Exploring subgrid-scale variance models in LES of lab-scale methane fire plumes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Combustion Theory and Modelling Année : 2021

Exploring subgrid-scale variance models in LES of lab-scale methane fire plumes

Résumé

Large Eddy Simulation (LES) of the lab-scale methane fire plumes investigated experimentally by McCaffrey are performed using the steady laminar flamelet/presumed beta filtered density function model on grids of different resolution ranging from the Taylor length scale to about six times the Kolmogorov length scale. This work focuses on investigating existing subgrid (SGS) mixing models for mixture fraction variance prediction. Three different models based on the local equilibrium assumption, the variance transport equation (VTE) and the second moment transport equation (STE) are assessed. In the non-equilibrium modeling (VTE and STE), the scalar dissipation rate is modeled with an algebraic expression involving a SGS mixing timescale. The comparison of the solutions is based on the convergence properties of LES statistics for mixture fraction, temperature and axial velocity with respect to the filter width. The simulations show that the equilibrium algebraic model is not suitable for purely buoyant flows. On the other hand, simulations performed with the transport models show that grids coarser than 1 cm cannot resolved adequately the natural laminar instability near the edge of the plume that governs the formation of large scale vortex and, therefore, underestimate the mixing process, especially in the lower part of the continuous flame. For grid resolutions finer than 1 cm, the STE model is less sensitive to grid refinement than the VTE formulation and differences between the two models are reduced with grid refinement. The STE model predicts also a stronger mixing, resulting in a slightly larger lateral expansion of the fire plume. Predicted solutions by the two models are in quantitative agreement with the experimental data in terms of axial temperature, velocity and temperature fluctuations.
Fichier principal
Vignette du fichier
CTM_2020_03_25_FinaleVersion.pdf (1.7 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02972155 , version 1 (28-04-2021)

Identifiants

Citer

Li Ma, Fatiha Nmira, Jean-Louis Consalvi. Exploring subgrid-scale variance models in LES of lab-scale methane fire plumes. Combustion Theory and Modelling, 2021, ⟨10.1080/13647830.2020.1831078⟩. ⟨hal-02972155⟩
44 Consultations
169 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More