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SUMMARY

EWSR1-FLI1, the chimeric oncogene specific for
Ewing sarcoma (EwS), induces a cascade of
signaling events leading to cell transformation. How-
ever, it remains elusive how genetically homoge-
neous EwS cells can drive the heterogeneity of
transcriptional programs. Here, we combine inde-
pendent component analysis of single-cell RNA
sequencing data from diverse cell types and model
systems with time-resolved mapping of EWSR1-
FLI1 binding sites and of open chromatin regions to
characterize dynamic cellular processes associated
with EWSR1-FLI1 activity. We thus define an exqui-
sitely specific and direct enhancer-driven EWSR1-
FLI1 program. In EwS tumors, cell proliferation and
strong oxidative phosphorylation metabolism are
associated with a well-defined range of EWSR1-
FLI1 activity. In contrast, a subpopulation of cells
Cell Re
This is an open access article und
from below and above the intermediary EWSR1-
FLI1 activity is characterized by increased hypoxia.
Overall, our study reveals sources of intratumoral
heterogeneity within EwS tumors.

INTRODUCTION

Ewing sarcoma (EwS) is a highly aggressive pediatric bone

cancer that is defined by a pathognomonic recurrent somatic

mutation: a fusion between the EWSR1 gene and an ETS family

member, most frequently the FLI1 gene (Delattre et al., 1992;

Gr€unewald et al., 2018). This leads to the expression of

EWSR1-FLI1, an aberrant and potent chimeric transcription fac-

tor. EWSR1-FLI1 can act both as a transcriptional activator and

as a repressor, depending on the sequences of DNA binding

sites and on the presence of additional co-factors (Bilke et al.,

2013; Riggi et al., 2014). EWSR1-FLI1 binds to DNA either at

ETS-like consensus sites with a GGAA coremotif or at GGAAmi-

crosatellites (GGAA-mSats), which are diverted by EWSR1-FLI1

as de novo enhancers (Gangwal et al., 2008; Guillon et al., 2009;
ports 30, 1767–1779, February 11, 2020 ª 2020 The Authors. 1767
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Riggi et al., 2014). Through binding to these sites, EWSR1-FLI1

has been reported to act directly or indirectly on many key

cellular processes including the cell cycle, apoptosis, angiogen-

esis, metabolism, and cell migration (Gr€unewald et al., 2018).

EwS is genetically stable and ranks among the tumors with the

lowest mutation rates (Brohl et al., 2014; Crompton et al., 2014;

Lawrence et al., 2013; Tirode et al., 2014). Indeed, apart from the

EWSR1-FLI1 fusion, EwS harbors only a few other recurrent mu-

tations, at low frequencies: TP53 (5%–10%), CDKN2A (10%),

and STAG2 (15%) (Brohl et al., 2014; Crompton et al., 2014;

Gr€unewald et al., 2018; Huang et al., 2005; Tirode et al., 2014).

Despite this remarkable paucity of somatic mutations, EwS is a

very aggressive tumor with a strong propensity to progress,

metastasize, and resist treatments, suggesting potent adapta-

tion properties of the cancer cells. Recent data suggest that

epigenetic (DNA methylation or histone decorations) and tran-

scriptional heterogeneity can play an important role in explaining

themechanisms of such adaptations. Indeed, froma large cohort

of EwS tumors, a study on a genome-scale DNA methylation

sequencing described consistent DNA hypomethylation at en-

hancers regulated by EWSR1-FLI1 and strong epigenetic hetero-

geneity within tumors (Sheffield et al., 2017). Moreover, variable

expression of EWSR1-FLI1 was recently suggested as a source

of heterogeneity in cell lines and tumors; cells with a high level

of EWSR1-FLI1 expression (EWSR1-FLI1high) are highly prolifer-

ative, whereas EWSR1-FLI1low cells demonstrate a strong pro-

pensity to migrate, invade, and metastasize (Franzetti et al.,

2017). EwS, therefore, constitutes an appropriatemodel to inves-

tigate how a single somatic driver mutation may impact critical

cell-fate decisions, ultimately leading to tumorigenesis.

The recent development of single-cell ‘‘omics’’ technologies

facilitates the investigation of intratumoral heterogeneity at the

single-cell level, enabling the exploration of cell-to-cell variations

in gene expression (Baslan and Hicks, 2017). These approaches

can help characterize the origins of genetic and non-genetic het-

erogeneity, which canmodulate cell response to exogenous and

endogenous factors such as the activation of cancer driver

genes (Almendro et al., 2013). Such approaches can also deci-

pher essential bi- or multi-modalities in the distribution of the

expression of the genes regulating the cell fates (Shalek et al.,

2013) or the interplay between the progression through the cell

cycle and the action of signaling and/or differentiation pathways

(Buettner et al., 2015) that cannot be addressed through bulk-

cell analysis.

Here, we first used single-cell analysis to explore the dynamics

of EWSR1-FLI1-related expression changes at the single-cell

level using a time course upon the EWSR1-FLI1 induction.

EwS cell transcriptomic profiles were also compared with a set

of single-cell profiles from other reference systems chosen by

various aspects of similarity to the EwS cell system: time series

experiments, cells corresponding to EwS cell-of-origin, or cells

of various tumor types. This analysis was combined with the

exploration of changes in histone decorations. Overall, this

approach allowed us to distinguish generic transcriptional

programs that are shared by most scrutinized systems from

system-specific, and particularly EwS-specific, transcriptional

programs. These components were then used to investigate sin-

gle-cells from EwS tumors. This two-step approach illuminates
1768 Cell Reports 30, 1767–1779, February 11, 2020
the heterogeneity of EwS tumors, distinguishing different cell

populations based on EWSR1-FLI1 activity, proliferation, and

metabolic characteristics.

RESULTS

Experimental Design forCollecting EwSSingle-Cell RNA
Sequencing Time-Resolved Profiles
In order to explore the dynamics of individual cell transcrip-

tomes under EWSR1-FLI1 expression, we used the previously

developed A673/TR/shEF inducible cellular model derived

from the A673 EwS cell line, where the expression of EWSR1-

FLI1 can be modulated through doxycycline-controlled short

hairpin RNA (shRNA) (Carrillo et al., 2007). Following a down-

modulation of EWSR1-FLI1 (EWSR1-FLI1low) by 7 days of

doxycycline (DOX) treatment, we performed a time course

experiment after the removal of DOX from the medium, leading

to EWSR1-FLI1 re-expression. Using the C1 Single-Cell Auto

Prep System (Fluidigm), we made single-cell transcriptome

measurements at seven time points (days 7: EWSR1-FLI1low,

9, 10, 11, 14, 17, and 22: EWSR1-FLI1high) (Figure 1A, left

panel). We also tested in vivo the impact of EWSR1-FLI1

on gene expression. From A673/TR/shEF xenografts in a

severe combined immunodeficiency (SCID) mouse, single-cell

RNA sequencing (scRNA-seq) was conducted without DOX

(EWSR1-FLI1high) and after 7 days of DOX treatment (EWSR1-

FLI1low). The modulation of EWSR1-FLI1 protein expression

was confirmed by western blot (Figure 1A, right panel). We

also conducted scRNA-seq experiments on three EwS pa-

tient-derived xenografts (PDXs), established in the laboratory

via implantation of tumor samples in SCID mice (Table 1).

Finally, we profiled two primary cultures of mesenchymal

stem cells (MSCs), the likely EwS cell-of-origin (Tirode et al.,

2007) (these datasets are summarized in Table S1).

We performed unsupervised analysis of the EwS single-cell

transcriptomic data by principal-component analysis (PCA).

The first principal component (PC1; 14.7% of explained vari-

ance) clearly separated in vitro (A673/TR/shEF time series and

EwS MSCs) and in vivo (A673/TR/shEF xenograft and EwS

PDXs) datasets (Figure 1B). The second principal component

(PC2; 4.2% of explained variance) projection revealed the effect

of EWSR1-FLI1 activation on transcriptomic dynamics. For the

A673/TR/shEF time series, EWSR1-FLI1low cells (d7) were

grouped close to MSCs and were clearly separated from

EWSR1-FLI1high cells (d22). As early as the second (d9) and

the third (d10) days of EWSR1-FLI1 re-expression, the distribu-

tion of single-cell transcriptomes was already significantly

different from EWSR1-FLI1low cells (d7). Four and seven days

after re-induction (d11 and d14) represented intermediate (be-

tween EWSR1-FLI1low and EWSR1-FLI1high) states of single-

cell transcriptome distributions. Finally, at d17,most of the single

cells converged to the EWSR1-FLI1high state of d22. Similarly,

EWSR1-FLI1low and EWSR1-FLI1high states of A673/TR/shEF

xenografts could be clearly distinguished. All EWSR1-FLI1high

cells, including the three PDXs, converged in the transcriptomic

space (Figure 1B). The first component was not significantly

enriched with any Gene Ontology (GO) gene set, while the

second principal component was associated with functional
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Figure 1. Ewing Sarcoma Single-Cell Tran-

scriptomic Datasets

(A) A673/TR/shEF in vitro (left panel): after 7 days

of DOX treatment, cells are extensively rinsed;

grown in a DOX-free medium for 2 days (d9), 3

days (d10), 4 days (d11), 7 days (d14), 10 days

(d17), or 15 days (d22); and isolated for scRNA-

seq. The strongly decreased expression of

EWSR1-FLI1 at d7 and the re-expression of

EWSR1-FLI1 is controlled by western blot. A673/

TR/shEF xenograft (right panel): A673/TR/shEF

were injected subcutaneously in SCID mice. After

18 days, mice were separated into two groups and

treated or not with DOX added to the drinking

water for 7 days. EWSR1-FLI1 expression was

controlled by western blot.

(B) PCA of single-cell EwS datasets. Cells are

indicated by colored circles: from d7 (light blue

circles) to d22 (dark blue dot), 348 cells; A673/TR/

shEF xenograft cells with EWSR1-FLI1 (dark blue

triangle) or without EWSR1-FLI1 (light blue trian-

gle), 215 cells; 3 EwS PDXs (red, magenta, and

green square), 142 cells; and MSCs (orange cir-

cles), 96 cells.

(C) Expression of two genes known to be modu-

lated by EWSR1-FLI1 plotted for A673/TR/shEF

in vitro, A673/TR/shEF xenograft, EwS PDXs, and

MSCs. Left panel: PRKCb expression, upregu-

lated by EWSR1-FLI1. Right panel: LOX expres-

sion, downregulated by EWSR1-FLI1. The gray

scale on the bottom illustrates the EWSR1-FLI1

level of expression.

See also Figures S1 and S2 and Table S1.
enrichment analysis to EWSR1-FLI1-modulated genes (taken

from Kinsey et al., 2006; positive correlation, p < 10�65), cell

cycle (GO: 0007049, positive correlation, p < 10�26), and extra-

cellular matrix (ECM) organization (GO: 0030198, negative corre-

lation, p < 10�25).

We also checked the single-cell expression dynamics of eight

genes known to be directly modulated by EWSR1-FLI1 (upregu-

lated genes: PRKCB, LIPI, CCND1, and NR0B1; downregulated

genes: IGFBP3, IL8, LOX, and VIM) (Figures 1C and S1). These

results confirmed consistent re-induction dynamics of EWSR1-

FLI1. Single-cell expression of these genes highlights early and

late responsive cells to EWSR1-FLI1 re-expression at any given

time point (Figures 1C and S1).

Collectively, these analyses show that these EwS single-cell

transcriptome datasets recapitulated themain results found pre-

viously in bulk expression measurements in similar biological
Cell Repor
systems. However, just as in the bulk

data, they do not distinguish between

EWSR1-FLI1 direct and indirect tran-

scriptional effects.

Joint Deconvolution of Multiple
scRNA-seq Datasets into
Independent Components
In order to create a negative control to the

EwS-specific datasets and to evaluate
the specificity of the sources of cellular heterogeneity, we jointly

normalized and merged the EwS-specific single-cell datasets

with several other single-cell datasets generated in-house or ob-

tained from public resources (Patel et al., 2014; Trapnell et al.,

2014). Altogether, we analyzed 1,964 single-cell transcriptomic

profiles from eight different datasets (Table S1). A t-Distributed

Stochastic Neighbor Embedding (t-SNE) plot of all cells is shown

in Figure S2. The different EwS-specific datasets are grouped

together, separated from the other datasets. In both in vitro

and xenograft cases, cells in which the EWSR1-FLI1 oncogene

has been induced converge to the same area at the center of

the plot. Cells of mesenchymal origin (MSCs and myoblasts)

are localized close to each other in the plot.

We applied independent component analysis (ICA) to decom-

pose the heterogeneity of scRNA-seq profiles into a relatively

small number (30, as itwasclose to theestimatedoptimal number;
ts 30, 1767–1779, February 11, 2020 1769



Table 1. PDX Samples and Sequencing Technologies Used for Single-Cell RNA-Seq Analyses, Related to Table S1

Model/

Patient PDX ID

PDX

Passage

Age at

Graft

(Weeks)

Days to

Observe

Tumor

Growth Fusion Type

Localization and Time

of Sampling of the

Primary Tumor

Secondary

Genetic

Alterations

Sequencing

Technology

IC-pPDX-3 PDX-84 8 13 40 EWSR1 ex7/

FLI1 ex6

humerus localized, at

diagnosis

CDKN2ADEL C1 Fluidigm

PDX-184 14 N/A 5 EWSR1 ex7/

FLI1 ex6

humerus localized, at

diagnosis

CDKN2ADEL Chromium 10x

Genomics

IC-pPDX-5 PDX-111 4 12 82 EWSR1 ex10/

FLI1 ex8

tibia metastatic, at

diagnosis

NA C1 Fluidigm

IC-pPDX-8 PDX-83 0 16 210 EWSR1 ex7/

FLI1 ex6

sacrum localized, at

diagnosis

STAG2R614* C1 Fluidigm

PDX-352 5 7 63 EWSR1 ex7/

FLI1 ex6

sacrum localized, at

diagnosis

STAG2R614* Chromium 10x

Genomics

IC-pPDX-52 PDX-861 1 17 148 EWSR1 ex7/

FLI1 ex6

sacrum/

ilium

metastatic at

diagnosis

NA Chromium 10x

Genomics

IC-pPDX-80 PDX-856 3 19 20 EWSR1 ex7/

FLI1 ex6

chest localized, at

relapse

NA Chromium 10x

Genomics

IC-pPDX-87 PDX-1058 12 10 11 EWSR1 ex7/

FLI1 ex6

sacrum/

ilium

metastatic, at

relapse; same

patient as

IC-pPDX-52

CDKN2ADEL;

TP53R175C
Chromium 10x

Genomics
see Method Details) of independently acting factors or indepen-

dent components (ICs). The rationale for choosing this approach

is that ICA can, in principle, deconvolute co-linear signals

(Sompairac et al., 2019; Zinovyev et al., 2013). For each IC, the

analysis associated a weight for each gene (collectively denoted

as metagene) and a score for each sample (denoted as

metasample).

We then computed Pearson’s correlation coefficients among

30 metasamples and the point biserial correlation coefficients

between meta-samples and binary vectors describing different

cell subsets (e.g., the Ewing cell subset was described as a vec-

tor with value 1 for each cell of EwS origin and 0 otherwise). This

correlation matrix was then used to produce a two-dimensional

PCA plot that positioned the different ICs and sample groups

relative to each other. This analysis enabled us to distinguish

generic and cell-type-specific independent sources of heteroge-

neity (Figure 2A; Table S2), including EwS-specific ICs (IC10 and,

to a lesser degree, IC30) as well as components specific to other

cell types (Figure 2A). In addition, ICA deconvolution leads to the

identification of components not specific to a single cell type,

whose correlations with the cell subset binary vectors were small

(see bottom-right part of Figure 2A).

Generic and EWSR1-FLI1-Specific Components
We then looked for biological processes that could be associ-

ated with each of the ICs. For this, we defined two sets of top-

contributing genes for each component: one with positive

weights and one with negative weights (denoted as ICx+ and

ICx�, respectively, where x denotes the component number

and ± indicates the positive and negative tails of the weight dis-

tribution, respectively), using a threshold of five standard devia-

tions roughly corresponding to a statistical significance of 1%.

On these, we then performed gene set enrichment analyses
1770 Cell Reports 30, 1767–1779, February 11, 2020
(GSEAs) using the ToppGene suite (Chen et al., 2009) (Table

S3; see also http://bioinfo-out.curie.fr/projects/sitcon/mosaic/

toppgene_analysis/).This analysis highlighted associations with

various generic biological processes—some having remarkably

strong enrichment scores—and led us to focus on four gene

sets: IC1+, IC2+, IC10+, and IC30+. Thus, IC1+ was associated

with chromosome segregation (GO: 0007059; p = 10�80) and

mitotic nuclear division (GO: 0007067; p = 10�80); IC2+ with

DNA replication (GO: 0006260; p = 10�69); and IC30+ with extra-

cellular matrix organization (GO: 30198; p = 10�14). We matched

the IC1+ and IC2+ scores to two recently established transcrip-

tomic signatures for the specific phases of the cell cycle (Giotti

et al., 2017) and found a strong match between the IC1+ and

G2/M scores and between the IC2+ andG1/S scores (Figure S3).

Hence, for the sake of clarity, in what follows we will refer to the

IC1+, IC2+, and IC30+ gene sets as IC-G2/M, IC-G1/S, and IC-

ECM, respectively.

The IC10+ list (220 genes; Table S4) was highly enriched in

‘‘genes up-regulated in mesenchymal stem cells engineered to

express EWSR1-FLI1 fusion protein’’ (Riggi et al., 2008) (p =

10�102) and several other EwS-related transcriptomic signatures

from the MSigDB C2 collection (targets of EWSR1-ETS fusions

up [Miyagawa et al., 2008] p = 10�50; targets of EWSR1-FLI1

fusion [Hu-Lieskovan et al., 2005] p = 10�48; and Ewing family tu-

mor [Staege et al., 2004] p = 10�25) and, to a lesser extent, with

the EwS gene set (C3536893 entry in DisGeNET database

[Piñero et al., 2015] p = 10�9). However, unlike previously re-

ported EwS-related gene signatures, IC10+ was not enriched

in cell-cycle-related reference gene sets. In the IC10+ gene

set, we observed a borderline significance for ossification and

axonogenesis, two processes that may be of significance for

EwS, which is a bone malignancy for which previous studies

have suggested a neural crest origin (Gr€unewald et al., 2018).

http://bioinfo-out.curie.fr/projects/sitcon/mosaic/toppgene_analysis/
http://bioinfo-out.curie.fr/projects/sitcon/mosaic/toppgene_analysis/


Figure 2. Deconvoluting the Cell-Cycle

Phases and Specific Transcriptional Pro-

gram of EWSR1-FLI1 Activity

(A) PCA plot visualizing the matrix of correlations

computed between independent components

(ICs) and the binary vectors distinguishing

different groups of cells: EwS (blue); neuro-

blastoma, NB (gray); rhabdoid, RHABD (green);

myoblast (red); glioblastoma, GB (orange).

Component IC30 appeared closer to the

RHABDOID cell subset than to EWING.

(B) Gene set score distribution across all cell

datasets for four selected ICs (IC1+: IC-G2/M;

IC2+: IC-G1/S; IC10+: IC-EwS; and IC30+: IC-

ECM). The scores are computed as the average

value of the gene expression of the most

variable genes in the set (see Method Details).

For the EwS dataset, a blue scale illustrates

EWSR1-FLI1 level of expression: from EWSR1-

FLI1low (light blue) to EWSR1-FLI1high (dark

blue). For the rhabdoid dataset, a green scale

demarcates SMARCB1� (light green) from

SMARCB1+ (dark green). For the GB dataset,

GB cell lines are in light orange, and GB tumors

are in dark orange. For the myoblast dataset, a

red color scale illustrates the myoblast differ-

entiation time course.

(C) Specificity of IC-EwS gene set for EwS.

Gene expression analysis is applied on a cohort

of 24,364 non-EwS tumors and 156 EwS tumors

(all measured by Affymetrix HG-U133Plus 2.0

array). Boxplot of gene expression log2 fold

change of EwS versus other tumors of non-

regulated genes (n = 100), IC-EwS genes (n =

220), the up- (n = 503) and downregulated genes

(n = 293) described by Hancock and Lessnick

(2008), the up- (n = 367) and downregulated

genes (n = 252) described by Kauer et al. (2009), and the the IC-G2/M (n = 212), IC-G1/S (n = 291) and IC-ECM (n = 252) genes.

(D) The transcriptional response to EWSR1-FLI1 oncogene activation can be recapitulated by two diverging/converging trajectories of transcriptomic

dynamics. The arrows represent RNA velocity vectors. Green and red curves show two branches of cellular trajectories estimated by ElPiGraph.

(E) Dynamics of the activation signature of EWSR1-FLI1 as a function of two branches of pseudotime. Here, green and red values represent the local

average score for the cells characterized by a similar value of pseudotime along the two trajectories. We used IC-G1/S and/or IC-G2/M components to

define the subset of cells in the proliferating state (see Method Details).

See also Figures S3 and S4 and Tables S2, S3, and S4.
The IC10+ gene set was thus interpreted as highly EwS specific;

therefore, from here on, we will refer to it as IC-EwS.

We then assigned a gene set activation score to each cell

regarding the different ICs (an average expression of most vari-

able genes in the gene set; see Method Details). The score

distributions in this dataset allowed us to make the following

conclusions: (1) IC-G2/M and IC-G1/S scores are distributed

across all datasets, peaking in the states that can be associated

with active proliferation (Figure 2B); (2) within each dataset,

IC-G2/M and IC-G1/S scores are highly variable and follow a

bi-modal distribution at intermediary points of the time course;

(3) IC-EwS and IC-ECM high-score values are almost exclusively

associated with EwS cells; and (4) IC-EwS and IC-ECM scores

clearly distinguish EWSR1-FLI1high and EWSR1-FLI1low cell

states and change monotonically with time, increasing or

decreasing, respectively. This is observed in the in vitro and

xenograft-inducible cellular systems. Figure 2B visualizes

IC-G2/M, IC-G1/S, IC-EwS, and IC-ECMscores across the stud-

ied datasets.
To further test the specificity of IC-EwS and IC-ECM gene

expression in EwS, we performed a gene expression analysis on

a cohort of 156 EwSs and 24,364 other tumors (Gene Investigator;

Hruz et al., 2008). The IC-EwS gene set strikingly discriminated

EwS from all other samples (Figure 2C), more powerfully than

did the other two gene signatures, previously defined by bulk tran-

scriptomic data analysis of genes regulated by EWSR1-FLI1 and

enriched in EwS (Hancock and Lessnick, 2008; Kauer et al., 2009).

This observation can be explained by the presence of cell-cycle

genes in the previously established signatures that limit their spec-

ificity toward EwS (Figure S4). This analysis also showed that the

IC-ECM gene set is not specific to EwS (Figure 2C).

Altogether, these data highlight that the IC-EwS gene set is

highly specific to EwS both in model systems (cell line and

PDX) and in tumors.

RNA Velocity and Pseudotime Analysis
RNA velocity analysis was then performed, and the dynamics

of single-cell transcriptomes was visualized on a PCA plot
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Figure 3. Characterizing the IC-EwS Gene

Set

(A) Barplot showing for each IC the log(1/p value)

of comparisons of the ‘‘gene to EF peak’’ distance

as compared to control genes (‘‘non-regulated

genes’’; n = 1,000). ICs+ are in red and ICs� in

blue. The Hancock and Lessnick (2008) EWSR1-

FLI1 up and down signatures are also shown.

(B) Comparison of the enrichment of genes with EF

peaks in IC-EwS (n = 220) as compared to control

genes (n = 1,000) from 0 to 1 Mb from the TSS.

(C) Comparison of the enrichment of genes with EF

peaks in IC-EwS (n = 220) as compared to control

genes (n = 1,000) from 0 to 100 kb from the TSS.

(D) Analysis of the two types of EF peaks (ETS and

GGAA-mSats4) in control and IC-EwS genes. Only

EF peaks <100 kb of TSS are considered (i.e., 72

peaks for control and 83 for IC-EwS genes).

(E) SE rank curve showing enrichment of top SEs

(low rank) in IC-EwS genes at d0 (black line) as

compared to d7 (red line).

(F) SE rank curve for the control gene set.

(G) Percentage of genes with EF peaks in SEs (as

defined by the ROSE software) for the different

ICs. The star indicates the group that is signifi-

cantly different from the control (Fisher test with

Bonferroni correction, p = 5.10�4).

See also Tables S4 and S5.
(Figure 2D). At day 7 and day 22, the transcriptomic dynamics

were close to steady state, as expected. These two steady states

were connected by two types of transitory dynamics, modeled as

two diverging and converging cellular trajectories. The difference

between the two trajectories was predominantly explained by the

different delays of the induction of the IC-EwS score (Figure 2E). In

the main branch (red in Figures 2D and 2E), the induction of

IC-EwS approximately coincided with the induction of the

IC-G1/S and/or IC-G2/M programs. In the minor branch (green

in Figures 2D and 2E), the induction of IC-EwS preceded the pro-

liferation. Genes whose pseudotime behavior was significantly

different between these two cellular trajectories belonged almost

exclusively to the IC-EwS gene set. Of note, the minor trajectory

was lessdefined, since the delay between the induction of IC-EwS

and the proliferation programswas highly variable. The measured
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RNA velocities seem to reflect the direc-

tion and the amplitude of the rate at which

the EWSR1-FLI1 activity changes in indi-

vidual cells.

Characterization of the Specific
EWSR1-FLI1 Activity Signature
To further characterize the IC-EwS signa-

tures, we performed EWSR1-FLI1 chro-

matin immunoprecipitation sequencing

(ChIP-seq) on A673/TR/shEF at d7, d9,

d10, d11, d14, and d17 (Figure 1A).

EWSR1-FLI1-specific peaks (EF-peaks)

were defined as peaks that significantly

varied upon EWSR1-FLI1 re-expression

(p < 0.005).
For each gene, we calculated the distance between the tran-

scription start site (TSS) and the nearest EF-peak. We then

compared the distribution of these distances for genes of the

various ICs to the distribution of distances of a set of 1,000 con-

trol genes that are not regulated by EWSR1-FLI1 (Table S4).

As shown in Figure 3A, this distance is significantly shorter for

IC-EwS genes (p = 10�29) as compared to other ICs and to

the Hancock and Lessnick (2008) EWSR1-FLI1 signature.

Indeed, we observed a highly significant enrichment in the per-

centage of genes with EF-peaks between 0 and 100 kb from the

TSS for IC-EwS (38% of genes) as compared to ‘‘non-regu-

lated’’ genes (< 10%), from which we concluded that many of

the IC-EwS genes are likely to be directly regulated by

EWSR1-FLI1 (Figures 3B and 3C). A slight enrichment was

also observed until 300 kb from the TSS (12%) but not for longer
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Figure 4. The 78 Genes Identified as Likely Direct EWSR1-FLI1 Targets

From left to right: heatmap of their expression in single-cell normalized expression center scaled and winsorized (5%) in A673/TR/shEF time course from EWSR1-

FLI1low (d7, light blue) to EWSR1-FLI1high (d22, dark blue); heatmap of EF-peak intensities in A673/TR/shEF time course from EWSR1-FLI1low (d7, white) to

EWSR1-FLI1high (d17, red); number of GGAA in EF-peaks (gray scale); and heatmap of H3K27ac histonemark co-localized with EF peaks (from light green to dark

green) and of SE ranking in A673/TR/shEF d0 and d7 (from dark purple to light purple). These genes are ranked by their weights in IC-EwS.

See also Table S4.
distances. TSSs of the Hancock and Lessnick (2008) and the

IC-ECM genes are also slightly closer to EF peaks than are

the controls but with a much less significant statistical associ-

ation (Figure 3A). This conclusion remained qualitatively un-

changed when 500 or 2,000 control genes were used.

Direct EWSR1-FLI1 target binding sites are shown to be either

bona fide ETS motifs or GGAA-mSats (Gangwal et al., 2008;

Guillon et al., 2009; Riggi et al., 2014). We used FIMO (Find Indi-

vidual Motif Occurrences) method (Grant et al., 2011) to analyze

the occurrences of these two motifs in EF-peaks located fewer

than 100 kb from the TSS of IC-EwS genes (n = 83/220) as

compared to control genes (n = 72/1,000). While most EF-peaks

of control genes were ETS sites, most EF-peaks of IC-EwS

genes contained GGAA-mSats with at least four repeats

(GGAA-mSats 4) (Figure 3D).

We also performed ChIP-seq analysis of H3K27ac histone

mark to map active chromatin regions at d0 (EWSR1-FLI1high)

and d7 (EWSR1-FLI1low). We observed that 91% of EF-peaks

are associated with H3K27ac marks at d0, in agreement with

previous publications reporting the association of EWSR1-

FLI1 binding with active chromatin marks (Boulay et al.,

2017; Riggi et al., 2014; Tomazou et al., 2015). When consid-
ering only EF-peaks localized in super-enhancer (SE) regions,

as defined by the Ranking of Super Enhancer (ROSE) algo-

rithm (Lovén et al., 2013; Whyte et al., 2013), we can define

SEs associated with an EF-peak at d0, at d7, and at both

time points. We observed that SEs defined at d0 and contain-

ing EF-peaks are enriched in the IC-EwS set of genes (p <

10�5) (Figure 3G). Moreover, it appeared that the IC-EwS-

associated SEs ranked among the strongest SEs (Figure 3E).

Such an association is specific to IC-EwS, as it was observed

neither for control genes (Figure 3F) nor for any other ICs (data

not shown).

Altogether, these analyses allowed us to define the IC-

EwS signature as strongly enriched in EWSR1-FLI1 direct

target genes. These genes are associated to EF-peaks that

(1) significantly vary upon EWSR1-FLI1 expression, (2) are

significantly closer to the TSS, (3) are enriched in GGAA-

mSat 4, and (4) are significantly enriched in SEs. Given all

the analysis steps described above, we defined a set of 78

genes that have most of these characteristics and hence

appear to be excellent candidates for being EWSR1-FLI1

direct targets, thus potentially playing key roles in EwS onco-

genesis (Figure 4).
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Figure 5. Quantification of PDXs’ Heteroge-

neity Based on Identified Transcriptional

Signatures

(A) Ranking of ICs’ contributions to intratumoral

heterogeneity of expression. In total, 30 ICs (x axis)

are ranked based on their ability to explain the

gene expression profiles.

(B) Spearman correlations of those ICs that

contributed the most to intratumoral expression

across the five PDXs.

(C) SPRING representation of the kNN graphs (k =

5) for the PDX-352 dataset. An interactive version

of this figure is available at http://bioinfo-out.curie.

fr/projects/sitcon/mosaic/SPRING/springViewer.

html?datasets/pdx352_nufp.

(D) Visualization of the position of single cells from

the five PDXs with respect to the IC-G2/M and

IC-G1/S signatures. Scores of non-proliferative

cells are centered on zero.

(E) Plot visualizing the connection between IC-

EwS and IC-G2/M scores. IC-G2/M cells tend to

appear in an optimal range of IC-EwS values

(IC-EwSPROLIF). The median of scores of non-pro-

liferative cells is centered on zero for each PDX.

(F) Plot showing the connection between IC-EwS

and HIF1a scores. The median of HIF1a scores is

centered on zero for each PDX. Solid black line

shows the local average of the score, and the

dashed lines delimitate the one SD from the mean

interval.

See also Figures S5–S7.
Unraveling the Heterogeneity of EwS Tumors at the
Single-Cell Level in Tumors
We then investigated whether the aforementioned signatures,

defined by in vitro systems, may be informative to explore the

structure of large single-cell datasets obtained from in vivo sam-

ples. Five PDXs (PDX-352, PDX-861, PDX-856, PDX-184, and

PDX-1058) (Table 1) from EWSR1-FLI1-positive EwS were pro-

filed using the 10x genomics sequencing platform. After quality

checks and the removal of profiles corresponding to dead cells,

a total of 3,595; 1,245; 604; 1,245; and 1,742 scRNA-seq profiles

was obtained for PDX-352, PDX-861, PDX-856, PDX-184, and

PDX-1058, respectively.

In order to determine which ICs contribute the most to intra-

tumoral heterogeneity, we performed sparse regression anal-

ysis of each expression profile on the 30 scores defined by the

top-contributing genes of each component. We ranked all

components according to their contribution to expression het-
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erogeneity (see Method Details). Seven

components were clearly distinguished

by this analysis: cell cycle (IC-G1/S

and IC-G2/M), mitochondrial biology,

oxidative phosphorylation and cellular

respiration (IC4+ and IC6+), glycol-

ysis and response to hypoxia (IC14+),

mRNA splicing (IC9+), and IC-EwS (Fig-

ure 5A). These components showed a

consistent pattern of Spearman correla-

tions across the five PDXs (Figures 5B
and S6). This pattern suggests a coupling of proliferation

and oxidative phosphorylation, coupled activity of EWSR1-

FLI1 and mRNA splicing, and a relatively independent role of

hypoxia and glycolysis in defining the heterogeneity of EwS

tumors.

In order to visualize distances between individual cell tran-

scriptomes, we used the SPRING web-based data visualization

interface based on the application of a force-directed graph

layout to the graph of similarity between full transcriptomic

profiles of individual cells (k Nearest-Neighbor (kNN) graph)

(Weinreb et al., 2018). When the IC-EwS score, which can be

considered a direct assessment of EWSR1-FLI1 transcriptional

activity, was mapped onto the SPRING layout in all PDXs, we

indeed observed that this signature largely contributes to the in-

tratumoral heterogeneity (Figures 5C and S5A–S5D). In addition,

in all PDXs, IC-G2/M and IC-G1/S define specific groups of cells

that form a loop-like structure, most probably reflecting the

http://bioinfo-out.curie.fr/projects/sitcon/mosaic/SPRING/springViewer.html?datasets/pdx352_nufp
http://bioinfo-out.curie.fr/projects/sitcon/mosaic/SPRING/springViewer.html?datasets/pdx352_nufp
http://bioinfo-out.curie.fr/projects/sitcon/mosaic/SPRING/springViewer.html?datasets/pdx352_nufp


Table 2. Genes Upregulated in Cells with High Hypoxia and Low/

High IC-EwS Scores as Compared to Cells in the Intermediate

IC-EwSPROLIF Range

Gene

Correlation

with IC-EwS

IC-EwS<PROLIF

versus

IC-EwSPROLIF

IC-EwS>PROLIF

versus

IC-EwSPROLIF

ALDOA �0.35 ++ +++

NDRG1 �0.10 + ++

VEGFA �0.18 + ++

NRN1 �0.31 +++ ++

PGK1 �0.19 +++ ++

EGLN3 �0.10 N/S ++

CA9 �0.37 +++ +++

ADM �0.09 + N/S

BNIP3 �0.22 +++ ++

The labels indicate significantly upregulated genes after regressing out

the trend connected to the IC-EwS score. ‘‘+++’’ refers to p < 10�20;

‘‘++’’ to 10�20 < p < 10�10; and ‘‘+’’ to 10�10 < p < 10�5. N/S, no significant

difference. See also Figure S7.
transcriptional dynamics of the cell-cycle program (Figures 5D

and S5A–S5D).

Asmerging and integrating different tumor single-cell datasets

is a well-known challenge in the field of single-cell transcriptom-

ics (Barkas et al., 2019), we decided to perform a tumor-by-

tumor analysis. We found that the score distributions for a

specific set of genes in our focus of study can be easily aligned

(Figures 5D–5F). Using such joint analysis, we focused on some

specific relations between biological factors that were generic

(such as the cell-cycle stage and the response to hypoxia condi-

tions) and specific to EwS (such as the activity of EWSR1-FLI1

chimera).

The connection between EWSR1-FLI1 activity and prolifera-

tion is a well-established fact (Gr€unewald et al., 2018). Inspec-

tion of this relation at single-cell level in EwS indicated that

most proliferative cells (in G2/M and/or in G1/S) are clustered

within an intermediary range of IC-EwS values. Below and

above this range, we observe only a small number of cells in a

proliferative state (Figure 5E). As this range of IC-EwS scores

also contains non-proliferating cells, we used a Kolmogorov-

Smirnov test to confirm that the set of IC-EwS scores from pro-

liferative cells is not a random independent and identically

distributed sample from the global distribution of IC-EwS scores

(p < 10�22). This suggests that an intermediary activity of EWS-

FLI1 is associated with cell proliferation (Figure 5E). We thus

define IC-EwSPROLIF as a window of IC-EwS scores containing

95% of the total number of proliferative cells (Figure 5E). Other

cells, characterized by IC-EwS scores below and above the

defined range, and respectively labeled as IC-EwS<PROLIF and

IC-EwS>PROLIF, were relatively rare (on average, for five PDXs,

IC-EwS<PROLIF and IC-EwS>PROLIF groups were 10% and 8%

of the total cell number, respectively) (Figure S6).

Using GSEA, it was found that the strongest upregulated

signal characterizing the cells outside the IC-EwSPROLIF window

was related to hypoxia and glucose catabolism (Figure 5C).

Indeed, inspection of the hypoxia score in all PDXs showed
that it highlights a subgroup of IC-EwS<PROLIF cells (Figures 5C

and S5A–S5D). In all PDXs, this subgroup of IC-EwS<PROLIF cells

highly expressed hypoxia-related markers, such as ALDOA,

CA9, NDRG1, VEGFA, ADM, BNIP3, and NRN1 (all members

of the HIF1a transcription factor network pathway) (Table 2;

Figure S7).

As expected from correlation analyses (Figure 5B), cells

residing inside the IC-EwSPROLIF range were characterized by a

high oxidative phosphorylation.

A relatively rare population of IC-EwS>PROLIF cells was also

characterized by a consistent increase of the HIF1a transcription

factor network signature (Figure 5F). However, at the individual

gene level, this signal was masked by the increased expression

of IC-EwS signature genes. When the IC-EwS score was

regressed out from the expression of all genes, only the

hypoxia-related signature remained positively enriched in the

IC-EwS>PROLIF subpopulation, compared to the rest of the cells.

Interestingly, the pro-apoptotic BNIP3 gene was upregulated

in both the IC-EwS>PROLIF and IC-EwS<PROLIF cell populations

(Table 2; Figure S7). Altogether, these observations suggest an

interplay among EWSR1-FLI1 expression level, hypoxia, and

apoptosis regulation in cells outside IC-EwSPROLIF range.

DISCUSSION

As with most pediatric cancers, EwS is characterized by a

paucity of genetic abnormalities (Gröbner et al., 2018). The accu-

mulation of genetic alterations that frequently result from genetic

instability, which are suspected to play major roles in the pro-

gression of adult cancers (Bozic et al., 2010), is therefore not

expected to be a major player in the progression of pediatric

cancers.

Here, based on our recent findings that the variation of expres-

sion of EWSR1-FLI1 constitutes a major source of heterogeneity

in EwS (Franzetti et al., 2017), we used a variety of experimental

systems to investigate at the single-cell level the gene expres-

sion dynamics associated with changes in EWSR1-FLI1 expres-

sion. To our knowledge, this is the first report studying the

dynamics of a transcriptome at the single-cell level after the in-

duction of a known cancer driver gene.

We applied unsupervised ICA, which first identified two com-

ponents that are extremely specific to G1/S and G2/M cell-cycle

phases (IC-G2/M and IC-G1/S). These components are not EwS

specific and characterize a subset of cells in all experimental

systems included in the analysis. In EwS cells, IC-G2/M and

IC-G1/S are clearly associated with the expression level of

EWSR1-FLI1. An IC specific to EWSR1-FLI1 activity was identi-

fied that (1) did not highlight any non-EwS cells or tumors in sin-

gle-cell, tumor bulk, or normal tissue datasets; (2) is strongly

enriched by EF1-peaks associated with the presence of

GGAA-mSats sequences in the vicinity of the TSS; and (3) is

strongly associated with EWSR1-FLI1-dependent SE regions.

Based on filtering genes associated with this component, we

further identified a set of 78 strong candidate genes for direct

regulation by EWSR1-FLI1. Some of these genes— including,

but not exclusive to, CAV1, KDSR, IGF1, MYC, and PRKCB—

were previously reported, providing consistency of the IC-EwS

signature with previous findings. Previously proposed lists of
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EWSR1-FLI1 targets contain numerous cell-cycle genes as a

result of the association between EWSR1-FLI1 induction and

cell-cycle gene expression. The IC approach distinguishes the

cell-cycle-related ICs that mostly follow an on/off bimodal distri-

bution from the IC-EwS, which shows a monotonous increase

upon EWSR1-FLI1 induction.

Interestingly, as compared to other cell-cycle genes, CCND1

expression follows the monotonous expression pattern of IC-

EwS genes. This reinforces its role as a major player in EWSR1-

FLI1-induced activation of the cell cycle. However, a high

expression of CCND1 is not sufficient to induce cell-cycle entry

of EwS cells, as many cells with a high expression of CCND1 do

not express G1/S signature. In addition to regulating CCND1

expression level, previous reports have suggested that EWSR1-

FLI1 also regulates the splicing of CCND1 (Sanchez et al., 2008).

Presently, the sensitivity of single-cell transcriptomics is not suffi-

cient to investigate theexpressionof thedifferentCCND1 isoforms

in individual cells and to establish potential causal relationships

between the expression of specific CCND1 isoforms and cell-

cycle entry. Entry into G1/S may also require intrinsic or extrinsic

mitogenic signals that remain to be identified in EwS cells.

The identification of the IC-EwS signature constitutes an

important improvement as compared to the previously defined

EWSR1-FLI1 signatures. When investigated with functional

annotation tools, IC-EwS only retrieves weak enrichment anno-

tations as synapses, neurogenesis, or cell adhesion, in agree-

ment with previous observations that EWSR1-FLI1 activates

some neural and cell-cell adhesion processes (Franzetti et al.,

2017; Hu-Lieskovan et al., 2005). Rather than inducing specific

cellular processes, this list contains genes involved in a variety

of functions highlighting the pleiotropic effects of EWSR1-FLI1.

The role of length polymorphism of GGAA-mSats sarcoma has

been recently documented in the genetic susceptibility to EwS

(Gr€unewald et al., 2015; Machiela et al., 2018). With the identifi-

cation of a precise set of EWSR1-FLI1 targets regulated by

GGAA-mSats described here, the hypothesis of length polymor-

phisms of GGAA-mSats being also involved in intertumoral

heterogeneity can now also be directly tested.

The exploration of five EwS tumors based on these ICs and on

the most significant functional reference gene sets they pointed

at illuminate some aspects of intratumoral heterogeneity. One

distinct group corresponds to actively proliferating cells. The

number of cycling cells is variable, from 9% to 30%. These cells

demonstrate increased scores for oxidative phosphorylation sig-

natures, in agreement with recent findings that some cyclin/CDK

complexes may coordinate mitochondrial respiration and the

cell cycle (Wang et al., 2014; Solaki and Ewald, 2018)

We observe a cell-to-cell variability of the IC-EwS signature

score, an indirect measure of EWSR1-FLI1 activity. As expected,

cells with a low IC-EwS score are not cycling, in agreement with

the hypothesis that significant expression of EWSR1-FLI1 is

necessary for cell-cycle entry and progression. More surpris-

ingly, cells with the highest IC-EwS scores are not cycling either,

suggesting that the proliferation of EwS cells may be induced

by an intermediary level of EWSR1-FLI1 expression (called

IC-EwSPROLIF in this study).

EWSR1-FLI1 expression is also associated with metabolic

heterogeneity. In all tumors, our analyses highlight a subgroup
1776 Cell Reports 30, 1767–1779, February 11, 2020
of IC-EwS<PROLIF and IC-EwS>PROLIF cells that are characterized

by hypoxia and the upregulation of HIF1a downstream targets.

At present, the potential causal relationship between EWSR1-

FLI1 activity and hypoxia is unclear. A previous report has

shown that hypoxia upregulates EWSR1-FLI1 expression in an

HIF1a-dependent manner (Aryee et al., 2010), which may ac-

count for the hypoxia expression pattern of cells with the highest

IC-EwS expression. To our knowledge, an association between

a low EWSR1-FLI1 activity and hypoxia has not been reported

previously. However, a recent report described that serumdepri-

vation in association with hypoxia induces migration, matrix

degradation, and invasion of EwS cells that are dependent on

the SRC kinase activity (Bailey et al., 2016). Though EWSR1-

FLI1 expression was not investigated in this report, such charac-

teristics are hallmarks of cells with low EWSR1-FLI1 activity.

Investigation of cell-to-cell variations of key factors regulating

HIF1a in sarcoma cells, such as YB1 (El-Naggar et al., 2015),

and of splicing as well as signal inferences from topological an-

alyses of the interactions of EwS cells with themicroenvironment

will be necessary to further decipher direct or indirect relation-

ships between EWSR1-FLI1 activity and hypoxia in vivo. Inter-

estingly, cell populations with the lowest or highest IC-EwS

signatures show an increased expression of the apoptotic

and autophagy regulator BNIP3, suggesting a complex interplay

among EWSR1-FLI1 expression, hypoxia, apoptosis, auto-

phagy, and mitophagy (Ney, 2015). As these different cell popu-

lationsmay have a strong impact on response to treatment, it will

be of interest to follow in vivo their evolution in response to ther-

apy. Single-cell technologies, and particularly spatial transcrip-

tomics, will constitute essential approaches to investigate the

interplay between cell-intrinsic and cell-extrinsic factors in this

heterogeneity (Smith and Hodges, 2019).

Our work documents at the single-cell level that EWSR1-FLI1

heterogeneous activity may have dramatic consequences on the

biology of the EwS cells. The mechanisms of such heterogeneity

remain to be explored. They may not be univocal. Cell-autono-

mous, stochastic variation of EWSR1-FLI1 expression may

constitute one of these mechanisms. Antagonism of EWSR1-

FLI1 with signaling pathways, as recently documented for the

Wnt/b-catenin pathway, may also be critical (Pedersen et al.,

2016). Finally, the microenvironment may also be an important

source of signals regulating EWSR1-FLI1 stability or activity.

The computational biology approach developed in this study

can be applied to other contexts when one can expect strong

transcriptional heterogeneity of tumoral cell populations mani-

fested in a continuous fashion, rather than being recapitulated

in well-defined clusters of cell subpopulations. ICA appeared

to be a powerful approach, allowing us to clearly distinguish

the transcriptional proliferation program and the transcriptional

program of a known cancer driver. Decomposition of single-

cell transcriptomes by ICA allows disregarding the strong prolif-

eration signal in downstream bioinformatics analysis without

removing it, which can introduce undesirable biases and cancel

out the signal of interest. This is an alternative to the use of other

methods that have been developed to ‘‘subtract’’ the signal

related to the cell-cycle signal from the data (Bacher and Kend-

ziorski, 2016; Barron and Li, 2016), a step that would not be suit-

able in our study, as the cell cycle and the proper oncogene



transcriptional programs appear to be highly associated. More-

over, ICA allowed fine-grained distinction of cell-cycle phases in

a completely unsupervisedmanner that was not achieved before

and identified other important sources of expression-related het-

erogeneity in a cancer-specific manner. This way of applying ICA

is in contrast to most of the previous single-cell ICA applications,

aimed either at dimensionality reduction or at cleaning out

technical artifacts (Sompairac et al., 2019). Our approach allows

using the transcriptional signatures extracted from the model

systems for quantifying the heterogeneity of tumors at the

single-cell level and comparing tumors without matching the

single-cell tumoral transcriptomes, which remains a challenging

task.

In conclusion, in this study, we characterize the dynamic effect

of EWSR1-FLI1 at the single-cell level. We can distinguish, in an

unsupervised and unbiased manner, its oncogene-specific tran-

scriptional program (IC-EwS) from a process strongly coupled to

it, the induction of proliferation. The IC-EwS allowed us to

describe tumoral heterogeneity in EwS PDXs, highlighting three

major populations: one corresponding to the optimal window for

cell proliferation activation and two others characterized by

lower or higher activity of IC-EwS and associated with hypoxia.

Further studies, in particular those using cells from primary

tumors, will be needed to assess whether the composition of

tumors in these different compartments influences the response

to treatment and the prognosis of tumors.
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Gröbner, S.N., Worst, B.C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K.,

Rudneva, V.A., Johann, P.D., Balasubramanian, G.P., Segura-Wang, M., Bra-

betz, S., et al.; ICGC PedBrain-Seq Project; ICGC MMML-Seq Project (2018).

Author Correction: The landscape of genomic alterations across childhood

cancers. Nature 559, E10.

Gr€unewald, T.G., Bernard, V., Gilardi-Hebenstreit, P., Raynal, V., Surdez, D.,

Aynaud, M.M., Mirabeau, O., Cidre-Aranaz, F., Tirode, F., Zaidi, S., et al.

(2015). Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility

gene EGR2 via a GGAA microsatellite. Nat. Genet. 47, 1073–1078.

Gr€unewald, T.G.P., Cidre-Aranaz, F., Surdez, D., Tomazou, E.M., de Álava, E.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-FLI1 Abcam Cat# ab133485; RRID:AB_2722650

Mouse monoclonal anti-beta-actin Sigma Aldrich Cat# A-5316; RRID:AB_476743

Mouse anti-IgG horseradish peroxidase coupled Amersham Bioscience RPN4201

Rabbit anti-IgG horseradish peroxidase coupled Amersham Bioscience RPN4301

Rabbit polyclonal anti-FLI1 Abcam Cat# ab15289-ChIP grade;

RRID:AB_301825

Rabbit Anti-Histone H3K27ac Abcam Cat# ab4729-ChIP grade;

RRID:AB_2118291

Rabbit IgG Diagenode Cat# C15410206 ChIP grade;

RRID:AB_2722554

Rabbit anti-CTCF Diagenode Cat# C15410210 ChIP grade;

RRID:AB_2753160

Biological Samples

Patient-derived xenografts (PDX) Institut Curie (see Table 1) n/a

Chemicals, Peptides, and Recombinant Proteins

Zeocin Invitrogen R25001

Blasticidin Invitrogen LSR21001

Hygromycin B Life Technology 10687010

G418 (geneticin) Invitrogen 10131035

Doxycycline Invitrogen BP26535

MSC-qualified serum GIBCO GIBCO 12662029

L-glutamine GIBCO 21051024

bFGF Sigma SRP3043

collagenase D Roche 11088858001

hyaluronidase Sigma H1115000

DNase Sigma 10104159001

Anti-protease cocktail Roche 04693116001

Chemiluminescence Pierce 32106

Paraformaldehyde 16% Electron Microscopy Sciences 15710

Critical Commercial Assays

SMARTer Ultra Low RNA kit from Illumina sequencing Clontech 634853

Chromium Single Cell 30 Library & Gel Bead Kit v2 10x Genomics PN-120237

iDeal ChIP-seq kit for Transcription Factors Diagenode 50001

Deposited Data

scRNaseq and ChIPseq on the inducible system and PDXs in the paper Gene Expression Omnibus: GSE130025

Experimental Models: Cell Lines

A673/TR/shEF Carrillo et al., 2007 n/a

I2A Medjkane et al., 2004 n/a

CLB-berlud Durand et al., 2019 n/a

Experimental Models: Organisms/Strains

Swiss Nude (for IC-pPDX-3, IC-pPDX-5, IC-pPDX-87) Charles River female mice Crl:NU(Ico)-Foxn1nu

CB17 SCID (for IC-pPDX-8) Charles River female mice CB17/Icr-Prkdcscid/

IcrIcoCrl)

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

NSG (for IC-pPDX-80) Charles River female mice NOD.Cg-Prkdcscid

IL2rgtm1Wjl/SzJ

NSG (for IC-pPDX-52) Charles River male mice NOD.Cg-Prkdcscid

IL2rgtm1Wjl/SzJ

Oligonucleotides

CCND1-For (50GGTGGGAGGTCTTTTTGTTTC30) Sigma Aldrich n/a

CCND1-Rev (50CACGCAATCCCAGATCAAAAC30) Sigma Aldrich n/a

CDKN1A-For (50ACTGACTCATCACTACTCCCTC30) Sigma Aldrich n/a

CDKN1A-Rev (50GTGTGCTATTCCCGCCAG30) Sigma Aldrich n/a

CCND1-For (50CACAGTGTGGGTATTTCCATCAAGCA 30) Sigma Aldrich n/a

CCND1-Rev (50GGTGTGTAGGAAAAACAGCTCTCTGGA30) Sigma Aldrich n/a

Sec14L2-For (50GCCCCCGCTGATGCACTTCC30) Sigma Aldrich n/a

Sec14L2-Rev (50AAGTGCGCCAGCAGAGCCAG30) Sigma Aldrich n/a

Software and Algorithms

TopHat (version 2.0.6) Trapnell et al., 2009 n/a

htseq-count (v. HTSeq-0.5.3p9) Anders et al., 2015 n/a

Cell Ranger software suite (v. 1.3.1) 10x Genomics n/a

MATLAB implementations of FastICA Hyvarinen, 1999 n/a

Icasso, as a part of the BIODICA software available at

https://github.com/LabBandSB/BIODICA/

Himberg et al., 2004 n/a

t-SNE analysis Van der Maaten and Geoffrey,

2008

n/a

SPRING visualization tool Weinreb et al., 2018 n/a

ToppGene functional analysis tool Chen et al., 2009 n/a

Bowtie2 Langmead and Salzberg, 2012 n/a

MACS2 Zhang et al., 2008 n/a

scVelo as a part of ScanPy package Wolf et al., 2018 n/a

ElPiGraph as a part of STREAM package Chen et al., 2019 n/a
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the corresponding author

Dr Olivier Delattre (olivier.delattre@curie.fr). Questions on the computational methodology should be addressed to the Lead Contact

Dr. Andrei Zinovyev (andrei.zinovyev@curie.fr).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
All cells are grown at 37�C with 5% of CO2 with 100 UI/mL Penicillin and 100 mg/mL Streptomycin (GIBCO). A673/TR/shEF (Carrillo

et al., 2007) are cultured in DMEM (GIBCO) 10% FBS (Eurobio), with 50 mg/mL Zeocin (Invitrogen), 2 mg/mL Blasticidin (Invitrogen)

added ex-tempo. I2A cells were grown in RPMI (GIBCO), 10% FBS (Eurobio) with 50 mg/mL hygromycin B (Life Technology),

300 mg/mL G418 (geneticin) and 50 ng/mL DOX (doxycyclin, Invitrogen) added ex-tempo when indicated. MSCs from bone marrow

EwS patients were isolated by density-gradient centrifugation using Ficoll technique andwere cultured in alphaMEM (GIBCO), MSC-

qualified serum (GIBCO), 1% L-glutamine (GIBCO) and 1 ng/mL bFGF (Sigma), added ex-tempo. CLB-berlud are cultured in RPMI

(GIBCO) 10% FBS (Eurobio), 100U/mL.

EWSR1-FLI1 specific small hairpin RNA was induced in A673/TR/shEF cells by adding DOX at 1 ug/mL. After 7 days, DOX was

removed and cells were washed three times to allow silencing of the shRNA and induction of EWSR1-FLI1. Cells were harvested

at seven different times points: 0 day (d7), 2 days (d9), 3 days (d10), 4 days (d11), 7 days (d14), 10 days (d17) and 15 days (d22) after

DOX removal. This protocol was used in order to study induction of genes by EWSR1-FLI1 and to avoid a potential effect of DOX on

the transcriptome dynamics.
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For A673/TR/shEF xenograft, 20 million cells were resuspended in 200 mL of PBS and subcutaneously injected into severe com-

bined immunodeficiency (SCID) mice. When tumor volume reached 1,000 mm3, DOX was added in the drinking water of a subset of

mice (+ DOX group) for 7 days.

For I2A cells, DOX was removed and cells were washed three times to induce SMARCB1 expression.

Patient-derived xenografts
EwS Patient Derived Xenografts (PDX) were established in the laboratory by subcutaneous implantation of tumor samples in immu-

nodeficient female mice, except for IC-pPDX-52 which was male (Table 1). The mice genotypes used in this study were Swiss Nude

(Crl:NU(Ico)-Foxn1nu) for IC-pPDX-3, IC-pPDX-5, IC-pPDX-87 models, CB17 SCID (CB17/Icr-Prkdcscid/IcrIcoCrl) for IC-pPDX-8

and NSG (NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ) for IC-pPDX-52, IC-pPDX-80 models. The graft location was subscapular (fatpad)

at 13 weeks (IC-pPDX-3), 12 weeks (IC-pPDX-5), 10 weeks (IC-pPDX-87), 16 and 7 weeks (IC-pPDX-8), 17 weeks (IC-pPDX-52)

and 19 weeks (IC-pPDX-80). Animal care and use for this study were performed in accordance with the recommendations of the

European Community (2010/63/UE) for the care and use of laboratory animals. The housing conditions were specific pathogen-

free (SPF) for all models.

Experimental procedures were specifically approved by the ethics committee of the Institut Curie CEEA-IC #118 (Authorization

APAFIS#11206-2017090816044613-v2 given by National Authority) in compliance with the international guidelines. The establish-

ment of PDX received approval by the Institut Curie institutional review board OBS170323 CPP ref 3272; n� de dossier 2015-

A00464-45.

PDX were initially profiled using the FluidigmTM (PDX-83, PDX-84 and PDX-111) approach and then by the higher throughput 10x

Genomics (PDX-184, PDX-352, PDX-856, PDX-861 and PDX-1058) technology when it became available in our institute. Character-

istics of PDX are reported in Table 1.

METHOD DETAILS

Tumor dissociation into single-cell suspension
A673/TR/shEF xenografts and EwS PDX were dissected from mice and mechanically dissociated. The finely minced tissue was

transferred to a digestion mix consisting of CO2 independent medium (GIBCO) containing 1 mg/mL collagenase D (Roche),

2 mg/mL hyaluronidase (Sigma) and 25 mg/mL DNase (Sigma), incubated for 45 min at 37 �C and gently resuspended every

10 min. Cell suspension was then filtered using 70 mm and 30 mm cell strainers (Miltenyi Biotec). For A673/TR/shEF xenograft

experiments, the tumoral suspension was depleted of infiltrated murine cells using the mouse cell depletion kit from Milteny

Biotec. Cells were then adjusted at 1x106 cell/mL in HBSS containing 2 mM EDTA. Viability was measured using trypan blue

exclusion.

Western blot
All A673/TR/shEF in vitro and xenograft proteins were extracted with RIPA and anti-protease cocktail (Roche). Western blots were

hybridized with rabbit monoclonal anti-FLI1 antibody (1:1000, ab133485, abcam) and mouse monoclonal anti-beta-actin (1:10,000,

A-5316, Sigma Aldrich). Then, membrane was incubated with anti-mouse/rabbit IgG horseradish peroxidase coupled (1:3,000,

Amersham Bioscience). Proteins were detected using chemiluminescence (Pierce).

C1 single cell capture and mRNA-seq
Dissociated cells were captured and processed with the C1 Single-Cell Auto Prep System (FluidigmTM) following the manufacturer’s

protocol. We started with a cell suspension at a concentration of 0.45 3 106 cells/mL. We identified under the microscope the sites

where live single cells were captured. Processing of cells occurred in the C1 instrument to perform steps of cell lysis, cDNA synthesis

with reverse transcriptase, and PCR amplification for each cDNA library. Quality of the resulting cDNA was checked using the

LabChip GX Touch HT (Perkin Elmer, Waltham, MA).The cDNA synthesis and PCR used reagents from the SMARTer Ultra Low

RNA kit from Illumina sequencing (Clontech, Mountain View, CA). After harvest from the C1 device, each cDNA library was tagmented

using the Nextera XT DNASample Preparation Kit (Illumina). After PCR, cDNA libraries were pooled. All libraries were sequencedwith

HiSeq2500 (Illumina) using 150 bp paired-end sequencing.

10x Genomics single cell capture and mRNA-seq
Single-cell RNA-seq was performed using the Single Cell 30GEMCode Single-Cell instrument (10x Genomics, Pleasanton, CA, USA),

according to the manufacturer’s protocol. Cellular suspension (5,300 cells) was loaded on 10x Chromium instrument to generate

3,000 single-cell GEMs, using the Chromium Single Cell 30 Library & Gel Bead Kit v2. All libraries were sequenced on Illumina HiSeq

2500 in rapid run mode, using paired-end (PE) 26/98 according to 10x recommendations.

In order to remove profiles corresponding to dead or stressed cells from the analysis of 10x data, mitochondrial percentage score

was computed for each cell as the percentage of UMIs captured by the genes from the previously described gene set (Ilicic et al.,

2016). In the histograms of this score, a bimodal distribution was observed; therefore, all cells from the higher mode were removed

from the analysis. After additional quality checks such as removal of cells with too small total number of UMIs (< 5,000 UMIs per cell,
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compared to the median 15,000 number of UMIs per cell) or too high (> 40,000 UMIs), the number of selected cells in each PDX is

indicated in the Results section.

Chromatin-immunoprecipitation and sequencing
DNA-protein cross-linking was performed in the presence of 1% of paraformaldehyde on 12x106 cells for each condition during

10 minutes. Cell lysis, chromatin shearing, immunoprecipitation and DNA purification was performed with reagents from iDeal

ChIP-seq kit for Transcription Factors (Diagenode, ref: C01010054). Twenty cycles of sonication (30 s high, 30 s off) using TPX

tube (Diagenode, ref: 50001) and the Bioruptor (Diagenode) were achieved for chromatin shearing. We took 2 mg of FLI1 rabbit poly-

clonal antibody (abcam, ab15289-ChIP grade) to perform immunoprecipitation of EWSR1-FLI1 transcription factor and 1 mg of

H3K27ac antibody (abcam, ab4729) for histone mark immunoprecipitation. IgG and CTCF ChIP was included as negative and pos-

itive control. To check quality of each ChIP reactions, quantitative PCR was realized prior to sequencing on 1/5 of purified DNA.

Tested regions correspond to following primers: 1- CCND1 (50GGTGGGAGGTCTTTTTGTTTC30/50CACGCAATCCCAGATCAA

AAC30); 2- CDKN1A (50ACTGACTCATCACTACTCCCTC30/50GTGTGCTATTCCCGCCAG30); 3- CCND1 (50CACAGTGTGGGTATTT

CCATCAAGCA 30/50GGTGTGTAGGAAAAACAGCTCTCTGGA30); 4- Sec14L2 (50GCCCCCGCTGATGCACTTCC30/50AAGTGCG

CCAGCAGAGCCAG30). ChIP and input were sequenced with HiSeq2500 (Illumina) using 100 bp single-end sequencing.

QUANTIFICATION AND STATISTICAL ANALYSIS

Alignment, counting and sample normalization of reads
Reads obtained from sequencing of cells were aligned on the human genome (v. hg19) using TopHat (version 2.0.6) (Trapnell et al.,

2009). Reads mapping more than once (parameter -x 1) or having edit distances of more than 3 (-N 3) were discarded.

Counting of reads on annotated genes from the GRCh37 gene build was done using htseq-count (v. HTSeq-0.5.3p9) (Anders et al.,

2015) with the following parameters: reads with a quality score less than 10 (-a 10) were discarded and reads partially overlapping

with the annotated gene transcript were included in the counts unless they overlapped with another read. In all experiments analyzed

the STRANDED = no option was used.

Sample-to-sample normalization was performed by rescaling using DESeq size factors (Love et al., 2014). For all data analyses the

number of reads was log10(x+1) transformed. The EWSR1-FLI1 re-expression experiments on the A673/TR/shEF cells were per-

formed as two series of experiments (days 7, 9, 10, 11 for the first batch, and days 11, 14, 17, 22 for the second batch) which over-

lapped at day 11. This experimental setting was exploited to interrogate the batch effect after normalization using a linear regression

model x �time.point+batch where x = log2(expression) for each gene. We verified that the number of genes modulated through the

batch effect was small compared to the number of genes modulated through the experimental time point, indicating that the batch

effect did not affect our results.

In case of 10x Genomics data, the programs ‘‘cellranger mkfastq’’ and ‘‘cellranger count’’ from the Cell Ranger software suite

(v. 1.3.1) provided by 10x Genomics were used for demultiplexing and counting the reads on the reference genome GRCh38. Sam-

ple-to-sample normalization was performed using the total number of reads in the log scale. For all data analyses the number of reads

was log10(x+1) transformed.More specifically if X is the countmatrix the R code to obtain the normalizedmatrix X.tpm is the following:

median.umi < - median(colSums(X)); X.tpm < - log(t(t(X)/colSums(X))*median.umi+1). For each cell, reads from the k = 5 most similar

cells were pooled together to define the new cell measurement, in order to reduce the effect of drop-outs. For pooling, kNN graphwas

computed on log10(x+1) transformed data after filtering non-variant genes (variance smaller than 0.01) and reducing the dimension of

the data by projecting it into 20-dimensional subspace spanned by the standard PCA components. Pooling the 10x Genomics data

served for better visualization of the gene expression patterns on top of the SPRING embeddings but did not affect drastically the

main conclusions of the study.

Exploratory analysis of scRNA-seq data
Independent Component Analysis (ICA)

ICA was applied, using FastICA algorithm maximizing non-gaussianity of metagenes (using kurtosis function, symmetric approach

and 200 maximum number of iterations) and component stabilization using Icasso algorithm, with an additional procedure for deter-

mining the optimal number of independent components (Hyvarinen, 1999; Himberg et al., 2004; Biton et al., 2014; Kairov et al., 2017).

In the ICA decomposition X = AS, X is the gene expression (sample versus gene) matrix, A is the (sample versus component) matrix

describing the loadings of the independent components, and S is the (component versus gene matrix) describing the weights (pro-

jections) of the genes in the components. We used a modified MATLAB implementations of FastICA (Hyvarinen, 1999) and Icasso

(Himberg et al., 2004) as a part of the BIODICA software available at https://github.com/LabBandSB/BIODICA/, which contains

an algorithm for estimating the optimal number of components to compute (Cantini et al., 2019). Icasso applies FastICA algorithm

for finding m independent components n = 100 times, and then uses hierarchical clustering to estimate compactness of clusters

of the components computed in all runs. The resulting independent components represent medoids of them clusters and are ranked

by the reproducibility (cluster compactness) in n runs. The orientation of the components was chosen such that the longest tail of the

gene projection distributions would correspond to the positive values.
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Visualization of correlative relations between the components

In order to visualize the relation between IC metasamples and their relation with specific sample subsets, we first computed a cor-

relation table between them (Table S2). In this table, simple Pearson correlations were computed between metasamples. The cell

subsets were represented by binary vectors with 1 indicating the cells within one subset and 0 outside. To associate a metasample

to a subset, we’ve computed the point biserial correlation coefficient, which in this case was equivalent to computing Pearson

correlation between a metasample vector and a binary vector. Therefore, each object (either a metasample or a cell subset) was

characterized by a vector of correlations with other objects. These vectors were normalized by to the unity L1-norm. Subsequently,

a standard PCA analysis was applied to the set of vectors (Figure 2A).

Non-linear multi-dimensional data visualization

t-SNE analysis (Van derMaaten, 2008) was done using Rwith setting the initial dimension parameter to 100 and the perplexity param-

eter set to 80.

SPRING visualization was produced through computing the kNN graph (k = 5) by applying a standard for SPRING approach (Wein-

reb et al., 2018) consisting in: 1) filtering genes with the coefficient of variance smaller than 0.05 and the average expression smaller

than 0.01, computed for pooled read counts (this filter left from 8 to 9 thousands of genes in our datasets); 2) normalizing the mea-

surements on the library size and 3) reducing the dimension of the dataset to 20 by the standard PCA algorithm.

RNA Velocity and pseudotime computation

RNA Velocity analysis was performed using the scVelo method from the ScanPy Python package (Wolf et al., 2018) with default pa-

rameters and specifying groups of cells at day 7 and day 22 for estimating the steady-state parameters of the RNA Velocity model. In

order to characterize the diverging/converging pattern of gene expression after induction of EWSR1-FLI1, we fitted the distribution of

cells by a closed principal curve using the computeElasticPrincipalCircle function of ElPiGraph R package (Albergante et al., 2018;

Chen et al., 2019). Curve fitting was done in the subspace of 30 principal components (i.e., the same subspace where ICA was per-

formed). After the closed principal curve was obtained, two edges at the opposite sides of the data distribution which were charac-

terized by the highest density of cells were cut out, which produced two branches of pseudotime.

Functional enrichment analysis

For interpreting the biological meaning of the sets of top-contributing to each of the ICs genes, we applied the ToppGene functional

analysis tool (Chen et al., 2009), limited to reference gene sets no larger than 500 genes (in order to focus on more specific functional

categories). The ToppGene analysis was automated through the BIODICA graphical user interface available from https://github.com/

LabBandSB/BIODICA/ and recapitulated in the form of an interactive online table http://bioinfo-out.curie.fr/projects/sitcon/mosaic/

toppgene_analysis/. The table is organized in two columns reporting the first most enriched functional gene sets for positive and

negative part of each IC metagene, in each reference categories (the enriched function is mentioned in the table only if the the

Bonferroni-corrected p < 0.05 and the number of genes from the function found in the top-contributing list is not smaller than 8).

Also the sets of top-contributing genes smaller than 10 were not considered for the enrichment analysis. Each hyperlink in the

form of ‘‘ICX+/�’’ leads to a saved detailed enrichment analysis as it was produced by ToppGene. Each hyperlink in the form ‘‘X

genes’’ leads to the tested list of top-contributing genes.

The table was further used to select a set of reference signatures for the analysis of the tumor data. Only signatures from GO and

Pathway categories enriched with the Bonferroni-corrected p < 10�10 were selected for further analysis. On top of this, we added the

standard HALLMARK set of transcriptomic signatures from MolSigDB.

For associating the IC-EwS score computed for tumor cells with the reference signatures, we applied the standard pre-ranked

GSEA analysis to the t test scores computed between the 10th and 90th percentiles of the IC-EwS score. A classical scoring scheme

was used and 1,000 permutations estimating the empirical p-value.

Computing and aligning gene set scores

Gene set scores for gene sets were computed in all analyses as average gene expression of the genes composing the signatures, after

removal of genes characterized by a small variance (in all analyses, 2000 most variable genes were kept for computing the scores).

In order to compare the gene set scores across the 5 PDXs used in the study, their distributions were standardized. For the con-

clusions of our manuscript, the most sensitive point was to establish the correct reference point of the IC-EwS score, which would

allow its comparison between PDXs. Our assumption was that the proliferation process can be used to establish a reference point for

the IC-EwS score, since the proliferation scores and their joint distributions look quite similar across all PDXs (Figure S6). Therefore,

as a zero point for all PDXs we chose the median value of the IC-EwS score for the set of proliferative cells, in each PDX separately.

Oppositely, for the scores related to the cell cycle, IC-G1/S and IC-G2/M, we chose as a reference point the median value computed

for the set of non-proliferative cells. For other scores, such as hypoxia, we compared their relative values with respect to the mean

value computed for all cells in a PDX. We underline that the main conclusions drawn in the manuscript did not depend on the exact

way the scores were aligned. However, the alignment adjusted for relatively small systematic biases between different PDXs made

the data visualization clearer and better illustrated our main statements.

Distinguishing a subset of cells in active proliferation

Proliferating cells were defined based on a IC-G1/S and/or a IC-G2/M score exceeding an empirically determined threshold. In brief,

histograms of IC-G1/S and IC-G2/M scores show a bi-modal distribution. In the time-resolved data, these thresholds were set to 1.0

for both scores. For PDX data, the thresholds were set to 0.2 for both scores after aligning the scores as described in the previous

section.
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Defining non-regulated control gene set

We selected ‘‘Non-regulated genes’’ for which at least 100 reads were detected at d7 and/or d22 and which showed no significant

differential expression between d7 and d22 in A673/TR/shEF bulk expression dataset (0.5 < FC < 2, p > 0.01) (n = 2,117). Then, genes

were ranked from the lowest to highest fold change. For our analysis, we used the top 100 non-regulated genes for Figure 2C and the

top 1,000 non-regulated genes for Figure 3 as a negative control.

ChIP-seq peak detection and annotation

ChIP-seq reads were aligned to the human genome (hg19 version) with Bowtie2 (Langmead and Salzberg, 2012). Peaks were called

with MACS2 (Zhang et al., 2008), with option narrow for FLI1 antibody and broad for H3K27ac histone mark. To normalize, we took

the input dataset from the same cell line. EWSR1-FLI1 specific peaks were defined as peaks varying upon EWSR1-FLI1 expression

(p < 0.005). To obtain the p-values for each of the peaks we tested the statistical correlation (lm function in R) between the vectors

formed by the EWSR1-FLI1 peak intensities at d7, d9, d10, d11, d14, d17 and the vector c (0, 2, 3, 4, 7, 10). That last vector consists in

the number of days of EWSR1-FLI1 re-expression for each of these time points. For each gene, we reported the closest EF-peaks to

TSS.Weperformed aWilcoxon test to compare the distribution of distances for genes of each ICwith the control gene set (Figure 3A).

We used FIMO tool (Grant et al., 2011) to scan EF-peaks with ETSmotif (JASPAR ID: MA0475.1, p < 0.1) and GGAA-mSats (JASPAR

ID: MA0149.1, p < 0.0005). If several motifs were found, we kept only the best motif. ROSE was used to predict Super-Enhancers

from H3K27ac marks (Lovén et al., 2013; Whyte et al., 2013). We applied Fisher’s exact test to evaluate the enrichment of EF-peaks

in Super-Enhancer (Figure 3D). The Super-Enhancers were associated to the closest expressed gene (Figures 3E and 3F).

Quantifying the contribution of independent component signatures into the expression intratumoral heterogeneity of

EwS PDXs

The expression profile of each gene in the PDX dataset was regressed on the scores defined by the top contributing gene sets of 30

independent components identified from the analysis of the inducible system. Elastic net regression was applied with alpha param-

eter of 0.9, ten-fold cross-validation for optimizing the lambda parameter of lasso, and a maximum of 5 predictors selected. It was

counted how frequently a score was selected in the regression. This frequency was used to rank the independent components’ con-

tributions to the heterogeneity in each PDX. The mean rank value on all 5 PDXs was used to identify which independent component

scores contributed the most to the expression intratumoral heterogeneity.

For the top identified independent component scores, in each PDX, a Spearman correlation matrix was computed.

DATA AND CODE AVAILABILITY

The data from this study was uploaded at GEO under accession number GSE130025.

BIODICA package used to compute stabilized Independent Component Analysis and compute functional enrichment of the top

contributing genes is available at https://github.com/LabBandSB/BIODICA/

The code used to process the scRNA-Seq PDX datasets is available at https://github.com/sysbio-curie/EwingSingleCell

DataAnalysis
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