N

N

Correlation in an intrusion detection process
Frédéric Cuppens, Fabien Autrel, Alexandre Miege, Samuel Benferhat

» To cite this version:

Frédéric Cuppens, Fabien Autrel, Alexandre Miege, Samuel Benferhat. Correlation in an intrusion
detection process. SECI’02: Sécurité des Communications sur Internet, Sep 2002, Tunis, Tunisia.
hal-02972076

HAL Id: hal-02972076
https://hal.science/hal-02972076
Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02972076
https://hal.archives-ouvertes.fr

septembre 2002 - SEcurité des Communications sur Internet— SECI02

Correlation in an intrusion detection process

Frédéric Cuppens!, Fabien Autrel!, Alexandre Miége? & Salem Benferhat?

1: ONERA-CERT, 2 Av. E. Belin, 31055 Toulouse Cedex, France,
2: ENST Paris, 46 rue Barrault, 75014 Paris CEDEX, France,

3: IRIT, 118 route de Narbonne, 31062 Toulouse CEDEX, France
email: {cuppens,autrel,miege}@cert.fr, benferhat@irit.fr

Abstract

Generally, the intruder must perform several actions, organized in an intrusion scenario, to achieve his
or her malicious objective. We argue that intrusion scenarios can be modelled as a planning process and we
suggest modelling a malicious objective as an attempt to violate a given security requirement.

Our proposal is then to extend the definition of attack correlation presented in [2] to correlate attacks
with intrusion objectives and to introduce the notion of anti correlation. These notions are useful to decide
if a sequence of correlated actions can lead to an intrusion objective. This approach provides the security
administrator with a global view of what happens in the system. In particular, it controls unobserved actions
through hypothesis generation, clusters repeated actions in a single scenario, recognizes intruders that are
changing their intrusion objectives and is efficient to detect variations of an intrusion scenario. This approach
can also be used to eliminate a category of false positives that correspond to false attacks, that is actions that
are not further correlated to an intrusion objective.

1. Introduction

The main objective of computer security is to design and develop computer systems that conform to the
specification of a security policy. A security policy is a set of rules that specify the authorizations, prohibitions
and obligations of agents (including both users and applications) that can access to the computer system. An
intruder (also called hacker or cracker) might be viewed as a malicious agent that tries to violate the security
policy. Thus, an intrusion is informally defined as a deliberate attempt to violate the security policy. This
intrusion can be an attempt:

e To have an illegal access to some piece of information. In this case, the intrusion violates a confidentiality
constraint expressed in the security policy. For instance, sniffing or cracking a password violates a
confidentiality constraint saying that the owner of a password must be the only user that knows this
password.

e To perform some illegal creation, modification or deletion of some piece of information. In this case, the
intrusion violates an integrity constraint expressed in the security policy. For instance, an IP spoofing
consists in forging IP packets with illegal address. This is an intrusion that violates an integrity constraint
saying that the address of an IP packet must represent the sender of this packet.

e To prevent other users to have legal access to some services or resources. In this case, the intrusion
violates an availability constraint expressed in the security policy. For instance, flooding a system with
messages so that other users can no longer have an access to this system provides an example of an
intrusion against availability.

153

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

Notice that sometimes the intruder might perform his intrusion by using a single action. For instance,
performing a deny of service using the ping of death attack simply requires sending a too long IP packet.
However, more complex intrusions generally require several steps to be performed. For instance, let us consider
the Mitnick attack. There are two steps in this attack. In the first step, the intruder floods a given host H. Then
the intruder sends spoofed SYN messages corresponding to H address to establish a TCP connection with a
given server S. When S sends a SYN-ACK message, H would normally send a RESET message to close the
connection. But this is not possible since H is flooded. This enables the intruder to send an ACK message
to illegally open a connection with S. Notice also that opening a TCP connection with .S is probably not the
intruder’s final objective. It is likely that the intruder will then attempt to get an access on S for instance
by performing a rlogin. This means that the Mitnick attack will actually represent preliminary steps of a more
global intrusion. In the following, we shall call intrusion scenario the complete sequence of actions that enables
the intruder to achieve his intrusion objective.

Another important point to be mentioned is that the intruder will generally first need to gain knowledge
about the target system to be attacked. For instance, let us consider an intruder whose objective is to perform a
deny of service (DOS) over the Domain Name Server (DNS) of a given network. In this case, a “brute force”
intrusion would be to launch a Winnuke attack over all the machines of this network, expecting that the DNS
server will be denied at the same time as other machines. However, this is not a very efficient nor clever way to
proceed. It is more likely that a careful intruder will first use the nslookup command to locate the DNS server
and then send a ping to check whether this server is active. And if the intruder chooses Winnuke to perform
the DOS attack, since Winnuke only succeeds on Windows machines, this careful intruder will probably check
if the DNS server actually supports Windows. For this purpose, the intruder may scan port 139 (NetBios)
because NetBios provides good evidence that Windows is active. We shall call knowledge gathering steps the
set of commands that enables the intruder to gain knowledge about the target system. In our previous example,
the knowledge gathering steps correspond to nslookup, ping and scan of port 139. In the following, we shall
consider that the knowledge gathering steps are part of the intrusion scenario.

In this context, current intrusion detection technology only detects elementary attacks that correspond to the
steps of a given intrusion scenario. They neither provide a global view of the intrusion scenarios in progress nor
of the intrusion objectives the intruders attempt to achieve. Therefore, our goal in this paper is twofold. First, we
suggest an approach to recognize various steps of an intrusion scenario. We shall call attack correlation this first
functionality. It is actually an extension of the approach suggested in [2]. Second, when the attack correlation
function succeeds in correlating several actions, we want to decide whether the current observations actually
correspond to malicious activities or not. We call malicious intention recognition this second functionality.
Combining these two functionalities would enable the security administrator to have a global understanding of
what happens in the system in order to prepare an adequate reaction. Notice also that sometimes, this reaction
might be launched before the intrusion scenario is completed, that is before the intrusion objective is actually
achieved.

The remainder of this paper is organized as follow. Section 2 introduces preliminary definitions to fix
the vocabulary. Section 3 presents our approach to modelling the intrusion process. This model includes a
representation of both attacks and intrusion objectives. Our approach is actually derived from planning process
models in Artificial Intelligence. These models are used to represent the activity of an agent that attempts
to find a sequence of actions that achieve a given objective. We argue that the activity of an intruder who is
performing an intrusion scenario is quite similar to a planning process. Section 4 then presents our approach for
modelling the intrusion detection process. From a formal point of view, this approach uses the same materials
as the ones presented in section 3, namely attack and intrusion objective modelling. Based on these materials
and following [2], we define the notion of attack and alert correlation and also correlation between an attack
and an intrusion objective. We then introduce the notion of anti correlation that is useful to detect that an action
disables a given intrusion scenario in progress. Section 5 further refines our approach by introducing abduction
in the correlation process. Abduction is used to generate hypotheses. This is useful in two different situations:

1. Abduction of unobserved attacks. This is used to complete detection of an intrusion scenario when some
steps in this scenario are not detected (false negatives).

154

Recognizing malicious intention in an intrusion detection process

2. Abduction of intrusion objectives. This is useful to anticipate over the intruder intentions when several
actions that match an intrusion scenario have been correlated.

Section 6 presents an experimentation of our approach on several examples of intrusion scenarios. Section
7 is a discussion of our approach, compared to other approaches suggested in the literature, in particular
approaches based on expert system [7], explicit plan recognition (see for instance [6]) and chronicle recognition
[9]. Finally section 9 concludes the paper.

2. Preliminary definitions

In order to avoid any confusion or misunderstanding, and because the intrusion detection vocabulary is not
clearly established, we give in this section a brief overview of the terms we shall use in this paper.

Intrusion objective (intrusion detection point of view) An intrusion objective is the final purpose of an
intruder, which justifies all its actions. So, from its point of view, the intrusion objective is obvious. By
contrast, from the intrusion detection point of view, it is more difficult to determine the possible intrusion
objectives and to differentiate them from non malicious activities.

As an intruder aims at committing a forbidden action, we suggest deriving the possible intrusion objectives
from the security policy: any security policy violation is a potential intrusion objective.

We give three examples corresponding to integrity, confidentiality, and availability violation:

e Objective 1: gaining a non authorized root access right
e Objective 2: having a non authorised read access to a sensitive file

e Objective 3: performing a denial of service attack on the DNS

Malicious action A malicious action enables the intruder to directly achieve an intrusion objective. For
instance, thanks to the Winnuke attack, an intruder can do a denial of service on a Windows server.

Intrusion scenario As an intrusion objective will often needs several actions to be reached, the intruder needs
to draw up an intrusion scenario. It is an organised set of actions, which have to be executed following a certain
order.

Let us present three intrusion scenarios corresponding to the intrusion objectives described just before.

1. Illlegal NFS mount: the intruder, say badguy, wants to obtain a root access on a target. badguy can
perform the following actions:*

e rpcinfo to know if portmapper is running on the target.

o With the showmount command, badguy sees the target exportable partitions.

e mount enables badguy to mount one of this partition, say the root partition.

o By modifying the .rhost file of this partition, badguy gets a root access on the target system.
e rlogin is the final step to access the target system with root privileges.

2. lllegal file access: we shall consider the following intrusion scenario example where an unauthorised
user bad_guy tries to read secret-file:2

1This scenario actually exploits a wrongly configured security policy: the intruder should not be able to mount the root partition.
2This is an old intrusion scenario that does no longer work on current UNIX versions but it provides a good example to illustrate various
concepts of our approach.

155

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

bad_guy creates a file (touch file),

bad_guy blocks the printer, by opening the paper trays.

Ipr -s enables bad_guy to print file. With s” option, the file is not spooled, only its path is saved.

bad_guy deletes file

bad_guy creates a symbolic link from file to secret-file: In -s file secret-file.

bad_guy unblocks the printer and secret-file will be printed.

3. DoS on the DNS: this intrusion scenario leads to a DoS attack on the DNS server. A possible scenario
suggested in the introduction is: nslookup, ping, scan port 139 and winnuke.

Action correlation (informal definition) Action, is correlated with Actions if Action; may enable the
intruder to then perform Actionas.

Suspicious action A suspicious action is defined as an action that can be correlated to a malicious action.

According to this definition, a suspicious action may be an inoffensive action, or may also be a way to
execute a malicious action on a following step. For example, scanning port 139 (NetBios) is not a dangerous
action. But, if port 139 is open, the intruder knows that Windows is running and can perform the Winnuke
attack.

Attack An attack is a malicious action or a suspicious action.

This is quite a weak definition of “attack” since it also includes suspicious actions. However, we guess it is
close to the intrusion detection terminology since many alerts actually correspond to only suspicious actions.
This leads to the following definition of alerts:

Simple alert A simple alert is a message sent by an IDS. It results from the detection of a suspicious or a
malicious action.

Fusion process and fusion alert The simple alerts generated by different IDS detecting the same attack are
merged into a single cluster. This is called fusion process. It determines first which are the merging criteria for
each type of attack, and then, during the intrusion detection process, uses those criteria to constitute clusters. At
last, it generates a fusion alert to inform all the security devices of the creation and the content of a new cluster.
It is not the purpose of this paper to further present the fusion process but see [1, 10] for different proposals for
this process.

Correlation process and scenario alert The correlation process receives the fusion alerts and tries to
correlate them one by one using correlation rules. When a complete or a partial intrusion scenario is detected, a
scenario alert is generated. [2] suggests an approach for the correlation process and correlation rules definition.
The purpose of this paper is to extend this correlation process.

False positive False positive and false negative are well documented notions in intrusion detection literature.
However, regarding false positive we guess it is necessary to distinguish between false detection and false
attack.

1. False detection corresponds to the occurrence of an alert whereas the corresponding attack did not occur.
For instance, this can be due to an IDS weak signature.

156

Recognizing malicious intention in an intrusion detection process

2. False attack results from detecting a suspicious action that is not further correlated with a malicious
action.

We argue that the fusion process is useful to recognize false detection (see [1]). However, it is not sufficient
to detect false attacks. For this purpose, the correlation process presented in this paper will be useful.

3. Modelling the intrusion process

The objective of this paper is to detect intrusion scenario and recognize malicious intention. For this purpose,
it is first useful to analyse and model how intruders proceed to perform their intrusions.

In our approach the intrusion process is modelled as a planning activity. We assume that the intruder wants
to achieve intrusion objectives and, for this purpose, the intruder can use a set of attacks (remember that attacks
include both suspicious or malicious actions). In this context, the intruder’s problem is to find a sequence of
attacks that transform a given initial state into a final state. The initial state corresponds to the system state when
the intruder starts his intrusion. And the final state has the property that the intrusion objective is achieved in
this state.

We check this approach on several intrusion scenarios, including the three scenarios presented in section
2 but also other scenarios such as the Mitnick attack. For every analysed scenario, it was possible to interpret
it as a planning process. Due to space limitation, we shall only illustrate this claim on scenario 3 “illegal file
access”. But before, we need to present our approach to model attacks and intrusion objectives.

3.1. Attack modelling

In the planning context, actions are generally represented by their pre and post conditions. Pre conditions
of an action correspond to conditions the system’s state must satisfy to perform the action. Post conditions
correspond to effects of executing the action on the system’s state.

In our model, an attack is similarly represented using three fields: its name, pre condition and post condition.
Attack name is a functional expression that represents the name of the attack and its different parameters. Attack
pre-condition specifies the logical conditions to be satisfied for the attack to succeed and attack post-condition
is a logical condition that specifies the effect of the attack when this attack succeeds.

The pre-condition and post-condition of an attack correspond to conditions over the system’s state. For
this purpose, we use a language, denoted L, which is based on the logic of predicates. Predicates are used to
describe properties of the system state relevant to the description of an attack. In this language, we assume that
terms starting by an upper case letter correspond to variables and other terms are constants.

The predicates are combined using the logical connectives “,” (conjunction denoted by a comma) and “not ”
(negation). Currently, we do not allow using disjunction in the pre and post conditions of an attack. Another
restriction is that negation only applies to predicates, not to conjunctive expressions. The reason of these
restrictions will be explained in section 4.

In order to model knowledge gathering actions, we extend language L, so that it also includes a meta-
predicate (actually a logical modality) knows. If A is an agent and p is a formula of L, then knows(A, p)
means that A knows that p is true. We assume that modality knows satisfies the following axiom for each
agent A and formula p: knows(A, p) — p, that is if A knows that p then p is true.

Figure 1 shows how various steps of scenario illegal file access are represented in this model. In
this example, we use the following predicates: file(F'ile) (File is a file), owner(Agent, File) (Agent
is the owner of File), printer(Printer) (Printer is a printer), blocked(Printer) (Printer is blocked),
authorized(Agent, Right, File) (Agent has Right access on F'ile), linked(Link, File) (there is a logical
link from Link to File), queued(File, Printer) (File is queued in Printer), read_access(Agent, File)

157

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

Action touch(Agent, File) Action block(Agent, Printer)
Pre: true Pre: printer(Printer),
Post: file(File), owner(Agent, File) physical _access(Agent, Printer)
Post: blocked(Printer)
Action lpr- s(Agent, Printer, File) Action remove(Agent, F'ile)
Pre: printer(Printer), file(File), Pre: owner(Agent, File)
authorized(Agent, read, File) Post: not (file(File))
Post: queued(File, Printer)
Action In- s(Agent, Link, File) Acti on unblock(Agent, Printer)
Pre: not (file(Link)) Pre: printer(Printer),blocked(Printer),
Post: linked(Link, File) physical_access(Agent, Printer)
Post: not (blocked(Printer))
Action print- process(Printer, Link) Action get- file(Agent, File)
Pre: queued(Link, Printer), Pre: printed(Printer, File),
linked(Link, File), physical_access(Agent, Printer)
not (blocked(Printer)) Post: read_access(Agent, File)

Post: printed(Printer, File),
not (queued(Link, Printer))

Figure 1: Modelling the illegal file access scenario

(Agent has a read access on F'ile) and physical access(Agent, Printer) (Agent has a physical access to
Printer).

To model the illegal file access scenario, we actually specify 8 actions. The 6 first actions
touch(Agent, File), block(Agent, Printer), lpr-s(Agent, Printer, File), remove(Agent, File), In-
s(Agent, Link, File) and unblock(Agent, Printer) correspond to the various actions performed by the
intruder in the illegal file access scenario as presented in section 2.

Our model includes two additional actions print-process(Printer, Link) and get-file(Agent, File).
Action print-process(Printer, Link) models what happens on Printer when Link is queued: a file is
printed if Printer is not blocked. This printed file will be F'ile if there is a logical link between Link and
File. Action get-file(Agent, File) corresponds to the physical action performed by Agent to get File after
it is printed. This last action actually enables Agent to obtain a read access to F'ile.

We argue that these two last actions are necessary to fully represent this scenario. In particular, the intruder
has not achieved his intrusion till he has not executed the action get_file. Notice also that the attack will not
succeed if Agent has not a physical access to the printer on which the sensitive file is printed.

3.2. Modelling intrusion objective

In our approach intrusion objectives actually correspond to violation of a given security policy. For instance,
the security policy may specify (1) that an agent should not gain a root access to a system whereas he is not
authorized to do so, or (2) an agent should not obtain a read access to a file whereas he is not authorized to do
s0, or (3) a DNS system should remain available in any circumstance.

Therefore, an intrusion objective is modelled by a system state condition that corresponds to a violation of
the security policy. Figure 2 provides three examples of intrusion objectives that respectively correspond to
violation of the three requirements specified in the previous security policy example. For instance, intrusion
objective Dos_on_DN S(Host) is achieved if Host is a DNS server and there is a DOS attack on this server.

158

Recognizing malicious intention in an intrusion detection process

I ntrusi on_Obj ective illegal_root_access(Host)
State_Condi tion: root_access(Agent, Host),
not (authorized(Agent,root, Host))

I ntrusi on_Cbj ecti ve illegal_file_access(File)
State_Condi tion: read.access(Agent, File),
not (authorized(Agent,read, File))

I ntrusi on_Cbj ective DOS_on.DNS(Host)
State_Condition: dns_server(Host),dos(Host)

Figure 2: Examples of intrusion objectives

Donai n_rul e owner_right(File)
Pre: owner(Agent, File)
Post: authorized(Agent,read, File), authorized(Agent, write, File)

Donai n_rul e remove_right(F'ile)

Pre: not file(File)

Post: not (owner(Agent, File)),
not (authorized(Agent,read, File)),
not (authorized(Agent,write, File))

Figure 3: Examples of domain rules

3.3. Domain rules

In our model, we also include the possibility to specify domain rules. Domain rules are used to represent
general properties of system’s state through possible relations between predicates. These domain rules are also
represented using a pre and post condition but there is a major difference with the pre and post condition of
actions. Indeed, an action corresponds to a transition from an initial state to a final state: the pre condition of
an action is true in the initial state and the post condition is true in the final state. By contrast, the pre and post
conditions of an domain rule are evaluated on the same system state: if the pre condition of an domain rule is
true in a given state, then the post condition is also true in the same state.

Figure 3 provides two examples of domain rule. Rule owner right(File) says that the Agent owner of
a given File is automatically authorized to have read and write access to this file. Rule remove_right(F'ile)
says that if F'ile does no longer exist, then there is no longer an owner for this file and read and write access to
File are also removed to every Agent.

3.4. Planning intrusion scenario

Using the three previous sections, we can now show how the intrusion scenario illegal file access is modelled
as a planning process. For this purpose, let us consider an intruder, say bad_guy, and a file containing
sensitive data, say secret_file. Let us assume that bad_guy wants to achieve the intrusion objective
tllegal_file_access(secret_file). This means that bad_guy wants to achieve a final system state such that
the following condition is satisfied:

o read_access(bad_guy, secret_file), not (authorized(bad_guy,read, secret_file))

Let us also assume that bad_guy starts in the following initial state:

159

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

Step 1. touch(bad_guy, guy-file)

Step 2: block(bad_guy, ppt)

Step 3: Ipr- s(bad_guy, ppt, guy_file)

Step 4: remove(bad_guy, guy-_file)

Step 5: In- s(bad_guy, guy-_file, secret_file)
Step 6: wunblock(bad_guy, ppt)

Step 7: print- process(ppt, guy-_file)

Step 8: get- file(bad_guy, secret_file)

Figure 4: Planning the illegal file access scenario

o file(secret_file), not (read-access(bad_guy, secret_file)),
printer (ppt), physical _access(bad_guy, ppt)

That is, in the initial state, secret_file exists but bad_guy has not a read access to this file and there is a
printer ppt and bad_guy has a physical access to this printer.

Now, the planning problem consists in finding a sequence of actions that transforms the initial state into
the final state. Figure 4 presents a possible solution to this problem. It is easy to check that objective
illegal_file_access(secret_file) is achieved in the state resulting from these 8 steps. Notice that there is
another solution that corresponds to starting by blocking the printer and then creating guy_file using the
touch command, the other steps being identical to the other solution.

According to our definitions presented in section 2, only get- file(bad_guy, secret_file) corresponding to
step 8 is a malicious action since it enables the intruder to achieve the intrusion objective. Steps 1 to 7 are only
suspicious actions in the sense that they enable the intruder to then perform step 8.

This might seem surprising since steps 1 to 6 are generally presented as an attack scenario. However, notice
that independently each of this step might well correspond to a non malicious action. It is really the combination
of these 6 steps that enables the intruder to achieve his objective. However, after step 6, the intruder did not
achieve his objective yet. This is why, according to our definition, steps 1 to 6 are only suspicious actions and
step 8 is the malicious action. But, of course, if the 6 first steps are observed, we can conclude on the malicious
intention of the intruder and it is relevant to react. Actually, it is especially time to react since the intruder
perhaps did not get the paper on the printer yet whereas we are quite sure of his malicious intention.

4. Attack and alert correlation

Our approach for intrusion scenario detection uses the same materials as the ones introduced in section 3,
namely attack specification through pre and post conditions, intrusion objective corresponding to security
policy violation and domain rules. Based on these materials, we shall extend the definition of attack correlation
suggested in [2] by defining the notions of objective correlation and anti attack and objective correlations.

4.1. Correlation definitions

Let E and F be two logical expressions having the following form:*

e K =exprg,,expre,,...,eTPrE,,

o F =exprg,,expre,,...,expre,

3Notice that we assume that these two expressions do not include disjunction. This is a restriction which is used to simplify definition
of correlation below. Generalising correlation definitions to take into account disjunctions represents further work that remains to be done.

160

Recognizing malicious intention in an intrusion detection process

where each expr; must have one of the following forms:

e expr; = pred
e expr; =not (pred)
e expr; = knows(U ser, pred)

o cxpr; = knows(User, not (pred))

where pred is a predicate.

Definition 1: Headway correlation We say that logical expressions E and F' are headway correlated if the
following condition is satisfied:

e there exist i in [1,m] and j in [1,n] such that exprg, and exprr, are unifiable through a most general
unifier (mgu) ©.

For instance, the post condition of action touch(Agent, File) is headway correlated with the pre condition
of action remove(Agent, File). This is because these two logical expressions have in common predicate
owner(Agent, File). After renaming the variables of owner(Agent, File) that respectively appear in the
post condition of action touch and the pre condition of action remove into owner(Agent;, File;) and
owner(Agents, Files), we can conclude that these expressions are unifiable through mgu © such that
Agent; = Agenty and File; = Fliles.

Definition 2: Knowledge gathering correlation We say that logical expressions E and F' are knowledge
gathering correlated if the following condition is satisfied:

e there exist 7 in [1,m] and j in [1, n] such that expr g, and knows(U ser, expry;) are unifiable through a
mgu ©.

For instance, in the illegal root access scenario, knowledge gathering correlation applies to cor-
relate the post condition of action showmount(Agent,Target) with the pre condition of action
mount(Agent, Target, Partition). Indeed, a possible post condition of action showmount is knows(Agent,
mounted_partition(Target, Partition)), that is the Agent performing showmount knows what partitions
are mounted on Target. On the other hand, mounted_partition(Target, Partition) appears in the pre
condition of action mount and so definition 2 applies.

Definition 3: Correlation We say that logical expressions E and F' are correlated if £ and F' are headway
correlated or knowledge gathering correlated.

Definition 4: Direct attack correlation We say that attacks A and B are directly correlated if expressions
Post(A) and Pre(B) are correlated.

Intuitively, correlation between attacks A and B means that A enables the intruder to then perform attack B.
Figure 5 shows attacks that are directly correlated in the illegal file access scenario. In this figure, all variables
were renamed to obtain distinct variables in the pre and post conditions of correlated attacks.

161

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

Attack A | Attack B | Unifier
touch(Agent,, Filey) remove(Agents, Files) Agent; = Agents, File; = Files
remove(Agenty, File;) In-s(Agenta, Linksy, Files) File; = Linky
block(Agenty, Printer) unblock(Agents, Printers) Agent, = Agentq, Printer; = Printery

lpr-s(Agenty, Printery, File;) | print-process(Printers, Links) Filey = Links, Printer, = Printers

In-s(Agenty, Link,, File;) print-process(Printers, Links) Link, = Links, Printer; = Printers

unblock(Agent,, Printer;) print-process(Printers, Links) Printer; = Printery

print-process(Printery, Link;) get-file(Agents, Files) File; = Files, Printer; = Printers

Figure 5: Direct attack correlation in the illegal file access scenario

Definition 5: Indirect attack correlation We say that attacks A and B are indirectly correlated through
domain rules Ry, ..., R, if the following conditions are satisfied:

e Post(A) is correlated with Pre(R1) through a mgu ©y,
e Foreach jin [1,n — 1], Post(R;) is correlated with Pre(R;,1) through a mgu ©;,

e Post(R,,) is correlated with attack Pre(B) through a mgu ©,,.

For instance, it is easy to verify that attack touch(Agent, File) is indirectly correlated with attack Ipr-
s(Agent, Printer, File) through the domain rule owner _right(File).

Definition 6: Direct objective correlation We say that attack A is directly correlated to intrusion objective
O if expressions Post(A) and State_condition(O) are correlated.

Definition 7: Indirect objective correlation Same definition as definition 5 by replacing State_condition(O)
for Pre(B).

Intuitively, correlation between attack A and intrusion objective O means that attack A enables the intruder
to achieve objective O. For instance, attack get-file(Agent, File) is directly correlated with intrusion
objective illegal_file_access(F'ile).

4.2. Anti correlation

In this section, we use the same notation as in section 4.1 and define anti correlation as follows:

Definition 8: Anti correlation We say that logical expressions E and F' are anti correlated if one of the
following conditions is satisfied:

e there exists in [1,m] and j in [1,n] such that expr gz, and not (exprr,) are unifiable through a mgu ©.

e there exists 4 in [1,/m] and j in [1,n] such that not (exprg,) and exprr; are unifiable through a mgu ©.

For instance, the post condition of touch(Agent,, File,) is anti correlated with the pre condition of In-
s(Agenty, Links, Files) through the unifier Fiile; = Links.

162

Recognizing malicious intention in an intrusion detection process

Definition 9: Direct anti attack correlation We say that attacks A and B are directly anti correlated if
expressions Post(A) and Pre(B) are anti correlated.

In the illegal access file scenario, we have the following direct anti attack correlations:

e touch(Agenty, Filey) and In-s(Agenty, Links, Filey) through the unifier Fiile; = Links

o block(Agenty, Printer1) and print_process(Printers, Links) through the unifier Printer;y =
Printers

Definition 10: Indirect anti attack correlation We say that attacks A and B are indirectly anti correlated
through domain rules Ry, ..., R, if the following conditions are satisfied:

e Post(A) is correlated with Pre(R1) through a mgu ©y,
e Foreach jin [1,n — 1], Post(R;) is correlated with Pre(R;,) through a mgu ©;,

e Post(R,) is anti correlated with attack Pre(B) through a mgu ©,,.

For instance, attacks remove(Agent, Fiile) and lpr-s(Agent, Printer, File) are indirectly anti correlated
through domain rule remove_right(F'ile).

The notion of anti attack correlation is very useful. It enables the correlation process to conclude that some
sequences of actions will not succeed and do not correspond to intrusion scenarios. For instance, the sequence:

e touch(bad_guy, guy-_file), remove(bad_guy, guy_file), lpr-s(bad_guy, ppt, guy_file)

can be discarded because of the anti correlation between remove and Ipr-s. One can also conclude that illegal
access file scenario will not succeed until the printer is blocked because of the anti correlation between block
and print-process.

Similarly, one can define the notions of direct and indirect anti objective correlation of an attack A with
an intrusion objective O by simply replacing State_condition(O) for Pre(B) in definition 9 and 10. This is
useful to analyse actions that would prevent the intruder to achieve a given intrusion objective. We plan to use
this approach to combine the reaction process with the intrusion detection process in order to take into account
the effect of reaction on the intrusion.

4.3. Generating correlation rules

In [2], we show how to automatically generate correlation rules.* Due to space limitation, we shall simply give
the intuition here.

An attack correlation rule enables the correlation process to correlate two alerts corresponding to correlated
attacks. For instance, attack remove(Agent;, Fiiley) is correlated to attack in-s(Agenta, Links, Filea) when
File; = Links. In this case, the associated correlation rule will say that an alert Alert; corresponding to
detection of attack remowve can be correlated with an alert Alert, corresponding to detection of attack In-s if
the target file associated with Alert; is equal to the target link associated with Alert,. Of course, an implicit
condition to correlate Alert, with Alert, is that the attack associated with Alert; occurred before the attack
associated with Alerts.

We similarly generate objective correlation rules to correlate an alert with an intrusion objective. When
the correlation process receives an alert and there is a correlation rule that applies to correlate this alert to an

“4These correlation rules may be also specified manually but we argue in [2] that it would be quite tedious for an expert to define accurate
correlation rules. Actually, we guess it is one of the main advantages of our approach to automatically derive correlation rules from the
specification of elementary attacks.

163

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

intrusion objective, the correlation process will check if this objective is achieved or not. For instance, attack
winnuke is correlated with objective DOS_on_DNS. If an alert corresponding to attack winnuke on a given
Host is received, then the correlation process will check if Host corresponds to a DNS server. Notice that this
data is generally not provided in the alert. Therefore, we need to combine “classical” IDS with other tools that
collect additional information about the monitored system such as its topology and configuration. This problem
is outside the scope of this paper but is further discussed in the conclusion.

5. Abduction in the correlation process

Abductive reasoning consists in inferring plausible explanations from a set of observable facts. It can also be
presented as the generation of hypotheses that are missing in a deductive process. In the correlation process,
abduction is used in two different situations:

1. When all the steps of a given intrusion scenario are detected, the correlation process will succeed in
tracking the intruder by reconstituting his intrusion scenario. However, it may happen that some steps
in an intrusion scenario are not detected by any of the IDS. In this case, abduction will try to generate
minimal hypotheses corresponding to undetected attacks in order to complete the intrusion scenario
detection. In [2], we suggest raising a virtual alert for each hypothesis successfully generated.

2. When the correlation process succeeds in correlating several attacks but no intrusion objective is achieved
yet, abduction is used to generate an intrusion objective consistent with these attacks. This is used by
the correlation process to anticipate over the intruder’s intention in order to prepare the most adequate
reaction.

5.1. Virtual alerts

The correlation process will attempt to create virtual alerts when it is plausible that some attacks are not
detected. That is, when two alerts cannot be correlated, we try to insert one or several virtual alerts between
them.

Let us describe the two main steps of the virtual alert creation function. Let us assume that Alert; and
Alertq are not correlated.

e Let Attack, and Attacks be the attacks respectively associated with Alert; and Alert,. The correlation
process will then attempt to find a path of attacks to connect Attack; with Attacks. Currently, the
maximal acceptable length of this path is set as a parameter by the security administrator. Of course and
this is very important to notice, this path must be formed by attacks that might be not detected by any
IDS that provides alerts to the correlation process.

For example, let us assume that, in the illegal root access scenario (see figure 6), the modification of the
.rhost file is not detected. In this case, the correlation process receive the rlogin alert without being able to
correlate it with the mount alert. However, the correlation process knows that attack mount can be correlated
with attack rlogin through attack .rhost.

e The second step of the function replaces the path of attacks by a path of virtual alerts by instantiating
each attack. From the first attack we create a first virtual alert. This virtual alert is correlated with Alert;.
We do the same for the next attacks of the path until Alert, is achieved. At this point, the correlation
process verifies whether it is possible to correlate the last virtual alert with Alerts.

In the last example, we had a single attack in our path corresponding to the .rhost modification. We create
a virtual alert associated with this attack. According to the correlation rules between mount alert and .rhost

164

Recognizing malicious intention in an intrusion detection process

EaSSEsEE

Figure 6: Illegal root access scenario
modification alert, the target IP addresses must be the same. Consequently, the virtual alert is initialised with
the target IP address of the mount alert. We then check correlation between the virtual alert .rhost and the rlogin
alert. This test could fail if the target IP addresses of these two alerts are not equal.

.rhost
modification

5.2. Abduction of intrusion objective

When the correlation process has detected the beginning of a scenario, it tries to find out what will be the next
steps that might enable the intruder to achieve an intrusion objective.

For this purpose, the correlation process applies an approach similar to the first step used to raise virtual
alerts. It analyses the possible correlations between attacks and between an attack and an intrusion objective to
find a path of attacks between the last detected alert of the scenario and an intrusion objective.

Of course, it sometimes happens that this alert can be connected to different intrusion objectives through
different paths. In this case, our strategy is simply to select an intrusion objective that corresponds to the
shortest path. Of course, it would be possible to significantly enhance this simple strategy. This point is further
discussed in the conclusion.

6. Examples of scenario detection

In the intrusion detection context, the intruder whose plans are being inferred is not cooperative and
observations are gleaned through IDS alerts. This point and the computer security context bring to light several
issues to take in consideration. The objective of this section is to show, through the three intrusion scenarios
introduced in section 2, how our approach addresses these issues:

e Unobserved actions: There are multiple reasons that can make an attack unobservable. Signature
based IDS are not able to recognize unknown exploits and even variations of known exploits can make
them undetectable. Furthermore there can be holes in the IDS network coverage that make impossible
detection of some malicious attacks.

Our approach to solve the problem that some steps in an intrusion scenario are not detected is based on
abductive reasoning as we show in section 5.

e Repeated observations: it may happen that the intruder will repeat several times the same action, because
this is necessary to perform the intrusion scenario or simply because this might be a technique to disrupt
the intrusion detection process. In any case, our approach will generate a single alert corresponding to
the detection of a single intrusion scenario. For instance, figure 7 shows what will happen if the intruder
performs two rpcin fo and then two showmount commands in the illegal root access scenario. We see
that the result we obtain is more complex than figure 6 but it still corresponds to a single scenario.

e Optional actions: figure 8 shows detection of intrusion scenario DOS _on_DNS when the intruder
performs the sequence nslookup, ping, scan, winnuke. Actually, actions ping and scan are optional
since the intruder may directly attempt the winnuke attack without checking that the server is active
(with the ping command) and Windows is installed (with a scan of port 139).

165

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

e

illegal
root
‘

Figure 7: lllegal root access scenario with repeated rpcin fo and showmount commands

.rhost
modification

Representing intrusion scenario that includes optional actions is immediate in our approach. We have
actually nothing to do. If the intruder does not execute ping or scan, we shall simply detect a simpler
scenario that does not include these actions.

o Representation of intrusion scenario variations: As an intruder executes his plan, his actions may lead
him to draw some conclusions i.e. gain some knowledge about the network or some host for example.
This may lead in small variations in the execution of the intruder’s plan. We have to be able to represent
these variations to take them in consideration. For instance, in the DOS _on_DN S scenario, the intruder
may prefer using traceroute instead of a ping to know which machines are active in the network he
wants to attack.

Representing intrusion scenario variations is straightforward in our approach. We have simply to specify
the pre and post conditions of attack traceroute and the correlation process will automatically derive
that replacing traceroute by ping also enables the intruder to achieve the DOS _on_DN S objective.

o Partially ordered plans: By partially plans we point out plans in which the ordering constraint in the
actions creates a partial order over the actions. For example in the problem of system scanning, an
intruder can collect a large amount of IP addresses and then port sweep each of them or can port sweep
each IP as he finds them. This kind of flexible plans is easily detectable in our approach.

o Deactivation actions: there are actions that will disable the possibility to achieve the intrusion objective.
In our model, these deactivation actions are detected using anti correlation. For instance, figure 9 shows
the result we obtain in the case of illegal access file scenario. In this figure, dash lines represent anti
correlation. As mentioned before, using anti correlation, we can for instance conclude that the sequence
touch, remove, [pr-s does not match an intrusion scenario.

o Inferring unobserved actions from state changes: As noticed in [5], the way IDSs work to detect
malicious actions conditions the way these actions are reported. Let us take the example of a service
running on a computer. A host based IDS may report that the service has been started but a network
based IDS may report only the effects of starting this service. In the first case we observe the action and
in the second the state change caused by the action. From the state change we should be able to infer that
the service has been started and consider it in our plan recognition task.

We did not include this point in our approach, but since each attack specification includes a description
of its effects (through its post condition), it will be quite straightforward to derive that an action was
executed from the observation of a state change. This point is further discussed in the conclusion.

166

Recognizing malicious intention in an intrusion detection process

nslookup DOS
on
DNS
ping winnuke
scan
port 139
Figure 8: DOS on DNS scenario
lllegal
print-process file
access

block unblock ;

Figure 9: lllegal file access scenario

167

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

7. Related works

Several approaches exist in the literature in order to capture an agent’s plan, in particular:
¢ Explicit Plan recognition [5, 6]
e Chronicle recognition [9]

e Expert system approach [8, 7]

7.1. Explicit plan recognition

In the approach suggested by Geib and Goldman in [5], the intrusion scenario detection system must be
provided with a plan library based on the set of actions the intruder may execute in order to build intrusion
scenarios. This represents the major difference with our approach: in our approach, it is neither necessary to
explicitly specify such a plan library.

These plans are represented through task decomposition (hierarchical plans). A plan is a graph with goal or
top level action as root node and leaves are actions implying this goal. In this approach we can see the problem
of plan recognition as finding a minimal set of goals explaining the observed actions. This formalism works as
follow: at the beginning the intruder has a set of goals and chooses plans he will execute in order to reach those
goals. This set of chosen plans determines all the primitive actions the intruder can execute. The set of pending
actions, i.e. the set of actions that can be executed according to the plan hierarchy, is generated as the intruder
executes his chosen plans. The pending actions are enabled by the previous actions, more precisely executed
actions are removed from the pending set and newly enabled actions are added.

This approach has some advantages:

e Management of unobserved actions: to handle the fact that the attacker’s actions are not always
detectable, Geib and Goldman construct a set of possible execution traces. This set is built from the
execution trace represented by all the observed intruder’s actions. After finding all the plans that partially
match the observations, the set of possible execution traces is created by adding hypothesized unobserved
actions to the execution trace in order to complete it according to the selected plans.

e Abductive reasoning: Geib and Goldman have addressed two problems: inferring unobserved action
from observed actions and inferring unobserved actions from state change.

However it has also several drawbacks:

e Exhaustivity of the plan library: since this expert knowledge must be provided by some specialist, it is
difficult to assume that the plan library covers all the possible scenarios.

¢ Risk of explosion of the search space: The fact that hypothesized unobserved actions are inserted in the
set of possible execution traces in order to match plans can lead to an explosion of the search space,
especially in the case of multiple concurrent intrusion objectives.

¢ Management of repeated observations: an intruder that will repeat several times the steps of an intrusion
scenario will potentially activate the plan recognition several times. This may lead to an explosion
of the number of alerts. For instance, if one specifies an intrusion scenario Winnuke_Attack by the
sequence ping, scan port 139, winnuke and if the intruder executes 100 pings and 100 scans and then
1 winnuke, this may lead to 100 x 100 = 10000 detections of the Winnuke_attack.

168

Recognizing malicious intention in an intrusion detection process

7.2. Chronicle recognition

The system of chronicle recognition aims at giving an interpretation of the world’s evolution giving dated
events. It takes in entry a stream of dated events and recognises instances of chronicles as they are developing.
It is mainly a temporal reasoning system. It is predictive in the sense that it predicts forthcoming events
relevant to its task, it focuses its attention on them and it maintains their temporal windows of relevance. Its
main function is to efficiently recognise complex temporal patterns on the fly, as they occur.

Each chronicle can be viewed as a set of events pattern and a set of temporal and contextual constraint over
them. If the observed events match the chronicle’s patterns and if they occur as the contextual and temporal
constraints allow them to, then an instance of the modelled chronicle is recognised. Some hypotheses are done
on the events. First, all events specified in a chronicle must be observable, i.e. unobservable activities are not
included in the chronicle expression. It is also assumed that the events are reported to the system as they occur
and they must be collected in the same order as they occur (synchronization hypothesis).

This approach has several advantages:

e Chronicle based system gives an efficient recognition process.

e The hypothesis stating that all the actions are observable makes unnecessary the abduction of unobserved
events.

e The system maintains the set of possible occurring chronicles as the new observations are sequentially
collected and treated.

o ltis possible to define deactivation events that invalidates a partially recognised chronicle.

e The explosion of the search space is more limited than in the plan recognition approach.

The chronicle main advantages are the consequences of the strong hypotheses made. But the
synchronisation hypothesis and the hypothesis made that all the intruder’s actions specified in a chronicle
can be detected are very hard to fulfil in computer security domain. These hypotheses and the fact that this
system is based on a chronicle library point out some drawbacks:

e As for plan recognition systems, the exhaustivity of the plan library is a main concern.
e In computer security domain it is difficult to predict which events will be observable or not.

¢ Since chronicle recognition assumes that all actions are observable, not including an event because it is
sometimes not detected may lead to false positives.

¢ Including an unobservable event in a chronicle may lead to false negatives.

Actually, we argue that a chronicle system is especially efficient to recognize stereotyped attack scenarios,
such as the ones launched by automatic intrusion tools. In this case, it is quite straightforward to represent
each attack scenario by a chronicle. We are currently investigating this approach and it will be presented in a
forthcoming paper.

7.3. Expert system approach

[7] suggests representing an intrusion scenario as a set of production rules. These rules are fired as the intrusion
progresses. This approach is based on the P-Best expert system.

Notice that there is generally not a one to one correspondence between the production rules and various
intrusion steps performed by the intruder. Additional production rules are necessary to “control” the intrusion

169

Frédéric Cuppens, Fabien Autrel, Alexandre Miege & Salem Benferhat

detection process. Actually, starting from the exploit description of an intrusion, the approach requires some
adaptations to specify how to detect this intrusion scenario.

This approach has some advantages. In particular, Lindquist and Porras claim that their approach is quite
efficient from a performance point of view. The drawbacks of this approach are quite similar to chronicle
recognition. The exhaustivity of the production rules is not an easy to solve problem. It also seems that
specifying an intrusion scenario must take into account which steps are detected. There is no easy way to
abduce unobservable events. Finally, repeated observations will potentially activate detection of the intrusion
scenario several times (as in plan or chronicle recognition).

8. Conclusion

Based on the observation that an intrusion scenario might be represented as a planning activity, we suggest a
model to recognize intrusion scenarios and malicious intentions. This model does not follow previous proposals
that require to explicitly specify a library of intrusion scenarios. Instead, our approach is based on specification
of elementary attacks and intrusion objectives. We then show how to derive correlation relations between two
attacks or between an attack and an intrusion objective. Detection of complex intrusion scenario is obtained by
combining these binary correlation relations.

Our approach is efficient to cluster repeated actions in a single scenario. We also suggest using abduction
to recognize intrusion scenarios when some steps in these scenarios are not detected. We then define the notion
of anti correlation that is useful to recognize a sequence of correlated attacks that does no longer enable the
intruder to achieve an intrusion objective. This may be used to eliminate a category of false positives that
correspond to false attacks, that is actions that are not further correlated to an intrusion objective.

We have implemented in Prolog the functions that perform attack and objective correlations in the CRIM
prototype [1, 2]. Attacks are actually specified in Lambda [3], which is fully compatible with the attack model
suggested in this paper and alerts are represented in the IDMEF format [4]. We are currently extending this
implementation to include the anti correlation functionality.

There are several issues to this work. When the intruder did not achieved his intrusion objective yet but
there are several possible intrusion objectives consistent with a given sequence of correlated attacks, our current
strategy is simply to select the objective that requires the shortest path of attacks to be achieved. Our course, it
would be useful to significantly enhance this strategy. We are currently studying approaches based on Bayesian
Network to decide what are the best intrusion objectives that explain all the observations. As suggested in [6],
our solution should also able to consider situations where the intruder has multiple goals.

Another point is that to decide if a given intrusion scenario is achieved or not, it is often necessary to
combine information provided by “classical” IDS with other information about the system monitored by
the IDS: its topology, configuration and other data about the type and version of the operating systems and
applications installed in this system. For instance, to decide if the objective DOS on_DNS is achieved it is
necessary to know on which system is installed the DNS server. This kind of data is not provided by classical
IDS but other tools exist that may be used to collect it. Since current IDS also provide alerts that do not allow us
to distinguish between successful or failing attacks, these additional data would be also useful for that purpose.
This problem is currently investigated in the ongoing project DICO.

9. Acknowledgements

This work was partially funded by the DGA/CELAR/CASSI as a part of the Mirador project and then by the
French Ministry of Research as part of the DICO project. The authors would like to thank all the members
of these projects, especially the members of the sub-project “Correlation”: Hervé Debar, Ludovic Mé and
Benjamin Morin.

170

Recognizing malicious intention in an intrusion detection process

References

[1] F. Cuppens. Managing Alerts in a Multi-Intrusion Detection Environment. In 17th Annual Computer
Security Applications Conference New-Orleans, New-Orleans, USA, December 2001.

[2] F. Cuppens and A. Miége. Alert Correlation in a Cooperative Intrusion Detection Framework. In IEEE
Symposium on Security and Privacy, Oakland, USA, 2002.

[3] F. Cuppens and R. Ortalo. Lambda: A language to model a database for detection of attacks. In Third
International Workshop on the Recent Advances in Intrusion Detection (RAID’2000), Toulouse, France,
October 2000.

[4] D. Curry and H. Debar. Intrusion detection message exchange format data model and extensible markup
language (xml) document type definition. draft-itetf-idwg-idmef-xml-06.txt, December 2001.

[5] C. Geib and R. Goldman. Plan Recognition in Intrusion Detection Systems. In DARPA Information
Survivability Conference and Exposition (DISCEX), June 2001.

[6] C. Geib and R. Goldman. Probabilistic Plan Recognition for Hostile Agents. In Florida Al Research
Symposium (FLAIR), Key-West, USA, 2001.

[7] UIf Lindquist and Philip Porras. Detecting Computer and Network Misuse Through the Production-Based
Expert System Toolset (P-Best). In IEEE Symposium on Security and Privacy, Oakland, USA, 1999.

[8] A. Mounji and B. Le Charlier. Continuous Assessment of a Unix Configuration: Integrating Intrusion
Detection and Configuration Analysis. In ISOC’97 Symposium on Network and Distributed System
Security, San Diego, USA, February 1997.

[9] M. Ornato and P. Carle. Reconnaissance d’intention sans reconnaissance de plan. In Journées
Francophones d’Intelligence Artificielle Distribuée et Systémes Multi-Agents, 1994.

[10] A. Valdes and K. Skinner. Probabilistic Alert Correlation. In Fourth International Workshop on the Recent
Advances in Intrusion Detection (RAID’2001), Davis, USA, October 2001.

171

septembre 2002 - SEcurité des Communications sur Internet— SECI02

172

