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ABSTRACT

The structure of molecular clouds holds important clues regarding the physical processes that lead to their formation and subsequent
dynamical evolution. While it is well established that turbulence imprints a self-similar structure onto the clouds, other processes,
such as gravity and stellar feedback, can break their scale-free nature. The break of self-similarity can manifest itself in the existence
of characteristic scales that stand out from the underlying structure generated by turbulent motions. In this work, we investigate the
structure of the Cygnus-X North and Polaris Flare molecular clouds, which represent two extremes in terms of their star formation
activity. We characterize the structure of the clouds using the delta-variance (∆-variance) spectrum. In the Polaris Flare, the structure
of the cloud is self-similar over more than one order of magnitude in spatial scales. In contrast, the ∆-variance spectrum of Cygnus-X
North exhibits an excess and a plateau on physical scales of ≈0.5−1.2 pc. In order to explain the observations for Cygnus-X North,
we use synthetic maps where we overlay populations of discrete structures on top of a fractal Brownian motion (fBm) image. The
properties of these structures, such as their major axis sizes, aspect ratios, and column density contrasts with the fBm image, are
randomly drawn from parameterized distribution functions. We are able to show that, under plausible assumptions, it is possible to
reproduce a ∆-variance spectrum that resembles that of the Cygnus-X North region. We also use a “reverse engineering” approach in
which we extract the compact structures in the Cygnus-X North cloud and reinject them onto an fBm map. Using this approach, the
calculated ∆-variance spectrum deviates from the observations and is an indication that the range of characteristic scales (≈0.5−1.2 pc)
observed in Cygnus-X North is not only due to the existence of compact sources, but is a signature of the whole population of structures
that exist in the cloud, including more extended and elongated structures.
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1. Introduction

The interstellar medium (ISM), both in the Milky Way and in
external galaxies, exhibits a scale-free nature that extends over
many physical scales. This is observed both in the diffuse H I gas
(e.g., Elmegreen et al. 2001; Dickey et al. 2001; Dib & Burkert
2005; Begum et al. 2006; Dutta et al. 2009, 2013; Zhang et al.
2012; Miville-Deschênes et al. 2016) and in the molecular phase
(e.g., Stutzki et al. 1998; Heyer & Brunt 2004; Heyer et al. 2009;
Schneider et al. 2011; Roman-Duval et al. 2011; Rebolledo et al.
2015; Panopoulou et al. 2017; Traficante et al. 2018; Hirota et al.
2018; Kong et al. 2018; Dib & Henning 2019; Henschaw et al.
2020). This self-similarity is also observed in the spatial distri-
bution of young clusters in galactic disks (e.g., Elmegreen et al.
2006; Gouliermis et al. 2017; Grasha et al. 2019).

Turbulence is ubiquitously observed in all phases of the
interstellar gas. It is thought to be the main regulator of the
ISM structure and dynamics in cold, neutral gas and, hence, is
responsible for setting a self-similar behavior in this regime (e.g.,
Elmegreen & Scalo 2004; Dib et al. 2008; Burkhart et al. 2013).

This self-similarity can be broken on various scales. This can
happen when specific physical processes dominate the injec-
tion of energy and momentum in the ISM. In galactic disks,
various forms of feedback from massive stars (i.e., ionizing
radiation, radiation pressure, stellar winds, and supernova explo-
sions) impart significant amounts of energy and momentum onto
the ISM on intermediate scales, that is, ≈50−500 pc (e.g., Dib
et al. 2006, 2011, 2013, 2017; Ostriker et al. 2010; Dib 2011;
Hennebelle & Iffrig 2014; Hony et al. 2015; Padoan et al. 2016;
Ntomousi et al. 2017; Seifried et al. 2020). Some of these scales
could be detected as characteristic scales in the ISM. Dib et al.
(2009) found that the orientations of molecular clouds in the
outer Galaxy are correlated on spatial scales that are on the order
of the expected sizes of supernova remnants, which are prevalent
in those regions of the Galactic disk. On small scales, particu-
larly within molecular clouds, the self-similarity can be broken
on physical scales where the self-gravity of the gas becomes
important and dictates the motions of the gas (e.g., Dib et al.
2008). When dynamically important, and due to their anisotropic
nature, magnetic fields can also play a role in breaking the
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self-similar nature of the gas (e.g., Soler 2019). Scales at which
there might be a departure from self-similarity are the ones asso-
ciated with the sizes of filaments and fragments within filaments
(e.g., André et al. 2010; Arzoumanian et al. 2011; Hacar et al.
2013; Könyves et al. 2015) as well as scales on which filaments
interact, with hubs and ridges forming at the intersection of two
or more filaments (e.g., Schneider et al. 2012; Samal et al. 2015;
Dewangan et al. 2017; Treviño-Morales et al. 2019; Clarke et al.
2019). Stellar feedback can also perturb the self-similarity of the
gas on small scales. Russeil et al. (2013) find, in a study of the
massive star-forming region NGC6334, that characteristic scales
around 1–10 pc can be caused by the injection of energy due to
expanding H II regions.

Using the delta-variance (∆-variance) spectrum (Stutzki
et al. 1998), we analyzed the spatial structure of two Galac-
tic molecular clouds that lie at the extreme ends of what can
be found in the Galaxy in terms of their star formation activ-
ity, namely the Cygnus-X North region and the Polaris Flare.
The Cygnus-X North molecular cloud complex is an active
region of star formation where many sub-regions of high-mass
star formation can be found (e.g., Schneider et al. 2006, 2010;
Motte et al. 2007; Reipurth & Schneider 2008; Bontemps et al.
2010; Csengeri et al. 2011; Hennemann et al. 2012; Kryukova
et al. 2014; Maia et al. 2016). In contrast, the Polaris Flare is
essentially a translucent, non-star forming cloud (e.g., Ward-
Thompson et al. 2010; Miville-Deschênes et al. 2010). In Sect. 2,
we briefly summarize the Herschel satellite data that are ana-
lyzed in this work, and in Sect. 3 we present and discuss
the column density distribution functions of both regions. The
∆-variance method is discussed in Sect. 4, and its application
to the Herschel satellite maps of Cygnus-X North and Polaris is
presented in Sect. 5. In Sect. 6, we interpret our findings with the
help of simulated synthetic observations and discuss the shape of
the ∆-variance in models of increasing complexity. We start with
models of pure fractal Brownian motion (fBm) images (Sect. 6.1)
and continue to models where individual structures are superim-
posed on an fBm (Sect. 6.2). We finish with models in which an
entire population of structures is superimposed on an fBm and
which have sets of properties (such as the size of major axis,
elongation, and column density contrast) that are described by
parameterized probability distribution functions (Sect. 6.3). In
Sect. 7, we discuss different caveats and limitations pertaining to
the observations and the models, and in Sect. 8 we summarize
our results and conclude.

2. The data: Herschel maps of star-forming regions

The observations that are analyzed in this work were performed
using the Herschel space observatory (Pilbratt et al. 2010). In
particular, we made use of data products from the Herschel
Gould Belt Survey (HGBS1, André et al. 2010) for the Polaris
Flare region and the Herschel imaging survey of OB Young
Stellar objects (HOBYS, Motte et al. (2010)) program for the
Cygnus-X North region. The column density maps were deter-
mined from a pixel-to-pixel greybody fit to the red wavelength
of PACS (Poglitsch et al. 2010) observations at 160 µm (11.7′′
angular resolution), and the three SPIRE (Griffin et al. 2010)
wavelengths are 250, 350, and 500 µm at the resolutions of
18.2′′, 24.9′′, and 36.3′′, respectively. For the SPIRE data reduc-
tion, we used the HIPE pipeline (versions 10 to 13), including
the destriper task for SPIRE as well as HIPE and scanamorphos
(Roussel 2013) for PACS. The SPIRE maps were calibrated for

1 http://gouldbelt-herschel.cea.fr/archives

extended emission. All maps have an absolute flux calibration
using offset values determined in Bernard et al. (2010). For the
spectral energy distribution (SED) fit, the specific dust opacity
per unit mass (dust plus gas) is approximated by a power law κν =
0.1(ν/1000 GHz)βdust cm2 g−1 with βdust = 2 and the dust temper-
ature and column density left as free parameters. The description
of how high angular resolution maps were derived is detailed in
Palmeirim et al. (2013). The concept is to employ a multi-scale
decomposition of the flux maps and assume a constant line-of-
sight temperature. The final map at 18.2′′ angular resolution is
constructed from the difference maps of the convolved surface
density SPIRE maps (at 500, 350, and 250 µm) and the temper-
ature information from the color temperature derived from the
160 µm/250 µm ratio.

The molecular hydrogen (H2) column densities were trans-
formed into visual extinction (AV) using the conversion formula
N(H2)/AV = 0.94 × 1021 cm−2 mag−1 (Bohlin et al. 1978).
The column density maps for the Cygnus-X North and Polaris
Flare clouds are displayed in Fig. 1 (left- and right-hand pan-
els, respectively). For Cygnus-X, column density maps were
already presented in Hennemann et al. (2012) and Schneider
et al. (2016a,b), and for Polaris in Robitaille et al. (2019). These
maps have a lower angular resolution of 36.3′′ and cover differ-
ent areas than those presented in the current study. The Polaris
Flare cloud is located at a distance of 140 pc (Falgarone et al.
1998), and hence each pixel on the map corresponds to a spatial
size of ≈0.002 pc. The Cygnus-X cloud is located at a distance
of 1.7 kpc (Schneider et al. 2006), and, in this case, each pixel
corresponds to a spatial size of ≈0.025 pc. The maps of Cygnus-
X North and Polaris contain 5740 × 5740 pixels and 3538 ×
3164 pixels, respectively. The total physical size covered by the
maps of Cygnus-X North and Polaris is ≈143.5 pc × 143.5 pc
and 7.07 pc × 6.32 pc, respectively. The full width at half maxi-
mum (FHWM) of the beam is sampled with six pixels and thus
the spatial resolution for the Cygnus-X North and Polaris maps
are ≈0.15 pc and ≈0.012 pc, respectively.

3. Column density distribution functions

Here, we only wish to highlight the differences between the
Cygnus-X North and Polaris regions in terms of their column
density distributions before analyzing the spatial structure of the
clouds. Figure 2 displays the column density probability distribu-
tion function (N-PDF) for Cygnus-X North (left-hand panel) and
Polaris (right-hand panel). Both N-PDFs resemble those shown
in Schneider et al. (2016b) for Cygnus-X and Schneider et al.
(2013) for Polaris. The N-PDFs for both regions exhibit a log-
normal behavior at low AV (2.5 ≤ AV < 12 for Cygnus-X North
and ≤1 for Polaris) with a significant difference in the position
of the peak between the two regions. A fit to the lognormal part
of the N-PDF yields AV,peak = 8.92+1.40

−1.21 in Cygnus-X North and
AV,peak = 0.45+0.19

−0.13 in Polaris. The width of the lognormal is
σAV = 1.14 ± 1.10 and σAV = 1.39 ± 1.25 in Cygnus-X North
and Polaris, respectively. At larger column densities (AV ≥ 12 in
Cygnus-X and AV ≥ 1 in Polaris), the N-PDF turns into a power-
law distribution. In Cygnus-X, there are two distinct power laws:
a steep power law with an exponent of −4.24 ± 0.15 in the AV
range of [12, 30] and a shallower power law with an exponent of
−1.85 ± 0.02 in the AV range [30, 300]. In contrast, the N-PDF
for Polaris exhibits a single power-law tail (PLT) starting from
AV & 1 with an exponent of −3.97 ± 0.13. The exponent of the
PLT we find for Polaris matches the one found in other stud-
ies for the same cloud (e.g., Alves et al. 2007; Schneider et al.
2013). The N-PDF parameters we find for the two regions are
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Fig. 1. Column density maps of the Cygnus-X North cloud (left) and the Polaris Flare cloud (right). Column densities are displayed in units of the
visual extinction using the conversion NH2/AV = 0.94 × 1021 cm−2.

Fig. 2. Column density distribution function in the Cygnus-X North cloud (left panel) and the Polaris Flare cloud (right panel). The full red lines
in both panels show a fit by a lognormal function in the low column density regime (.5 × 1021 cm−2 in Cygnus-X North and .1 × 1021 cm2 in
Polaris). The dashed line is a fit to the power-law regime that is observed in both regions in the intermediate column density regime, while the
triple-dot dashed red line in the case of the Cygnus-X North region is a fit to the shallower power law in the high column density regime.

only slightly different from what was obtained in earlier studies,
and this difference is due to the fact that the considered areas of
the clouds are different.

A PLT in the N-PDF is connected to the existence of a power-
law distribution in volume density and is commonly attributed to
the effects of the self-gravity of the gas in generating dense struc-
tures in the cloud (e.g., Klessen 2000; Dib 2005; Dib & Burkert
2005; Kainulainen et al. 2009; Kritsuk et al. 2011; Ward et al.
2014; Girichidis et al. 2014; Schneider et al. 2015; Donkov &
Stefanov 2018; Corbelli et al. 2018; Veltchev et al. 2019). Another
interpretation for the origin of the first, steep PLT has been
proposed by Auddy et al. (2018, 2019). These authors showed,
using numerical simulations of molecular clouds with non-ideal
magnetohydrodynamics (MHD), that in the case of a magneti-
cally subcritical cloud, a steep PLT (slope≈ –4) can emerge as a
result of gravitational contraction driven by ambipolar diffusion.

The second, shallower PLT is only associated with regions of
the highest column densities in Cygnus-X. This was reported
for the first time in high-mass star-forming regions (Tremblin
et al. 2014; Schneider et al. 2016b) and interpreted as aris-
ing from gravitational collapse of cores with either internal
sources (protostars, ultra-compact H II regions) that lead to inter-
nal ionization compressions, or external compression from the
associated H II region. However, the picture is probably more
complicated since a second shallower PLT was also detected
in low-mass star-forming regions (Schneider et al., in prep.).
It is not within the scope of this paper to discuss the N-PDFs
in extensive detail. In summary, and despite the fact that grav-
ity is suspected to be the primary culprit of the formation of
both PLTs, we conclude that it currently is not straightfoward to
explain the different parts of the PLT as the consequence of a
hierarchical gravitational collapse, whereby the first steep PLT
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can be attributed to the formation of compact structures (fila-
ments or clumps) and the second, shallower PLT to the collapse
of dense cores.

4. Analysis: the ∆-variance method

We quantified the structure of molecular clouds using the ∆-
variance method. The method was originally introduced in
Stutzki et al. (1998) and Zielinsky & Stützki (1999) and is a gen-
eralization of the Allan variance (Allan 1966). In this work, we
used an improved version of the method presented in Ossenkopf
et al. (2008a)2.

Here, we briefly present a summary of the main steps and
characteristics of the method. For a 2D field A(x, y), the ∆-
variance on a scale L is defined as being the variance of the
convolution of A with a filter function �L such that

σ2
∆(L) =

1
2π
〈(A ∗ �L)2〉x,y. (1)

For the filter function, Ossenkopf et al. (2008a) recommend
the use of a “Mexican hat” that is defined as

�L (r) =
4
πL2 e

r2

(L/2)2 − 4
πL2(v2 − 1)

[
e

r2

(vL/2)2 − e
r2

(L/2)2

]
, (2)

where the two terms on the right side of Eq. (2) represent the core
and the annulus of the Mexican hat function, respectively, and v
is the ratio of their diameters (we used v = 1.5). For a faster and
more efficient computation of Eq. (1), Ossenkopf et al. (2008a)
performed the calculation as a multiplication in Fourier space,
and thus, the ∆-variance is given by

σ2
∆(L) =

1
2π

∫ ∫
P |�̄L|2 dkxdky, (3)

where P is the power spectrum of A and �̄L is the Fourier trans-
form of the filter function. If P can be described by a power law,
and if β is the exponent of the power spectrum, then a relation
exists between the exponent of the power law that describes the
∆-variance (α) and β (Stutzki et al. 1998), and this is given by

σ2
∆(L) ∝ Lα ∝ Lβ−2. (4)

The value of α can be inferred from the range of spatial
scales over which the ∆-variance displays a self-similar behav-
ior and can be tied to the value of β. The error bars of the
∆-variance on a given scale are computed from the counting
error determined by the finite number of statistically independent
measurements in the filtered map and the variance of the vari-
ances (i.e., the fourth moment of the filtered map). Characteristic
scales are scales at which there is a break of the self-similarity
and which show up in the ∆-variance spectra as break points,
peaks, or inflection points. Any underlying self-similar behavior
of the cloud can be entirely perturbed on many or all physical
scales if there is a variety of structures that coexist in the cloud.
The ∆-variance has been employed to analyze the structure of
observed molecular clouds (e.g., Bensch et al. 2001; Campeggio
et al. 2004; Sun et al. 2006; Ossenkopf et al. 2008b; Rowles
& Froebrich 2011; Schneider et al. 2011; Russeil et al. 2013;
Elia et al. 2014) as well as simulated molecular clouds (e.g.,

2 The IDL package for calculating the ∆-variance can be
found at https://hera.ph1.uni-koeln.de/~ossk/Myself/
deltavariance.html

Ossenkopf et al. 2001; Mac Low & Ossenkopf 2000; Ossenkopf
& Mac Low 2002; Federrath et al. 2009; Bertram et al. 2015).
In most cases, the ∆-variance has been used to investigate the
self-similar nature of the clouds and examine whether the slope
of the ∆-variance in the self-similar regime varies from cloud
to cloud and, in the case of simulations, whether it depends
on the properties of the turbulent motions that are generated
in the clouds. However, it has already been demonstrated that
the method is capable of detecting break points. Ossenkopf &
Mac Low 2002 found, when applying the method to numeri-
cal models of molecular clouds where turbulence is driven on
various physical scales, that the ∆-variance departs from the self-
similar regime on physical scales where turbulence is injected
into the clouds. Using extinction maps, Schneider et al. (2011)
found that low-mass star-forming clouds have a double-peak
structure in the ∆-variance with characteristic size scales around
≈1 and ≈4 pc. They propose that the physical process governing
structure formation could be the scale at which either a large-
scale supernova shock or an expanding H II region sweeping
through the diffuse medium are broken at dense clouds, which
turns the well-ordered velocity into turbulence.

5. Spatial structure of Cygnus-X North and Polaris

We applied the ∆-variance method to the column density maps of
Cygnus-X North and Polaris. As stated above, these two regions
were selected because they are significantly different, both in
terms of their column density distribution (i.e., Fig. 2) and their
star formation activity. While Polaris harbors a population of
starless cores, it is still a region with no ongoing star formation
and a modest contrast in column density. On the other hand, the
Cygnus-X North cloud is a region with a much higher star for-
mation rate and a much larger contrast in column densities (see
Fig. 2, also Hennemann et al. 2012; Schneider et al. 2016b). The
∆-variance spectra for both clouds are displayed in Fig. 3. The
∆-variance spectrum of Polaris displays a self-similar behav-
ior above the resolution limit, and this self-similarity extends
for more than one order of magnitude in spatial scales (from
≈0.03 to ≈0.6 pc). A power-law fit to the ∆-variance of Polaris in
the range [0.035–0.6] pc yields a value of the power-law expo-
nent of α = 0.4 ± 0.003, and this implies a value of β = 2.4.
On scales larger than 0.6 pc, the self-similarity is perturbed,
possibly due to the existence of a large filamentary structure
(i.e., the MCLD 123.5+24.9 structure), though substructured, in
the region. The scale-free nature of the ∆-variance spectrum of
Polaris is consistent with earlier findings using the ∆-variance
technique for the same cloud (Bensch et al. 2001; Ossenkopf-
Okada & Stepanov 2019). However, Bensch et al. (2001) found
larger values of β (≈3 from observations in the 12CO (J = 2−1)
line and β ≈ 3.2 from observations in the 13CO (J = 1−0) line)
when the ∆-variance spectrum is fitted over a spatial range that is
roughly similar to the one used in this study. The spatial resolu-
tion of the observations they used are 2.2′ and 0.78′, respectively,
and are lower than the resolution of the observations presented
in this work (≈0.3′). Ossenkopf 2002 showed that the use of
low-J CO isotopologues leads to somewhat steeper ∆-variance
spectra than the one corresponding to the underlying column
density structure. The exact relative effect of the lower spatial
resolution, which effectively smoothes the map and possibly
increases the values of β, compared to the role of the optical
depths of these molecular tracers in steepening the ∆-variance
spectrum, is not yet entirely clear.

In contrast to Polaris, the ∆-variance of Cygnus-X North dis-
plays a more complex shape with a steep slope above the spatial
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Fig. 3. Delta-variance functions calculated for the Cygnus-X North cloud (left) and the Polaris Flare cloud (right). The vertical dashed black lines
in both panels mark the position of the spatial resolution for each of these two regions. The vertical dashed red lines in the case of Polaris mark the
spatial range over which the power-law fit is performed. We do not attempt any fit in Cygnus-X North because the underlying self-similar regime is
heavily perturbed by the presence of structures (see Sect. 6.3).

resolution limit (dashed black lines in Fig. 3) and a broad peak at
around ≈0.5−0.12 pc. A reasonable assumption to make is that
the existence of many small-scale dense structures (e.g., cores,
clumps, and filaments) in Cygnus-X North alters the underly-
ing (i.e., primordial) self-similar structure of the gas that had
existed before these structures formed. However, it remains an
open question whether a massive star-forming region such as
Cygnus-X North had, at an earlier stage, a spatial distribution
of (column) density similar to that of Polaris. This is a plausible
assumption given that, prior to the formation of massive stars
in the region, turbulence in the Cygnus-X North cloud, like in
Polaris and elsewhere in the ISM, must have been dominated by
shearing motions. Large-scale converging flows may be respon-
sible for aggregating gas in specific regions that would be the
parental structures of ridges and hubs. Compressive motions due
to feedback from massive stars in specific regions of Cygnus-X
North can also modify the spatial distribution of the (column)
density field. However, massive star formation is localized in
Cygnus-X North and not distributed across the entire cloud
(Beerer et al. 2010). We speculate here that the underlying, “pri-
mordial,” structure in the Cygnus-X North cloud resembled that
of Polaris and use this as a working hypothesis. In what fol-
lows, we focus our attention on the Cygnus-X North cloud and
adopt the Polaris value of β = 2.4 as the exponent of the under-
lying self-similar fBm structure in Cygnus-X. We explore, using
synthetic data, if and how the addition of dense structures with
specific properties on top of a cloud with a self-similar structure
modifies the ∆-variance spectrum.

6. Interpretation

While one of our aims is to understand the structure of the
Cygnus-X North region as revealed by its ∆-variance spectrum,
a broader goal is to investigate how the existence of compact and
dense structures (cores, clumps, and filaments) with diverse char-
acteristics can alter the self-similar nature of a molecular cloud
and modify the ∆-variance spectrum. We first summarize some

of the basic properties of fBm images that are known to pos-
sess a self-similar structure. In a second step, we include discrete
structures with specific characteristics on top of an existing fBm
and investigate how the inclusion of these structures impacts the
shape of the ∆-variance spectrum. Lastly, we investigate how
the shape of the ∆-variance is modified in the presence of an
entire population of structures that are characterized by distri-
bution functions of their sizes, elongations, and column density
contrasts.

6.1. Fractal Brownian motion maps

Fractal Brownian motion images (Peitgen & Saupe 1988) are
often used as a surrogate of ISM maps thanks to their visual
similarity with cloud features (e.g., Stutzki et al. 1998; Bensch
et al. 2001; Miville-Deschênes et al. 2003; Elia et al. 2014, 2018).
A full description of their analytic properties is presented in
Stutzki et al. (1998). Here, we simply review their basic prop-
erties. Firstly, their radially averaged power spectrum exhibits a
power-law behavior with an exponent β = E +2H, where E is the
Euclidian dimension (E = 2 for 2D images) and H is the Hurst
exponent whose value ranges from 0 to 1. For 2D maps, β can
take values between 2 and 4. Secondly, the distribution of the
phases of their Fourier transform is completely random. Thus, it
is possible to generate fBm maps by defining the value of β and
a random phase distribution. If expressed in terms of the frac-
tal dimension, the fractal dimension of an fBm image has been
shown to be given by D = E + 1 − H, and this leads to a direct
relation between D and β that is given by:

D =
3E + 2 − β

2
. (5)

Stutzki et al. (1998) showed that the power spectrum of the
(E − 1) projection of an E-dimensional fBm is also a power law
with the same spectral index (i.e., the same β). Using this prop-
erty, it is possible to establish the link between the 2D (E = 2)
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Fig. 4. fBm images with β = 2.5 and with resolutions of 250 × 250 pix-
els (top left), 500 × 500 pixels (top right), and 1000 × 1000 pixels
(bottom left). The ∆-variance spectra for all three cases are compared
in the bottom-right subpanel. All display a self-similar regime with an
exponent of the power law of α = β − 2 (i.e., Eq. (4)). All maps are
normalized by their own mean value, and the vertical offset between
the three ∆-variance functions simply reflects the effect of this different
normalization.

and 3D (E = 3) fractal dimensions. This will be given by:

D2 = D3 − 3
2
. (6)

In this paper, we used fBm images as a reference for self-
similar structures since they can be obtained with preconditioned
statistical properties (e.g., Stutzki et al. 1998; Shadmehri &
Elmegreen 2011; Elia et al. 2018). Figure 4 displays three fBm
images generated with a value of β = 2.5 and for three resolu-
tions: 250 × 250 pixels (top left), 500 × 500 pixels (top right),
and 1000× 1000 pixels (bottom left)3. The bottom-right panel in
Fig. 4 displays the ∆-variance functions calculated for these three
fBm images. The self-similar regime is observed in all cases and
extends to larger spatial scales for cases with a higher spatial
resolution. The fBm images are periodic, and, if we were using a
periodic analysis, the ∆-variance spectra would be perfect power
laws. However, in order to compare them to the observational
data, we performed the calculations of the ∆-variance with a cut
at the map boundaries. This cut has two effects. First, there is a
natural limit to the size of any structure so that the ∆-variance
spectrum flattens at the largest scales. Second, the statistical
significance of the structures close to the map boundaries is
reduced. This changes the denominator in the normalization of
the ∆-variance when computing mean properties of the map

3 By construction, the mean value of the fBm is zero. We applied an
arbitrary offset to the maps in order to insure that all values were posi-
tive. The maps were then normalized by their mean value. The addition
of a constant offset for the whole map does not alter the shape of the ∆-
variance spectrum since the relative differences between pixels remain
the same.

Fig. 5. fBm images with values of β ranging from 2 to 4 in steps of 0.5.
All maps have a resolution of 1000 × 1000 pixels. The ∆-variance fig-
ures for all cases are compared in the bottom-right subpanel. All display
a self-similar regime with an exponent of the power law of α = β − 2
(i.e., Eq. (4)). All maps are normalized by their own mean value. The
random number series generating the phases has been kept the same in
all maps.

according to the area-to-boundary ratio of maps of different sizes
so that the absolute scale of the ∆-variance is only comparable
in the limit of very large maps. Figure 5 displays the same type
of fBm images, but in this case all images have a fixed resolu-
tion of 1000 × 1000 pixels and the value of β is varied between
2 and 4 (in steps of 0.5). While in Fig. 4 the phase distribution
varies from image to image, in Fig 5 the same distribution of
phases is kept, so that the basic “shape” of the image remains
the same. Increasing the value of β produces a gradual smooth-
ing of the image due to the transfer of power from high to low
spatial frequencies. The bottom-right panel in Fig. 5 displays
the corresponding ∆-variance functions for each of these cases.
As expected, the ∆-variance functions are scale-free power-law
functions whose exponent is given by α = β − 2.

6.2. Fractal Brownian motion maps with additional structure

We now explore the effect of discrete structures on the
∆-variance spectrum. The structures we superimpose on top
of fBm images are generalized 2D Gaussian functions that are
given by:

NG(x, y) = Npeakexp[−a(x− x0)2 +2b(x− x0)(y−y0)+c(y−y0)2)],
(7)

A177, page 6 of 18

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038849&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038849&pdf_id=0


S. Dib et al.: Characteristic scales in molecular clouds

where NG is the added column density of the 2D Gaussian struc-
ture, Npeak is its peak value, x0 and y0 are the coordinates of the
peak, and the terms a, b, and c are given by:

a =
cos2 (θ)

2σ2
1

+
sin2 (θ)

2σ2
2

b =
sin(2θ)

4σ2
1

− sin(2θ)
4σ2

2

c =
sin2 (θ)

2σ2
1

+
cos2 (θ)

2σ2
2

. (8)

In Eq. (8), σ1 and σ2 are the standard deviations of the 2D
Gaussian along the major and minor axes, respectively, and θ
is the angle between the Gaussian function major axis and the
x-axis, defined in the counterclockwise direction. We generated
a very large number of synthetic maps on which we superim-
posed one or several 2D Gaussian structures over fBm images in
a controlled manner. All fBm images have a value of β = 2.4,
similar to the value found in the Polaris cloud, and a resolution
of 1000 × 1000 pixels. For individual structures, we varied the
aspect ratio of the 2D Gaussian, f = (σ1/σ2), over a range of 1
to 10. The peak value of the 2D Gaussians is expressed in terms
of the mean value of the fBm image, Npeak = δc 〈NfBm〉, and the
column density contrast between the peak of the 2D Gaussian
and the mean value of the fBm, δc, is varied between 1 and
10. We also explored the effect of varying the absolute size of
the Gaussian function with respect to the image size, as well as
the effect of including multiple Gaussian functions in the fBm
images.

Figure 6 displays five realizations of an fBm with superim-
posed Gaussian structures. The 2D Gaussians all have δc = 5,
σ1 = 50 pixels, and an aspect ratio f = (σ1/σ2) that is varied
between 1 and 10. The ∆-variance functions of these maps are
displayed in the bottom-right panel of Fig. 6 and are compared
to the ∆-variance function of a pure fBm image with β = 2.4. The
inclusion of an additional structure in the fBm image increases
the value of σ2

∆
on all spatial scales. The increment of the

∆-variance function with respect to the ∆-variance of the pure
fBm reaches a maximum on a scale that is on the order of the
equivalent diameter of the injected structure. Figure 6 shows that
as the aspect ratio is reduced, the position of the point where the
deviation from the fBm is maximized in the ∆-variance func-
tion moves to larger spatial scales. If we approximate the surface
of the 2D Gaussian by the area that lies within [2σ1, 2σ2] (i.e.,
where most of the signal lies), the equivalent diameter is then
given by Deq ≈ 4

√
σ1σ2. The measured positions of the points

of maximum deviation in the ∆-variance functions in Fig. 6 do
indeed confirm that the position of maximum deviation is well
approximated by Deq. A deviation from this value (by up to
≈30%) can be observed for smaller structures (i.e., in this case,
the most elongated) as they are less well resolved on the grid.

We explored the effect of varying the contrast between the
injected 2D Gaussian structure and the underlying fBm image.
Figure 7 displays five realizations where the value of δc =
Npeak/ 〈NfBm〉 is varied between 1 and 5. For all cases, the other
parameters are fixed to f = 5 and σ1 = 50 pixels. All images
have a resolution of 1000 × 1000 pixels, and the underlying fBm
has an exponent of β = 2.4. The lower-right panel in Fig. 7 dis-
plays the corresponding ∆-variance functions, which, here once
again, are compared to the ∆-variance of the fBm image. Figure 7
shows that higher contrasts (δc) between the self-similar fBm and
the injected structure lead to higher values of the σ2

∆
on spatial

scales equal to Deq.

Fig. 6. 2D Gaussian structures injected on top of an fBm image with β =
2.4. The 2D Gaussian functions have an aspect ratio ( f = σ1/σ2) that
is varied in the range [1–10], and all have a value of δc = 5 and a fixed
size of σ1 = 50 pixels. All maps are normalized to their mean value.
Bottom-right figure: corresponding ∆-variance functions calculated for
each case, and these are compared to the ∆-variance function of the
underlying fBm image.

In Fig. 8, we investigate the effect of the surface area by
increasing the number of structures that are superimposed onto
the underlying fBm image. In this figure, one or several simi-
lar structures (all with δc = 3, f = 5, and σ1 = 50 pixels) are
superimposed onto the fBm images (all with 1000× 1000 pixels
resolution and β = 2.4). The lower-right panel in Fig. 8 shows
that increasing the surface area of the injected structures has a
significant impact (i.e., linear with the number) on the increase
of the σ2

∆
on spatial scales that are on the order of the size of the

structures. We also note an increase in the width of the excess
of the ∆-variance spectrum up to scales of 250 pixels (i.e., larger
than the sizes of the individual structures themselves) when there
are several structures. This is the direct signature of the 250 pixel
separation between the structures. We also explore the effect
of changing the size of the structure with respect to the image
size while fixing the aspect ratio and column density contrast.
Figure 9 displays five realizations with f = 5, δc = 3 but where
σ1 is varied between 150 and 16.67 pixels. The ∆-variance func-
tions for these realizations are displayed in the lower-right panel
of Fig. 9. Here as well, the increment in σ2

∆
with respect to the
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Fig. 7. 2D Gaussian structures injected on top of an fBm image with
β = 2.4. The Gaussian functions have an aspect ratio f = 5, a value of
σ1 = 50 pixels, and a column density contrast between the peak of the
2D Gaussian and the mean value of the fBm, δc, that is varied between 1
and 5. All maps are normalized to their mean value. Bottom-right figure:
corresponding ∆-variance functions calculated for each case, and these
are compared to the ∆-variance function calculated for the underlying
fBm image.

underlying fBm is maximized on scales that are on the order of
the equivalent diameter of the structure, Deq ≈ 4

√
σ1σ2.

Given the expression of the ∆-variance in Eq. (3), one thus
expects that the amplitude of the maximum deviation of σ2

∆
in

the presence of structures from the σ2
∆

of an fBm (defined here-
after as ∆(σ2

∆
)max) and which occurs on spatial scales that are

equal to the equivalent diameter of the structures, to scale with
Aδ2

c , where A is the total area covered by the structures. We ver-
ify whether this scaling holds for all cases displayed in Figs. 6–9.
We calculate the area as being A = Nsπ2σ1σ2, where Ns is the
number of structures present on the map. Figure 10 displays the
value of ∆(σ2

∆
)max as a function of Aδ2

c . A linear scaling between
these quantities is found, even though we observe a small devi-
ation from linearity for smaller values of Aδ2

c . This is due to the
fact that when structures are small, there are larger uncertainties
associated with the determination of their surface.

6.3. Toward more realistic configurations

In principle, the generation of realistic column density
maps could rely on numerical simulations of turbulent and

Fig. 8. One or several similar 2D Gaussian structures injected on top of
an fBm image with β = 2.4. The Gaussian functions have an aspect ratio
f = 5, a value σ1 = 50 pixels, and δc = 3. All maps are normalized to
their mean value. Bottom-right figure: corresponding ∆-variance func-
tions calculated for each case, and these are compared to the ∆-variance
function calculated for the underlying fBm image.

self-gravitating molecular clouds. However, the parameter space
can be very large, namely, models with or without gravity,
with various magnetic field strengths, and with various driving
schemes, Mach numbers, and turbulence driving scales. When
gravity is included, the extracted information will also unavoid-
ably depend on the time evolution of the simulated clouds. This
remains a valuable approach that has in fact been explored to
a certain extent (e.g., Ossenkopf et al. 2001; Ossenkopf 2002)
and deserves to be explored further with more refined models.
In this work, we prefer to generate models whose parameters
can be easily controlled and for which we can easily understand
and disentangle the effects on the ∆-variance function. As in
Sect. 6.2, we superimposed 2D Gaussians on top of predefined
fBm images. However, instead of including individual structures
or structures that are set apart from each other, we now include
2D Gaussians with specific distribution functions that character-
ize their properties. The parameters we varied are the number
of 2D Gaussian structures, Ns, the distribution function of the
size of the major axis (dN/dL1), the distribution function of
the aspect ratios (dN/d f ), and the distribution function of the
structures column density contrast (dN/dδc). Each structure is
assigned a randomly drawn orientation on the map, and the struc-
tures are allowed to overlap. Keeping in mind that clumps, cores,
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Fig. 9. 2D Gaussian structures injected on top of an fBm image with
β = 2.4. The Gaussian functions all have an aspect ratio f = 0.2, a col-
umn density contrast between the peak of the 2D Gaussian and the mean
value of the fBm, δc = 3, and a value of σ1 that is varied between 150
and 16.67 pixels. Bottom-right figure: corresponding ∆-variance func-
tions calculated for each case, and these are compared to the ∆-variance
function calculated for the underlying fBm image.

and filaments such as those found in the column density map
of Cygnus-X North may have a more complex internal struc-
ture than 2D Gaussian functions, we aim to understand which
combination of the parameters leads to ∆-variance functions that
are similar to that of the Cygnus-X North region. More broadly,
our aim is also to understand the sensitivity of the ∆-variance
to the choice of the distribution functions that characterize the
statistical properties of the structures.

The distribution of sizes and aspect ratios of cores and
clumps in molecular clouds is likely to depend on the density
tracer as well as on the clump identification algorithm. To illus-
trate this, in Fig. 11 we compare the size (i.e., major axis; L1,
left panel) and aspect ratio ( f , middle panel) distributions of
structures found in the Herschel infrared Galactic Plane survey
(Hi-GAL; Molinari et al. 2016; Elia et al. 2017) and in the Five
College Radio Astronomy Observatory (FCRAO) CO survey of
the outer Galaxy (HCS; Heyer et al. 1998; Dib et al. 2009). Struc-
tures in the Hi-GAL survey are extracted from 250 µm emission
maps (78 952 objects in total), whereas the HCS survey is based
on the (1–0) transition in 12CO molecular line observations,
in which 10 156 discrete structures were identified. The clouds
and clumps reported in the Hi-GAL survey are ostensibly more

Fig. 10. Maximum deviation of the ∆-variance function in the presence
of structures from that of a pure fBm as a function of the quantity Aδ2

c ,
where A is the area covered by the discrete structure(s) and δc is the
column density contrast between the peak of the structure and the mean
value of the underlying fBm. The dashed line has a slope of one.

roundish than the ones detected in molecular line observations4.
The distribution functions in Fig. 11 are normalized and are thus
transformed into probability distribution functions.

For the aspect ratio distributions of the Hi-GAL and FCRAO
HCS clouds and clumps, (dN/d f )norm (Fig. 11, middle panel),
we find that these distributions are best approximated by the
following function:

log
(

dN
d f

)

norm
= η f + A f . (9)

Fitting the distributions of aspect ratios for the Hi-GAL (for
f > 1) and HCS (for f > 2.5) clouds yields [η = −1.15 ±
0.04, Af = 0.75±0.13] and [η = −0.37±0.01, Af = 0.41±0.10],
respectively. The results of the corresponding fits are shown in
Fig. 11 (dashed red lines, middle panel). For any other chosen
value of η, the corresponding value of A f can be calculated by
requiring that

∫ fmax

fmin
(dN/d f )norm d f = 1, and where fmin and fmax

are the lower and upper limits on f , respectively. In the same
vain, we fitted the normalized distribution function of the size of

4 The Hi-GAL sources were extracted with CuTEx (Molinari et al.
2016), which is designed to identify relatively roundish sources. In prin-
ciple, during the detection step, it keeps only structures with both minor
and major axes ranging from 1 to 3 instrumental point spread functions.
Subsequently, starting from this initial guess, the 2D Gaussian fit that is
used to determine the flux as well as the final estimate of the two axes
has an additional tolerance to adjust itself on the source profile, so that
one can find one (or both) of the two axes shorter than 1 RMS or longer
than 3 RMS. Usually, no large differences are found between the two
axes, so that the ratio is never larger than ≈4. On the contrary, algo-
rithms used to extract sources from CO surveys, such as the one used
in Heyer et al. (2001) that is based on a friend-of-friend approach in
position-position-velocity space, do not have any constraint on source
size. If the CO emission is kinematically connected over an elongated
area, such a structure might be identified as a single source with a large
aspect ratio.
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Fig. 11. Fractional probability distribution functions of the size of the major axis (left) and aspect ratio of clouds (middle) found in the 250 µm
maps of the Hi-GAL survey (Molinari et al. 2016; Elia et al. 2017; full line) and in the 12CO FCRAO HCS survey (Heyer et al. 2001; Dib et al. 2009;
dashed line). The distribution of column density contrast is assumed to be a power law. The distributions of L1 and f are fitted with parameterized
functions. The values of the parameters of the fit are reported in the main text.

the major axis, (dN/dL1)norm. Here again, we find that the data is
best fitted with a function that is given by:

log
(

dN
dL1

)

norm
= ξ L1 + AL1 . (10)

Using Eq. (10) the fit to the data of the Hi-GAL clouds for
values of L1 in the range 1.5 pc ≥ L1 ≥ 5 pc and for the HCS
clouds using values of L1 in the range 4 pc ≥ L1 ≥ 70 pc yields
values of the parameters ξ and AL1 of [ξ = −0.89 ± 0.02, AL1 =
0.50 ± 0.06] and [ξ = −0.04 ± 0.002, AL1 = −0.91 ± 0.09],
respectively. The fit functions are displayed with the dashed
red lines in Fig. 11 (left-hand panel). For any other value of ξ,
the corresponding values of AL1 can be obtained by requiring
that

∫ L1,max

L1,min
(dN/dL1)norm dL1 = 1, where L1,min and L1,max are the

lower and upper limits on L1.
The distribution of column density contrasts of dense struc-

tures in nearby molecular clouds is not yet fully established.
Recent work by Arzoumanian et al. (2019) derived the contrast
between the average column density on filament crests and their
local background for filaments detected in a number of nearby
molecular clouds. Roy et al. (2019) constructed the distribution
function of the contrast between filaments and their local back-
ground and found that it scales as

(
dN/dlogδc

) ∝ δ−1.5
c for δc > 1.

The exact scaling found in Arzoumanian et al. (2019) and Roy
et al. (2019) may not apply directly to our synthetic models since
we define the contrast as being the one between the peak column
density of the structure and the mean value over the entire map.
With this in mind, we parameterized the distribution of column
density contrasts as being a power law of the form:

dN
dδc

= Acδ
−ψ
c , (11)

where Ac is a normalization coefficient that is given by∫ δc,max

δc,min
(dN/dδc) dδc = 1, and δc,min and δc,max are the lower and

upper limits on δc. We took δc,min = 1 in all cases and varied
δc,max between 3 and 10. This is consistent with the range of val-
ues found by Arzoumanian et al. (2019) for filaments and with
the range of column densities that are present in the high den-
sity tail of the N-PDF of the Cygnus-X North cloud. We chose
three values of ψ, of 2, 2.5, and 3, which, as an extrapolation
of the results presented in Arzoumanian et al. (2019), should
cover both variations due to differences in the clouds environ-
mental conditions and variations due to temporal evolution (i.e.,

self-gravitating structures will have, statistically, higher column
density contrasts at time goes by).

As stated above, we would like to understand the sensitivity
of the ∆-variance spectrum in relation to the underlying distribu-
tion functions of the different parameters, and, as a by-product,
understand which particular set of parameters can help generate
a ∆-variance spectrum that resembles the one found in Cygnus-X
North. In principle, the parameter space is relatively large with
four free parameters to probe (Ns, η, ξ, and ψ), and even larger if
the lower and upper limits on f , L1, and δc are also varied. As
a first step, we explore below models of synthetic clouds whose
properties are inspired from the Hi-GAL and the HCS samples.
In a second step, we expand this “forward modeling” approach
and present a broader parameter study where we vary, in a more
systematic fashion, the parameters of the distributions functions.

For any given choice of (Ns, η, ξ, ψ), and owing to the fact
that the orientations and positions of the injected structures are
random, it is important that, for each choice of the parameters,
a statistically significant number of realizations is performed
in order to capture the mean behavior and standard deviation
around the mean of the ∆-variance spectrum. We chose to
perform 25 realizations with any given set of the parameters. Fur-
thermore, and owing to computational limitations, we performed
the synthetic calculations on maps with 1000 × 1000 pixels,
whereas the map of Cygnus-X North has 5740 × 5740 pixels.
We assigned the same physical size to each pixel in the synthetic
maps as in the observations (≈0.025 pc), and we matched the
mean AV in the synthetic maps to the mean AV of the Cygnus-X
North cloud. Because we are comparing the results from the syn-
thetic maps to the observations of the Cygnus-X North region,
all synthetic maps (i.e., both the reference fBm and the fBm
plus structures maps) were convolved with a beam similar to
that of the observations. The beam is represented by a Gaussian
function whose FWHM = 18.2′′. We compared the ∆-variance
spectra of the synthetic maps and the observations on scales that
are larger than the beam size, namely scales that are ≥0.15 pc.

6.3.1. Hi-GAL- and HCS-like clumps

As illustrative examples, we first explored the resulting
∆-variance spectra corresponding to population of clumps and
cores similar to the ones found in the Hi-GAL (submm) and
HCS (CO) surveys. We recall that the values of ξ and η are
[−0.04,−0.37] and [−0.89,−1.15] for the Hi-GAL clouds and the
CO clouds, respectively, which implies that the CO structures in
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Fig. 12. Top: examples of 200 (left), 300 (middle), and 400 (right) 2D Gaussian structures injected on top of an fBm image with β = 2.4. The
Gaussian structures are randomly sampled using the distribution functions of the major axis size and aspect ratio distributions of the Hi-GAL
clumps. The column density contrasts are randomly sampled from a distribution with ψ = 2.5. All synthetic maps are convolved with a beam
whose FWHM = 18.2′′. Bottom: ∆-variance spectrum of the synthetic models for cases with Ns = 200 (left), Ns = 300 (middle), and Ns = 400
(right) injected structures. Each synthetic spectrum is the average over 25 realizations, and the full lines represent the 1σ dispersion around the
mean. The synthetic ∆-variance spectra are compared to those of the Cygnus-X North region and an fBm with β = 2.4.

the HCS survey are both larger and more elongated than struc-
tures detected in the Hi-GAL survey. The lower and upper limits
on the aspect ratios for the submm-like and CO-like clouds are
taken to be ( fmin = 1, fmax = 4) and ( fmin = 3, fmax = 12), as
per the observational constraints (Fig. 11, middle panel). For the
lower limits on the major axis size, we extrapolated the major
axis size distributions for both the submm-like and CO-like
clouds down to the resolution limit such that L1,min = 0.025 pc5.
For the upper limit on L1, we adopted a common value of
L1,max = 5 pc for both the Hi-GAL-like and HCS-like clouds.
Adopting a larger value of L1,max (up to ≈70 pc) for the HCS-
like clouds would be excessive on the grounds that Cygnus-X
North does not contain any such large structures, and this is fur-
ther motivated by the fact that we are considering a region that is
5.74 smaller, in each direction, than the real map. In the absence
of additional information from the surveys, we imposed, in both
cases, a value of ψ = 2.5 and lower and upper bounds on δc of 1
and 3, respectively.

The top panel in Fig. 12 displays three examples of the
Hi-GAL-like maps generated with Ns = 200 (left), 300 (mid-
dle), and 400 structures (right) out of a total of 25 realizations
performed for each case. The size of the major axis, aspect ratio,
and column density contrast for each individual structure are ran-
domly sampled from the corresponding distribution functions,
and the structures are assigned random positions and orientations
and overlaid on top of an fBm image with β = 2.4. The bottom

5 In Cygnus-X North, the real lower limit on the sizes of the struc-
tures and the true shape of the size distribution are very uncertain in the
regime of small sizes. The choice of L1,min = 0.025 pc basically means
no lower limit (as it is the smallest resolved structure), while all other
higher values would be questionable.

panel in Fig. 12 displays the corresponding ∆-variance spectra,
which are calculated, in each case, as the mean spectrum from
the 25 realizations (blue triangles). The ∆-variance spectra for
the synthetic maps are compared to the spectrum of the under-
lying fBm (open diamonds) and to that of the Cygnus-X North
cloud (filled stars). As observed earlier in the case where individ-
ual structures are injected (in Sect. 6.2), the ∆-variance spectrum
in the presence of structures shows a departure from that of the
underlying fBm, and, in the case of an entire population of struc-
tures, the point of maximum departure from the underlying fBm
case corresponds to the characteristic scale of the ensemble of
structures that are injected onto the map. Figure 12 shows that
a better agreement is obtained for Ns = 300. We followed the
same procedure and generated structures similar to those found
in the HCS survey. Three examples of such maps with Ns = 50,
100, and 200 are displayed in Fig. 13 (top panel). The HCS-
like structures have a shallower spectrum of major axis sizes,
and the corresponding ∆-variance spectrum peaks at higher spa-
tial scales than their Hi-GAL-like counterparts (Fig. 13, bottom
panel). Figures 12 and 13 show that while the Hi-GAL-like
structures provide a better match to the observations of Cygnus-
X, neither of these two cloud samples fit the observations of
Cygnus-X North well. However, it is useful to compare these two
cases to Cygnus-X in order to highlight how structures with fun-
damentally different statistical properties impact the ∆-variance
spectrum. These cases also provide a starting point for a more
detailed exploration of the parameter space.

6.3.2. Parameter study

In this section, we perform a broader parameter study and inves-
tigate how the ∆-variance spectrum is affected by variations in
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Fig. 13. Top: examples of 50 (left), 100 (middle), and 200 (right) 2D Gaussian structures injected on top of an fBm image with β = 2.4. The
Gaussian structures are randomly sampled using the distribution functions of the major axis size and aspect ratio distributions of the HCS clouds.
The column density contrasts are randomly sampled from a distribution with ψ = 2.5. All synthetic maps are convolved with a beam whose
FWHM = 18.2′′. Bottom: ∆-variance spectrum of the synthetic models for cases with Ns = 50 (left), Ns = 100 (middle), and Ns = 200 (right)
injected structures. Each synthetic ∆-variance spectrum is the average over 25 realizations and the full lines represent the 1σ dispersion around the
mean. The synthetic ∆-variance spectra are compared to those of the Cygnus-X North region and an fBm with β = 2.4.

the distribution functions of the structure sizes, aspect ratios,
and column density contrasts. It is nearly impossible to cover
the entire parameter space for the four parameters (Ns, η, ξ, ψ).
We therefore fixed Ns = 300, and adopted, in the first instance,
a value of ψ = 2.5. We varied the shapes of the major axis
and aspect ratio distribution functions and considered values
of ξ = [−0.8,−0.6,−0.4,−0.2] and η = [−1.15,−0.75,−0.35].
Furthermore, we fixed here the lower and upper bounds of the
structures sizes (i.e., size of the major axis) to L1,min = 0.025 pc
and L1,max = 5 pc, respectively. The lower and upper bounds on
the aspect ratios are fixed in all cases to the values of fmin = 3
and fmax = 12, and the lower and upper limits on the column den-
sity contrasts are δc,min = 1 and δc,max = 3. Examples of maps
generated with each permutation of these parameters are dis-
played in Fig. 14. The ∆-variance spectra for all of these cases
are displayed in Fig. 15. Here again, we performed 25 real-
izations with each set of parameters and computed the mean
value and standard deviation on each spatial scale. What Fig. 15
reveals is that the ∆-variance spectrum is more sensitive to
the shape of the distribution of the major axis sizes, character-
ized here by the parameter ξ, than to the distribution of aspect
ratios (parameter η). Shallower distributions of the major axis
(ξ = −0.2) lead to an over abundance of larger structures on
the map and to a noticeable mismatch of the ∆-variance for
those cases with the ∆-variance spectrum of the Cygnus-X North
region, irrespective of the value of η. In contrast, steeper dis-
tribution functions of the major axis (e.g., ξ = −0.8) lead to
significantly less variance than what is observed in Cygnus-
X North on scales &0.2 pc. For intermediate values of ξ in
the range [−0.6,−0.4], there is a good agreement between the
∆-variance spectrum of the synthetic models and the spectrum

of Cygnus-X North. Models with ξ = −0.4 present the best fit,
but one can reasonably argue that cases with ξ = −0.6 could
still be considered a good fit to the data if higher values of Ns
were employed. From the grid of models shown in Fig. 15, the
case with ξ = −0.4 and η = −0.35 represents the best fit to the
observations. This corresponds to a mean value of the size of the
major axis of L̄1 =

∫ 5
0.025 (dN/dL1) L1dL1/

∫ 5
0.025 (dN/dL1) dL1 ≈

1.05 pc and to a mean value of the aspect ratio of f̄ =∫ 12
3 (dN/d f ) f d f /

∫ 12
3 (dN/d f ) d f ≈ 4.23. This implies a mean

value of the minor axis L̄2 = 0.25 pc, and, taking σ1 = L1/3
and σ2 = L2/3, this yields a value of the effective size Deff =
4
√
σ1σ2 ≈ 0.70 pc, which is very close to the mid position of

the plateau in the ∆-variance spectrum of the Cygnus-X North
cloud.

Figure 16 shows the individual ∆-variance spectra for the
25 individual realizations (i.e., gray lines) when structures are
randomly drawn from the distribution functions with the best fit-
ting set of parameters, namely Ns = 300, ξ = −0.4, η = −0.35,
and ψ = 2.5. We adopted these values of Ns, ξ, and η and further
investigated the effect of the remaining parameters.

In order to further explore the effect of the aspect ratio, f ,
we performed additional tests in which we varied its lower and
upper bounds. In addition to the fiducial case in which fmin = 3
and fmax = 12, we considered models with ( fmin = 1, fmax = 6)
and ( fmin = 1, fmax = 12). All other parameters were fixed to
those of the best fitting model in Fig. 15, namely ξ = −0.4,
η = −0.35, ψ = 2.5, and (L1,min = 0.025 pc, L1,max = 5 pc),
(δc,min = 1, δc,max = 3). Figure 17 (top panel) displays exam-
ples of the maps for each one of the considered cases. The
calculations of the ∆-variance spectra in those cases (Fig. 17,
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Fig. 14. Examples of synthetic maps generated by overlaying structures (2D Gaussians, Ns = 300) on top of an fBm image with β = 2.4. The
properties of the structures are randomly sampled from distribution functions of the aspect ratio (Eq. (9)), size of the major axis (Eq. (10)), and
column density contrast (Eq. (11)). All models shown here share the same values of δc = 2.5, (L1,min = 0.025 pc, L1,max = 5 pc), ( fmin = 3, fmax = 12),
and (δc,min = 1, δc,max = 3). All synthetic maps are convolved with a beam whose FWHM = 18.2′′.

bottom panel) show that the existence of more roundish struc-
tures (i.e., larger structures for the same major axis size) results
in ∆-variance spectra that peak at higher spatial scales, and those
cases present a poor fit to the observations of Cygnus-X North.

We now explore the effect of varying the distribution func-
tion of the column density contrast. In addition to the fiducial
case with ψ = 2.5, we constructed synthetic maps with ψ = 2
and ψ = 3. We also generated additional maps in which the
value of ψ is fixed to 2.5 and varied the values of the lower and
upper limits on the column density contrast, δc. We considered
cases with (δc,min = 1, δc,max = 3; fiducial case shown earlier) and
cases with (δc,min = 1, δc,max = 5) and (δc,min = 1, δc,max = 10).
The remaining parameters were fixed to their fiducial values,
namely ξ = −0.4, η = −0.35, (L1,min = 0.025 pc, L1,max = 5 pc),
and ( fmin = 3, fmax = 12). Figure 18 (top panel) displays selected
realizations of maps generated with various values of ψ, and
Fig. 19 (top panel) displays examples of maps generated with
different values of δc,max and with a fixed value of ψ = 2.5. The
∆-variance spectra for various cases of ψ are shown in Fig. 18
(bottom panel) and are always calculated as being the mean val-
ues from 25 realizations. Overall, the ∆-variance spectrum is less
impacted by variations in ψ, even though values of ψ ≥ 2.5 lead
to a better agreement with the observations. On the other hand,
allowing for higher values of the maximum column density con-
trast, δc,max, has an impact on the amplitude of the deviation from
the ∆-variance of the underlying fBm, but it has no effect on
the position of the point of maximum deviation (Fig. 19, bottom
panel), in agreement with our findings in Sect. 6.2. We find that
a value of δc,max = 3 fits the observations better.

In summary, we are able to show that it is possible to repro-
duce ∆-variance spectra that resemble that of the Cygnus-X
North region under reasonable assumptions of the size distri-
butions of structures, their aspect ratios, and column density
contrasts. Broadly speaking, reproducing the ∆-variance spec-
trum of the Cygnus-X North region requires a size distribution
that is steeper than the size distribution of structures detected in
CO surveys, such as the HCS survey, and shallower than the one
inferred from the Hi-GAL submm survey. We also show that the
observations are best fitted when structures are allowed to have
aspect ratios that are predominantly &3.

6.3.3. Contribution of compact sources to the ∆-variance
plateau in Cygnus-X

In this section, we examine the contribution of compact sources
to the observed plateau in the ∆-variance spectrum of Cygnus-
X North. In the previous section, we generated populations of
structures whose properties were sampled from parameterized
distribution functions and overlaid these structures on an fBm
image. Here, we follow a different approach and extract the com-
pact sources from the map of Cygnus-X North before reinjecting
them onto the fBm image. To this purpose, we used a newly
developed clump finding algorithm. The details of the code
will be presented in a forthcoming paper (Bontemps et al., in
prep.). Here we simply summarize its basic concepts. This code
uses second-order spatial derivatives in order to recognize high
curvature peaks where 2D Gaussian fits are applied, after sub-
tracting a local background. It uses an improved determination
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Fig. 15. ∆-variance spectra related to the models presented in Fig. 14. Each synthetic spectrum (blue triangles) is the average over 25 realizations
of the maps with the same set of parameters. In all models, Ns = 300 and ψ = 2.5. The full line is the 1σ dispersion around the mean. The synthetic
∆-variance spectra are compared to that of the Cygnus-X North region and that of an fBm image with β = 2.4. In the grid of models, the best fit to
the data of Cygnus North is for the case with ξ = −0.4 and η = −0.35.

of the background emission, thanks to a recently developed
minimization, to interpolate an empty space (the footprint of a
detected source) in a 2D map. Applying this code to the map of
Cygnus-X North, we were able to detect a total of 1242 com-
pact sources. The mean values of σ1 and aspect ratio ( f ) for
this sample of compact sources are 0.23 pc and 1.32, respec-
tively. This implies a mean effective size for the compact sources
of Deff = 4

√
σ1σ2 ≈ 0.82 pc, which corresponds, roughly, to

where the ∆-variance of Cygnus has its peak. Because the syn-
thetic maps we are using have 1000 × 1000 pixels and are thus
≈33 times smaller than the map of Cygnus-X North, we injected
a total of (1242/33) ≈ 38 compact sources onto each synthetic
map. Unlike synthetic maps generated earlier, only the underly-
ing fBm is convolved with the Gaussian beam since the compact
sources extracted from the Cygnus-X North map are already
affected by beam smearing.

We generated 50 synthetic maps such that each core is statis-
tically selected at least once and, for each map, the 38 structures
that are injected are randomly sampled from the list of structures
that are extracted from the observational map and are assigned
random positions and orientations on the map. Figure 20 (left-
hand panel) displays one of the realizations of the synthetic maps

using this approach, and the mean ∆-variance spectrum calcu-
lated from the 50 realizations is shown in the right-hand panel
of Fig. 20. The exponent of the fBm in this case is also taken
to be β = 2.4. We also generated other models with different
values of the fBm exponent, in the range β = [2, 3] (figures not
shown for redundancy). The ∆-variance spectrum of the mod-
els (i.e., Fig. 20) exhibits a peak at ≈0.6−0.8 pc, which is at
the lower end of the plateau found in the observations. However,
there is no agreement between the models and the observations,
neither in terms of the width of the ∆-variance spectrum nor its
amplitude. What Fig. 20 reveals is that the compact sources taken
alone, despite having an important contribution to the signal at
≈0.6−0.8 pc, cannot explain the full extent of the plateau that
is observed in the ∆-variance spectrum of Cygnus-X North; it
further reveals that there is a need to consider a distribution of
structures that includes both larger and more elongated objects in
order to explain the observations. A broader distribution of sizes
is required in order to reproduce the broad ∆-variance spectrum
in Cygnus-X North as well as to adjust the amplitude of the spec-
trum to the observed values since more extended structures can
provide the intermediate column densities between the compact
sources and the underlying fBm structure.
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Fig. 16. Same as the figure with ξ = −0.4, η = −0.35, ψ = 2.5, and
Ns = 300 displayed in Fig. 15 but additionally showing the ∆-variance
spectra of individual realizations with this set of parameters.

7. Discussion

The present study relies on the comparison of observations
with synthetic maps that are generated using 2D fBm images
with superimposed structures. As stated above, the structures
are injected at random positions and are not necessarily asso-
ciated with existing higher column density regions in the fBm
images. Additionally, the random position and orientation that
are assigned to each structure imply that the structures are
not spatially correlated, and this may affect the signal on spa-
tial scales on the order of the structures’ effective separation.
Furthermore, fBm images, albeit a good proxy for self-similar
structures, are known to differ from real molecular clouds in
terms of their multifractal nature, or, more specifically, their lack
thereof (e.g., see details in Elia et al. 2018). There is, however,
no reason to believe that any of these assumptions or simplifi-
cations are critical to the analysis. Our results demonstrate that
the ∆-variance spectrum of a complex region such as Cygnus-X
North can be reproduced reasonably well using realistic distri-
bution functions of the characteristics of these structures (size,
contrast, aspect ratio). Nonetheless, it is important to stress that
a more physical model is still needed in order to tie the existence
of these structures to the physical conditions that prevail in the
gas and to the initial conditions of the gas when the molecular
cloud has started to assemble. While some refinements can be
made to the empirical models presented in this work, it is prob-
ably safe to state that numerical models that incorporate most or
all of the necessary physics – and that preferably simulate galac-
tic scales larger than the clouds themselves while resolving the
internal structure of the clouds – constitute the next step for com-
paring models to the observations. Complex features, such as
striations that are observed in molecular clouds (e.g., Heyer et al.
2016; Tritsis et al. 2018), can naturally emerge self-consistently
in numerical models and are harder to implement in empirical
models.

On the observational side, we recall that the Herschel maps
presented in this work have been resampled to a higher resolution

by a factor of two in order to match the resolution of the 250 µm
maps. This was done using the method detailed in Palmeirim
et al. (2013). This approach has the advantage of increasing the
dynamical range of the maps, but it may have introduced addi-
tional signal on small scales; this, in turn, may have contributed
to worsening the agreement between the synthetic models and
the observations of Cygnus-X on these scales. While revisiting
this correction is well beyond the scope of this paper, this effect
is possibly what is causing the ∆-variance spectrum in Cygnus-
X North to fall less sharply at smaller spatial scales than what
is expected from the effects of beam smearing (i.e., the slope
of the ∆-variance spectrum in the first bin is shallower than the
slope in the second bin of the spectrum). Another possible issue
relates to the existence of an underlying self-similar regime in
Cygnus-X. The simple experiments presented in Figs. 6–9 when
a single (or a few similar) structure(s) is (are) superimposed onto
the fBm image show that the self-similarity in the ∆-variance
spectrum is preserved on scales that are either smaller or larger
than the effective diameter of the structure(s). In the case of mul-
tiple structures with different sizes, contrasts, and elongations,
the underlying self-similarity is perturbed on a larger range of
spatial scales. Thus, the identification of a self-similar regime in
Cygnus-X North, if it exists, would in principle require higher
resolution observations in order to probe the shape of the ∆-
variance at smaller spatial scales and/or a larger map, possibly
connecting to the H I gas at the outer edges of the cloud in order
to probe the shape of the spectrum at larger spatial scales.

8. Conclusions

The internal structure of molecular clouds holds important clues
regarding the physical processes that lead to their formation and
their subsequent dynamical evolution. While the overall mor-
phology of a molecular cloud can be linked to its star formation
activity (Dib & Henning 2019) and thus provide hints about the
cloud’s assembly mechanism, the internal structure of the cloud
also holds important information about the fragmentation pro-
cess and the competition between different physical processes
that redistribute matter within the cloud. Using the ∆-variance
spectrum, we have characterized the structure of the Cygnus-X
North and Polaris Flare molecular clouds. These two clouds rep-
resent two extremes in terms of their star formation activity in the
Milky Way. In Polaris, the structure of the cloud as revealed by
the ∆-variance is self-similar over more than one order of mag-
nitude in spatial scales. In contrast, the ∆-variance spectrum of
Cygnus-X North exhibits an excess (compared to Polaris) and a
plateau in the range of physical scales of ≈0.5−1.2 pc. The depar-
ture from self-similarity in a region such as Cygnus-X North is
due to the existence of over-dense structures, including compact
sources (i.e., hubs and ridges), and more elongated clumps and
filaments. In such a region, these structures may arise as a result
of large-scale compressions (i.e., converging flows) before being
dominated by their own self-gravity. They are also likely to be
affected by the mechanical and radiative feedback from massive
stars that form in the cloud.

In order to explain the observations of Cygnus-X North, we
built synthetic maps in which we overlaid a population of dis-
crete structures (i.e., 2D Gaussians) on top of an fBm image.
The properties of these structures, such as their major axis sizes,
aspect ratios, and column density contrasts, are randomly drawn
from parameterized probability distribution functions of these
quantities. We show that the inclusion of discrete structures “on
top” of a self-similar image increases the ∆-variance, and this
increment has its maximum on spatial scales that are equal to
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Fig. 17. Top: examples of 2D Gaussian structures injected on top of an fBm image with β = 2.4. The maps only differ in the values of the lower and
upper bounds of the aspect ratios, fmin and fmax, respectively. All other parameters have the same values (see text for details). All synthetic maps
are convolved with a beam whose FWHM = 18.2′′. Bottom: ∆-variance spectrum of the synthetic models for the three cases with the considered
sets of fmin and fmax. Each synthetic spectrum is the average over 25 realizations, and the full lines represent the 1σ dispersion around the mean.
The synthetic ∆-variance spectra are compared to that of the Cygnus-X North region and to that of an fBm image with β = 2.4.

Fig. 18. Top: examples of 2D Gaussian structures injected on top of an fBm image with β = 2.4. The maps only differ in the values of the exponent
ψ. All other parameters have the same values (see text for details). All synthetic maps are convolved with a beam whose FWHM = 18.2′′. Bottom:
∆-variance spectrum spectra of the synthetic models for the three cases with ψ = 2, 2.5, and 3. Each synthetic spectrum is the average over 25
realizations, and the full lines represent the 1σ dispersion around the mean. The synthetic ∆-variance spectra are compared to that of the Cygnus-X
North region and that of an fBm image with β = 2.4.
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Fig. 19. Top: examples of 2D Gaussian structures injected on top of an fBm image with β = 2.4. The maps only differ in the values of the lower
and upper bounds of column density contrast δc,min and δc,max, respectively. All other parameters have the same values (see text for details). All
synthetic maps are convolved with a beam whose FWHM = 18.2′′. Bottom: ∆-variance spectra of the synthetic models for the three cases with the
considered sets of δc,min and δc,max. Each synthetic spectrum is the average over 25 realizations, and the full lines represent the 1σ dispersion around
the mean. The synthetic ∆-variance spectra are compared to that of the Cygnus-X North region and to that of an fBm image with β = 2.4.

Fig. 20. Left: synthetic column density map generated by reinjecting the
compact source extracted from the Cygnus-X North map on top of an
fBm image (convolved with a beam with FWHM = 18.2′′) with β = 2.4.
Right: ∆-variance spectrum of the synthetic models using this approach.
The ∆-variance spectrum of the models is the average over 50 realiza-
tions, and the full lines represent the 1σ dispersion around the mean.
The synthetic ∆-variance spectra are compared to that of the Cygnus-X
North region and to the case of an fBm image with β = 2.4.

the effective size of the injected structures (or to an effective
mean size of the structures if they have a spectrum of sizes and
elongations). Using this forward modeling approach, we are able
to show that, under very plausible assumptions, it is possible
to reproduce a ∆-variance spectrum that resembles that of the
Cygnus-X North region. We also used a “reverse engineering”
approach in which we extracted the compact structures in the
Cygnus-X North cloud and reinjected them onto an fBm map.
The calculated ∆-variance spectrum using this approach deviates
from the observations and is an indication that the range of char-
acteristic scales (≈0.5−1.2 pc) observed in Cygnus-X North is

not only due to the existence of compact sources, but is a signa-
ture of the whole population of structures that exist in the cloud,
including more extended and more elongated structures such as
ridges and hubs. Such structures are required in order to broaden
the peak of the ∆-variance spectrum and also because they pro-
vide the required intermediate column densities that reduce the
contrast between the compact sources and the potentially under-
lying fBm, bringing the amplitude of the ∆-variance in line with
the observations. At present, it is relatively difficult to ascertain
which physical process leads to the formation of structures with
scales in the range 0.5−1.2 pc. While gravity is the suspected
culprit because its effect can precede from an evolutionary point
of view over those of stellar feedback, an analysis of the pil-
lars and globules in the Cygnus OB2 association has shown that
these structures have typical sizes of ≈0.6 pc (Schneider et al.
2016a). This indicates that feedback may be responsible, at least
partially, for generating the peak in the ∆-variance spectrum that
is observed in the entire Cygnus-X North region. Further work
should shed more light on the possible correlation between the
shape of the ∆-variance spectrum and star formation activity,
such as the surface density of star formation and the intensity of
the radiation field in different parts of the cloud. Independently,
the application of the ∆-variance method to numerical simula-
tions of self-gravitation clouds with and without feedback effects
will also help explain the dominant physical processes that can
generate a structure similar to the one observed in the Cygnus-X
North molecular cloud.
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