that the other proofs were similar. The error in the proof of the rst theorem imposed a fortiori the formalization of the other theorems as well. In any case, claiming that the proofs are similar is not possible in a formalization unless the scripts are exactly the same.

Conclusion and general discussion

The rst conclusion of this paper is that the algorithms and error bounds given in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] are all correct, despite errors (one marginal and detected before publication, and one more serious) in two proofs. We have also improved some of the error bounds and shown the asymptotic optimality of the bound of Algorithm 4. Our formal proofs are available at http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_ paper_release.zip.

This work provides the users with a set of formally proven algorithms for manipulating double-word numbers, with sharp error bounds: this helps making doubleword arithmetic (once quali ed by Kahan as "an attractive nuisance, like an unfenced backyard swimming pool" [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF]) a trustable tool. A byproduct of our work is an improvement in the Flocq library, where the proof of correctness of Fast2Sum(𝑎, 𝑏) will now use a weaker condition (see Section 3.1).

Beyond the particular case of these algorithms for manipulation of double-word numbers, this study leads to some observations concerning the use of formal proof techniques in computer arithmetic:

• beyond just giving con dence in the results, formal proof helps to generalize the results (for example, we could rather easily check which bounds do not depend on the tie-breaking rule of the RN rounding function: the initial proofs were built with the "ties to even" default tie-breaking rule in mind);

• the proofs of oating-point algorithms such as the ones presented in this paper and in [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF] do not use, in general, very complex and abstract mathematics, but they are frequently very long, with often many particular cases that need to be considered. This makes them error-prone and, at times, quite boring to read (with the consequence that few people will actually fully check them, which is dangerous): formalization is very useful in that context;

• many classical results of the FP literature are still not formalized. Continuing e orts in this domain is necessary, because all of numerical computing is built upon the underlying arithmetic;

• tight cooperation between specialists of formal proof and specialists of FP arithmetic is necessary, otherwise too much time is lost trying to nd again proofs of implicit sub-properties that are well-known by the specialists, or trying to understand strange intermediate results that are just straightforward typos in the paper (typically, the paper proof is OK but an error such as a wrong variable name was produced when typing it: the computer arithmetic specialist will not mind the typo, but the formal proof specialist will get lost). Training people competent in both computer arithmetic and formal proof would greatly help. Also, the formal proof tools remain complex to use by nonspecialists: making them more easily usable by researchers and engineers from other domains must remain a priority;

• "WLOGs" (Without loss of generality. . .) are necessary: without them the proofs would be much longer, much heavier, and therefore more likely to contain undetected errors (for instance, in the proof of Algorithm 6, one would have to carry everywhere the exponent of 𝑥 ℎ instead of assuming wlog, that is is between 1 and 2). But they must be handled with much care, because they are the major source of nontrivial errors;

• maybe, when publishing paper proofs, we should distinguish between the "rough sketch of the proof", which is essential for the reader to understand the underlying idea, and the fully detailed proof, that could be a downloadable appendix. Ideally, that fully detailed proof would be a formal proof.

Figure 1 :

 1 Figure 1: Radix-10 logarithm of the frequency of cases for which the relative error of Algorithm 4 is larger than 𝜆𝑢 2 as a function of 𝜆, for a random sample of 4000000 input values.

Local

 Notation two := radix2. (* 2-radix from Flocq *) (* bpow is the Flocq function taking a radix and an exponent as arguments returning radix^e : 2^e here *) Notation pow e := (bpow two e).

DWPlusFP (Algorithm 5)

 5 is de ned in C as follows: Variables xh xl y : R. Notation sh := (TwoSum_sum xh y). Notation sl := (TwoSum_err xh y). Notation v := (rnd_p (xl + sl)).Definition DWPlusFP := (Fast2Sum sh v).

 Notation x := (xh + xl). Notation zh := (Fast2Sum_sum sh v). Notation zl := (Fast2Sum_err sh v). Definition relative_errorDWFP := (Rabs (((zh + zl) -(x + y))/ (x + y))). Definition DWFP_add_correct xh xl y := relative_errorDWFP xh xl y)<= 2 * u^2 /\ (double_word zh zl). Theorem DWPlusFP_correct (xh xl y : R) (Fy : format y) (DWx: double_word xh xl): DWFP_add_correct xh xl y.

 y, xh, xl : R Fy : format y DWx : double_word xh xl xh0 : xh <> 0 xhy0 : xh + y <> 0 ... ============================ DWFP_add_correct xh xl y Then calling the command: wlog xhy : y xh Fy xhy0 DWx xh0 / Rabs y <= Rabs xh} generates the two sub-goals: xh, xl, y : R Fy : format y DWx : double_word xh xl xh0 : xh <> 0 xhy0 : xh + y <> 0 ============================ (forall y xh : R, format y -> xh + y <> 0 -> double_word xh xl -> xh <> 0 -> Rabs y <= Rabs xh -> DWFP_add_correct xh xl y) -> DWFP_add_correct xh xl y and xl : R y, xh : R Fy : format y xhy0 : xh + y <> 0 DWx : double_word xh xl hxh0 : xh <> 0 xhy : Rabs y <= Rabs xh ============================ DWFP_add_correct xh xl y To prove the rst sub-goal, we have to consider two cases. If |𝑦| ≤ |𝑥 ℎ |, then we obtain the result directly. If |𝑥 ℎ | ≤ |𝑦|, we call the hypothesis by exchanging 𝑥 ℎ and 𝑦, so we must rst prove that the DWFP_add_correct formula is symmetrical in 𝑥 ℎ and 𝑦, and then that the other hypotheses (format xh, y + xh <> 0, double_word y xl, y <> 0) hold.

 Using (as previously) the fact that 𝑥𝑦 > (1+𝑢) 2 , we obtain the relative error bound of Theorem 2.8. Note that the new bound 4𝑢 2 given by Theorem 2.8 is very tight: if 𝑝 = 53, for 𝑥 ℎ = 2251799825991851/2 51 , 𝑥 ℓ = 9007199203085987/2 106 , 𝑦 ℎ = 4503599627471459/2 52 , 𝑦 ℓ = 4503599627284651/2 105 , the relative error obtained with Algorithm 8 is 3.997 • • • 𝑢 2 . Without loss of generality, we assume that 1 ≤ 𝑥 ℎ ≤ 2 -2𝑢 and 1 ≤ 𝑦 ℎ ≤ 2 -2𝑢. This implies |𝑥 ℓ | ≤ 𝑢 and |𝑦 ℓ | ≤ 𝑢. We have 1 ≤ 𝑥 ℎ 𝑦 ℎ < 4, and

	2.6 Proof of Theorem 2.6

 2, which gives the same result; if |𝑡 ℓ1 | ≥ 𝑢/2 and |𝑡 ℓ2 | ≥ 𝑢/2 then let us rst note that 𝑡 ℓ1 and 𝑡 ℓ2 (and therefore 𝑡 ℓ1 + 𝑡 ℓ2) are multiples of 𝑢 2 .

* if |𝑡 ℓ1 | < 𝑢 or |𝑡 ℓ2 | < 𝑢 then either |𝜖 1 | ≤ 𝑢 2 /2 or |𝜖 2 | ≤ 𝑢 2 /2, and the number |𝑡 ℓ1 + 𝑡 ℓ2 | is a multiple of 𝑢 2 less than 2𝑢 (otherwise |𝑐 ℓ2 | would be ≥ 2𝑢). Therefore: • if |𝑡 ℓ1 + 𝑡 ℓ2 | is less than 𝑢 or if it is an even multiple of 𝑢 2 then it is a oating-point number, which implies 𝜖 3 = 0, so that

 2 is reached with 𝑥 ℎ = 2097221/221 , 𝑥 ℓ = 16777007/2 48 , 𝑦 ℎ = 131077/2 17 , and 𝑦 ℓ = 16777037/2 48 ; • With RN being " round-to-nearest ties to zero" and 𝑝 = 53, relative error 5.490790833𝑢 2 is reached if we choose 𝑥 ℎ = 4503599652744837/2 52 , 𝑥 ℓ = 9007199254569309/2 106 , 𝑦 ℎ = 2251799817602973/2 51 , and 𝑦 ℓ = 4503599582208165/2 105 . Without loss of generality, we assume that 1 ≤ 𝑥 ℎ ≤ 2 -2𝑢 and 1 ≤ 𝑦 ℎ ≤ 2 -2𝑢. This implies |𝑥 ℓ | ≤ 𝑢 and |𝑦 ℓ | ≤ 𝑢. We have 1 ≤ 𝑥 ℎ 𝑦 ℎ < 4, and

	2.7 Proof of Theorem 2.7

For instance, the simplest way of verifying a single-precision implementation of the sine or exponential function is to check what it returns for each of the

32 possible input values. On a recent laptop, this takes at most a few hours.2 http://coq.inria.fr/

Note that in C , one writes a simple arrow "->" for an implication (⇒).

Let us now de ne in C the roundo error unit 𝑢, and let us state and prove some properties.

(* we use the generic ulp function from Flocq associated to a given FP format defined by a radix and an exponent function *) Notation ulp := (ulp two fexp). (* The u constant *) Let u := pow (-p). Lemma u_ulp1: u = /2 * (ulp 1). (* Property of the relative error *) Lemma rel_error_u t (tn0 : t <> 0) : Rabs ((rnd_p t -t) /t) <= u/(1+u).

Here, rnd_p stands for the round to nearest function RN in the FP set. It is de ned as:

Variable choice : Z -> bool.

Local Notation rnd_p := (round two fexp (Znearest choice)).

Note that here the choice function is just declared as a boolean function on integers: no speci c tie-breaking rule (such as the classical ties-to-even rule, which is, as said above, the default in IEEE 754 arithmetic) is speci ed. We will specify it, if needed, during the proof process. This makes it possible to formalize more general results and to clearly locate places when the ties-to-even tie breaking rule is necessary. The concept of double-word representation of a real number is de ned in C as a property on a pair (𝑥 ℎ , 𝑥 ℓ) of real numbers, as follows (one easily checks that this is a direct transcription of De nition 1):

where format x, as de ned above, means that the real number x belongs to the set of radix-2, precision-𝑝 FP numbers. The Fast2Sum and TwoSum algorithms are provided by the Flocq library, along with the proofs that the pair of FP numbers they return satis es the property that their sum is exactly the sum of the two FP numbers given in input: