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We observe and analyze formation, decay, and subsequent regeneration of ring-shaped clusters of (2+1)-
dimensional spatial solitons (filaments) in a medium with cubic-quintic (focusing-defocusing) self-interaction
and strong dissipative nonlinearity. The cluster of filaments, which remains stable over ≈17.5 Rayleigh lengths,
is produced by the azimuthal modulational instability from a parent ring-shaped beam with embedded vorticity
l = 1. In the course of still longer propagation, the stability of the soliton cluster is lost under the action of
nonlinear losses. The annular cluster is then spontaneously regenerated due to power transfer from the reservoir
provided by the unsplit part of the parent vortex ring. Thus, a secondary interval of the robust propagation of the
regenerated cluster is identified. The experiments use a laser beam (at wavelength 800 nm), built of pulses with
temporal duration 150 fs, at the repetition rate of 1 kHz, propagating in a cell filled by liquid carbon disulfide.
Numerical calculations, based on a modified nonlinear Schrödinger equation which includes the cubic-quintic
refractive terms and nonlinear losses, provide results in close agreement with the experimental findings.
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I. INTRODUCTION

The stable propagation of self-trapped waveforms, com-
monly named solitons, has been a topic of great interest in
many areas of physics, with fundamentally important real-
izations in nonlinear (NL) optics, plasmas, and Bose-Einstein
condensates (BECs) [1–3]. In the spatial domain, permanent
shape and size of optical solitons are maintained, in the course
of the propagation, by the balance between the linear diffrac-
tion and self-interaction in the host medium [1]. The more
robust the solitons are, the greater possibilities appear for
the design of soliton-based optical devices, chiefly for data
transmission and processing [4].

From the theoretical point of view, it is commonly known
that a focusing (defocusing) cubic nonlinearity supports stable
propagation of one-dimensional [(1+1)D] bright (dark) spa-
tial solitons in nondissipative media [5]. This prediction was
corroborated by many experiments that made use of different
physical mechanisms to induce the third-order refractive non-
linearity [6]. However, unlike for (1+1)D solitons, stability
is a challenge for their two- [(2+1)D] and three-dimensional
[(3+1)D] counterparts, because the critical and supercritical
collapse (catastrophic self-focusing) occurs in these settings
under the action of the cubic self-focusing, making all the
patterns unstable [7].

*areynao@yahoo.com.br

Some strategies, aiming to avoid the collapse and thus
make multidimensional solitons stable, were proposed and
supported by experimental results, the most common ones
being the use of saturable absorption or higher-order nonlin-
earities for (2+1)D spatial solitons [8], as well as photonic
lattices [9]. In particular, robust (2+1)D bright solitons were
observed in cubic-quintic [10] and quintic-septimal [11] opti-
cal media, where the lower-order nonlinear term is focusing,
which is necessary to build the soliton via the balance of the
beam’s divergence due to linear diffraction, while the higher-
order one is defocusing, to secure the arrest of the collapse.

In the same settings, multidimensional solitons with em-
bedded vorticity are subject to the azimuthal modulational
instability, leading to spontaneous breakup of the vortex soli-
ton in a set of fragments, the number of which is usually
equal to twice the topological charge of the initial vortex
[12,13]. The fragments, during its propagation, move tan-
gentially relative to the initial ring-shaped beam profile, as
demanded by the conservation of the orbital angular mo-
mentum [14]. Another possible result of the action of the
azimuthal modulation instability on the vortex beam is the
appearance of a necklace-shaped pattern, built as an annular
chain of local intensity maxima, with the thickness of the
annulus much smaller than the overall radius [15]. This type of
light structure was also predicted in higher-order TE patterns,
which consist of a dark spot surrounded by bright rings, when
subjected to asymmetric perturbations, in nonlinear saturable
media [16].
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Theoretically, it was predicted that optical vortex solitons
(OVSs) with all values of the topological charge, l , are stable,
as solutions to the (2+1)D nonlinear Schrödinger equation
(NLSE) with the cubic-quintic nonlinearity, in appropriate
intervals of the OVS’s propagation constant (the stability
intervals are extremely small for high values of l) [17,18].
Furthermore, the same equation gives rise to stable OVS with
l = 1 in the (3+1)D setting [19]. Experimentally, stable prop-
agation of self-trapped vortex beams over a finite distance was
reported in a waveguide with inverted cubic-quintic response,
dominated by cubic self-defocusing, acting in combination
with quintic focusing [20].

The search for stability of multidimensional solitons also
extends to matter waves. Recently, remarkable progress has
been reported in the creation of multidimensional self-trapped
states in BECs. Taking into regard the suppression of the
mean-field collapse by quantum fluctuations, stable “quan-
tum droplets” were predicted [21] and experimentally created
[22]. Stability of the droplets with embedded vorticity was
predicted too [23]. Another relevant theoretical result is the
prediction of stable “semivortices” in two-component spin-
orbit-coupled BECs, with vorticity carried by one component
[24].

In addition to the quintic and septimal refractive nonlin-
earities, dissipative NL effects may help to maintain transient
stabilization of beams against the collapse [25]. In particular,
three-photon absorption (3PA) was fundamental to achieve
the stable propagation of (2+1)D bright solitons in liquid
carbon disulfide (CS2) [10] and heavy-metal-oxide glasses
[26], as well as to extend a region of intensities where OVSs
are effectively stable [13]. However, the dissipative effects
cause intensity losses in the course of propagation and, conse-
quently, decay of the spatial solitons, as low-intensity beams
cannot develop self-focusing necessary to balance the diffrac-
tion.

The present paper reports the observation and analysis
of circular chains of filaments originating from optical vor-
tex beams, similar to the above-mentioned necklace patterns,
that behave like ring-shaped soliton clusters in two different
regions, propagating in a dissipative medium with the cubic-
quintic nonlinearity. The two stability regions are identified
by considering energy transfer between the filaments and
the energy reservoir, provided by the spontaneous azimuthal
breaking of the primary vortex beam. Theoretically, the for-
mation and propagation of the soliton cluster is modeled by
a modified NLSE, which includes the third- and fifth-order
refractive indices, along with the relevant NL extinction coef-
ficient, which characterizes the optical response of liquid CS2

at 800 nm in the regime of femtosecond high-intensity pulsed
propagation.

II. EXPERIMENTAL SETUP

The scheme used for the generation and detection of spatial
soliton clusters is shown in Fig. 1. The light source used was
an amplified titanium sapphire laser with central wavelength
800 nm, which generates ultrashort pulses with 150 ± 5 fs
duration, at a repetition rate of 1.0 kHz. Control of the to-
tal power and linear polarization of the incident beam was
accomplished by means of a half-wave plate, followed by a

FIG. 1. The experimental setup: polarizer (P); telescope (T); vor-
tex phase plate (VPP); mirror (M); spatial filter (SF); spherical lenses
(L1 and L2) with focal distance f1 = f2 = 5 cm.

Glan-laser polarizer. An optical vortex beam with topological
charge l = 1 was produced by passing a fundamental TEM00

Gaussian beam, previously magnified by a telescope, through
a vortex phase plate, manufactured by RPC Photonics. A
spatial filter located after the phase plate was used to eliminate
higher-order diffracted light. The vortex beam was focused by
a lens with focal distance 5 cm (L1) onto the input face of a
glass cell filled by liquid CS2.

An imaging system, consisting of a spherical lens (L2)
and a charge-coupled device (CCD) camera, which can be
translated along the z axis, was used to image the beam
profile at the input (z = 0) and output (z = L) faces of the
cell, with magnification m = 5. Using this system, it was
confirmed that, in all runs of the experiment, the vortex beam
at the entrance of the glass cell is structured as a Gaussian
background, with full width at half maximum (FWHM) of
w0,GB = 21.7 μm, containing the vortex core, with FWHM of
w0,V = 6.1 μm.

III. PROPAGATION OF THE VORTEX BEAM AND
FORMATION OF SOLITON CLUSTERS

We examined the propagation of the optical vortex beam
in the cell filled with liquid CS2, taking the beam’s power
below and above the critical value for the onset of the critical
collapse in this (2+1)D setting. Figure 2 shows transverse
beam profiles at the exit face of the 1.0 cm-long cell.

For low peak intensities (I0 � 9 GW/cm2), the vortex-ring
(VR) profile at the exit face of the cell exhibits a size 15 times
larger than the entrance profile, due to the linear diffraction.
Increase of the input intensity makes the nonlinearity sig-
nificant, which leads to the contraction of the VR’s overall
radius and thickness, that may be construed as attenuation of
the Gaussian background, concomitant with expansion of the
vortex core, as shown in Figs. 2(b) and 2(c). Simultaneously,
local light intensity grows in the VR.

The VR reaches its minimum thickness for peak intensities
around 200 GW/cm2, in which case it is possible to visualize
the formation of three small fragments (filaments) in the VR,
with diameters approximately equal to the VR thickness. It is
known from previous works that the formation of these bright
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FIG. 2. Transverse beam profiles of the optical vortex, with topological charge l = 1, after passing the 1.0-cm-long cell containing liquid
CS2, for the following values of the input intensity: (a) 9, (b) 100, (c) 200, and (d) 260 GW/cm2.

fragments in self-focusing media is a straightforward manifes-
tation of the spontaneous breaking of the azimuthal symmetry
induced by the modulational instability [12]. Although the
topological charge of the incident vortex beam remains con-
stant (l = 1), Fig. 2(d) shows that, at I0 = 260 GW/cm2, the
original filaments keep their shape, size, and intensity, but
the increase of the incident power leads to the formation of
new filaments placed along the VR (cf. Ref. [27]), which
demonstrates progressive fragmentation of the VR.

The propagation of the VR and formation of filament
patterns was further explored in cells with thickness of 2.0
and 5.0 cm, as shown in Figs. 3(a)–3(c) and 3(d)–3(f), re-
spectively. First, Fig. 3(a), corresponding to the input vortex
beam’s intensity of 260 GW/cm2, displays filaments with the
same size as those observed in the output of the 1.0-cm-long
cell [Fig. 2(d)], but with a larger VR radius. This structure
remains unchanged for intensities from 350 to 460 GW/cm2,
corresponding to Figs. 3(b) and 3(c), respectively. Therefore,
despite the fact that the VR keeps expanding in the course
of the propagation, we conclude that both the VR’s thickness
and the diameter of the filaments emerging in the VR keep
constant values, for the highest intensities.

On the other hand, Figs. 2(d) and 3(a) show that the number
of filaments, for the same intensity of the parent VR, gradually
decreases in the course of the propagation. This effect is
explained by the energy loss induced by both the multiphoton
absorption and scattering of light, which are known features
of CS2 at a wavelength of 800 nm [28], as well as by energy
transfer between filaments [29] and/or the power reservoir,
e.g., the orthogonal VR [30].

Figures 3(d)–3(f) display the transverse beam profile after
passing the 5.0-cm-long cell. Note that, although the VR’s
thickness and diameter of the filaments are ∼2.5 times larger
than in Figs. 3(a)–3(c), their dimensions remain constant for
intensities from 260 to 350 GW/cm2.

The experimental results obtained for the vortex-beam
propagation in cells of thickness 1.0, 2.0, and 5.0 cm are
summarized in Fig. 4, across a wide range of peak intensi-
ties. Figure 4(a) confirms that, at low intensities, the external
(squares) and internal (circles) radii of the VR demonstrate
evolution similar to that of the Gaussian beam in the linear
limit, whose commonly known form is

wGB,V (z) = (wGB,V )0

√
1 + (z/zR)2, (1)

with Rayleigh length zR and subscript 0 standing for the value
at the input face of the cell (z = 0). In Fig. 4(a), dependences
of wGB and wV , with zR ≈ 1 mm, are represented by green
lines in the vertical plane. As mentioned above, the nonlin-
earity of the medium causes gradual contraction (expansion)
of the external (internal) radius with the increase of the in-
tensity, until a thin VR is formed that maintains its thickness
constant for large intensity variations, while the VRs as a
whole expand in the course of the propagation. In Fig. 4(b)
it is possible to conclude that, after passing the distance of

FIG. 3. Experimentally observed transverse beams’ profiles at
the output face of the cell with (a)–(c) thickness 2.0 cm and inten-
sities (a) 260, (b) 350, and (c) 460 GW/cm2; and (d)–(f) thickness
5.0 cm, and intensities (d) 260, (e) 290, and (f) 350 GW/cm2.
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FIG. 4. Intensity dependence of (a) external (squares) and inter-
nal (circles) radii of the vortex ring (VR), and (b) its thickness (open
squares) and filaments’ (F) diameter (solid circles) for propagation
distances 1.0, 2.0 and 5.0 cm. Green lines in (a) show the evolution
of the widths wGB and wV of the Gaussian background vortex’s core,
respectively, as predicted by Eq. (1), with Rayleigh length of ∼1 mm,
in the linear limit.

1 cm, the VR keeps a minimum thickness of 47 µm for peak
intensities I0 � 170 GW/cm2. Simultaneously, the formation
of filaments in the VR was observed at I0 > 100 GW/cm2,
reaching a minimum diameter of the filaments, 47 µm, which
is equal to the above-mentioned thickness of the VR, also at
I0 � 170 GW/cm2. In this sense, this region of peak intensi-
ties may be identified as a stability range for the formation
of the annular multifilament pattern from the parent VR. In-
creasing the propagation distance to 2.0 cm, we note that both
the VR’s thickness and the filaments’ diameter keep the same
values, for the highest intensities (I0 � 300 GW/cm2), reveal-
ing robust propagation of the established cluster of (2+1)D
solitons.

For the cell of length 5.0 cm, the diameter of the (2+1)D
solitons that build the cluster increases, but much less than
it would grow due to linear diffraction. For this value of the
propagation distance, the stability region for the formation of
the multifilament pattern is I0 > 250 GW/cm2, where both

the diameter of the filaments (130 µm) and the VR’s thickness
(150 µm) again stay constant.

IV. MODEL OF THE NONLINEAR PROPAGATION
OF THE VORTEX-RING BEAM

The propagation of the vortex beams is adequately mod-
eled by the modified NLSE,

2ik
∂E

∂z
+ ∇⊥E + ikα0E = −μ0ω

2P(NL), (2)

where E = E (x, y, z) is the envelope of the electric field,
∇⊥ = (∂2/∂x2 + ∂2/∂y2) is the diffraction operator, z is the
propagation distance, k = 2πn0/λ = n0k0, λ and ω are the
carrier wavelength and frequency, n0 is the linear refractive
index, μ0(ε0) is the vacuum permeability (permittivity), α0

is the linear absorption coefficient, and c is the light speed
in vacuum. The term on the right-hand side of Eq. (2) ac-
counts for the contribution of the NL polarization, P(NL) =
ε0χ̄

(NL)E = ε0(χ (2N+1)|E |2N )E , where χ (2N+1) is the com-
plex (2N + 1)-th order NL susceptibility, with N � 1, whose
real and imaginary parts represent the refractive and ab-
sorptive nonlinearities of the medium, respectively. Then,
expressing the optical field in the amplitude-phase form, E =
|E |ei	, in the simplest approximation, which neglects diffrac-
tion, Eq. (2) amounts to evolution equations for the intensity
and phase:

∂	

∂z
= k0

2n0

Re[χ̄ (NL)], (3)

∂I

∂z
= − k0

n0

Im[χ̄ (NL)]I, (4)

with intensity I = I (R, θ, z) = 2cε0n0|E |2.
Liquid CS2, if excited at 800 nm by femtosecond pulses,

behaves as a cubic-quintic (focusing-defocusing) refractive
medium, for peak intensities up to hundreds of GW/cm2 [31].

FIG. 5. Transmittance of CS2 versus the peak input intensity,
experimentally measured in the 1-mm-thick cell. The (solid) red and
(dashed) black lines indicate the best fits to the data using the WCM
and 3PA, respectively (see the text). The inset represents the intensity
dependence of the NL extinction coefficient in the framework of the
WCM.

033523-4



OBSERVATION AND ANALYSIS OF CREATION, DECAY, … PHYSICAL REVIEW A 102, 033523 (2020)

FIG. 6. The simulated evolution of the vortex-beam profile for the following values of the propagation distance: (a) 0 (the input), (b) 3,
(c) 6, (d) 15, (e) 25, (f) 32, (g) 43, and (h) 55 mm. The input intensity is 400 GW/cm2. Note that different scales of the transverse coordinates
(x, y) are used in different panels.

The third- and fifth-order refractive indices, n2 = +2.1 ×
10−15 cm2/W and n4 = −2.0 × 10−27 cm4/W2, which are at-
tributed to the electronic response and effects of molecular
collisions, were obtained by means of the well-known Z-scan
technique.

As concerns the NL absorption, there are some contro-
versies in the literature regarding its origin. While the first
reports on the NL characterization of liquid CS2 associated
the intensity dependence of optical losses to the two-photon
absorption (2PA) [32], recent works attribute the origin to
the three-photon absorption (3PA) [31,33], which seems to
be more consistent with the CS2 energy-level diagram [33].
However, little attention was paid to the effects of scattering,
which may also cause transmission losses. In this respect, an
experimental work that used an integrating sphere to collect
the scattered light reveals that the intensity loss may be asso-
ciated with stimulated scattering, rather than 2PA or 3PA [34].

To elucidate the nature of the intensity losses in liquid
CS2, a theoretical wave-coupled model (WCM) was recently
proposed to represent the NL response in the case when effects
of the NL light scattering are relevant [28,35]. To validate
the WCM in the application to our experimental conditions,
we have performed an experiment, measuring the intensity
transmitted through a thin sample of liquid CS2 (with thick-
ness 1 mm) versus the input intensity, as shown in Fig. 5.
Because diffraction effects are negligible in the thin NL sam-
ple, the evolution of the beam’s intensity and phase may
be modeled by simple equations (3) and (4), in which the
nonlinear-refractive part is approximated by the combination

of the cubic and quintic terms:

∂	

∂z
= k0nNLI = k0(n2 + n4I )I, (5)

∂I

∂z
= −αNLI. (6)

The experimental data were fitted by solving the differ-
ential equation (6), with the intensity-dependent extinction
coefficient,

αNL = α′ exp [(I − Ith )/Iδ] − exp (−Ith/Iδ )

I/Ith + exp [(I − Ith )/Iδ]
, (7)

as adopted in the framework of WCM [35]. Values of α′ =
6.4 cm−1, threshold intensity Ith = 164 GW/cm2, and Iδ =
22 GW/cm2 were used to provide the best fit for input peak in-
tensities up to 850 GW/cm2 (the red solid line). We stress that
WCM not only describes the loss for low intensities, where the
3PA model (with α3PA = 1.1 × 10−22 cm3/W2) may also be
used (as shown by the black dashed line in Fig. 5), but it is also
capable of modeling the high-intensity regime, in which the
contribution of the scattering leads to highly nonperturbative
extinction behavior. Similarly to [35], the WCM seems to be
applicable in the present context by considering the elastic NL
scattering due to self-focusing or filamentation.

The comparison of Eqs. (3) and (4) to Eqs. (5) and (6)
yields the approximation for the NL susceptibility of liquid
CS2 in the form of χ (NL) = [2n0(n2 + n4I )I] + i[n0αNL/k0].
Thus, the modified NLSE, appropriate for modeling the
vortex-beam propagation, is written as

i
∂E

∂z
+ 1

2n0k0
∇⊥E = −

{
k0(n2 + n4I )I + i

2
α′ exp [(I − Ith )/Iδ] − exp (−Ith/Iδ )

I/Ith + exp [(I − Ith )/Iδ]

}
E , (8)
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where linear losses are ignored because CS2 is transparent at
800 nm.

V. NUMERICAL SIMULATIONS

The vortex-beam propagation was simulated by numer-
ically solving Eq. (8), using the split-step finite-difference
method [36]. Figure 6 shows the resulting evolution of VR
profiles for the input peak intensity of 400 GW/cm2, in
the course of the passage of the cell filled with CS2, with
the total propagation distance of 55 mm. The calculations
were initiated with the input waveform E (R, θ, z = 0) =
E0 tanh[r/(2w0,V )] exp[−r2/w2

0,GB + ilθ], with power P =∫∫ |E (R, θ, z = 0)|2rdrdθ , where E0 is electric field ampli-
tude, r =

√
x2 + y2 and θ are the polar coordinates in the

transverse plane, and l = 1 is the topological charge. The in-
tensity profile of the input is displayed in Fig. 6(a). Normally
distributed random noise with standard deviation of 3% was
added to the initial VR to test the possibility of the onset of
the spatial modulational instability, if any, and reproduce the
realistic experimental situation.

Figure 6(b) shows strong self-focusing of the VR into a
tight shape, concomitant with the emergence of multiple fil-
aments inside the ring, after the passage of the propagation
distance equal to 3 mm. From Fig. 6(c) onward, i.e., at z � 6
mm, the cluster of filaments is completely formed, while
the number of filaments gradually decreases in the course
of the subsequent long propagation, in agreement with the
experimental results presented above for close values of the
input intensity and propagation distance; cf. Fig. 3. We stress
that, without adding the noise, the simulations produce fission
of the vortex beam into just two bright fragments, even for
the highest intensities used here, in agreement with previous
results for the instability of OVSs with topological charge
l = 1 [13].

Numerical results were systematically collected for dif-
ferent values of the input intensity. They are summarized
in Fig. 7, which displays the VR thickness and filaments’
diameter as functions of the propagation distance, for several
fixed values of the input power. The variation of the VR thick-
ness with the increase of intensity [Fig. 7(a)] clearly shows
the self-focusing effect: The thickness attains its minimum
(≈41 μm) and keeps this value in the interval between z = 5.5
mm and z = 17.2 mm, for I = 200 GW/cm2. Under these
same conditions, it is observed in Fig. 7(b) that the filaments
keep a constant shape and size in the course of the propagation
between z = 8 mm and z = 20.7 mm. For longer distances,
the vortex annulus and filaments carried by it spreads out as a
result of the intensity depletion in the presence of the NL loss.

A noteworthy result is found for I = 400 GW/cm2, where
two intervals of robust self-trapping are observed in Fig. 7,
on the scale of the propagation distance. The first interval
is 5.5 mm < z < 23 mm, where the VR’s thickness and fila-
ment diameter keep nearly constant close values, ≈ 41 and
37 µm, respectively, The second stability interval is 45 mm <

z < 52 mm, in which the thickness and diameter also remain
approximately constant, both values being ≈177 μm. This
second stability interval, which agrees with the experimental
findings [see Fig. 4(b)], represents the first evidence of self-

FIG. 7. Results of numerical simulations showing (a) the vortex
ring’s thickness and (b) the diameter of filaments in the annular array
as functions of the propagation distance, where zR ≈ 1 mm. Dashed
vertical lines designate positions for which the experimental results
are presented in Figs. 2–4. The numbers next to the curves represent
the peak intensity in GW/cm2.

regeneration of the annular soliton cluster in dissipative NL
media, supported by the power transfer between the bright
filaments and background VR.

To further validate this conclusion, we numerically
addressed the variation of the integrated power, P =∫∫

I (x, y)dxdy, of the brightest filament and of the entire light
field, in the course of the propagation, for the input peak
intensity of 400 GW/cm2. Figure 8 shows that, in the first
interval of the robust propagation, the filament’s power slowly
decreases, keeping a nearly constant value, around Pfilament ≈
0.85 MW (corresponding to peak intensity ≈158 GW/cm2 for
a filament with the Gaussian transverse profile whose waist is
37 μm), up to z = 28 mm. Passing the next 6 mm, a strong
drop in the filament’s power is observed in Fig. 8, causing
a dramatic increase of the filaments’ diameter, as seen in
Fig. 7(b). This power loss is caused by the NL extinction,
which is significant for values of the filaments’ intensity that
the simulations demonstrate at this stage of the evolution.
Subsequently, at 34 mm < z < 43 mm, a sudden increase in
the peak power is observed, which is explained by the power
transfer from the VR background to the bright filaments, until
their power again attains a value close to the above-mentioned
value, Pfilament ≈ 0.85 MW. The regeneration of the filaments’
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FIG. 8. Numerical results for the evolution of the peak power
of one filament and the total structure (including the background
vortex ring and the cluster of the filaments) for the propagation
distance equal to 60 mm, with input intensity 400 GW/cm2. Note
the discontinuity of the vertical axis in the figure.

power signals the entrance into the second interval of the
robust propagation of the soliton cluster.

From this analysis, we infer that the critical (threshold)
power for the onset of the self-trapping must be slightly
smaller than Pfilament, so that the drop of the filament’s power
to values below Pfilament, and its rise back to values above
Pfilament, which effectively occurs in Fig. 8, explains the sudden
expansion of the soliton cluster and its regeneration in the
second interval of the robust propagation, which is shown by
the red curves in Figs. 7(a) and 7(b). We note that Pfilament is
roughly three times greater than the critical power calculated
in Ref. [37], Pcr = 1.8962(λ2/4πn0n2) ≈ 0.28 MW. The dif-
ference is reasonable since Pcr was calculated for a medium
with the cubic-only nonlinearity (no quintic term).

VI. CONCLUSION

We have reported that propagation of light beams in the dis-
sipative NL (nonlinear) medium makes it possible to observe
two different intervals of robust propagation of an annular
cluster of spatial solitons (filaments), produced by splitting of
the parent OV beam, whose residual power is used as a feed-
back reservoir. As a proof of principle, we have implemented
the setting experimentally, and developed its numerical sim-
ulations, for the robust propagation of a ring-shaped chain of
filaments created from a VR (vortex ring) via the develop-

ment of its azimuthal modulational instability in the optical
material (CS2) with the cubic-quintic refractive nonlinearity
and extinction dominated by the NL light scattering at high
intensities of light. The NL loss in the numerical model is
taken as per the wave-coupled model [28,35]. Experimental
and numerical results demonstrate that the annular chain of fil-
aments behaves like a soliton cluster when its power exceeds
the critical value necessary for the onset of self-trapping. The
robust propagation is maintained by compensation of the NL
loss by the power transfer from the reservoir provided by the
unsplit part of the parent VR. The presence of the two intervals
of the robust propagation of the soliton cluster is explained by
the drop of the power below the critical value, followed by its
rise back above this value, due to the power supply from the
parent vortex beam.

As an extension of this work, it may be interesting to study
the influence of the initial vortex-beam parameters on the
control of the formation, decay, and regeneration processes
of cluster solitons, as well as to consider the formation and
evolution of annular soliton clusters created by the azimuthal
modulational instability of VRs with higher vorticities, l � 2.
One promising point of potential studies in this direction may
be a possibility of the creation of a robust pattern carrying
multiple vorticity, which is an issue of considerable funda-
mental interest [18]. As concerns possible applications, stable
vortical beams (including ones built as circular clusters) with
l � 2 feature a tubular structure with a large inner radius,
which can be used as an effective optical conduit steering
the transfer of material particles or guiding the propagation
of additional quasilinear probe beams (see, e.g., Ref. [38]).

ACKNOWLEDGMENTS

This work was supported by Brazilian agencies Con-
selho Nacional de Desenvolvimento Cientifico e Tecnológico
(CNPq), Fundação de Amparo à Ciência e Tecnologia do
Estado de Pernambuco (FACEPE), and Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
The work was performed in the framework of the Na-
tional Institute of Photonics (INCT de Fotônica) project,
PRONEX/CNPq/FACEPE and CAPES-COFECUB program.
The work of B.A.M. is supported, in part, by the Israel Science
Foundation through Grant No. 1286/17 and the PrInt-CAPES
Program (Brazil). This author appreciates the hospitality of
Departamento de Física at Universidade Federal de Pernam-
buco (Recife, Brazil).

[1] Z. Chen, M. Segev, and D. N. Christodoulides, Rep. Prog. Phys.
75, 086401 (2012); Y. Kivshar, Nat. Phys. 2, 729 (2006); A. I.
Maimistov, Quantum Electron. 40, 756 (2010); B. A. Malomed,
D. Mihalache, F. Wise, and L. Torner, J. Opt. B: Quantum
Semiclassical Opt. 7, R53 (2005).

[2] C. A. Husko, S. Combrié, P. Colman, J. Zheng,
A. De Rossi, and C. W. Wong, Sci. Rep. 3, 1100
(2013).

[3] R. Driben, Y. V. Kartashov, B. A. Malomed, T. Meier, and L.
Torner, New J. Phys. 16, 063035 (2014); B. A. Malomed and
D. Mihalache, Rom. J. Phys. 64, 106 (2019).

[4] M. Peccianti, C. Conti, G. Assanto, A. de Luca, and C. Umeton,
Nature 432, 733 (2004); J. Yang, P. Zhang, M. Yoshihara,
Y. Hu, and Z. Chen, Opt. Lett. 36, 772 (2011); D. Kip, C.
Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev,
ibid. 26, 524 (2001); M. Tiemann, T. Halfmann, and T. Tschudi,

033523-7

https://doi.org/10.1088/0034-4885/75/8/086401
https://doi.org/10.1038/nphys452
https://doi.org/10.1070/QE2010v040n09ABEH014396
https://doi.org/10.1088/1464-4266/7/5/R02
https://doi.org/10.1038/srep01100
https://doi.org/10.1088/1367-2630/16/6/063035
https://doi.org/10.1038/nature03101
https://doi.org/10.1364/OL.36.000772
https://doi.org/10.1364/OL.26.000524


ALBERT S. REYNA et al. PHYSICAL REVIEW A 102, 033523 (2020)

Opt. Commun. 282, 3612 (2009); H. S. Eisenberg, Y.
Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison,
Phys. Rev. Lett. 81, 3383 (1998); R. De La Fuente, A.
Barthelemy, and C. Froehly, Opt. Lett. 16, 793 (1991).

[5] A. Hasegawa, F. Tappert, and G. P. Agrawal, Nonlinear Fiber
Optics (Academic, San Diego, CA, 2013).

[6] L. F. Mollenauer, R. H. Stolen and J. P. Gordon, Phys. Rev. Lett.
45, 1095 (1980); A. Barthelemy, S. Maneuf, and C. Froehly,
Opt. Commun. 55, 201 (1985); J. S. Aitchison, A. M. Weiner, Y.
Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel,
and P. W. E. Smith, Opt. Lett. 15, 471 (1990); Y. S. Kivshar, and
B. Luther-Davies, Phys. Rep. 298, 81 (1998).

[7] P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); E. L. Dawes and
J. H. Marburger, Phys. Rev. 179, 862 (1969); A. J. Campillo,
S. L. Shapiro, and B. R. Suydam, Appl. Phys. Lett. 23,
628 (1973); J. H. Marburger, and G. Fibich, The Nonlinear
Schrödinger Equation: Singular Solutions and Optical Collapse
(Springer, Heidelberg, 2015).

[8] N. Akhmediev and J. M. Soto-Crespo, Phys. Rev. A 47, 1358
(1993); V. Skarka, V. I. Berezhiani, and R. Miklaszewski, Phys.
Rev. E 56, 1080 (1997).

[9] D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar,
H. Martin, I. Makasyuk, and Z. G. Chen, Phys. Rev. Lett.
92, 123903 (2004); J. W. Fleischer, G. Bartal, O. Cohen, O.
Manela, M. Segev, J. Hudock, and D. N. Christodoulides, ibid.
92, 123904 (2004); Y. V. Kartashov, B. A. Malomed, and L.
Torner, Rev. Mod. Phys. 83, 247 (2011); B. A. Malomed, Eur.
Phys. J.: Spec. Top. 225, 2507 (2016); Y. V. Kartashov, G. E.
Astrakharchik, B. A. Malomed, and L. Torner, Nat. Rev. Phys.
1, 185 (2019).

[10] E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond,
and V. Skarka, Phys. Rev. Lett. 110, 013901 (2013).

[11] A. S. Reyna, K. C. Jorge, and C. B. de Araújo, Phys. Rev. A 90,
063835 (2014).

[12] W. J. Firth and D. V. Skryabin, Phys. Rev. Lett. 79, 2450 (1997);
D. V. Skryabin and W. J. Firth, Phys. Rev. E 58, 3916 (1998);
L. Torner and D. Petrov, Electron. Lett. 33, 608 (1997); J. Opt.
Soc. Am. B 14, 2017 (1997); J. P. Torres, J. M. Soto-Crespo, L.
Torner, and D. V. Petrov, Opt. Commun. 149, 77 (1998); Y. S.
Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000); A.
Minovich, D. N. Neshev, A. S. Desyatnikov, W. Krolikowski,
and Y. S. Kivshar, Opt. Express 17, 23610 (2009).

[13] A. S. Reyna, G. Boudebs, B. A. Malomed, and C. B. de Araújo,
Phys. Rev. A 93, 013840 (2016).

[14] V. Tikhonenko, J. Christou, and B. Luther-Daves, J. Opt. Soc.
Am. B 12, 2046 (1995); A. S. Reyna, and C. B. de Araújo, Phys.
Rev. A 93, 013843 (2016).

[15] J. Yang, I. Makasyuk, P. G. Kevrekidis, H. Martin, B. A.
Malomed, D. J. Frantzeskakis, and Z. Chen, Phys. Rev. Lett.
94, 113902 (2005); T. D. Grow, A. A. Ishaaya, L. T. Vuong, and
A. L. Gaeta, ibid. 99, 133902 (2007); S. Z. Silahli, W. Walasik,
and N. M. Litchinitser, Opt. Lett. 40, 5714 (2015); W. Walasik,
S. Z. Silahli, and N. M. Litchinitser, Sci. Rep. 7, 11709 (2017);
Y. V. Kartashov, B. A. Malomed, and L. Torner, Phys. Rev. Lett.
122, 193902 (2019).

[16] J. Atai, Y. Chen, and J. M. Soto-Crespo, Phys. Rev. A 49, R3170
(1994).

[17] M. Quiroga-Teixeiro and H. Michinel, J. Opt. Soc. Am. B 14,
2004 (1997); R. L. Pego, and H. A. Warchall, J. Nonlinear Sci.
12, 347 (2002).

[18] B. A. Malomed, Phys. D (Amsterdam, Neth.) 399, 108
(2019).

[19] D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V.
Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer,
Phys. Rev. Lett. 88, 073902 (2002).

[20] A. S. Reyna and C. B. de Araújo, Opt. Lett. 41, 191 (2016).
[21] D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015); D. S. Petrov,

and G. E. Astrakharchik, ibid. 117, 100401 (2016).
[22] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.

Pfau, Phys. Rev. Lett. 116, 215301 (2016); L. Chomaz, S. Baier,
D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino,
Phys. Rev. X 6, 041039 (2016); C. R. Cabrera, L. Tanzi,
J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell,
Science 359, 301 (2018); P. Cheiney, C. R. Cabrera, J. Sanz, B.
Naylor, L. Tanzi, and L. Tarruell, Phys. Rev. Lett. 120, 135301
(2018); G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi,
L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M.
Inguscio, and M. Fattori, ibid. 120, 235301 (2018); C. D’Errico,
A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M.
Modugno, F. Minardi, and C. Fort, Phys. Rev. Res. 1, 033155
(2019).

[23] Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner,
Phys. Rev. A 98, 013612 (2018); Y. Li, Z. Chen, Z. Luo, C.
Huang, H. Tan, W. Pang, and B. A. Malomed, ibid. 98, 063602
(2018).

[24] H. Sakaguchi, B. Li, and B. A. Malomed, Phys. Rev. E 89,
032920 (2014); H. Sakaguchi, E. Ya. Sherman, and B. A.
Malomed, ibid. 94, 032202 (2016).

[25] T. Passota, C. Sulem, and P. L. Sulem, Phys. D (Amsterdam,
Neth.) 203, 167 (2005).

[26] A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C.
N. Afonso, Opt. Lett. 32, 2103 (2007); E. D’Asaro, S. Heidari-
Bateni, A. Pasquazi, G. Assanto, J. Gonzalo, J. Solis, and C. N.
Afonso, Opt. Express 17, 17150 (2009); A. Pasquazi, S. Stivala,
G. Assanto, J. Gonzalo, and J. Solis, Phys. Rev. A 77, 043808
(2008).

[27] L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t
Hooft, E. R. Eliel, and G. Fibich, Phys. Rev. Lett. 96, 133901
(2006).

[28] A. M. Amaral, A. S. Reyna, E. L. Falcão-Filho, and C. B. de
Araújo, J. Opt. Soc. Am. B 35, 2977 (2018).

[29] D. A. Georgieva and L. M. Kovachev, in Application of Math-
ematics in Technical and Natural Sciences: 7th International
Conference for Promoting the Application of Mathematics in
Technical and Natural Sciences—AMiTaNS’15, AIP Conf. Proc.
No. 1684 (AIP, Melville, NY, 2015), p. 080005; Laser Phys. 25,
035402 (2015).

[30] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[31] D. G. Kong, Q. Chang, H. Ye, Y. C. Gao, Y. X. Wang, X. R.

Zhang, K. Yang, W. Z. Wu, and Y. L. Song, J. Phys. B 42,
065401 (2009).

[32] R. Ganeev, A. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki,
M. Turu, S. Sakakibara, and H. Kuroda, Opt. Commun. 231,
431 (2004); M. Falconieri and G. Salvetti, Appl. Phys. B 69,
133 (1999); A. Gnoli, L. Razzari, and M. Righini, Opt. Express
13, 7976 (2005).

[33] Y. Zhang, L. Sui, A. Chen, D. Zhang, Q. Wang, W. Xu, S. Li,
and M. Jin, Opt. Express 27, 20980 (2019).

[34] X.-Q. Yan, Z.-B. Liu, S. Shi, W.-Y. Zhou, and J.-G. Tian, Opt.
Express 18, 26169 (2010).

033523-8

https://doi.org/10.1016/j.optcom.2009.05.077
https://doi.org/10.1103/PhysRevLett.81.3383
https://doi.org/10.1364/OL.16.000793
https://doi.org/10.1103/PhysRevLett.45.1095
https://doi.org/10.1016/0030-4018(85)90047-1
https://doi.org/10.1364/OL.15.000471
https://doi.org/10.1016/S0370-1573(97)00073-2
https://doi.org/10.1103/PhysRevLett.15.1005
https://doi.org/10.1103/PhysRev.179.862
https://doi.org/10.1063/1.1654772
https://doi.org/10.1103/PhysRevA.47.1358
https://doi.org/10.1103/PhysRevE.56.1080
https://doi.org/10.1103/PhysRevLett.92.123903
https://doi.org/10.1103/PhysRevLett.92.123904
https://doi.org/10.1103/RevModPhys.83.247
https://doi.org/10.1140/epjst/e2016-60025-y
https://doi.org/10.1038/s42254-019-0025-7
https://doi.org/10.1103/PhysRevLett.110.013901
https://doi.org/10.1103/PhysRevA.90.063835
https://doi.org/10.1103/PhysRevLett.79.2450
https://doi.org/10.1103/PhysRevE.58.3916
https://doi.org/10.1049/el:19970429
https://doi.org/10.1364/JOSAB.14.002017
https://doi.org/10.1016/S0030-4018(97)00730-X
https://doi.org/10.1016/S0370-1573(99)00106-4
https://doi.org/10.1364/OE.17.023610
https://doi.org/10.1103/PhysRevA.93.013840
https://doi.org/10.1364/JOSAB.12.002046
https://doi.org/10.1103/PhysRevA.93.013843
https://doi.org/10.1103/PhysRevLett.94.113902
https://doi.org/10.1103/PhysRevLett.99.133902
https://doi.org/10.1364/OL.40.005714
https://doi.org/10.1038/s41598-017-12169-x
https://doi.org/10.1103/PhysRevLett.122.193902
https://doi.org/10.1103/PhysRevA.49.R3170
https://doi.org/10.1364/JOSAB.14.002004
https://doi.org/10.1007/s00332-002-0475-3
https://doi.org/10.1016/j.physd.2019.04.009
https://doi.org/10.1103/PhysRevLett.88.073902
https://doi.org/10.1364/OL.41.000191
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1126/science.aao5686
https://doi.org/10.1103/PhysRevLett.120.135301
https://doi.org/10.1103/PhysRevLett.120.235301
https://doi.org/10.1103/PhysRevResearch.1.033155
https://doi.org/10.1103/PhysRevA.98.013612
https://doi.org/10.1103/PhysRevA.98.063602
https://doi.org/10.1103/PhysRevE.89.032920
https://doi.org/10.1103/PhysRevE.94.032202
https://doi.org/10.1016/j.physd.2005.03.011
https://doi.org/10.1364/OL.32.002103
https://doi.org/10.1364/OE.17.017150
https://doi.org/10.1103/PhysRevA.77.043808
https://doi.org/10.1103/PhysRevLett.96.133901
https://doi.org/10.1364/JOSAB.35.002977
https://doi.org/10.1088/1054-660X/25/3/035402
https://doi.org/10.1016/j.physrep.2006.12.005
https://doi.org/10.1088/0953-4075/42/6/065401
https://doi.org/10.1016/j.optcom.2003.12.032
https://doi.org/10.1007/s003400050785
https://doi.org/10.1364/OPEX.13.007976
https://doi.org/10.1364/OE.27.020980
https://doi.org/10.1364/OE.18.026169


OBSERVATION AND ANALYSIS OF CREATION, DECAY, … PHYSICAL REVIEW A 102, 033523 (2020)

[35] G. Boudebs, H. Wang, C. Cassagne, M. Chis, A. M. Amaral,
and C. B. de Araújo, J. Opt. Soc. Am. B 36, 3411 (2019).

[36] S. Wang and L. Zhang, Comput. Phys. Commun. 184, 1511
(2013).

[37] G. Fibich and A. L. Gaeta, Opt. Lett. 25, 335 (2000).
[38] R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M.

Dogterom, A. Akhmanova, and L. C. Kapitein, Nano Lett. 18,
7524 (2018).

033523-9

View publication statsView publication stats

https://doi.org/10.1364/JOSAB.36.003411
https://doi.org/10.1016/j.cpc.2013.01.019
https://doi.org/10.1364/OL.25.000335
https://doi.org/10.1021/acs.nanolett.8b03011
https://www.researchgate.net/publication/345423174

