
HAL Id: hal-02972245
https://hal.science/hal-02972245v1

Preprint submitted on 20 Oct 2020 (v1), last revised 31 Aug 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalization of double-word arithmetic, and comments
on ”Tight and rigorous error bounds for basic building

blocks of double-word arithmetic”
Jean-Michel Muller, Laurence Rideau

To cite this version:
Jean-Michel Muller, Laurence Rideau. Formalization of double-word arithmetic, and comments on
”Tight and rigorous error bounds for basic building blocks of double-word arithmetic”. 2020. �hal-
02972245v1�

https://hal.science/hal-02972245v1
https://hal.archives-ouvertes.fr

Formalization of double-word arithmetic, and

comments on “Tight and rigorous error bounds

for basic building blocks of double-word

arithmetic”

Jean-Michel Muller
CNRS, ENS Lyon

Université de Lyon, France
jean-michel.muller@ens-lyon.fr

Laurence Rideau
Inria Sophia Antipolis

Université Côte d’Azur, France
laurence.rideau@inria.fr

October 20, 2020

Keywords. Floating-point arithmetic; double-word arithmetic; double-
double arithmetic; formalization; proof assistant; Coq

Abstract

Recently, a complete set of algorithms for manipulating double-word
numbers (some classical, some new) was analyzed [15]. We have formally
proven all the theorems given in that paper, using the Coq proof assistant.
The formal proof work led us to: i) locate mistakes in some of the original
paper proofs (mistakes that, however, do not hinder the validity of the
algorithms), ii) significantly improve some error bounds, and iii) generalize
some results by showing that they are still valid if we slightly change the
rounding mode. The consequence is that the algorithms presented in [15]
can be used with high confidence, and that some of them are even more
accurate than what was believed before. This illustrates what formal proof
can bring to computer arithmetic: beyond mere (yet extremely useful)
verification, correction and consolidation of already known results, it can
help to find new properties. All our formal proofs are freely available.

1 Introduction

Double-word arithmetic, frequently called “double-double” arithmetic, consists
in representing a real number as the unevaluated sum of two floating-point

1

(FP) numbers, with some additional constraints needed to make sure that this
is an accurate representation (see Definition 2.1 below). Double-word (and,
more generally, multiple-word) arithmetic is useful when the largest FP format
available in hardware on the system being used is not wide enough for some
critical parts of a numerical algorithm. Typical examples occur in computational
geometry [27], in the design of accurate BLAS [20], and the design of libraries
for correctly rounded elementary functions [8].

In all widely available distributions of double-word arithmetic, the underly-
ing FP format is the binary64, a.k.a. “double precision” format of the IEEE
754-2019 Standard for Floating-Point Arithmetic [1], which explains the name
“double-double”. The first double-word algorithms were given by Dekker [9]
as early as 1971. A largely used library that provides efficient double-word
(and quad-word) arithmetic is the QD (“quad-double”) library by Hida, Li,
and Bailey [12, 13]. A more recent library is Campary [16] (see also [14] for a
performance evaluation of Campary).

In [15], the authors (including one of us) consider several arithmetic algo-
rithms for manipulating double-word numbers (some taken from the literature,
some new), and give paper-and-pencil proofs of error bounds for these algo-
rithms. We felt that building formal proofs of these algorithms was necessary
for several reasons:

• These algorithms are specifically designed to be used in critical parts of
numerical programs, where a careful control of numerical error is impor-
tant, so we need to be absolutely certain about the claimed error bounds;

• despite many “without loss of generality we assume that. . . ” and the
use of symmetries whenever possible, the paper-and-pencil proofs remain
rather long, complex, and at times rather tedious to read (mainly because
of unavoidable enumerations of many possible cases). This has two con-
sequences: first, it is quite possible that some errors remain hidden in the
proofs and, second, few people will carefully read them;

• with this class of algorithms, testing is a doubtful option. Even if this does
not provide absolute certainty, a frequent way of increasing confidence
in published error bounds is to perform extensive tests. This does not
work well with this family of algorithms, because the cases for which the
relative error is close to maximum are extremely rare. Hence even when
performing zillions of random tests, one may miss the worst case by a very
significant margin. An example, discussed in Section 2.2, is Algorithm 4
below (“accurate sum” of two double-word numbers). It computes the
sum of two double-word numbers. It was presented in [19, 20], and it is
Algorithm 6 in [15]. For that algorithm, the authors of [15] could build
a “bad case” with error around 2.25u2 (where u, the rounding unit, is
defined later on). We give an even worse case (close to 3u2) in this paper.
To obtain such bad cases, one needs to build them: they are so rare that
one can perform millions of random tests without finding relative errors
larger than 2u2.

2

It clearly appeared, when working on these formal proofs, that there is more
than these reasons. As we are going to see, the formal proof work also allows
one to do more than just checking the validity of a proof or pointing-out and
correcting the errors:

• beyond simply checking a paper-and-pencil proof, formalization helps to
understand all details of a proof, sometimes it allows one to prove a
stronger result, or to improve or simplify the proof. Especially, one can at
times generalize the results, by checking if the proof (possibly with small
modifications) still holds with more general assumptions: in that case, it
is not mere (yet useful!) verification of existing results, but discovery of
new results.

• even once the paper proof is verified (and corrected if needed), the formal
proof serves as a detailed appendix to the paper proof: shortcuts such as
“the second case is symmetrical to the first one. . . ”, or “without loss of
generality, we assume that. . . ” are frequently necessary in a paper proof
for the sake of clarity and/or brevity. The formal proof contains all the
details (exhibition of symmetries, changes of values, . . .) that prove that
these shortcuts were valid.

The use of formal proof tools for giving more confidence in computer arith-
metic algorithms has a long history, that goes back at least to the years that
followed the Pentium FDIV Bug [6]. This is not surprising: all of numerical
computing is built upon the underlying arithmetic of our computers. If the
arithmetic cannot be trusted, nothing can be trusted. We therefore must have
full confidence in that underlying arithmetic. In some cases (unary functions
and very small values of the precision p), exhaustive testing of the programs is
possible,1 but in general, formal proof is the only way of obtaining that confi-
dence.

Among these first works on formal proof of floating-point algorithms, let
us mention works by Harrison [10, 11], Moore et al. [22], Daumas, Rideau and
Théry [7]. Our formal proofs are built using Boldo and Melquiond’s Flocq
library [4, 5], built on the Coq proof assistant.2 Coq (see for instance [3]) is
based on the calculus of inductive constructions. It provides interactive proof
methods and a tactic language to help the user to define new proof methods. It
also makes it possible to extract programs from proofs. The Flocq library was
for instance used by Boldo et al. to show the correctness of the floating-point
passes of the verified CompCert C compiler [2].

In the following, we assume that the floating-point arithmetic upon which
we build a double-word arithmetic is a radix-2, precision-p FP arithmetic sys-
tem, with unlimited exponent range (which means that the results presented
here apply to “real life” floating-point arithmetic provided that underflows and

1For instance, the simplest way of verifying a single-precision implementation of the sine
or exponential function is to check what it returns for each of the 232 possible input values.
On a recent laptop, this takes at most a few hours.

2http://coq.inria.fr/

3

http://coq.inria.fr/

overflows do not occur). This means that an FP number x is a number of the
form

x = M · 2e−p+1, (1)

where M and e are integers, with |M | ≤ 2p − 1. If x 6= 0, there is a unique pair
(Mx, ex) that satisfies both (1) and the additional requirement

2p−1 ≤ |M | ≤ 2p − 1.

The number ex from that pair is called the floating-point exponent of x, and Mx

is called the integral significand of x. We will say that a FP number is even if
its integral significand is even.

The notation RN(t) stands for t rounded to the nearest FP number, and
unless stated otherwise, we assume that we use the ties-to-even tie-breaking
rule. It is defined as follows:

• if there is only one FP number nearest to t then RN(t) is that number,

• and if t is exactly halfway between two consecutive FP numbers, then
RN(t) is the one of these two numbers whose integral significand is even.

Round-to-nearest ties-to-even is the default rounding mode in the IEEE 754-
2019 Standard [1], and it is by far the most used (few people consider changing
the rounding mode, and programming environments do not always make that an
easy task). Hence, when an arithmetic operation c>d is performed, the result
that is actually returned is RN(c>d). Interestingly enough, the IEEE 754-2019
standard also defines two other round-to-nearest functions: round-to-nearest
ties-to-away (mainly needed in decimal arithmetic, for financial applications),
and round-to-nearest ties-to-zero (whose major purpose is to help implement-
ing fast reproducible summation [26]). The paper proofs of the double-word
algorithms in [15] assume round-to-nearest, ties-to-even. It might be interesting
to see if the proofs remain valid (possibly with minor modifications) with the
other round-to-nearest functions: we consider this later on in this paper. We
will even see that changing the tie-breaking rule can change the error bound of
an algorithm (see Theorem 2.7).

Finally, two quantities are commonly used to express errors in floating-point
arithmetic:

• the number ulp(x), for x 6= 0 is 2blog2 |x|c−p+1. Roughly speaking, ulp(x) is
the distance between two consecutive FP numbers in the neighborhood of
x. If a function f is correctly rounded—i.e., if for any x we always return
RN (f(x))—, then the absolute error when computing f(x) is bounded by
1
2ulp (f(x)) .

• u = 2−p denotes the roundoff error unit. If a function is correctly rounded
then it is computed with relative error less than u/(1 + u), which is very
slightly less than u. A floating-point number between 2k and 2k+1 is a
multiple of u · 2k+1.

4

The bounds given in this paper and in [15] are given as functions of u. If
the bound for some algorithm is B(u) and if we are able to show that there
exist some inputs parametrized by u for which the relative error E(u) satisfies
E(u)/B(u) → 1 as u → 0, we will say that the bound B(u) is asymptotically
optimal.

2 Algorithms for double-word arithmetic

Let us now give a formal definition of a double-word number.

Definition 2.1. [15]. A double-word (DW) number x is the unevaluated sum
xh + x` of two floating-point numbers xh and x` such that xh = RN(x).

In other words, a DW number is a real number equal to the sum of its
rounded to the nearest FP number xh and an error term x` that is also a
floating-point number.

In [15], algorithms are given for adding, multiplying and dividing DW num-
bers, adding a FP number to a DW number, and multiplying or dividing a DW
number by a FP number. All these algorithms return DW numbers. They are
given with an error bound and a proof. They all use the following three basic
building blocks, named “error free transforms” by Ogita, Rump and Oishi [25],
that are well-known in the FP literature, and that return DW numbers equal
to the sum or product of two input FP numbers.

2.1 The basic building blocks: “error free transforms”

The Fast2Sum algorithm (Algorithm 1) is due to Dekker [9].

Algorithm 1 – Fast2Sum(a, b). The Fast2Sum algorithm [9].

s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)

If a and b are FP numbers that can be written Ma · ea and Mb · eb, with
|Ma|, |Mb| ≤ 2p − 1 and ea ≥ eb, then the result (s, t) returned by Algorithm 1
satisfies s+ t = a+b. Hence, t is the error of the FP addition s← RN(a+b). In
practice, the above given condition on ea and eb may be hard to check. However,
if |a| ≥ |b| then that condition is satisfied. One can avoid having to perform a
comparison of |a| and |b| by using the more complex Algorithm 2 below.

5

Algorithm 2 – 2Sum(a, b). The 2Sum algorithm [21, 18].

s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)

The result (s, t) returned by Algorithm 2 satisfies s + t = a + b for all FP
inputs a and b.

Finally, the following algorithm allows one to compute the error of a FP
multiplication.

Algorithm 3 – 2Prod(a, b). The 2Prod algorithm (called Fast2Mult in [17,
24, 23]). It requires the availability of a fused multiply-add (FMA) instruction
for computing RN(ab− π).

π ← RN(a · b)
ρ← RN(a · b− π)

The result (π, ρ) returned by Algorithm 3 satisfies π + ρ = a × b for all
FP inputs a and b. That algorithm requires the availability of an FMA (fused
multiply-add) instruction.

2.2 An example

Algorithm 4 below (which was Algorithm 6 in [15]) was presented in [19, 20].
It approximates the sum of two DW numbers by a DW number, with a relative
error less than 3u2 + 13u3 as soon as p ≥ 6, as shown in [15].

Algorithm 4 – AccurateDWPlusDW(xh, x`, yh, y`). Calculation of
(xh, x`) + (yh, y`) in binary, precision-p, floating-point arithmetic.

1: (sh, s`)← 2Sum(xh, yh)
2: (th, t`)← 2Sum(x`, y`)
3: c← RN(s` + th)
4: (vh, v`)← Fast2Sum(sh, c)
5: w ← RN(t` + v`)
6: (zh, z`)← Fast2Sum(vh, w)
7: return (zh, z`)

Although the proved error bound for Algorithm 4 is close to 3u2, we were
not aware before this study, when the RN function is round-to-nearest ties
to even, of examples for which the relative error is larger than 2.25u2. The
authors of [15] build an example, for p = 53, for which the relative error is

6

2.24999999999999956 · · · × 2−106. Failing to obtain larger errors in extensive
simulations, we were inclined to conjecture that the actual error bound for Al-
gorithm 4 is 2.25u2, but such conjectures are dangerous: the authors of [19, 20]
already claimed that the bound, for p = 53, was 2× 2−106 (i.e., 2u2).

Indeed, the error can be larger, more precisely, we have

Property 2.2. Assuming that p ≥ 3 and RN is round-to-nearest ties-to-even,
the error bound 3u2/(1− 4u) = 3u2 + 12u3 + 48u4 + · · · for Algorithm 4, given
by Joldes et al. in [15], is asymptotically optimal.

Proof. Consider

xh = 1

x` = u− u2

yh = − 1
2 + u

2

y` = −u2

2 + u3.

We successively obtain:

sh = RN(xh + yh) =
1

2

(thanks to the ties-to-even tie-breaking rule)

s` = xh + yh − sh =
u

2
,

th = RN(x` + y`) = u− u2,

t` = x` + y` − th = −u
2

2
+ u3,

c = RN(s` + th) =
3u

2
,

(thanks to the ties-to-even tie-breaking rule, and because p ≥ 3 implies that
3u/2 is an “even” FP number)

vh = RN(sh + c) =
1

2
+ 2u,

v` = sh + c− vh = −u
2
,

and finally,

z = zh + z` = vh + w =
1

2
+

3u

2
,

whereas the exact result is

x+ y = (xh + x`) + (yh + y`) =
1

2
+

3u

2
− 3u2

2
+ u3.

Therefore the relative error is

|(x+ y)− (zh + z`)|
x+ y

=
3u2 − 2u3

1 + 3u− 3u2 + 2u3
= 3u2 − 11u3 + 42u4 + · · ·

7

For instance, if p = 53 (double-precision arithmetic), the generic example
used in the proof leads to a relative error equal to

2.99999999999999877875 · · · × u2.

That example has an interesting history. Being puzzled by the gap between
the bound shown in [15] and the largest observed error, we tried to show a
smaller bound. We almost succeeded: the only case for which we could not
prove that the relative error is less than 2.5u2 was when c is of the form 3 · 2k.
This led us to focus only on cases for which c has that form, and finally to build
the example used in the proof. Obtaining such an example by random testing
is hopeless. Figure 1 gives the repartition of the observed relative errors for
a random sample of 4000000 input values: it is almost impossible to observe
errors larger than around 2.5u2.

Figure 1: Radix-10 logarithm of the frequency of cases for which the relative error
of Algorithm 4 is larger than λu2 as a function of λ, for a random sample of 4000000
input values.

2.3 The various algorithms of [15] we have formally proven

We have formally proven the 15 algorithms presented in [15]. All these algo-
rithms return DW numbers. All error bounds claimed in [15] are correct (but we
have found improvements for three of them). Table 1 summarizes the obtained
results.

8

Operation
Name of the

Algorithm in [15]

Bound

given

in [15]

Bound

formally

proven

Largest

relative error

built or

observed in

experiments

DW + FP DWPlusFP 2u2 2u2 2u2 − 6u3

DW + DW SloppyDWPlusDW N/A N/A 1

AccurateDWPlusDW 3u2 + 13u3 3u2 + 13u3 3u2 − 11u3

+O(u4)

DW × FP DWTimesFP1 3
2
u2 + 4u3 3

2
u2 + 4u3 1.5u2

DWTimesFP2 3u2 3u2 2.517u2

DWTimesFP3 2u2 2u2 1.984u2

DW × DW DWTimesDW1 7u2 5u2

(ties to even)

4.9916u2

(ties to even)

5.5u2

(general)

5.4907u2

(ties to 0)

DWTimesDW2 6u2 5u2 4.9433u2

DWTimesDW3 5u2 4u2 3.936u2

DW ÷ FP DWDivFP1 3.5u2 3.5u2 2.95u2

DWDivFP2 3.5u2 3.5u2 2.95u2

DWDivFP3 3u2 3u2 2.95u2

DW ÷ DW DWDivDW1 15u2 + 56u3 15u2 + 56u3 8.465u2

DWDivDW2 15u2 + 56u3 15u2 + 56u3 8.465u2

DWDivDW3 9.8u2 9.8u2 5.922u2

Table 1: Summary of the results presented in [15], and now formally proven, and of
our own results. For each algorithm, we give the bound given in [15], the bound we
have formally proven, and the largest relative error experimentally observed. Unless
stated otherwise, the largest errors observed in experiments are for RN being round-
to-nearest ties-to-even.

2.4 The major problems encountered

We have formally proven all the algorithms presented in [15]. In the following,
we focus on the two proofs for which we have encountered a major problem (one
of them was in an early version of [15], and was corrected before final publication,
so it does not appear in the published paper). The first of these two proofs is
the proof of Algorithm DWPlusFP (Algorithm 5 in this paper, Algorithm 4
in [15]), which evaluates the sum of a DW number and a FP number.

9

Algorithm 5 – DWPlusFP(xh, x`, y) (Algorithm 4 in [15]). Computes
(xh, x`)+y. That algorithm is implemented in the QD library [13]. The number
x = (xh, x`) is a DW number.

1: (sh, s`)← 2Sum(xh, y)
2: v ← RN(x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

The correctness and error bound of Algorithm DWPlusFP are claimed
in [15] by the following Theorem.

Theorem 2.3 (Theorem 2.2 in [15]). The relative error∣∣∣∣ (zh + z`)− (x+ y)

x+ y

∣∣∣∣
of Algorithm 5 (DWPlusFP) is bounded by 2 · u2.

As said above, the error in the proof of Theorem 2.3 was in an early version
of [15], so it does not appear in the published version. Correcting that error
just required a slight modification of the existing proof.

The second proof is the common proof (in fact, the proofs slightly differ
but they share the same major steps) of Algorithms DWTimesDW1, DW-
TimesDW2 and DWTimesDW3 (Algorithms 6, 7, and 8 in this paper, Al-
gorithms 10, 11 and 12 in [15]) which evaluate the product of two DW numbers.

Algorithm 6 – DWTimesDW1(xh, x`, yh, y`) (Algorithm 10 in [15]). Com-
putes (xh, x`)× (yh, y`). That algorithm is implemented in the QD library [13].

1: (ch, c`1)← 2Prod(xh, yh)
2: t`1 ← RN(xh · y`)
3: t`2 ← RN(x` · yh)
4: c`2 ← RN(t`1 + t`2)
5: c`3 ← RN(c`1 + c`2)
6: (zh, z`)← Fast2Sum(ch, c`3)
7: return (zh, z`)

Algorithm 7 – DWTimesDW2(xh, x`, yh, y`) (Algorithm 11 in [15]). Al-
gorithm for computing (xh, x`) × (yh, y`) in binary, precision-p, floating-point
arithmetic, assuming an FMA instruction is available.

1: (ch, c`1)← 2Prod(xh, yh)
2: t` ← RN(xh · y`)
3: c`2 ← RN(t` + x`yh)
4: c`3 ← RN(c`1 + c`2)
5: (zh, z`)← Fast2Sum(ch, c`3)
6: return (zh, z`)

10

Algorithm 8 – DWTimesDW3(xh, x`, yh, y`) (Algorithm 12 in [15]). Al-
gorithm for computing (xh, x`) × (yh, y`) in binary, precision-p, floating-point
arithmetic, assuming an FMA instruction is available.

1: (ch, c`1)← 2Prod(xh, yh)
2: t`0 ← RN(x` · y`)
3: t`1 ← RN(xh · y` + t`0)
4: c`2 ← RN(t`1 + x` · yh)
5: c`3 ← RN(c`1 + c`2)
6: (zh, z`)← Fast2Sum(ch, c`3)
7: return (zh, z`)

The correctness and error bound of Algorithms DWTimesDW1, DW-
TimesDW2 and DWTimesDW3 are claimed in [15] by the following Theo-
rems.

Theorem 2.4 (Theorem 5.1 in [15]). If p ≥ 4, the relative error of Algorithm 6
(DWTimesDW1) is less than or equal to 7u2/(1 + u)2 < 7u2.

Theorem 2.5 (Theorem 5.3 in [15]). If p ≥ 5, the relative error of Algorithm 7
(DWTimesDW2) is less than or equal to (6u2 + 1

2u
3)/(1 + u)2 < 6u2.

Theorem 2.6 (Theorem 5.4 in [15]). If p ≥ 4, the relative error of Algorithm 8
(DWTimesDW3) is less than or equal to (5u2 + 1

2u
3)/(1 + u)2 < 5u2.

It turns out that these four theorems are correct, despite a flaw in their orig-
inal proof (as said above the proof is essentially the same, with small variants,
for the three theorems). Our work on the formal proof of these theorems led us
to find and to remove the flaw. It also led us to improvements of the bounds
given by these Theorems and, interestingly enough, to see that the tie-breaking
rule of the round-to-nearest function RN can have a significant influence on the
bound. More precisely, we now have,

Theorem 2.7 (New error bound for Algorithm DWTimesDW1). If p ≥ 6, the
relative error of Algorithm 6 (DWTimesDW1) is less than or equal to

11
2 u

2

(1 + u)2
< 5.5u2. (2)

Furthermore, if the rounding mode RN is round-to-nearest ties-to-even (which
is the default in IEEE 754 arithmetic) then we have the better bound

5u2

(1 + u)2
< 5u2. (3)

Theorem 2.8 (New error bound for Algorithm DWTimesDW2). If p ≥ 5, the
relative error of Algorithm 7 (DWTimesDW2) is less than or equal to

5u2

(1 + u)2
< 5u2. (4)

11

Theorem 2.9 (New error bound for Algorithm DWTimesDW3). If p ≥ 5, the
relative error of Algorithm 8 (DWTimesDW3) is less than or equal to

4u2 + 1
2u

3

(1 + u)2
< 4u2.

The proof of Theorems 2.4, 2.5, and 2.6 in [15] use the following Lemma,
which turned out to be wrong (it suffices to try a = 1 and b = 2).

Lemma 2.10 (Lemma 5.2 in [15] (wrong)). Let a and b be two positive real
numbers. If ab ≤ 2, a ≥ 1 and b ≥ 1, then a+ b ≤ 2

√
2.

For Theorems 2.4, 2.5, and 2.6 a significant modification was necessary. Let
us now detail the proof of Theorem 2.6, to understand where the problem was.
We will also prove Theorem 2.9 at the same time. The proofs of Theorems 2.7,
and 2.8, more involved, will be given afterwards. Note that, although we have no
proof of asymptotic optimality, the bounds given by Theorems 2.7, 2.8, and 2.9
are very tight and therefore cannot be significantly improved: for each of the
corresponding algorithms we have input examples for which the attained error
is very close to the bound.

First, we will need another lemma, to replace Lemma 2.10.

Lemma 2.11. Let a and b be two floating-point numbers satisfying 1 ≤ a ≤
2− 2u and 1 ≤ b ≤ 2− 2u. If ab ≤ 2 then a+ b ≤ 3− 2u.

Proof. First, let us show that a + b < 3. We have a ≤ 2/b, therefore a + b ≤
2/b+b. The number 2/b+b−3 has the sign of b2−3b+2: it is < 0 for 1 < b < 2.
Therefore, if b 6= 1, a+ b < 3. The case b = 1 is easily dealt with: a < 2 implies
a+ b = a+ 1 < 3.

Since a and b are floating-point numbers larger than 1 they are multiple
of 2u. Therefore a + b is a multiple of 2u strictly less than 3: this implies
a+ b ≤ 3− 2u.

Now let us give a proof of Theorems 2.6 and 2.9. In all our paper proofs, we
explicitely or implicitely use the following properties:

1. if |x| ≤ 2k then |x− RN(x)| ≤ u · 2k−1;

2. x ≤ y ⇒ RN(x) ≤ RN(y);

3. RN(x · 2k) = 2k · RN(x);

4. RN(−x) = −RN(x);

5. if t ≥ 0 then t(1− u) ≤ RN(t) ≤ t(1 + u).

12

2.5 Proof of Theorems 2.6 and 2.9

Without loss of generality, we assume that 1 ≤ xh ≤ 2−2u and 1 ≤ yh ≤ 2−2u.
This implies |x`| ≤ u and |y`| ≤ u. We have xhyh < 4, and

ch + c`1 = xhyh,

with |c`1| ≤ 2u. We also have |x`y`| ≤ u2, therefore, since RN is an increasing
function, and since u2 is a floating-point number (which implies RN(u2) = u2),
we have

|t`0| ≤ u2,
and

t`0 = x`y` + ε0,
with |ε0| ≤ u3/2.

(5)

Similarly, from
|xhy` + t`0| ≤ 2u− u2,

we deduce
|t`1| ≤ 2u,

and
t`1 = xhy` + t`0 + ε1,
with |ε1| ≤ u2.

(6)

Since |x`yh| ≤ 2u− 2u2, we have |t`1 + x`yh| ≤ 4u− 2u2, so that

|c`2| ≤ 4u

and

c`2 = t`1 + x`yh + ε2,
with |ε2| ≤ 2u2.

(7)

The number |c`1 + c`2| is less than or equal to 6u, and 6u is a floating-point
number (as soon as p ≥ 2), therefore

|c`3| ≤ 6u,

and
c`3 = c`1 + c`2 + ε3,

with |ε3| ≤ 4u2. Since |ch| ≥ 1 and |c`3| ≤ 6u, we can use Algorithm Fast2Sum
at Line 5 of the algorithm, as soon as 6u ≤ 1 (i.e., as soon as p ≥ 3). Therefore,
zh + z` = ch + c`3 and (zh, z`) is a DW-number.

We finally obtain

zh + z` = xy + ε0 + ε1 + ε2 + ε3,

and the sum of the error terms satisfies

|ε0 + ε1 + ε2 + ε3| ≤ 7u2 +
u3

2
. (8)

Now we need to consider three cases:

13

• if xhyh > 2 then xy ≥ (xh(1− u)) · (yh(1− u)) > 2(1 − u)2, therefore,
from (8), the relative error

|zh + z` − xy|
|xy|

is bounded by

7u2 + u3

2

2(1− u)2
, (9)

and we can check that the bound (9) is less than the bound of Theorem 2.6
as soon as u ≤ 1/16 (i.e., as soon as p ≥ 4), and less than the bound of
Theorem 2.9 as soon as u ≤ 1/32 (i.e., as soon as p ≥ 5).

• if xh = 1 or yh = 1, we obtain c`1 = 0, so that c`3 = c`2 and ε3 = 0. Hence
|ε0 + ε1 + ε2 + ε3| ≤ 3u2 + u3/2, and the relative error is bounded by

3u2 + u3

2

(1− u)2
,

which is less than the bound of Theorem 2.6 as soon as u ≤ 1/8 (i.e.,
as soon as p ≥ 3) and less than the bound of Theorem 2.9 as soon as
u ≤ 1/16 (i.e., as soon as p ≥ 4).

• if xhyh ≤ 2, with xh > 1 and yh > 1, then some bounds can be improved,
as we are going to see.

First, xhyh ≤ 2 implies
|c`1| ≤ u. (10)

In [15], Lemma 2.10 was invoked to deduce a bound on xh + yh from the
bound on xhyh. The goal was to deduce from that bound on xh + yh a
new bound on |c`1 + c`2| small enough to guarantee that |ε3| becomes less
than or equal to 2u2. Unfortunately, Lemma 2.10 is wrong. As we are
going to see, the bound given by Lemma 2.11 suffices.

From xhyh ≤ 2 and Lemma 2.11, we obtain xh + yh ≤ 3− 2u. Therefore,
using the bounds on |x`| and |y`|,

|xhy` + yhx`| ≤ 3u− 2u2,

therefore |xhy` + yhx` + x`y`| ≤ 3u− u2, therefore, using (5),

|xhy` + yhx` + t`0| ≤ 3u− u2 +
u3

2
.

Therefore,

using (6),

|yhx` + t`1| ≤ 3u+
u3

2
,

14

therefore,

|c`2| ≤ RN

(
3u+

u3

2

)
= 3u. (11)

Combining (10) and (11), we obtain

|c`1 + c`2| ≤ 4u, (12)

so that |ε3| = |RN(c`1 + c`2)− (c`1 + c`2)| is now less than or equal to 2u2.
An immediate consequence is that the sum of the error terms

|ε0 + ε1 + ε2 + ε3|

is now bounded by 5u2 + u3/2. Since xh > 1 and yh > 1, we have
xh ≥ 1 + 2u and x ≥ 1 + u, and, similarly, y ≥ 1 + u. The product xy is
therefore lower-bounded by (1 + u)2, so that the relative error is bounded
by

5u2 + u3

2

(1 + u)2
,

which is the bound given by Theorem 2.6. Now, we can improve it by
raising the following remarks:

– Since xh and yh are both multiple of 2u, their product is a multiple
of 4u2 = 22−2p. Since ch (which is a floating-point number larger
than 1) is a multiple of 2u = 21−p, the number c`1 = xhyh − ch is a
multiple of 4u2;

– if |c`2| < 2u (which implies |t`1+x`yh| ≤ 2u−u2), then |ε2| is bounded
by u2;

– if |c`2| ≥ 2u then c`2 is a multiple of 4u2. Therefore c`1 + c`2 is
a multiple of 4u2. This and (12) imply that it is a floating-point
number. Therefore RN(c`1 + c`2) = c`1 + c`2, so that ε3 = 0.

Therefore, either |ε2| ≤ u2 or ε3 = 0. An immediate consequence is that
|ε0 + ε1 + ε2 + ε3| ≤ 4u2 + u3/2. Using (as previously) the fact that
xy > (1 + u)2, we obtain the relative error bound of Theorem 2.9.

Note that the new bound 4u2 given by Theorem 2.9 is very tight: if p = 53,
for

xh = 2251799825991851/251,
x` = 9007199203085987/2106,
yh = 4503599627471459/252,
y` = 4503599627284651/2105,

the relative error obtained with Algorithm 8 is 3.997 · · ·u2.

15

2.6 Proof of Theorem 2.7

Without loss of generality, we assume that 1 ≤ xh ≤ 2−2u and 1 ≤ yh ≤ 2−2u.
This implies |x`| ≤ u and |y`| ≤ u. We have 1 ≤ xhyh < 4, and

ch + c`1 = xhyh,

with |c`1| ≤ 2u.
Since xh and yh are both multiple of 2u, their product is a multiple of

4u2 = 22−2p. Since ch (which is a floating-point number larger than or equal to
1) is a multiple of 2u = 21−p, the number c`1 = xhyh − ch is a multiple of 4u2.

Since |xhy`| ≤ 2u− 2u2, we have |t`1| ≤ RN(2u− 2u2) = 2u− 2u2, and

t`1 = xhy` + ε1, with |ε1| ≤ u2.

Similarly, we have |t`2| ≤ 2u− 2u2, and

t`2 = x`yh + ε2, with |ε2| ≤ u2.

This gives |t`1 + t`2| ≤ 4u− 4u2, so that |c`2| ≤ RN(4u− 4u2) = 4u− 4u2, and

c`2 = t`1 + t`2 + ε3, with |ε3| ≤ 2u2.

Therefore, |c`1 + c`2| ≤ 6u− 4u2, which gives |c`3| ≤ 6u, and

c`3 = c`1 + c`2 + ε4, with |ε4| ≤ 4u2.

Since ch ≥ 1 and |c`3| ≤ 6u, as soon as 6u ≤ 1 (which holds as soon as p ≥ 3),
we can use the Fast2Sum algorithm, and

zh + z` = ch + c`3.

Defining
η = (zh + z`)− xy, (13)

we obtain
|η| ≤ |x`y`|+ |ε1|+ |ε2|+ |ε3|+ |ε4|

≤ u2 + u2 + u2 + 2u2 + 4u2 = 9u2.
(14)

Let us now give a case-by-case analysis, for obtaining a bound on the relative
error |η|/(xy) and, in some cases, improving the bound (14).

2.6.1 If xhyh ≥ 2

In that case xy ≥ xh(1 − u) · yh(1 − u) > 2(1 − u)2. So, that, using (14), the
relative error is bounded by

9u2

2(1− u)2
,

which is less than the bound (3) as soon as u ≤ 1/64 (i.e., as soon as p ≥ 6).

16

2.6.2 If xhyh < 2

We can observe that |c`1| ≤ u, and that Lemma 2.11 implies |t`1 + t`2| ≤
xhu + yhu ≤ 3u − 2u2, so that |c`2| ≤ 3u. Therefore, |c`1 + c`2| ≤ 4u, so that
|ε4| ≤ 2u2. This first improvement is at the origin of the “7u2” in Theorem 2.4.
However, we can improve the bound further by considering the following sub-
cases:

• if |c`2| ≥ 2u then c`2 is a multiple of 4u2, therefore c`1+c`2 is a multiple of
4u2. Since it has an absolute value less than or equal to 4u, this means that
it is a floating-point number. An immediate consequence is RN(c`1+c`2) =
c`1 + c`2 and ε4 = 0. This gives

|η| ≤ |x`y`|+ |ε1|+ |ε2|+ |ε3|+ |ε4|
≤ u2 + u2 + u2 + 2u2 + 0 = 5u2.

• if |c`2| < 2u, which implies |ε3| ≤ u2 then

– if |t`1| < u/2 then |ε1| ≤ u2/4 and |y`| < u/2, so that |x`y`| < u2/2,
so that

|η| ≤ |x`y`|+ |ε1|+ |ε2|+ |ε3|+ |ε4|
≤ u2/2 + u2/4 + u2 + u2 + 2u2 = 4.75u2;

– if |t`2| < u/2 then |ε2| ≤ u2/4 and |x`| < u/2, so that |x`y`| < u2/2,
which gives the same result;

– if |t`1| ≥ u/2 and |t`2| ≥ u/2 then let us first note that t`1 and t`2
(and therefore t`1 + t`2) are multiples of u2.

∗ if |t`1| < u or |t`2| < u then either |ε1| ≤ u2/2 or |ε2| ≤ u2/2, and
the number |t`1 + t`2| is a multiple of u2 less than 2u (otherwise
|c`2| would be ≥ 2u). Therefore:

· if |t`1 + t`2| is less than u or if it is an even multiple of u2

then it is a floating-point number, which implies ε3 = 0, so
that

|η| ≤ |x`y`|+ |ε1|+ |ε2|+ |ε3|+ |ε4|
≤ u2 + u2/2 + u2 + 0 + 2u2 = 4.5u2.

· if |t`1 + t`2| is larger than u and is an odd multiple of u2,
then it is halfway between two consecutive FP numbers, so
that |ε3| = u2 exactly and

|η| ≤ |x`y`|+ |ε1|+ |ε2|+ |ε3|+ |ε4|
≤ u2 + u2/2 + u2 + u2 + 2u2 = 5.5u2.

Furthermore, if RN is round-to-nearest ties to even then t`1+
t`2 is rounded to an even multiple of ulp(t`1 + t`2) = 2u2.
This implies that c`2 is a multiple of 4u2. Hence, c`1+c`2 is a

17

multiple of 4u2 of absolute value less than 4u. It is therefore
a floating-point number, so that ε4 = 0, and

|η| ≤ |x`y`|+ |ε1|+ |ε2|+ |ε3|+ |ε4|
≤ u2 + u2/2 + u2 + u2 + 0 = 3.5u2.

∗ finally, if |t`1| ≥ u and |t`2| ≥ u, then t`1 and t`2 are multiple of
2u2, so that their sum is a multiple of 2u2 of absolute value less
than 2u. It is therefore a floating-point number, so that ε3 = 0,
which implies

|η| ≤ |x`y`|+ |ε1|+ |ε2|+ |ε3|+ |ε4|
≤ u2 + u2 + u2 + 0 + 2u2 = 5u2.

To sum up, we have shown that when xhyh < 2, the absolute error bound η
is less than 11

2 u
2 in the general case, and less than 5u2 with the additional

assumption that RN is “round-to-nearest ties to even”. Let us now deduce
relative error bounds from that. We can notice that if xh = 1 or yh = 1
then c`1 = 0, so that ε4 = 0, and either ε1 = 0 or ε2 = 0. Thus |η| ≤
u2 + 0 + u2 + 2u2 + 0 = 4u2 and the relative error bound is less than

4u2(
1− u

2

)2 ,
which is less than the bound (3) as soon as u ≤ 1/16 (i.e., as soon as
p ≥ 4). Now, if xh and yh are different from 1, they are larger than or
equal to 1 + 2u, so that x and y are larger than or equal to 1 + u, and the
relative error is bounded by

11
2 u

2

(1 + u)2

in the general case, and by
5u2

(1 + u)2

with the additional assumption that RN is “round-to-nearest ties to even”.

It is worth mentioning that the bounds given by Theorem 2.7 are tight:

• With RN being “ round-to-nearest ties to even” and p = 24, error 4.98575990u2

is reached with xh = 2097221/221, x` = 16777007/248, yh = 131077/217,
and y` = 16777037/248;

• With RN being “ round-to-nearest ties to zero” and p = 53, error 5.490790833u2

is reached with xh = 4503599652744837/252, x` = 9007199254569309/2106,
yh = 2251799817602973/251, and y` = 4503599582208165/2105.

18

2.7 Proof of Theorem 2.8

Without loss of generality, we assume that 1 ≤ xh ≤ 2−2u and 1 ≤ yh ≤ 2−2u.
This implies |x`| ≤ u and |y`| ≤ u. We have 1 ≤ xhyh < 4, and

ch + c`1 = xhyh,

with |c`1| ≤ 2u.
Since xh and yh are both multiple of 2u, their product is a multiple of

4u2 = 22−2p. Since ch (which is a floating-point number larger than or equal to
1) is a multiple of 2u = 21−p, the number c`1 = xhyh − ch is a multiple of 4u2.

Since |xhy`| ≤ 2u− 2u2, we have |t`| ≤ RN(2u− 2u2) = 2u− 2u2, and

t` = xhy` + ε1, with |ε1| ≤ u2.

This gives |t` + x`yh| ≤ 4u− 4u2, so that |c`2| ≤ RN(4u− 4u2) = 4u− 4u2,
and

c`2 = t` + x`yh + ε3, with |ε3| ≤ 2u2.

Therefore, |c`1 + c`2| ≤ 6u− 4u2, which gives |c`3| ≤ 6u, and

c`3 = c`1 + c`2 + ε4, with |ε4| ≤ 4u2.

Since ch ≥ 1 and |c`3| ≤ 6u, as soon as 6u ≤ 1 (which holds as soon as
p ≥ 3), we can use the Fast2Sum algorithm, and

zh + z` = ch + c`3.

Defining
η = (zh + z`)− xy, (15)

we obtain
|η| ≤ |x`y`|+ |ε1|+ |ε3|+ |ε4|

≤ u2 + u2 + 2u2 + 4u2 = 8u2.
(16)

Let us now give a case-by-case analysis, for obtaining a bound on the relative
error |η|/(xy) and, in some cases, improving the bound (16).

2.7.1 If xhyh ≥ 2

In that case xy ≥ xh(1 − u) · yh(1 − u) > 2(1 − u)2. So, that, using (14), the
relative error is bounded by

4u2

(1− u)2
,

which is less than the bound (4) as soon as u ≤ 1/32 (i.e., as soon as p ≥ 5).

19

2.7.2 If xhyh < 2

We can observe that |c`1| ≤ u, and that Lemma 2.11 implies |t` + x`yh| ≤
xhu + yhu ≤ 3u − 2u2, so that |c`2| ≤ 3u. Therefore, |c`1 + c`2| ≤ 4u, so that
|ε4| ≤ 2u2. This first improvement is at the origin of the “6u2” in Theorem 2.5.
However, we can improve the bound further by considering the following sub-
cases:

• if |c`2| ≥ 2u then c`2 is a multiple of 4u2, therefore c`1+c`2 is a multiple of
4u2. Since it has an absolute value less than or equal to 4u, this means that
it is a floating-point number. An immediate consequence is RN(c`1+c`2) =
c`1 + c`2 and ε4 = 0. This gives

|η| ≤ |x`y`|+ |ε1|+ |ε3|+ |ε4|
≤ u2 + u2 + 2u2 + 0 = 4u2.

• if |c`2| < 2u, then |ε3| ≤ u2, so that

|η| ≤ |x`y`|+ |ε1|+ |ε3|+ |ε4|
≤ u2 + u2 + u2 + 2u2 = 5u2.

To sum up, we have shown that when xhyh < 2, the absolute error bound η
is less than 5u2. We can notice that if xh = 1 or yh = 1 then c`1 = 0, so that
ε4 = 0, so that |η| ≤ 3u2 and the relative error bound is less than

3u2(
1− u

2

)2 ,
which is less than the bound (4) as soon as u ≤ 1/8 (i.e., as soon as p ≥ 3).
Now, if xh and yh are different from 1, they are larger than or equal to 1+2u, so
that x and y are larger than or equal to 1 +u, and the relative error is bounded
by

5u2

(1 + u)2

3 Formalization

We describe here our formalization in Coq of the major results published in the
original paper [15] and the additional results presented in Section 2 (i.e., Theo-
rems 2.7, 2.8, and 2.9), trying to keep the notations and theorem statements as
close as possible to those of [15]. All our formal proofs, along with explanations
for running them, are freely available at http://www-sop.inria.fr/members/

Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip. We will
not give all details of the mathematical proofs that the reader will find in the
original article and in Section 2 of this one, but we will focus on the problems
we have encountered when doing the formalization.

20

http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip
http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip
http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip
http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip

3.1 Context of the formalized proofs

We first define the various notions used in the proofs published in [15]. For this
purpose, we rely on the Flocq library [4, 5], which provides several definitions
and theories (properties and proofs) on floating-point arithmetic.

Local Notation two := radix2. (* 2-radix from Flocq *)

(* bpow is the Flocq function taking a radix and an exponent as arguments

returning radix^e : 2^e here *)

Notation pow e := (bpow two e).

Variables p : Z. (* precision *)

Hypothesis Hp : (1 < p).

(* radix-2, precision-p floating-point with unlimited exponent range *)

Notation fexp := (FLX_exp p).

Notation format := (generic_format two fexp).

Let us now define in Coq the roundoff error unit u, and let us state and prove
some properties.

(* we use the generic ulp function from Flocq associated to a given FP

format defined by a radix and an exponent function *)

Notation ulp := (ulp two fexp).

(* The u constant *)

Let u := pow (-p).

Lemma u_ulp1: u = /2 * (ulp 1).

(* Property of the relative error *)

Lemma rel_error_u t (tn0 : t <> 0) : Rabs ((rnd_p t - t) /t) <= u/(1+u).

Here, rnd p stands for the round to nearest function RN in the FP set. It is
defined as:

Variable choice : Z -> bool.

Local Notation rnd_p := (round two fexp (Znearest choice)).

Note that here the choice function is just declared as a boolean function
on integers: no specific tie-breaking rule (such as the classical ties-to-even rule,
which is, as said above, the default in IEEE 754 arithmetic) is specified. We
will specify it, if needed, during the proof process. This makes it possible to
formalize more general results and to clearly locate places when the ties-to-even
tie breaking rule is necessary
The concept of double-word representation of a real number is defined in Coq
as a property on a pair (xh, x`) of real numbers, as follows (one easily checks
that this is a direct transcription of Definition 2.1):

Definition double_word xh xl := ((format xh) /\ (format xl))

/\ (xh = rnd_p (xh + xl)).

where format x, as defined above, means that the real number x belongs to the
set of radix-2, precision-p FP numbers.

21

The Fast2Sum and TwoSum algorithms are provided by the Flocq library,
along with the proofs that the pair of FP numbers they return satisfies the
property that their sum is exactly the sum of the two FP numbers given in
input:

(* first projection: rounded result *)

Definition TwoSum_sum a b := fst (TwoSum a b).

(* second projection: error *)

Definition TwoSum_err a b := snd (TwoSum a b).

Lemma TwoSum_correct a b (Fa : format a) (Fb : format b):

TwoSum_err a b = a + b - TwoSum_sum a b.

Note that, in the Flocq library, the proof of correctness of Fast2Sum(a, b)
was based on the rather strong condition that |a| ≥ |b|. This was not sufficient in
some cases, for example for the proof of the AccurateDWPlusDW algorithm (Al-
gorithm 4), and we had to formalize again the proof of correctness of Fast2Sum
with the somehow weaker condition on the exponents given at the beginning of
Section 2.1. This new, more general, proof should be soon included in the Flocq
library.

Moreover, as some algorithms of [15] are used in other algorithms (for exam-
ple DWDivDW1 uses DWTimesFP1, assuming of course that the pair returned
by DWTimesFP1 is a double-word number), we have also needed to formalize
the proof that their result is a double-word number. In all algorithms, the result
is a pair returned by a Fast2Sum. So we have to prove that the pair (s, t) com-
puted by a correct call to Fast2Sum (or by a call to TwoSum) is a double-word
number.
Incidentally, that proof is straightforward : s, t, and the outputs of the rounding
function rndp are FP numbers, and the correctness of the algorithms implies
that s+t = a+b with s = rnd p (a+b) so that rnd p (s+t) = rnd p (a+b) = s.

3.2 Formalization of the DWPlusFP algorithm

DWPlusFP (Algorithm 5) is defined in Coq as follows:

Variables xh xl y : R.

Notation sh := (TwoSum_sum xh y).

Notation sl := (TwoSum_err xh y).

Notation v := (rnd_p (xl + sl)).

Definition DWPlusFP := (Fast2Sum sh v).

With these definitions, the correctness and error bound are stated in the follow-
ing theorem (which is the Coq equivalent of Theorem 2.3):

Notation x := (xh + xl).

Notation zh := (Fast2Sum_sum sh v).

22

Notation zl := (Fast2Sum_err sh v).

Definition relative_errorDWFP := (Rabs (((zh + zl) - (x + y))/ (x + y))).

Definition DWFP_add_correct xh xl y :=

relative_errorDWFP xh xl y)<= 2 * u^2 /\ (double_word zh zl).

Theorem DWPlusFP_correct (xh xl y : R)

(Fy : format y)

(DWx: double_word xh xl): DWFP_add_correct xh xl y.

As explained above, the fact that the result is a double-word number is a
direct consequence of the fact that the last instruction of the algorithm is a
Fast2Sum, so DWPlusFP returns a double-word number (if the Fast2Sum is
correct, i.e., if it is called with operands that satisfy the required conditions on
the exponents). Incidentally, let us note that the proof of correctness of the
use of Fast2Sum (condition on the operands) is closely linked to the proof of
correctness of the error bound, these proofs cannot be done independently: the
formalization, like the paper proof, must combine the two, i.e. formalizing that
the result is a DW number requires to unroll all the proof of the error bound
until the call to Fast2Sum.

The proofs of [15] all follow the same pattern: first of all they deal with
particular cases: null operands, null intermediate sums, etc. Then, by using
properties of the operation being implemented by the algorithm (+, ×, ÷), the
domain where the operands lie (or the domain where at least one of the operands
lies) is restricted by using an argument of the form “without loss of generality,
we can assume P”, where P is a arithmetic property on the operands.

In the case of the DWPlusFP algorithm, in the first (unpublished) version
submitted for review, the authors write: “Now, without loss of generality, we
can assume |xh| ≥ |y|. If this is not the case, since xh and y play a symmetrical
role in the algorithm, we can exchange them in our proof: We add the double-
word number (y, x`) and the floating-point number xh”

We encountered our first problem of formalization while trying to prove that
assertion in Coq. Let us first focus on the wlog (without loss of generality)
notion in mathematics, then we will try to understand its translation in a proof
assistant.

3.2.1 Wlog in mathematics and in Coq

When, in a mathematical proof, we want to use an argument of symmetry, we
express that “without loss of generality” we can assume an adequate hypothesis,
which does not change the desired result. For example, to prove a property
P(x,y) in which x and y play symmetrical roles, we can assume that x ≤ y,
which sometimes simplifies the proof (this is precisely that kind of assumption
that was made in the case of DWPlusFP). This implicitly requires the reader to
convince himself or herself of the equivalence of the result with or without this
additional assumption. However, in the case of formal proofs, it is necessary to:

23

i) prove first the result assuming the added hypothesis, and

ii) show that from the proof with the added hypothesis one can deduce the
proof in the general case.

To do this we use a simple but effective Coq tool: the “wlog” command. For
example, to prove the proposal (P x y), the command:

wlog H: x y / x <= y

will generate two sub-goals:

H : \forall x y, x <= y -> P x y,

and3

H -> (P x y).

In addition, as we can see in the statement of hypothesis H, the variables x
and y involved by the wlog extra assumption x ≤ y, are generalized by the use
of a “∀”. The Coq system also detects the assumptions implying x or/and y

in the context, and signals an error to the user, requiring that these hypotheses
should also be generalized for the logical consistency of the proof context. In the
wlog command, the generalized objects (variables or hypotheses) are provided
by the user between the “:” and the “/” that precede the wlog hypothesis (x
<= y in our example). For instance, if the context contains the hypotheses “x
has a red nose”, “y has blue eyes” and “x and y were born in the same year”,
Coq asks for the generalization of these three hypotheses. It is up to the user
to decide for each hypothesis if it is useful for the proof of wlog (and in this
case he or she must generalize it), or if it is not useful (and in this case he or
she must remove it from the context before calling “wlog ”). So, if the context
contains assumptions about x or y (let us call them H1x, H2x, Hxy, and Hy),
the wlog command will require the generalization of these four assumptions
when generalizing the associated x and y variables. If H1x, Hxy and Hy only are
useful for the following of the wlog proof, the user will first remove H2x from
the context (by calling the clear H2x command), then the call

wlog H: x y H1x Hxy Hy / x <= y

will generate as first sub-goal:

H : \forall x y H1x Hxy Hy, x<= y -> P x y,

meaning that ∀x y such that H1x, Hxy and Hy hold, if x ≤ y then P(x,y) holds.

It is that generalization mechanism that allowed us to find an error.
Let us resume our work on the proof of the DWPlusFP algorithm. At this

point of the proof, we know that (xh, x`) is a DW number, y is a FP number,
x 6= 0 and xh + y 6= 0. The current context in Coq (the hypotheses are above
the double line, and the current goal to be proven is below the double line) is
the following:

3Note that in Coq, one writes a simple arrow “->” for an implication (⇒).

24

y, xh, xl : R
Fy : format y

DWx : double_word xh xl

xh0 : xh <> 0
xhy0 : xh + y <> 0

...
============================
DWFP_add_correct xh xl y

Then calling the command:

wlog xhy : y xh Fy xhy0 DWx xh0 / Rabs y <= Rabs xh}

generates the two sub-goals:

xh, xl, y : R
Fy : format y

DWx : double_word xh xl

xh0 : xh <> 0
xhy0 : xh + y <> 0
============================
(forall y xh : R,
format y −> xh + y <> 0 −> double_word xh xl −> xh <> 0 −>
Rabs y <= Rabs xh −> DWFP_add_correct xh xl y) −>
DWFP_add_correct xh xl y

and

xl : R
y, xh : R
Fy : format y

xhy0 : xh + y <> 0
DWx : double_word xh xl

hxh0 : xh <> 0
xhy : Rabs y <= Rabs xh

============================
DWFP_add_correct xh xl y

To prove the first sub-goal, we have to consider two cases. If |y| ≤ |xh|, then we
obtain the result directly. If |xh| ≤ |y|, we call the hypothesis by exchanging xh
and y, so we must first prove that the DWFP add correct formula is symmetrical
in xh and y, and then that the other hypotheses (format xh, y + xh <> 0,

double word y xl, y <> 0) hold.
The symmetry of the formula is deduced from the commutativity of the sum

(the variables sh s` and v are symmetrical in xh and y, as are zh and z`, and
the relative error). The same applies to the assumption y + xh 6= 0. Moreover
xh being a double-word number, we get by definition that xh is a FP number,
and as xh 6= 0 and |xh| ≤ |y|, we get that y 6= 0).

The last thing we need to prove is that the pair (y, x`) is a double-word
number. We know that y and x` are floating point numbers (by hypothesis for
y and by definition of (xh, x`) being a DW number for x`). So we have just to

25

prove that y = RN(y+x`). The pair (xh, x`) being a double-word number, x` is
negligible with respect to xh, therefore it is negligible with respect to y, which is
greater in absolute value than xh. So it seems reasonable to think that (y, x`) is
a DW number, which is what the authors assumed in a first draft of the article.
But the problem is that this is not always true: in the particular case where
both (xh + x`) and (y + x`) are exactly halfway between two consecutive FP
numbers, the rounding of (y, x`) could be the successor or the predecessor of y
depending of the tie-breaking rule, i.e., depending on the choice function. So
it is not always true that (y, x`) is a DW number and it was impossible to prove
that hypothesis with Coq.

We alerted the authors, and they were able to add this little sentence as a
footnote in the final version:

(y, x`) may not be a double-word number, according to definition
(. . .), in the case x` = 1/2 ulp(y) = 1/2.ulp(xh). However, one
easily checks that in that case the algorithm returns an exact result.

This assertion was correct, and the algorithm does return an exact result (and
thus a null error), but this result was not so easy to formalize. Indeed, in the
case where the sum (xh + y) is not a floating number, there are several cases
to consider to verify that the calculation of variable v at Line 2 of Algorithm 5
is exact (it is that calculation that can produce the error of the DWPlusFP
algorithm) and that the conditions for the Fast2Sum algorithm to return a
correct result are satisfied.

This example illustrates that a simple step of a paper proof may require a
more laborious formalization work than expected. This example shows also that
the use of wlogs in proofs can be dangerous.

However, wlogs are very useful in proofs of algorithms of FP arithmetic.
They make it possible to reduce, by successive refinements, the interval of study
for the input variables. For example for the correctness of DWPlusFP, the
“wlog” is used three times, with the hypotheses |y| ≤ |xh|; then 0 < xh; and
finally 1 ≤ xh ≤ 2−2u. Note that, in reference [15], this form of proof was used
several dozen times, and only the case presented here was incorrect.

3.3 Methodology for proofs with “wlog”

During this formalization work, we developed a methodology to facilitate proofs
using “wlog”. The idea is to treat separately the core of the proof, in the
particular case where all the hypotheses resulting from all the “wlog”(s) are
satisfied. This makes it possible, thanks to notations and fixed operands, to
follow as closely as possible the paper proof. Then we can treat the general
case (with arbitrary operands: we generalize all the variables) which consists in
treating first the particular cases, then the successive wlog(s), in order to apply
the previous theorem at the very end.

26

3.4 Formalisation of the DWTimesDW1, DWTimesDW2,
and DWTimesDW3 algorithms

Let us now consider the second error, in the proof of the double-word multipli-
cation algorithms DWTimesDW1, DWTimesDW2 and DWTimesDW3 (Algo-
rithms 6, 7, and 8 in this paper, Algorithms 10, 11 and 12 in [15]). The original
proof used the wrong lemma 2.10, and remained undetected before publication.
When formalizing, we have to recognise that we first tried to prove this wrong
lemma! Then we thought it was just a typo in the statement and we continued
the formalization to understand under which conditions it was used, this led
us to be convinced that there really was an error. We first proved a close (but
right!) lemma which allowed us to formalize the proofs of correctness of the first
2 theorems but which was not sufficient for the third one.

Lemma 3.1 (First replacement of the (wrong) Lemma 5.2 in [15], now replaced
by the more accurate Lemma 2.11 of this paper). Let a and b be two positive
real numbers. If ab ≤ 2, a ≥ 1 and b ≥ 1, then a+ b ≤ 3.

For the third theorem, we have needed the slightly stronger Lemma 2.11,
given in Section 2.4.

The correct proofs (validated by Coq just by following the rationale of the
paper proofs) are given in Section 2.4 of this paper (and with an improved error
bound for each of the three algorithms).

Note that the paper [15] gave detailed proof, only of the first theorem, and
suggested to the reader that the other proofs were similar. The error in the proof
of the first theorem imposed a fortiori the formalization of the other theorems
as well. In any case, claiming that the proofs are similar is not possible in a
formalization unless the scripts are exactly the same.

Conclusion and general discussion

The first conclusion of this paper is that the algorithms and error bounds given
in [15] are all correct, despite errors (one marginal and detected before pub-
lication, and one more serious) in two proofs. We have also improved some
of the error bounds and shown the asymptotic optimality of the bound of Al-
gorithm 4. Our formal proofs are available at http://www-sop.inria.fr/

members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip.
This work provides the users with a set of formally proven algorithms for ma-
nipulating double-word numbers, with sharp error bounds: this helps making
double-word arithmetic (once qualified by Kahan as “an attractive nuisance, like
an unfenced backyard swimming pool” [19]) a trustable tool. A byproduct of
our work is an improvement in the Flocq library, where the proof of correctness
of Fast2Sum(a, b) will now use a weaker condition (see Section 3.1).

Beyond the particular case of these algorithms for manipulation of double-
word numbers, this study leads to some observations concerning the use of
formal proof techniques in computer arithmetic:

27

http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip
http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip
http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip
http://www-sop.inria.fr/members/Laurence.Rideau/DW_arithmetic-submitted_paper_release.zip

• beyond just giving confidence in the results, formal proof helps to gener-
alize the results (for example, we could rather easily check which bounds
do not depend on the tie-breaking rule of the RN rounding function: the
initial proofs were built with the “ties to even” default tie-breaking rule
in mind);

• the proofs of floating-point algorithms such as the ones presented in this
paper and in [15] do not use, in general, very complex and abstract math-
ematics, but they are frequently very long, with often many particular
cases need to be considered. This makes them error-prone and, at times,
quite boring to read (with the consequence that few people will actually
fully check them, which is dangerous): formalization is very useful in that
context;

• Many classical results of the FP literature are still not formalized. Contin-
uing efforts in this domain is necessary, because all of numerical computing
is built upon the underlying arithmetic;

• Tight cooperation between specialists of formal proof and specialists of
FP arithmetic is necessary, otherwise too much time is lost trying to find
again proofs of implicit sub-properties that are well-known by the spe-
cialists, or trying to understand strange intermediate results that are just
straightforward typos in the paper (typically, the paper proof is OK but
an error such as a wrong variable name was produced when typing it:
the computer arithmetic specialist will not mind the typo, but the formal
proof specialist will get lost). Training people competent in both computer
arithmetic and formal proof would greatly help. Also, the formal proof
tools remain complex to use by nonspecialists: making them more easily
usable by researchers and engineers from other domains must remain a
priority;

• “WLOGs” (Without loss of generality. . .) are necessary: without them
the proofs would be much longer, much heavier, and therefore more likely
to contain undetected errors (for instance, in the proof of Algorithm 6, one
would have to carry everywhere the exponent of xh instead of assuming
wlog, that is is between 1 and 2). But they must be handled with much
care, because they are the major source of nontrivial errors;

• maybe, when publishing paper proofs, we should distinguish between the
“rough sketch of the proof”, which is essential for the reader to understand
the underlying idea, and the fully detailed proof, that could be a down-
loadable appendix. Ideally, that fully detailed proof would be a formal
proof.

28

References

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), pages 1–84, July 2019.

[2] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. Verified compilation of floating-point computations. Journal
of Automated Reasoning, 54(2):135–163, 2015.

[3] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization
of real analysis: A survey of proof assistants and libraries. Mathematical
Structures in Computer Science, 26(7):1196–1233, 2016.

[4] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving
floating-point algorithms in Coq. In 20th IEEE Symposium on Computer
Arithmetic (ARITH-20), pages 243–252, Tübingen, Germany, 2011.

[5] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal
Proofs. ISTE Press – Elsevier, 2017.

[6] Tim Coe and Ping Tak Peter Tang. It takes six ones to reach a flaw. In
12th IEEE Symposium on Computer Arithmetic (ARITH-12), pages 140–
146, July 1995.

[7] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library
of floating-point numbers and its application to exact computing. In
14th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), pages 169–184, Edinburgh, Scotland, 2001.

[8] Florent de Dinechin, Alexey V. Ershov, and Nicolas Gast. Towards the
post-ultimate libm. In 17th IEEE Symposium on Computer Arithmetic
(ARITH-17), pages 288–295, 2005.

[9] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18(3):224–242, 1971.

[10] John Harrison. Floating-point verification in HOL light: The exponen-
tial function. Technical Report 428, University of Cambridge Computer
Laboratory, 1997.

[11] John Harrison. A machine-checked theory of floating point arithmetic. In
12th International Conference in Theorem Proving in Higher Order Logics
(TPHOLs), volume 1690 of Lecture Notes in Computer Science, pages 113–
130, Nice, France, September 1999. Springer-Verlag, Berlin.

[12] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision
floating-point arithmetic. In 15th IEEE Symposium on Computer Arith-
metic (ARITH-15), pages 155–162, June 2001.

29

[13] Y. Hida, X. S. Li, and D. H. Bailey. C++/fortran-90 double-double and
quad-double package, release 2.3.17, March 2012. Accessible electronically
at http://crd-legacy.lbl.gov/~dhbailey/mpdist/.

[14] Konstantin Isupov. Performance data of multiple-precision scalar and vec-
tor blas operations on cpu and gpu. Data in Brief, 30:105506, 2020.

[15] Mioara Joldeş, Jean-Michel Muller, and Valentina Popescu. Tight and
rigourous error bounds for basic building blocks of double-word arithmetic.
ACM Transactions on Mathematical Software, 44(2), 2017.

[16] Mioara Joldeş, Jean-Michel Muller, Valentina Popescu, and Warwick
Tucker. CAMPARY: Cuda multiple precision arithmetic library and appli-
cations. In 5th International Congress on Mathematical Software (ICMS),
July 2016.

[17] W. Kahan. Lecture notes on the status of IEEE-754. Available at http:

//www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF, 1997.

[18] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, Reading, MA, 3rd edition, 1998.

[19] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
A. Kapur, M. Martin, T. Tung, and D. J. Yoo. Design, implementation and
testing of extended and mixed precision BLAS. Technical Report 45991,
Lawrence Berkeley National Laboratory, 2000. https://publications.

lbl.gov/islandora/object/ir%3A115848.

[20] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
A. Kapur, M. Martin, T. Tung, and D. J. Yoo. Design, implementation
and testing of extended and mixed precision BLAS. ACM Transactions on
Mathematical Software, 28(2):152–205, 2002.

[21] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50,
1965.

[22] J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof
of the correctness of the kernel of the AMD5K86 floating point division
algorithm. IEEE Transactions on Computers, 47(9):913–926, September
1998.

[23] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1.,
ISBN 978-0-8176-4704-9.

[24] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-point
matrix arithmetic provably accurate to the penultimate digit. ACM Trans-
actions on Mathematical Software, 29(1):27–48, 2003.

30

http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://publications.lbl.gov/islandora/object/ir%3A115848
https://publications.lbl.gov/islandora/object/ir%3A115848

[25] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

[26] E. Jason Riedy and James Demmel. Augmented arithmetic operations pro-
posed for IEEE-754 2018. In 25th IEEE Symposium on Computer Arith-
metic, Amherst, MA, USA, pages 45–52, June 2018.

[27] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast ro-
bust geometric predicates. Discrete Computational Geometry, 18:305–363,
1997.

31

	Introduction
	Algorithms for double-word arithmetic
	The basic building blocks: ``error free transforms''
	An example
	The various algorithms of JoldesPopescuMuller2016 we have formally proven
	The major problems encountered
	Proof of Theorems 2.6 and 2.9
	Proof of Theorem 2.7
	If xhyh 2
	If xhyh < 2

	Proof of Theorem 2.8
	If xhyh 2
	If xhyh < 2

	Formalization
	Context of the formalized proofs
	 Formalization of the DWPlusFP algorithm
	Wlog in mathematics and in Coq

	Methodology for proofs with ``wlog''
	 Formalisation of the DWTimesDW1, DWTimesDW2, and DWTimesDW3 algorithms

