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ABSTRACT
Large Eddy Simulation (LES) of the lab-scale methane fire plumes investi-
gated experimentally by McCaffrey are performed using the steady laminar
flamelet/presumed beta filtered density function model on grids of different resolu-
tion ranging from the Taylor length scale to about six times the Kolmogorov length
scale. This work focuses on investigating existing subgrid (SGS) mixing models for
mixture fraction variance prediction. Three different models based on the local equi-
librium assumption, the variance transport equation (VTE) and the second moment
transport equation (STE) are assessed. In the non-equilibrium modeling (VTE and
STE), the scalar dissipation rate is modeled with an algebraic expression involving a
SGS mixing time-scale. The comparison of the solutions is based on the convergence
properties of LES statistics for mixture fraction, temperature and axial velocity
with respect to the filter width. The simulations show that the equilibrium alge-
braic model is not suitable for purely buoyant flows. On the other hand, simulations
performed with the transport models show that grids coarser than 1 cm cannot re-
solved adequately the natural laminar instability near the edge of the plume that
governs the formation of large scale vortex and, therefore, underestimate the mixing
process, especially in the lower part of the continuous flame. For grid resolutions
finer than 1 cm, the STE model is less sensitive to grid refinement than the VTE
formulation and differences between the two models are reduced with grid refine-
ment. The STE model predicts also a stronger mixing, resulting in a slightly larger
lateral expansion of the fire plume. Predicted solutions by the two models are in
quantitative agreement with the experimental data in terms of axial temperature,
velocity and temperature fluctuations.
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1. Introduction

The purely buoyant fire plume is an important canonical problem in fire science since
its dynamics governs problems related to fire detection, fire heating of building struc-
tures, smoke-filling rates, and fire venting. This has motivated a significant amount of
experimental studies over the years for different scales and fuels [1–11]. These experi-
mental data were widely used to validate numerical studies.

Large Eddy Simulations (LES) has become the standard for numerical modeling of
turbulent fire over the last twenty years [12–21] where the large scales of the flow are
resolved while the small scales are modeled. Since chemical reactions in non-premixed
combustion occur only by molecular mixing of fuel and oxidizer, which in practical
applications occurs only on the dissipative turbulent scales, the combustion process
occurs essentially at the smallest scales of the sub-filter level, and has to be modeled
entirely. A significant part of these studies used the eddy dissipation concept (EDC)
proposed by [22], to model the turbulence-combustion interaction in different fire sce-
narios [18–21]. In EDC, the reactions are assumed to occur only in the smallest eddies
along the turbulence energy cascade, which are called fine structures. To account for
detailed chemical kinetics, these fine structures are typically treated as a Perfectly
Stirred Reactors (PSRs) in which chemical reactions depend on the molecular mixing
between the reactants. In fire research, the detailed kinetics is generally not retained
and an infinitely fast chemistry single-step irreversible reaction is assumed. Due to non-
linearity of the combustion process, the filtered reaction rate is modeled by introducing
model constants. However, no universal values of these constants exist [23, 24]. On the
other hand, only few LES of fire plumes have reported the use of mixture fraction
based combustion models. Noticeable examples are the works of Desjardin and Che-
ung and Yeoh [14, 16] where a one-step reaction based steady laminar flamelet model
(SLFM) was considered and that of Wang et al. [17] who used Burke-Shumann state
relationships. These studies considered a classical presumed Filtered Density Func-
tion (FDF), parametrized by the filtered mixture fraction and SGS mixture fraction
variance, to characterize the mixture fraction statistics at the subgrid scale.

Mixture fraction based combustion models, including flamelet models and condi-
tional moment closure [25], are state-of-the art turbulent combustion models and
their development for LES of non-premixed turbulent diffusion flames has retained
a considerable attention over the last twenty years. In these approaches, the effects of
small-scale mixing processes are typically characterized by subgrid mixture fraction
variance and its dissipation rates. The subgrid scalar variance quantifies the level of
unmixedness at the subgrid scales and the filtered scalar dissipation rate describes the
rate at which scalars relax toward a fully mixed state. The modeling of both quantities
has received significant attention over the last years and several models using different
assumptions can be found in the literature. Cook and Riley [26] proposed a model
based on the scale similarity assumption for the subfilter variance. Jiménez et al. [27]
showed that the model constant depends on the exponent of the scalar spectrum func-
tion in the large Reynolds number limit. Cook [28] derived a method for calculating
the coefficient and showed that it varies with the test filter scale and the Reynolds
number. Another approach to model the subfilter variance was developed by Pierce
and Moin [29] who assumes a local equilibrium between the production and dissipation
of subfilter variance. The model coefficient is calculated by a dynamic procedure, thus
eliminating the need to specify it a priori. The use of this equilibrium model leads to
a simple model for the subfilter scalar dissipation rate. Balarac et al. [30] modified the
dynamic procedure of Pierce and Moin to include certain leading-order terms in the
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Taylor series expansion of the left hand side of the dynamic closure. Although being
computationally efficient, it was reported that the dynamic local equilibrium-based
models produce inaccurate estimation of scalar mixing and hence scalar dissipation
rate [31–34].

An alternative to equilibrium models is to consider a transport equation for the
subgrid scalar variance. This approach, initiated by Jiménez et al. [35], will be referred
to as the VTE model hereafter. Kaul et al. [31, 32, 34] proposed to solve the transport
equation for the filtered second moment of mixture fraction (STE), referred to as the
STE model hereafter, instead of directly solving the VTE. After the STE is solved, the
subgrid mixture fraction variance is then computed by subtracting the square of filtered
mixture fraction from the filtered second moment of mixture fraction. The two models
are identical at the level of their continuous equations, but give different results when
discretized. In Ref. [31], Kaul et al. claimed that the calculation of production term of
VTE introduces discrepancies due to the chain-rule of product operation at the discrete
level, especially in high Reynolds number flows. The STE model does not consider
this term and thus is not affected by this discrete chain-rule caused error. They also
mentioned that another advantage of STE is to recover the maximum subgrid variance
in the case where dissipation is negligible. Based on these reasons, they argued that
the use of the STE model is more accurate than the VTE model. Kemenov et al.
[36] and Jain et al. [37] also addressed the differences between both models at the
discrete level. Kemenov et al. [36] performed a comparative grid refinement study
for the two models on the Sandia Flame D. The VTE model was found to provide
a better convergence behavior with respect to grid refinement than the STE model.
The discrepancy of the STE model was attributed to the conservation issue of the
square of the filtered mixture fraction at the discrete level, leading to the appearance
of an extra source term, depending on grid spacing, in the subgrid scalar variance
evolution for the STE model. The VTE model is inherently consistent and capable
to enforce the conservation law for the square of filtered mixture fraction. Jain et al.
[37] demonstrated in a planar jet flame study, that the VTE model predictions agree
better with the DNS data, and the STE model may cause sharp oscillations of subgrid
scalar variance.

Both two models require modeling for the scalar dissipation rate. Closure may be
achieved through algebraic expressions using a turbulent time-scale [33, 35]. Alterna-
tively, closure can also be performed by solving a transport equation for the filtered
square gradient of mixture fraction [33]. However, studies of these models for subgrid
scalar variance and scalar dissipation rate were limited to momentum-driven turbulent
jet flames and investigations of these models on purely buoyant fire plumes were not
reported to date.

In this context, the article aims to study different models for the subgrid variance
and scalar dissipation for LES of methane fire plumes. The non-adiabatic steady lam-
inar flamelet model will be used as combustion model and local equilibrium-based
algebraic models and non-equilibrium models involving either the VTE or STE for-
mulations will be compared. Following Kemenov et al. [36] the comparison of LES
solutions will be based on the convergence properties of their statistics with respect
to the filter size, ∆. As discussed by Pope and co-workers [36, 38], characterizing the
dependence of predicted statistics on ∆ must be part of the overall LES methodology
and gain importance in combustion problems since the rate-controlling processes such
as reactant mixing and chemical reactions are modeled at the subgrid-scale level. Such
convergence studies are rare in the LES modeling of fire plumes and were limited to
mean temperature and/or axial velocity [21], [39]. The present study reports a more
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exhaustive convergence study involving mean and rms of mixture fraction, tempera-
ture and velocity. The methane fire plumes investigated experimentally by McCaffrey
are considered for this exercise. These purely buoyant diffusion flames belong to the
list of target flames identified by the workshop MacFP [40] recently initiated by mem-
bers of the fire community. The goals of this workshop are to develop and validate
predictive models of fire plume, to identify well-defined target flames that are suitable
for modeling, and to archive detailed data sets for these target flames.

This article is organized as follows. The second section presents the numerical meth-
ods and LES fire modeling. Section 3 describes the experimental case and computa-
tional setup. The results are discussed in section 4. Finally, the concluding remarks
are drawn.

2. Numerical and physical models

2.1. Governing equations

LES is based on a separation of scales. This separation is commonly introduced by
a filtering operation which decomposes the velocity and scalar fields into a resolved
(filtered) part and an unresolved (subgrid-scale) part. In addition, for variable den-
sity flow, the resolved quantities are density-weighted (Favre filtered) as defined by
ρ̄φ̃ = ρφ. The Favre-filtered Navier-Stokes equations in low Mach number formula-
tion supplemented with transport equations for the filtered enthalpy, h̃ and mixture
fraction, Z̃, are:

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0 (1)

∂ρ̄ũj
∂t

+
∂ρ̄ũiũj
∂xi

= − ∂p̄

∂xj
+

∂

∂xi

(
(µ̃+ µt)S̃ij

)
+ (ρ̄− ρ∞)gj (2)

∂ρ̄Z̃

∂t
+
∂ρ̄ũiZ̃

∂xi
=

∂

∂xi

(
ρ̄(D̃ +Dt)

∂Z̃

∂xi

)
(3)

∂ρ̄h̃

∂t
+
∂ρ̄ũih̃

∂xi
=

∂

∂xi

(
ρ̄(D̃ +Dt)

∂h̃

∂xi

)
−∇ · q̇′′R (4)

The subgrid (SGS) contribution to the momentum stress and scalar flux is computed
using a dynamic Smagorinsky model and a dynamic eddy diffusivity model, respec-
tively [41]:

τ sgsuiuj
= −ρ̄(ũiuj − ũiũj) ≈ 2µtS̃ij (5)

τ sgsuiZ
= −ρ̄(ũiZ − ũiZ̃) ≈ ρ̄Dt

∂Z̃

∂xi
(6)

where µt = Csρ̄∆2|S̃| is the turbulent eddy viscosity and ρ̄Dt = Czρ̄∆2|S̃| is the SGS

diffusivity, with |S̃| =
√

2S̃ijS̃ij being the norm of the resolved strain rate tensor, S̃ij ,

and ∆ the filter width. Here, we take the filter width ∆ equal to the grid-spacing.
The coefficients Cs and Cz are calculated using dynamic procedure according to Refs.
[41, 42]. (̄·) and (̃·) represent filtered and density-weighted filtered quantities, respec-
tively.
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The thermochemical variables, such as density, ρ, molecular diffusivity, D, and viscos-
ity, µ, are provided by the combustion model described in the next section.

2.2. Combustion model

The combustion model is based on the non-adiabatic steady laminar flamelet model
[43]. State relationships for the different reactive scalars can then be generated, such
as the temperature or the species mass fraction, as a function of a reduced number
of parameters describing the local flow conditions (mixture fraction, strain rate or
scalar dissipation rate, radiative loss). The flamelet library was generated by solving
the governing equations of counterflow diffusion flames in physical space at a series of
specified strain rates. Starting with a low strain rate of 0.5 s−1, flamelet was calculated
by gradually increasing the strain rate until the local quenching occurs at 260 s−1.
The strain rate values encountered during the CFD calculations were found to range
from 1.5 to 40 s−1. The link between the physical space and the mixture fraction
coordinate is given by a properly defined mixture fraction. Once the solutions of these
counterflow diffusion flames are obtained in the physical space using CHEMKIN code
[44], the mixture fraction distributions are obtained by solving transport equations
for the mixture fraction, as suggested by Pitsch and Peters [45]. Radiative loss was
incorporated in the flamelet library by using the methodology described by Carbonell
et al. [46]. The idea consists in generating flamelet profiles for each strain rate with
different degrees of heat losses. In practice, a volumetric radiative heat sink term based
on the optically-thin approximation was introduced in the flamelet energy equation
and was multiplied by a constant δ to allow variation in the degrees of radiative loss.
For each strain rate, the flamelet temperature and species equations were solved for
a set of prescribed δ factors ranging from 0 (adiabatic) to the maximum value which
was adjusted to be near quenching conditions. Figure 1 illustrates flamelet profiles for
the temperature for different δ and two strain rates. The full chemical kinetic scheme
developed by Qin et al. [47] was used.
The thermochemical states of the flamelet are then parametrized by a mixture fraction,
Z, scalar disspation rate, χ, and enthalpy defect, XR = h − had where h and had are
the enthalpy and adiabatic enthalpy, respectively, as:

φ = φfl(Z, χ,XR) (7)

In LES of non-premixed combustion, many important mixing and reaction processes
occur at scales that are unresolved on the computational grid. Combustion-related
variables such as the mixture fraction fluctuating quantities and their statistical dis-
tribution need to be considered. Subgrid fluctuations of the combustion variables can
have an important impact on the filtered properties due to the sensitivity and non-
linearity of combustion processes. To account for subgrid fluctuations in the combus-
tion variables, filtered combustion variables are obtained by integrating Eq. (7) over
the joint FDF of Z, χ and XR:

φ̃ =

∫
φfl(Z, χ,XR)P̃ (Z, χ,XR)dZdχdXR (8)
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Z, χ and XR are assumed to be statistically independent and the marginal FDFs are
modeled by a beta distribution for Z and delta distributions for χ and XR:

P̃ (Z, χ,XR) = β(Z; Z̃, VZ)δ(χ− χ̃)δ(XR − X̃R) (9)

Once the flamelet library is computed and assumed FDF integrals are evaluated, a
look-up table can be generated to provide the filtered thermochemical variables as
functions of the quantities readily available from LES (Z̃, VZ , χ̃, and X̃R) [48]:

φ̃ = φ̃(Z̃, VZ , χ̃, X̃R) (10)

2.3. Subgrid scalar variance and dissipation modeling

2.3.1. Non-equilibrium models

The subgrid scalar variance VZ , required to retrieve solutions from the filtered flamelet
look-up table, is defined in terms of a FDF as [35]:

VZ(x, t) = Z̃2(x, t)− Z̃2(x, t) (11)

where the appearance of the second moment Z̃2 makes the variance unclosed. The
subgrid scalar variance can be computed by using its transport equation (VTE) [35]:

∂ρ̄VZ
∂t

+
∂ρ̄ũiVZ
∂xi

=
∂

∂xi

(
ρ̄
(
D̃ +Dt

) ∂VZ
∂xi

)
+ P − ρ̄χ̃ (12)

where the production term is defined as:

P = 2ρ̄
(
D̃ +Dt

) ∂Z̃
∂xi

∂Z̃

∂xi
(13)

Another way to compute the subgrid-scale variance consists in solving the transport

equation for the second moment of the mixture fraction Z̃2, (STE) [31, 32]. Once the

second moment Z̃2 and Z̃ are resolved, the subgrid scalar variance VZ thus can be
computed from its definition, Eq. (11).

∂ρ̄Z̃2

∂t
+
∂ρ̄ũiZ̃2

∂xi
=

∂

∂xi

(
ρ̄(D̃ +Dt)

∂Z̃2

∂xi

)
− ρ̄χ̃ (14)

In both VTE and STE models, the filtered scalar dissipation rate term, χ̃, is unclosed
and requires modeling. Jiménez et al. [35] proposed to model the filtered scalar dissi-
pation rate by relating the subgrid-scale scalar mixing time scale to the subgrid-scale
turbulent time scale. The characteristic mixing time is assumed proportional to the
turbulent characteristic time. In LES, the subgrid-scale scalar mixing time can be
defined as:

1

τ̃Z
=

χ̃

VZ
(15)

6



An equivalent subgrid-scale turbulent characteristic time τ̄ is introduced as the ratio
between subgrid-scale kinetic energy, κsgs = 1/2(ũiui − ũiũi), and the filtered kinetic

energy dissipation rate, ε̃ = ν̃ ∂̃ui

∂xj

∂ui

∂xj
. Given a proportionality between both time scales,

the model for χ̃ is derived as:

χ̃

VZ
=

1

τ̃Z
≈ C

τ̃
= C

ε̃

κsgs
(16)

The filtered kinetic energy dissipation rate and the subgrid-scale kinetic energy are
modeled as:

ε̃ = 2 (ν̃ + νT ) S̃ijS̃ij (17)

κsgs = 2CI∆
2S̃ijS̃ij (18)

As proposed by Jiménez et al. [35], C = 1/Sc, and CI can be computed by dynamic
approach. Therefore, the filtered scalar dissipation rate χ̃ can be written as [35]:

χ̃ =
D̃ +DT

CI∆2
VZ (19)

2.3.2. Algebraic equilibrium model

If production and destruction of SGS the mixture fraction variance is assumed to be
in equilibrium [29], the scalar dissipation rate can be computed as:

χ̃ = 2
(
D̃ +Dt

) ∂Z̃
∂xi

∂Z̃

∂xi
(20)

With the local equilibrium assumption (LEA), the SGS mixture fraction variance is
computed through a scale similarity model [29], denoted hereafter as the algebraic
model:

VZ = Cv∆
2 ∂Z̃

∂xi

∂Z̃

∂xi
(21)

where Cv is calculated dynamically.

2.4. Radiation modeling

The spectral coverage range in terms of wavenumber, η, is 0-25000 cm−1 and H2O
and CO2 are considered as the only radiating species since the contributions of soot
and CO can be neglected. The Rank-Correlated Full-Spectrum k-distribution (RC
FSK) method is used as gas radiative property model [49]. As in the classical FSK
[50], the FS cumulative k-g distribution function, is defined as g(k, φ, Tp) =

∫∞
0 H[k−

κη(φ)]Ibη(Tp)dη/Ib(Tp), whereH is the Heaviside function, κη is the spectral absorption
coefficient, φ = {xCO2

, xH2O, T} is an array of thermodynamic variables affecting κη.
xCO2

and xH2O represent the mole fractions of CO2 and H2O, respectively. Ibη and
Ib are the spectral and total blackbody intensities at the blackbody temperature,
Tp, respectively. The main advantage of the RCFSK is that it does not require any
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specification of a reference state [50]. Mixed FS k-g distributions (for mixtures of H2O
and CO2) are constructed from HITEMP 2010 [51] by using the procedure proposed
by Modest and Riazzi [50]. The FSK radiative transfer equation (RTE) can be written
as:

dIg0
ds

= −k∗(g0)Ig0 + k∗(g0)a(g0)Ib(Tp) (22)

where g0 corresponds in the present study to a quadrature-point of a 10-point
Gauss-Legendre quadrature scheme and Ig0 is the radiative intensity at this quadra-
ture point [49]. The RCFSK scheme determines the absorption coefficient by
solving g(k∗, φ, Tp) = g0 whereas the stretching function is computed as a =
∂g[k(g0, φ, Tp), φ, T ]/∂g0 [49]. The total radiative intensity, I, and the total incident

radiation, G, are computed as I =
∫ 1

0 Ig0dg0 and G =
∫

4π IdΩ, respectively. The
divergence of the radiative flux is then calculated from the following equation:

∇ · q̇′′R =

∫ 1

0
4πk∗aIbdg0 −

∫ 0

1
k∗Gdg0 (23)

Predictions were found insensitive to the choice of Tp. In the present simulations, Tp
was set equal to 1500K.

The filtered RTE and divergence of the radiative flux are obtained by applying the
filtering operation to Eqs. (22, 23):

dIg0
ds

= −k∗Ig0 + k∗aIb (24)

∇ · q̇′′R =

∫ 1

0
4πk∗aIbdg0 −

∫ 0

1
k∗Gdg0 (25)

The filtered absorption terms, k∗Ig0 or k∗G, are closed by neglecting the subgrid-

scale absorption, leading to k∗Ig0 ≈ k∗ Ig0 and k∗G ≈ k∗ G. The filtered absorption
coefficient and emission terms are closed by using the presumed filtered PDF approach:

k∗ = ρ̄

∫
(k∗)fl(Z, χ̃, χ̃R)

ρfl(Z, χ̃, χ̃R)
β(Z; Z̃, VZ)dZ (26)

k∗aIb = ρ̄

∫
(k∗aIb)

fl(Z, χ̃, χ̃R)

ρfl(Z, χ̃, χ̃R)
β(Z; Z̃, VZ)dZ (27)

where the superscript fl refers to the flamelet library. The Filtered RTE is solved by
using the Discrete Ordinates Method with a S8 quadrature scheme [52].

2.5. Numerical solution

The Favre-filtered transport equations are solved by using the second-order iterative
variable-density solver developed by Ma et al. [53] and implemented in the finite
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volume code Code Saturne v5.0.9 [54], employing cell-centered collocated grids.
The second-order Crank-Nicolson scheme is used for time advancement. For scalar
transport, numerical oscillations must be prevented through non-oscillatory schemes.
We employ a TVD (Total Variation Diminuishing) superbee scheme that blends a
second order central scheme with a first order upwind scheme in a way that combines
good accuracy with limited numerical oscillation. Avoiding numerical oscillation is
particularly important for reacting scalars (here the mixture fraction), as the density
depends on them in a strongly non-linear manner. A second-order central difference
scheme (CDS) is used for diffusion. For the momentum equation both convective and
diffusive terms are also discretized by using a second-order CDS. Numerical details
and a method of manufactured solutions (MMS) verification of the predictor–corrector
approach can be found in Ref. [53].

2.6. Computational domain and boundary conditions

Five methane fire plumes in open conditions, investigated experimentally by Mc-
Caffrey [1], were simulated. These flames were generated from a burner of 0.3 m
in diameter with heat release rates (HRR, Q̇) of 14.4, 21.7, 33, 45 and 57.5 kW,
respectively. Simulations were performed in the rectangular domain of 3 × 3 × 3 m3

in a Cartesian coordinate. Consistently with the experiments, the burner is lifted by
0.3 m above the floor to prevent the influence of the ground.

In order to examine the effect of the grid resolution on the LES results, five grids G1,
G2, G3, G4 and G5 have been used with progressively increasing the resolution in the
three directions from 0.909 to 6.32 million cells. These grids are uniform in the region
0.3× 0.3× 1.0 m3 which results in a minimal grid spacing equal to 1.5, 1.25, 1.0, 0.75
and 0.5 cm, respectively (see Table 1). Outside this region, all grids are progressively
stretched in all the direction. Throughout all simulations, time step is set to 5× 10−4

s which corresponds to an averaged maximum CFL of 0.6. Simulations were run for
25 s and the time-averaged mean and root mean square values were collected over the
last 19 s. The first 6 s of simulation were used to establish a statistically stationary flow.

The convergence of statistics will be investigated for the 57.5 kW fire plume at
heights above the burner of 0.1, 0.2, 0.4 and 0.6 m, respectively. The corresponding
normalized heights are z∗ = z/Q̇2/5 = 0.019, 0.039, 0.079, and 0.119 m · kW−2/5,
showing that they are located close to the burner, in the continuous flame region
(CF, z∗ ≤ 0.08 m · kW−2/5), at the transition between the CF and the intermittent
flame regions (IF) and in the IF region (0.08 < z∗ ≤ 0.2 m · kW−2/5), respectively [1].
These locations cover all the reactive parts of the fire plume where SGS mixing and
resulting combustion processes are expected to be the most important. In addition,
it should be pointed out that the positions z = 0.1 and 0.2 m are located in the CF
where the mixing is controlled by the formation and growth of laminar instabilities
[55]. The Kolmogorov length scale, ηk, the Taylor length scale, λ, and the diffusive
layer thickness, ld, at the CF tip can be estimated from the data of McCaffrey [1]
and Cox and Chitty [3] following the analysis proposed in Refs. [56, 57]. The integral
length scale, Lt, is assumed to be one-half of the equivalent burner diameter [56, 57],
i.e. Lt = 0.17 m. Based on the turbulent intensity reported by Cox and Chitty [3],
the fluctuating velocity, w′, is assumed to be 30 % of the mean axial velocity at
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the CF tip, wCF . This latter is estimated from the correlation of McCaffrey [1],
leading to wCF = 1.93Q̇1/5 = 4.33 m/s and w′ = 1.3 m/s, respectively. The kinematic
viscosity is computed from ν = ν∞(1 + ∆TCF /T∞)1.7 = 187 × 10−6 m2/s [56] where
ν∞ = 15×10−6 m2/s is the kinematic viscosity at the ambient temperature, T∞ = 293
K, and ∆TCF = 1000 K is the temperature rise at the continuous flame tip [3]. The
turbulent Reynolds number is then computed as Ret = w′Lt/ν = 1175, leading to a

Kolmogorov length scale, ηk = LtRet
−3/4, of about 0.82 mm. The Taylor length scale

can then be deduced from λ =
√

10LtRet
−1/2 ≈ 15 mm [58]. In addition, the diffusive

layer thickness is estimated as ld =
√
Dst/χst ≈ 14 mm, where Dst and χst are the

molecular diffusivity and the scalar dissipation rate at stoichiometry, respectively.
The scalar dissipation rate is determined from χst = atϕexp[−2(erfc−1(2Zst))

2] with
ϕ = 3[(Tst/T∞)1/2 + 1]2/(4[2(Tst/T∞)1/2 + 1]2). Tst = 2000 K and Zst = 0.055 are
the temperature and the mixture fraction at the stoichiometry, respectively. The

strain rate is calculated from at = 0.28τk [56] where τk = ηkwk and wk = w′Re
−1/4
t

are the Kolmogorov time scale and velocity scales, respectively. Table 1 shows that
the present LES are resolved beyond the Taylor microscale and the diffusive layer
thickness for all the grids. In addition, the finest filter size, G5, is about 6 times the
Kolmogorov length scale.

Concerning the boundary conditions, an inlet velocity was imposed at the burner
to ensure the specified HRR for each methane flame. Fixed values of fuel mass flow
rate and enthalpy flow rate are maintained according to the specified HRR. Both
convective and diffusive mass and enthalpy fluxes are accounted for at the inlet. Typical
entrainment boundary conditions are used for lateral sides. At the domain exit, a
convective condition was used:

∂φ̃

∂t
+ uc

∂φ̃

∂n
= 0 (28)

where φ = {uj , Z, Z2, VZ , h}. Following [59], the convective velocity uc is given by
a Gaussian profile, uc = uout0 exp(−r2/b2). The mean axial velocity on the plume
centreline, uout0 , and the plume radius, b, at the exit height were obtained from the
Heskestad correlations [60]. Homogeneous Neumann condition is used for the pressure.
In the rest domain, the classical wall boundary condition is imposed.

3. Results and discussions

3.1. Impact of grid spacing

The performance of algebraic equilibrium, VTE and STE models are examined based
on the convergence of the LES statistics with respect to the filter width, ∆, in the 57.5
kW fire plume. For a consistent LES, time-averaged values must converge, root-mean-
square (RMS) resolved values must increase and the SGS variance diminishes when
∆ decreases [61]. These three models differ by the calculation of the SGS mixture
fraction variance. Consequently, the convergence properties of mean mixture fraction
and mixture fraction variance are first analyzed [36]:

〈Z〉 = 〈Z̃〉+ 〈Z ′′〉 = 〈Z̃〉 (29)
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〈Z ′2〉 = 〈Z2〉 − 〈Z〉2 = (〈Z̃2〉 − 〈Z〉2)︸ ︷︷ ︸
〈ZV,ReS〉

+ (〈Z̃2 − Z̃2〉)︸ ︷︷ ︸
VZ

(30)

For sufficiently fine LES, it is reasonable to expect that the residual mixture fraction,
〈Z ′′〉, is equal to 0 [36]. Note that this assumption has been used to express Eq. (30).

3.1.1. Impact of grid spacing on VTE and STE

Let us start by investigating the effects of the turbulent resolution scale ∆ on
VTE and STE. Radial profiles of time-averaged mixture fraction, 〈Z〉, SGS vari-
ance, 〈VZ〉, resolved-scale variance, 〈ZV,ReS〉, and total variance, ZV,tot, at different
heights of 0.1, 0.2, 0.4 and 0.6 m, computed with the VTE and STE models on
the different grids, are presented in Figs. 2 to 5, respectively. The SGS variance
reaches on the whole maximum values along the plume axis at all the heights (see
Fig. 3). As a consequence, the dependence of mean mixture fraction, SGS mixture
fraction variance and total mixture fraction variance on ∆ along the plume center-
line is further investigated in Figs. 6 in order to provide more quantitative information.

Figure 2(g) and (h) and the diagram (b1) in Fig. 6 show clearly that the STE model
exhibits convincing convergence for mean mixture fraction on the different grids at
z = 0.4 m and 0.6 m. In the CF region (z = 0.1 m and 0.2 m), the STE solutions
are more grid-dependent, especially along the plume wings (see Fig. 2(e) and (f)).
Nevertheless, a reasonable convergence state is reached along the plume axis for these
heights on the grids G3-G5 (see Fig. 6(b1)). On the other hand, the convergence of
VTE is more complicated whatever the height at the vicinity of the fire plume axis
(see Fig. 2 (a)-(d) and 6(a1)). In addition, similar grid effects as for STE are observed
along the plume wings in the CF region (see Figs. 2(a) and (b)). Figure 2 shows also
that the VTE model predicts higher mixture fraction close to the fire plume axis (see
also Fig. 6) whereas the STE model predicts slightly wider radial distributions.

The radial profiles of SGS mixture fraction variance are plotted in Fig. 3 for all the
grids. In accordance with the criterion of consistent LES, 〈VZ〉 decreases continuously
as ∆ is reduced for STE. This behavior is further highlighted in the diagram (b2)
of Fig. 6. The rate of decrease for VTE is in overall slower than that of STE up to
G4 and accelerates between G4 and G5 as illustrated in the diagram (a2) of Fig. 6.
Figure 3 shows also that, for a given grid up to G4, the VTE model predicts lower
〈VZ〉 than the STE model close to the centreline at z = 0.1 m and z = 0.2 m (see
also the diagrams (a2) and (b2) of Fig. 6) and in the profile wings at all heights.
This behavior is consistent with the observations made in other flame configurations
[31, 32, 36, 37] and is attributed to numerical errors stemming from an underresolved
discrete representation of the squared-gradient term in the production rate of the SGS
mixture fraction variance (see Eq. 13). This production term is explicitly involved
in the VTE model (see Eq. 12) but not in the STE model that does not suffer from
these approximations. For the finest grid G5, a detailed examination of the results
show that both models predict the similar radial profiles of 〈VZ〉 at all the heights.
This latter result suggests that the aforementioned numerical errors affecting the
VTE model are reduced when the grid is sufficiently fine and that both models tend
toward similar solutions.
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As expected, Fig. 4 shows that 〈ZV,ReS〉 increases as the grid becomes finer and
finer up to G4 for both models. In addition, it can be observed that the corresponding
rate of increase is higher close to the source (z = 0.1 m and 0.2 m). For G5, 〈ZV,ReS〉
keeps on increasing for both models at z = 0.1 m and 0.2 m whereas the shape of the
radial profiles changes at z = 0.4 m and 0.6 m, resulting in lower values close to the
centerline and wider radial extensions.

STE reaches an approximate convergent state on G3–G5 grids for ZV,tot as shown
in Fig. 5(e)-(h). This is confirmed by the diagram (b3) of Fig. 6. On the other
hand, Fig. 5(a)-(d) and the diagram (a3) of Fig. 6 show that the convergence is less
convincing for VTE whatever the height, especially close to the fire plume axis. A
careful examination of the results shows that the differences between VTE and STE
are substantially less important on G5 than on G4 and G3, which reinforces the
feeling that both models converge toward the same solution when the grid becomes
sufficiently fine. These differences between VTE and STE are the following. First at z
= 0.1 m, the VTE model exhibits a more pronounced double-peak radial profile than
the STE model. This behavior is also observed for 〈VZ〉 and 〈ZV,ReS〉 (see Figs. 3 and
4). Second, close to the plume axis, the VTE model predicts slightly higher ZV,tot
than the STE model (see the diagrams (a3) and (b3) of Fig. 6). Third, it appears also
that the STE model predicts a slightly higher lateral spreading.

In order to complete the previous discussion, time-averaged temperature rise above
the ambient, 〈∆T 〉, rms of total temperature fluctuations, σT,tot, defined in accordance
with Eq. 30, time-averaged axial velocity, 〈w〉, and rms of axial velocity fluctuations,
σw, are plotted for the two models on the different grids in Figs. 7 to 10, respectively.

These figures indicate that the grids G1 and G2, that have a resolution larger than
1 cm, predict a significantly narrower radial spreading of the fire plume than the grids
G3-G5, especially in the CF region (z = 0.1 m and 0.2 m). These mesh effects are
particularly remarkable for 〈∆T 〉, σT,tot and σw whereas they are less pronounced for
〈w〉. In addition, the radial extensions of 〈w〉 and σw are insensitive to further grid
refinement from G3 to G5 whereas those of 〈∆T 〉 and σT,tot keep on being enhanced
in the CF region. This latter behavior is less pronounced for STE than for VTE. The
mixing in the lower part of the CF region is driven by the formation and growth
of initially laminar non-dissipative instabilities in the near source region of the flow
[55]. These instabilities growth by vortex dynamic to become nonlinear and energy
bearing. This process is illustrated in Fig. 11 that shows instantaneous snapshots of
the density field in the centerline x-z plane over a sequence of 0.4 s. The formation
and the growth of initially laminar bubble structures is clearly observed for the grids
G3 to G5 whereas G1 and G2 are not sufficiently fine to capture these details. In
addition, this figure shows that these instabilities become better resolved as the grid
is refined from G3 to G5. As discussed in Ref. [62], the dynamic SGS turbulence
model considered in the present study is dissipative in nature and is not capturing
the mixing resulting from these structures. As a consequence, the present results
evidence that grid resolution has a profound impact on the dynamic of the flow in
the CF region and suggest that grid resolution coarser than 1 cm are not able to
describe adequately the formation of the initial base instability near the edge of the
fire plume. These observations are in accordance with those of Tieszen et al. [62] for
1m diameter helium plume, who also showed that too coarse grids cannot capture the
formation of the instabilities and their subsequent growth.
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In addition, Figs. 7 to 10 emphasize the main observations made previously.
i) STE exhibits a better convergence behavior than VTE on G3 to G5 for the
temperature statistics (see Figs. 7 and 8) . On the other hand, both models exhibits
a reasonable convergence on G3-G5 for the axial velocity statistics (see Figs. 9 and
10). ii) A careful examination of Figs. 7 to 10 shows that the differences between
VTE and STE are significantly more pronounced on G3 and G4 than on G5 where
both STE and VTE predictions tend to become similar. This behavior is further
highlighted in Figs. S1 to S4 in the Supplementary Materials that compare VTE
and STE solutions on G4 and G5. The observed differences are consistent with
those described for mean mixture fraction and mixture fraction variances and are
evidenced by the comparison of VTE and STE solutions on G4 reported in the Figs.
S1 to S4 of the Supplementary Materials. STE exhibits in overall a wider fire plume
spreading at all heights. In addition, as for mixture fraction variances, the double
peak radial profiles, observed for 〈∆T 〉, σT,tot and σw at z = 0.1 m and resulting
from the fact that close to the burner the high-temperature combusting sheets occur
predominately close to the plume edge, are more pronounced for VTE than for STE.
Finally, it can be also observed that σT,tot is higher for STE than for VTE (see Fig. S2).

The differences between STE and VTE originate from different formulations at
the discrete level of the transport equation of the SGS mixture fraction variance.
Numerical errors stemming from finite differences lead to an underestimation of the
SGS variance production term, which appears explicitly in the VTE formulation as
discussed in [31, 32]. For the present fire plume, as discussed previously, this results
in SGS variance lower for VTE than for STE in the CF region (z = 0.1 m and z = 0.2
m), which, in turn, affects the combustion process that occurs at the SGS level. In
particular, in the CF region (z = 0.1 m and z = 0.2 m), the temperature and, as
a result, the temperature gradient that drives the formation and the growth of the
laminar instabilities in the near source region of the flow, are higher for STE than
for VTE. This is evidenced in Fig. S1 of the Supplementary Materials that compares
the temperature rise above the ambient for STE and VTE on G4. Therefore, the
resolved-scale mixing is stronger for STE than for VTE. This is illustrated in the
Fig. S5 in the Supplementary Materials that compares the resolved temperature
fluctuation predicted by STE and VTE on G4. This explains that STE predicts in
overall wider radial profiles and lower centerline mixture fraction. This explains also
why the double peak radial profiles observed for 〈VZ〉, 〈ZV,ReS〉, ZV,tot, 〈∆T 〉, σT,tot
and σw at z = 0.1 m are less pronounced for STE than for VTE. In addition, these
interactions between SGS mixing and resolved-scale mixing in the CF region through
the combustion process may explain that the differences between VTE and STE are
higher in the present configuration than for the SANDIA flame D where, as stated
by Kemenov et al. [36], the flow is relatively insensitive to the incurred errors on the
SGS variance.

Table 2 shows the puffing frequency, f , predicted by both VTE and STE for the
different grids. These predictions can be compared with the correlation of Cetegen
and Ahmed [63], i.e. f = 1.5

√
1/Deq = 2.58 Hz where Deq = 0.34 m is the equivalent

burner diameter. It can be observed that the puffing frequencies computed with STE
and VTE converge toward 2.5 Hz on G3-G5.

The dependence of the radiant fraction and the optical thickness, defined as the
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part of the radiative emission reabsorbed within the flame [64], on ∆ are reported in
Table 3. The radiant fraction computed with STE is nearly constant on G3-G5 with
a value around 0.27 whereas that computed with VTE is more sensitive to the grid.
It can be also observed that the differences between the two models are reduced as
the grid is refined from G3. The flame optical thickness is less sensitive to the grid
resolution than the radiant fraction and is around 0.47-0.48 on G3-G5 for the two mod-
els. These results show clearly that this fire plume cannot be assumed as optically-thin.

3.1.2. Impact of grid spacing on the algebraic model

The convergence behavior of the algebraic model is investigated in Fig. 6(c). Figure
6c1 shows that mean mixture fraction exhibits a good convergence for all the grids at
z = 0.4 m and z = 0.6 m. On the other hand, the convergence is not established in
the CF region (z = 0.1 m and z = 0.2 m) where the mean mixture fraction increases
continuously as the turbulence resolution scale is reduced (see Fig. 6(c1)). The SGS
mixture fraction variance does not behave as expected for consistent LES along the
plume axis at z = 0.1 m, z = 0.2 m and z = 0.6 m where it increases as the grid is
refined up to G3 before reaching a nearly constant value as ∆ is further reduced (see
Fig. 6(c2)). The mean total variance increases continuously as the grid size is refined
and, therefore, does not convergence whatever the grid resolution more particularly
in the CF region (see Fig. 6(c3)). In addition, Table 2 shows that the convergence is
not established for the puffing frequency whatever the grid.

It can be also observed by comparing the diagram (c2) and the diagrams (a2)
and (b2) of Fig. 6 that, whatever the grid, the algebraic model predicts substantially
lower centerline SGS scalar variance at z = 0.1 m and z = 0.2 m than both STE
and VTE models. This underprediction is in line with observations made in other
simpler flames [31, 33, 35, 37] and, for the present fire plume configuration, can be
related to the highly non-equilibrium nature of buoyancy-driven flows as described
by Bakosi and Ristorcelli [65]. Figure 12 compares the time-averaged production and
dissipation rates of the SGS variance. It indicates clearly that the local equilibrium
assumption is not satisfied in the CF region although it seems to become more valid
as the height increases in the IF region and in the plume. These results evidence the
limitation of algebraic equilibrium based models for the simulation of fire related flows.

3.2. Comparisons with experimental data

Figures 13 shows the axial profiles of mean axial velocity (first line, index 1), mean
temperature rise (second line, index 2), resolved temperature fluctuation (third line,
index 3) and total temperature fluctuation (fourth line, index 4) as a function of
the normalized height for the five plumes investigated experimentally by McCaffrey
[1]. Model predictions obtained on G3 with VTE (first column, diagrams a), STE
(second column, diagrams b) and the algebraic model (third column, diagrams c) are
compared with experimental data.

McCaffrey [1] found that scaling the height and axial velocity by Q̇2/5 and Q̇1/5,
respectively, allows to collapse the experimental data for mean temperature rise above
the ambient and mean axial velocity on a single curve independent of the HRR. Let

14



us start to discuss the solutions obtained with VTE and STE (Figs. 13(a1), (a2), (b1)
and (b2)). Both predictions are similar and follow the same scaling as the experiments.
For velocity, the deviation of these models from the correlation near the burner
surface shows a similar trend and magnitude as the deviation of the measurement
points to the correlation. The temperatures reported by McCaffrey were not corrected
for thermocouple radiation which explains the over-prediction by both VTE and STE
models, especially in the CF and IF regions. A much better agreement is observed
with the correlation of Cox and Chitty, obtained also from 30 cm diameter methane
fire plumes of different HRR [2] and corrected for thermocouple radiation [4], and the
data reported by Crauford et al. [5] for a 28 kW methane fire plume generated by
circular burner with a diameter of 25 cm. The algebraic model, meanwhile, provides
a less satisfactory agreement with the experimental correlations and data than the
STE and VTE models. First, it introduces more scatter for the data corresponding
to the different HRR than observed experimentally and predicted by both VTE
and STE. Second, it overestimates the temperature and the axial velocity in IF region.

The axial resolved and total temperature fluctuations are compared with the
data of Cox and Chitty [3] and Crauford et al. [5] (see the last two lines of Fig.
13). Cox and Chitty [3] measured temperature fluctuations by using uncompensated
13 µm thermocouples. An analysis performed by these authors showed that these
probes can adequately follow signals with frequency up to 10 Hz. Crauford et al.
[5] also measured temperature fluctuations by using 50 µm thermocouple with a
compensation technique based on a thermocouple time constant of 30 ms thorough
the flame zone. They suggested that their data may significantly underestimate the
temperature fluctuations. The data of Crauford et al. [5] follow quantitatively the
same trends as those of Cox and Chitty [3]. Both VTE and STE predictions reproduce
correctly similar scaling and trends as the experiments (see Figs. 13(a3), (b3), (a4) and
(b4)). The total rms of temperature fluctuation overestimate the experimental data
which can be attributed, as discussed above, to the measurement techniques (see Fig.
13(a4) and (b4)). Nevertheless, it is interesting to note that the resolved temperature
fluctuations predicted by both VTE and STE models are in better agreement with
the experimental data (see Fig. 13(a3) and (b3)). As for mean temperature and axial
velocity, the algebraic model introduces more scatter for the different HRR than
observed experimentally and predicted by both VTE and STE, especially in the
CF region (see Figs. 13(c3) and (c4)). In addition, as expected from the discussion
in section 3.1.2, the resolved and total fluctuating temperatures are significantly
underestimated in the CF region, especially for HRRs higher than 33 kW (see Figs.
13(c3) and (c4)).

Figure 14 compares VTE and STE radial profiles of mean temperature on G3 and
G4 with data extracted from the experimental results of McCaffrey for the 45 kW fire
plume at different heights. The correlations of Cox and Chitty [2] for a 47 kW fire
plume are also reported. The two sets of experimental data are in good accordance at
heights of 0.1, 0.5 and 0.6 m but present large discrepancies for heights of 0.2 to 0.4
m. On G3, the largest discrepancies between the model and the experimental data are
observed at 0.2 and 0.3 m that correspond to regions where the intermittency is the
largest. At these heights, the model underestimates significantly the measurements for
r > 0.05 m and the maximum deviations between the calculations and the data of
McCaffrey are of about 200K at z = 0.2 m and r ≈ 0.05 m. As the grid is refined
to G4, a much better agreement is observed at these heights. As expected the STE

15



predicts on the whole slightly wider radial profiles than the VTE.

4. Conclusions

LES of lab-scale methane fire plumes were performed using the SLF model coupled
to a presumed beta FDF approach. Three modeling approaches of the SGS variance,
namely an algebraic dynamic model and two non-equilibrium transport models based
on either VTE or STE formulation, were analyzed. These models were assessed based
on the convergence properties of their statistics for mixture fraction, temperature and
axial velocity with respect to the filter width ranging from the Taylor length scale to
about six times the Kolmogorov length scale. The following conclusions can be drawn
from the present study:

(1) The simulations confirm the limitations of equilibrium algebraic model for purely
buoyant flows.

(2) The simulations with non-equilibrium transport models show that computational
grids with resolutions coarser than about 1 cm cannot adequately resolve the
initial base instability near the edge of the fire plume that plays an important
role to describe accurately the mixing process, especially in the continuous flame.

(3) For resolutions finer than about 1 cm, the STE model is less sensitive to grid
refinement than the VTE formulation and predicts a higher mixing that results
in a slightly larger lateral expansion of the fire plume. The differences between
the two models tend to be reduced with the turbulent resolution scale and com-
parable predictions are obtained on the finest grid.

(4) For grids finer than 1 cm, both VTE and STE are in quantitative agreement
with available experimental data in terms of axial velocity, temperature and rms
of temperature fluctuations.
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Table 1. Resolution parameters for the LES calculations.
Grids G1 G2 G3 G4 G5

Number of cells
in 20 × 20 × 66 24 × 24 × 80 30 × 30 × 100 40 × 40 × 133 60 × 60 × 200

0.3× 0.3× 1.0 m3

∆ (cm) 1.5 1.25 1.00 0.75 0.50
λ/∆ 1.04 1.25 1.56 2.08 3.12
ld/∆ 0.95 1.14 1.42 1.90 2.85
∆/ηk 17.8 14.8 11.9 8.9 5.9
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Table 2. Puffing frequency computed by VTE,

STE and algebraic closure models for the 57.5 kW

fire plume on the different grids.
Grids G1 G2 G3 G4 G5
VTE 3.3 3.5 2.3 2.5 2.5
STE 2.5 3.0 2.5 2.5 2.5

algebraic model 3.4 3.3 3.0 1.7 2.4
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Table 3. Radiant fraction and optical thickness computed by VTE and
STE for the 57.5 kW fire plume on the different grids.

Grids Model G1 G2 G3 G4 G5
Radiant fraction VTE 0.288 0.293 0.272 0.269 0.271

STE 0.276 0.261 0.255 0.261 0.269
Optical thickness VTE 0.470 0.473 0.477 0.477 0.482

STE 0.470 0.468 0.474 0.473 0.480
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Figure 1. Temperature profiles as a function of the mixture fraction for differ-
ent radiative losses and two strain rates of a=2 s−1 and a=38 s−1.

Figure 2. Radial distribution of time-averaged mixture fraction with VTE
model (a)-(d) and STE model (e)-(h) at different heights for the 57.5 kW fire plume.

Figure 3. Radial distribution of subgrid mixture fraction variance with VTE
model (a)-(d) and STE model (e)-(f) at different heights for the 57.5 kW fire plume.

Figure 4. Radial distribution of resolved mixture fraction variance with VTE
model (a)-(d) and STE model (e)-(h) at different heights for the 57.5 kW fire plume.

Figure 5. Radial distribution of total mixture fraction variance with VTE
model (a)-(d) and STE model (e)-(h) at different heights for the 57.5 kW fire plume.

Figure 6. Convergence of mean mixture fraction (index 1), subgrid mixture
fraction variance (index 2) and total mixture fraction variance (index 3) with grid
spacing along the plume axis for: (a) VTE, (b) STE and (c) the algebraic model.

Figure 7. Radial distribution of time-averaged temperature with VTE model
(a)-(d) and STE model (e)-(h) at different heights for the 57.5 kW fire plume.

Figure 8. Radial distribution of total rms temperature with VTE model (a)-
(d) and STE model (e)-(h) at different heights for the 57.5 kW fire plume.

Figure 9. Radial distribution of time-averaged axial velocity with VTE model
(a)-(d) and STE model (e)-(h) at different heights for the 57.5 kW fire plume.

Figure 10. Radial distribution of rms resolved axial velocity with VTE model
(a)-(d) and STE model (e)-(h) at different heights for the 57.5 kW fire plume.

Figure 11. Instantaneous snapshots of the density field, computed with the
STE model on the different grids, in the center-line (x-z) plane over a sequence of 0.4
s for the 57.5 kW fire plume.

Figure 12. Axial evolution of the time-averaged production and dissipation
rates of the subgrid mixture fraction variance computed by VTE on the grid G5 for
the 57.5 kW fire plume.

Figure 13. Axial distribution of axial velocity (index 1), mean temperature
(index 2), resolved temperature fluctuation (index 3) and total temperature fluctua-
tion (index 4) for the five fire plumes as a function of the normalized height with: (a)
VTE, (b) STE and (c) the algebraic model.

Figure 14. Radial distribution of mean temperature at different heights for
the 45 kW fire plume.

23



0.0 0.5 1.0
Z [-]

500

1000

1500

2000

T 
[K

]

a=2[s−1] δ=0
δ=0.24
δ=0.64
δ=1.2
δ=1.8
δ=2.4
δ=3.0

0.0 0.5 1.0
Z [-]

500

1000

1500

2000

T 
[K
]

a=38[s−1] δ=0
δ=2.8
δ=2.8
δ=5.8
δ=9.2
δ=13
δ=17
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(e)-(h) at different heights for the 57.5 kW fire plume.
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Figure 3. Radial distribution of subgrid mixture fraction variance with VTE model (a)-(d) and STE model
(e)-(f) at different heights for the 57.5 kW fire plume.
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Figure 4. Radial distribution of resolved mixture fraction variance with VTE model (a)-(d) and STE model
(e)-(h) at different heights for the 57.5 kW fire plume.

27



−0.2 0.0 0.20.00

0.02

0.04

0.06

0.08

Zv
, to

t [
-]

(a) z=0.1m G1
G2
G3
G4
G5

−0.2 0.0 0.20.00

0.02

0.04

0.06

0.08 (e)

−0.2 0.0 0.20.00

0.02

0.04

0.06

Zv
, to

t [
-]

(b) z=0.2m

−0.2 0.0 0.20.00

0.02

0.04

0.06 (f)

−0.2 0.0 0.20.00

0.01

0.02

0.03

0.04

Zv
, to

t [
-]

(c) z=0.4m

−0.2 0.0 0.20.00

0.01

0.02

0.03

0.04 (g)

−0.2 0.0 0.2
x [m]

0.00

0.01

0.02

0.03

0.04

Zv
, to

t [
-]

(d) z=0.6m

−0.2 0.0 0.2
x [m]

0.00

0.01

0.02

0.03

0.04 (h)

Figure 5. Radial distribution of total mixture fraction variance with VTE model (a)-(d) and STE model
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28



0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

⟨Z
⟩⟨[

-]

⟩a1)⟨VTE

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6
⟩b1)⟨STE z=0.1⟨m

z=0.2⟨m
z=0.4⟨m
z=0.6⟨m

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6
⟩c1)⟨Algeb aic⟨Mod.

0.0 0.5 1.0 1.5 2.010−4

10−3

10−2

10−1

⟨V
Z
⟩⟨[

-]

(a2)

0.0 0.5 1.0 1.5 2.010−4

10−3

10−2

10−1
(b2)

0.0 0.5 1.0 1.5 2.010−4

10−3

10−2

10−1
(c2)

0.0 0.5 1.0 1.5 2.0
ΔΔ[cm]

10−4

10−3

10−2

10−1

Zv
, to

tΔ[
-]

(a3)

0.0 0.5 1.0 1.5 2.0
ΔΔ[cm]

10−4

10−3

10−2

10−1
(b3)

0.0 0.5 1.0 1.5 2.0
ΔΔ[cm]

10−4

10−3

10−2

10−1
(c3)

Figure 6. Convergence of mean mixture fraction (index 1), subgrid mixture fraction variance (index 2) and

total mixture fraction variance (index 3) with grid spacing along the plume axis for: (a) VTE, (b) STE and

(c) the algebraic model.

29



−0.2 0.0 0.20

500

1000

1500

2000

⟨Δ
T⟩
⟨[K

]

Δa⟩⟨z=0.1m G1
G2
G3
G4
G5

−0.2 0.0 0.20

500

1000

1500

2000 Δe⟩

−0.2 0.0 0.20

500

1000

1500

2000

⟨Δ
T⟩
⟨[K

]

Δb⟩⟨z=0.2m

−0.2 0.0 0.20

500

1000

1500

2000 Δf⟩

−0.2 0.0 0.20

500

1000

1500

2000

⟨Δ
T⟩
⟨[K

]

Δc⟩⟨z=0.4m

−0.2 0.0 0.20

500

1000

1500

2000 Δg⟩

−0.2 0.0 0.2
x⟨[m]

0

500

1000

1500

2000

⟨Δ
T⟩
⟨[K

]

Δd⟩⟨z=0.6m

−0.2 0.0 0.2
x⟨[m]

0

500

1000

1500

2000 Δh⟩

Figure 7. Radial distribution of time-averaged temperature with VTE model (a)-(d) and STE model (e)-(h)
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Figure 8. Radial distribution of total rms temperature with VTE model (a)-(d) and STE model (e)-(h) at
different heights for the 57.5 kW fire plume.
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Figure 9. Radial distribution of time-averaged axial velocity with VTE model (a)-(d) and STE model (e)-(h)
at different heights for the 57.5 kW fire plume.
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Figure 10. Radial distribution of rms resolved axial velocity with VTE model (a)-(d) and STE model (e)-(h)
at different heights for the 57.5 kW fire plume.
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Figure 11. Instantaneous snapshots of the density field, computed with the STE model on the different grids,
in the center-line (x-z) plane over a sequence of 0.4 s for the 57.5 kW fire plume.
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Figure 14. Radial distribution of mean temperature at different heights for the 45 kW fire plume.
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