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GEVREY ESTIMATES OF THE RESOLVENT AND SUB-EXPONENTIAL

TIME-DECAY FOR THE HEAT AND SCHRÖDINGER SEMIGROUPS. II

MAHA AAFARANI AND XUE PING WANG

Abstract. In this paper, we improve and generalize the results of [12] on large-time expan-
sions for the heat and Schrödinger semigroups with sub-exponential time-decay estimates on
the remainder.

1. Introduction

In [12], one of the authors proved the Gevrey estimates of the resolvent for a class of
non selfadjoint second order elliptic operators satisfying a weighted coercive condition and
applied them to establish large time expansions of the heat and Schrödinger semigroups with
sub-exponential time-decay estimates on the remainder. For the Schrödinger semigroup, a
global virial condition on the model potential has been used to ensure the absence of quantum
resonances near threshold zero. In the present work we want to extend the results of [12] to
larger classes of potentials in which only a virial condition outside some compact is needed
for the Schrödinger case. We also consider threshold eigenvalue with arbitrary geometric
multiplicity instead of geometrically simple one, which requires an analysis of more general
Jordan structure analogous to that carried out in [1] for quickly decreasing potentials.

Consider the non-selfadjoint Schrödinger operator

H = −∆ + V (x) (1.1)

which is regarded as perturbation of a model operator H0 = −∆ + V0(x) where V (x) and
V0(x) are complex-valued measurable functions on Rn, n ≥ 1. Assume that V and V0 are
−∆-compact satisfying for some constants µ ∈]0, 1[ and ρ > 2µ:

|V0(x)| ≤ C〈x〉−2µ, |W (x)| ≤ C〈x〉−ρ, (1.2)

for x outside some compact of Rn. Here W (x) = V (x) − V0(x). An important condition for
sub-exponential time-decay for the associated heat and Schödinger semigroups is the following
weighted coercive condition on the model operator H0: there exist µ ∈]0, 1[ and c0 > 0 such
that

|〈H0u, u〉| ≥ c0(‖∇u‖2 + ‖〈x〉−µu‖2), ∀ u ∈ H2. (1.3)

Throughout this work, conditions (1.2) and (1.3) are always assumed to be satisfied. Set
V0(x) = V1(x)− iV2(x) with V1(x) and V2(x) real and denote

H1 = −∆ + V1(x), H = H0 +W (x). (1.4)

Under the condition 1.3, Gevrey estimates of the resolvent R0(z) = (H0 − z)−1 are proved at
threshold zero in appropriately weighted spaces ([12]). In order to apply them to the semi-
groups e−tH and e−itH , t ≥ 0, we need additional conditions on the potentials. Recall the two
classes of potentials introduced in [12] for the heat and Schrödinger semigroups, respectively.
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Definition 1.1. Let V be the class of complex-valued potentials V0(x) = V1(x)− iV2(x) satis-
fying (1.2), (1.3) and the condition

H1 ≥ −α∆ (1.5)

for some constant α > 0. Here H1 = −∆ + V1(x) is the selfadjoint part of H0.

Definition 1.2. Let A denote the class of complex-valued potentials V0(x) such that (1.2) and
(1.3) are satisfied for some constant µ ∈]0, 1[. Assume in addition that V1 and V2 are dilation
analytic and extend holomorphically into a complex region of the form

Ω = {x ∈ Cn; |x| > c−1, |Imx| < c |Rex|} (1.6)

for some c > 0 and satisfy for some constants c1, c2 > 0 and R ∈ [0,+∞]

|Vj(x)| ≤ c1〈 Rex〉−2µ, x ∈ Ω, j = 1, 2, (1.7)

V2(x) ≥ 0, ∀x ∈ Rn, (1.8)

x · ∇V1(x) ≤ −c2
x2

〈x〉2µ+2
, x ∈ Rn with |x| ≥ R, and (1.9)

V2(x) ≥ c2〈x〉−2µ, x ∈ Rn with |x| < R. (1.10)

If Condition (1.10) is satisfied with R = 0, we assume in addition

0 < µ < 3
4 , if n = 2 and 0 < µ < 1, if n ≥ 3. (1.11)

The conditions (1.9) and (1.10) can be regarded as a (damped) global virial condition
and is used to prove the absence of quantum resonances near threshold zero in [12], where
sub-exponential time-decay estimates are obtained for compactly supported perturbations of
model potentials in V (for the heat semigroup) or in A (for the Schrödinger semigroup) and
for geometrically simple zero eigenvalue of H. Note that for n = 3, the repulsive Coulomb
potential V0(x) = c0

|x| , c0 > 0, belongs to A.

In this paper, we consider more general potentials and need the following condition to com-
pute the singularity of the resolvent R(z) = (H − z)−1 at z = 0.

Assumption (A1) Let zero be an eigenvalue of H of geometric multiplicity k. Assume
that there exists a basis {ϕ1, · · · , ϕk} of the eigenspace of H with eigenvalue zero verifying

det (〈ϕj , Jϕi〉)1≤i,j≤k 6= 0. (1.12)

The following result on the heat semigroup e−tH will be proven by combining the ideas from
[1] and [12].

Theorem 1.1. Let V0 ∈ V and W = V −V0 satisfy the condition (1.2) with ρ > 2κµ, where κ
is the integer given by Proposition 2.2. Assume that zero is an eigenvalue of H with geometric
multiplicity k and assumption (A1) holds. Then for any a > 0 there exist some constants
ca, Ca > 0 such that

‖e−a〈x〉1−µ
e−tH − ∑

λ∈σd(H),Reλ≤0

e−tHΠλ −Π0

 ‖ ≤ Cae−catβ′ t > 0, (1.13)

where β′ = 1−µ
1+κµ and Π0 is the spectral projection defined by

Π0f =

k∑
j=0

〈f, JΨj〉Ψj , ∀ f ∈ L2, (1.14)

where {Ψ1, · · · ,Ψk} ⊂ L2 is a basis of the eigenspace of H associated with the eigenvalue zero
satisfying the relations

〈Ψi, JΨj〉 = δij , (1.15)



GEVREY ESTIMATES OF THE RESOLVENT 3

with δij = 1 if i = j and δij = 0, otherwise.

Theorem 1.1 is proven in [12] for W compactly supported and k = 1. The main step of
the proof of Theorem 1.1 is the asymptotic expansion of the resolvent R(z) = (H − z)−1

at threshold zero with Gevrey estimates on the remainder (Theorem 3.5). To prove this
result, we decompose H as H = h0 + Wc with h0 = −∆ + v0 verifying (1.3) and Wc of
compact support and use the equation R(z) = (1 +K(z))−1r0(z) for z 6∈ σ(H), where r0(z) =
(h0 − z)−1 and K(z) = r0(z)Wc. The condition (A1) is used to ensure the existence of an
asymptotic expansion for (1 +K(z))−1 at z = 0. In fact when 0 is an eigenvalue of geometric
multiplicity k of H, −1 is an eigenvalue of K(0) with the same geometric multiplicity k and
with finite algebraic multiplicity m = dimE, where E = {u ∈ L2; ∃j, (1 + K)ju = 0}. Since
dim Ker(1 + K(0)) = k, there exists a Jordan basis B of E such that the matrix of 1 + K(0)
restricted onto E is of the Jordan form:

A = Diag(Jm1 , · · · , Jmk)

where Jml is the Jordan bloc of order ml associated with the eigenvalue 0 and m1+· · ·mk = m.
By Grushin method, the existence of an asymptotic expansion for 1 +K(z) is reduced to that
of an m×m matric E−+(z) of the form

E−+(z) = −A+ zB +O(z2).

Set

I = {1, · · · ,m} \ {m1,m1 +m2, · · · ,m1 +m2 + · · ·+mk},
J = {1, · · · ,m} \ {1,m1 + 1, · · · ,m1 +m2 + · · ·+mk−1 + 1}.

If A is denoted by A = (aij)1≤i,j≤m, then aij = 1 if i ∈ I and j ∈ J and aij = 0, otherwise.
Then one can check that

detE−+(z) = zkDk +O(zk+1) (1.16)

for z near 0, where Dk is, up to a sign, equal to the minor of order k obtained from B by
deleting all i-th lines and j-th colons with i ∈ I and j ∈ J . One can prove by choosing
appropriate bases of E that Dk 6= 0 if and only if the assumption (A1) is satisfied (cf. Lemma
3.3). See also [1] for non selfadjoint Schrödinger operators with quickly decreasing potentials
and [12] in the case k = 1. Therefore the assumption (A1) is in some sense a necessary
condition for R(z) to admit an asymptotic expansion at z = 0 with the leading term of the
order 1

z . If one has for some l ∈ N detE−+(z) = zk+lDk+l + O(zk+l+1) with Dk+l 6= 0, then
one can show that R(z) admits an asymptotic expansion at z = 0 with the leading term of
the order 1

zl+1 . But we do not have any example for which this condition is satisfied with l ≥ 1.

The second main result of this work is about large-time expansion of the Schrödinger semi-
group with sub-exponential time-decay estimates on the remainder. For this purpose, we
introduce the following class of model potentials.

Definition 1.3. Let A1 denote the subclass of potentials V0 ∈ V satisfying that ImV0 ≤ 0 and

there exists some potential Ṽ0 ∈ A with

V0(x) = Ṽ0(x), |x| > R1, (1.17)

for some R1 > 0.

For V0 ∈ A1, denote H0 = −∆ + V0(x) and H̃0 = −∆ + Ṽ0(x) where Ṽ0 ∈ A coincides
with V0(x) outside some compact. We use the technique of analytic distortion from quantum
resonances to study e−itH and need the following analyticity condition on W (x) = V (x) −
V0(x):
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{
W is holomorphic in a complex region Ω of the form (1.6) for some R2 > 0 and

|W (x)| ≤ C〈Rex〉−2µ−ε, ∀x ∈ Ω.
(1.18)

for some constants C > 0 and ε > 0. In addition, one assumes that there exists R3 > 0 such
that

ImW (x) ≤ 0, x ∈ Rn with |x| > R3. (1.19)

Since ImW (x) is allowed to change sign in some bounded region, H may have outgoing posi-
tive resonances which are relevant to the asymptotic expansion of e−itH as t→ +∞.

If V is of short-range: V (x) = O(〈x〉−1−ε) for some ε > 0, λ > 0 is called real resonance of
H = −∆+V (x) if the equation Hu = λu admits a non-trivial solution u ∈ H2

loc(Rn) satisfying
one of Sommerfeld radiation conditions:

u(x) =
e±i
√
λ|x|

|x|
n−1
2

(a±(ω) + o(1)), |x| → ∞, (1.20)

for some a± ∈ L2(Sn−1), a± 6= 0. λ is called an outgoing (resp., incoming) positive resonance
of H if u verifies (1.20) with sign + (resp. with sign −). In this paper, we use the same
definition of real resonances as in [12] because potential V (x) has a complex long-range tail.

Let χ1 ∈ C∞(Rn) with χ1(x) = 0 for |x| ≤ 1 and χ1(x) = 1 for |x| > 2. For R > 0
sufficiently large : R > 2 max{R1, R2, R3}, set χR(x) = χ1( xR) and

h0 = −∆ + v0(x), v0 = V0 + χRW, Vc = (1− χR)V, Wc = (1− χR)W. (1.21)

h0 is a dissipative operator: Imh0 ≤ 0 and the boundary value of the resolvent r0(λ + i0) =
limε→0+(h0 − (λ + iε))−1 exists in B(−1, s; 1,−s) for any s > 1

2 and is continuous in λ > 0 (

[9]). The resolvent equation R(z) = (1 + r0(z)Wc)
−1r0(z) motivates the following definition

Definition 1.4. Let λ > 0 and G+
0 (λ) = r0(λ+i0). λ > 0 is called outgoing positive resonance

of H = −∆+V (x) if −1 is an eigenvalue of the compact operator G+
0 (λ)Wc in L2,−s for s > 1

2 .
Denote r+(H) the set of outgoing positive resonances of H. For λ ∈ r+(H), denote m(λ) the
algebraic multiplicity of eigenvalue −1 of G+

0 (λ)Wc and k(λ) its geometric multiplicity.

The above definition is independent of the cut-off χR used. In fact if h0 and h̃0 are two

operators constructed as above with two different cut-offs χR and χ̃
R̃

with R and R̃ sufficiently

large and H = h̃0 + W̃c , one deduces from the formula

1 + r0(z)Wc =
(
1 + r0(z)(χR − χ̃R̃)W

) (
1 + r̃0(z)W̃c

)
and the similar one with χR and χ̃

R̃
interchanged that −1 is an eigenvalue of G+

0 (λ)Wc if and

only if it is an eigenvalue of G̃+
0 (λ)W̃c. If V0 and V are short-range potentials, one can check

that λ > 0 is an outgoing resonance if and only if the equation (H−λ)u = 0 admits a solution
satisfying the outgoing Sommerfeld radiation condition (1.20).

For λ ∈ r+(H), we define the symmetric bilinear form B+
λ associated with λ

B+
λ (ϕ,ψ) = 〈G+

1 (λ)Wcψ, JWcϕ〉 for all ϕ,ψ ∈ L2,−s(Rn), (1.22)

where G+
1 (λ) = limz→λ,Im z>0

d
dz r0(z) in the norm sense of B(−1, s, 1,−s), s > 3/2, and

J : f(x) 7→ f(x) is the complex conjugation.
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Assumption (A2): For all λ ∈ r+(H), one assumes that there exists {ψ+
1 , · · · , ψ

+
k(λ)} ⊂ L

2,−s,

∀s > 1/2, a basis of Ker(I +G+
0 (λ)Wc) such that

det
(
B+
λ (ψ+

i , ψ
+
j )
)

1≤i,j≤k(λ)
6= 0. (1.23)

The condition (1.23) is similar to that used in [1, 11] for quickly decreasing potentials.

Theorem 1.2. Let V0 ∈ A1 and W (x) = V (x) − V0(x) satisfy (1.2), (1.18) and (1.19).
Suppose that the conditions (A1) and (A2) hold for zero eigenvalue and positive outgoing
resonances, respectively. Then the set of outgoing resonances r+(H) of H is at most finite
and there exists c > 0 such that for any χ ∈ C∞0 (Rn), one has

‖χ

e−itH − ∑
λ∈σd(H)∩C+

e−itHΠλ −Π0 −
∑

ν∈r+(H)

e−itνΠ+
0 (ν)

χ‖ ≤ Cχe−c t
β

t > 0. (1.24)

Here β = 1−µ
1+µ , Πλ denotes the Riesz projection associated with the discrete eigenvalue λ of H,

Π0 is the projector given in (1.14) and Π+
0 (ν) is an operator of rank k(ν) given by

Π+
0 (ν)f =

k(ν)∑
j=0

〈f, JΦ+
j (ν)〉Φ+

j (ν) for all f ∈ L2,s, s > 1/2, (1.25)

with
B+
ν (Φ+

i (ν),Φ+
j (ν)) = δij , (1.26)

where B+
ν is the bilinear form defined in (1.22) and {Φ+

1 (ν), · · · ,Φ+
k(ν)(ν)} ⊂ L2,−s, ∀s > 1/2,

is a basis of the eigenspace associated with the eigenvalue -1 of r0(λ+ i0)Wc.

Of course, if zero eigenvalue and/or positive outgoing resonances are absent, the asymptotic
expansion (1.24) still holds with the associated terms disappeared.

Remark 1.5. 1. Theorem 1.2 can be compared with [12, Theorem 2.4 (b)], where the pertur-
bation W = V − V0 is compactly-supported with V0 ∈ A (satisfying a global virial condition),
the zero eigenvalue is supposed to be geometrically simple, the condition (A2) is not assumed
and the contribution from positive outgoing resonances has not been explicitly calculated. Here
V0 satisfies only a virial condition outside some compact, the geometrical multiplicity of zero
eigenvalue is arbitrary and the contribution of positive outgoing resonances is explicitly calcu-
lated in terms of an orthonormal basis relatively to B+

ν (·, ·).

2. The proofs of Theorem 1.2 and [12, Theorem 2.4 (b)] are both based on the resolvent
expansions near the threshold eigenvalue and outgoing resonances. But the methods to establish
the resolvent expansions are different. To study the asymptotic expansion of (1 +R0(z)W )−1

in a sector below the positive half-axis, in [12] we constructed an approximate Grushin problem
with θ-independent bases (where θ is the complex parameter used in analytic deformation of
operators), while in this work we study θ-dependent Grushin problems by constructing Jordan
bases depending holomorphically on θ.

Example 1.6. Let ϕ ∈ C2(Rn;C) such that there exist some constants µ ∈]0, 1[ and R > 0
such that ϕ(x) = 〈x〉1−µ for |x| > R. The associated Witten Laplacian acting on functions is
given by

−∆ϕ = −∆ + V (x) with V (x) = (∇ϕ · ∇ϕ)(x)−∆ϕ(x).

Take V0(x) = χ( xR) + (1 − χ( xR)) (1−µ)2

〈x〉2µ where χ is a cut-off with 0 ≤ χ ≤ 1 and χ(x) = 1

if |x| ≤ 2; 0 if |x| ≥ 3. Then V (x) can be decomposed as V (x) = V0(x) + W (x) with
V0 ∈ A1 and W satisfying the conditions of Theorem 1.2. But V (x) can not be decomposed
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as V (x) = Ṽ0(x) + W̃ (x) with Ṽ0 ∈ A (which in particular requires Ṽ0(x) to be dilation

analytic) and W̃ compactly supported. Therefore Theorem 1.2 can be applied to eit∆ϕ, while
[12, Theorem 2.4 (b)] cannot.

The remaining part of this work is organized as follows. In Section 2, we recall from [12]
the Gevrey estimates for the resolvent of the model operator needed in this paper. The as-
ymptotic expansion of the resolvent R(z) (or the cut-off resolvent χR(z)χ with χ ∈ C∞0 (Rn))
near z = 0 is calculated in Section 3. In Section 4, we study resolvent expansion near positive
resonances. Finally Theorems 1.1 and 1.2 are proved in Section 5.

Notation. We denote Hr,s, r ≥ 0, s ∈ R the weighted Sobolev space of order r with the
weight 〈x〉s on Rn: Hr,s = {u ∈ S ′(Rn); ‖u‖r,s = ‖〈x〉s(1−∆)

r
2u‖L2 <∞}. For r < 0, Hr,s is

defined as the dual space of H−r,−s with dual product identified with the scalar product 〈·, ·〉
of L2(Rn). Set H0,s = L2,s. B(r, s; r′, s′) stands for the space of continuous linear operators

from Hr,s to Hr′,s′ . If (r, s) = (r′, s′), we denote B(r, s) = B(r, s; r′, s′). Unless otherwise
mentioned explicitly, ‖ · ‖ denotes norm in L2(Rn) or in B(L2) when no confusion is possible.
C± denote respectively the upper and the lower open half-plane and C± their closure. Set
C∗ = C \ {0}. For θ1 < θ2 and r > 0, S(θ1, θ2) denotes the sector

S(θ1, θ2) = {z ∈ C∗; θ1 < arg z < θ2}

and Ω(r, θ1, θ2) is a part of S(θ1, θ2) near zero :

Ω(r, θ1, θ2) = {z ∈ S(θ1, θ2); |z| < r}.

In this work, the scalar product denoted as 〈·, ·〉 is assumed to be linear with respect to the
left variable.

2. Gevrey estimates for the resolvent of the model operators

For V0 ∈ V and W = V − V0 verifying (1.2), set v0(x) = V0(x) + χ1( xR)W (x) where
χ1 ∈ C∞(Rn) is a cut-off function with χ1(x) = 0 for |x| ≤ 1 and χ1(x) = 1 for |x| ≥ 2.
Since ρ > 2µ, for R > 1 large enough, v0 satisfies condition (1.3) and the results on Gevrey
estimates of the resolvent of [12] can be applied to h0 = −∆ + v0(x). Let r0(z) = (h0 − z)−1.
Define operator G0 : Im h0 → L2 by

G0f = lim
Re z<0,z→0

r0(z)f, f ∈ Im h0.

G0 is an unbounded closed operator with D(G0) = Im h0. It is proven that G0 : L2,s → L2,s−2µ

is continuous (cf. [12, Lemma 3.3]). The following result is consequence of [12, Theorem 2.1].

Theorem 2.1. Let V0 ∈ V. Then for any a > 0, there exist some constants Ca, ca > 0 such
that

‖〈x〉−τe−a〈x〉1−µGN0 〈x〉τ‖+ ‖〈x〉τGN0 e−a〈x〉
1−µ〈x〉−τ‖ ≤ CacN+τ

a (N + τ)
τ

1−µ+γN
(2.1)

for all N ∈ N∗ and τ ≥ 0. Here γ = 2µ
1−µ .

Theorem 2.1 is Gevrey estimates for the resolvent r0(z) at z = 0. To obtain sub-exponential
time-decay estimates for the heat semi-group, we need Gevrey estimates of the resolvent in
some region of the right half-plane. Recall first the following result on R0(z) = (H0 − z)−1

([12, Proposition 4.1]).

Proposition 2.2. Let V0 ∈ V for some µ ∈]0, 1[. Then



GEVREY ESTIMATES OF THE RESOLVENT 7

(1) There exist µ′ ∈]0, 1] and C0 > 0 such that the numerical range N(H0) of H0 is

contained in a region of the form {z; Re z ≥ 0, |Im z| ≤ C0(Re z)µ
′}. Consequently, for

δ > 0 small enough there exists some constant M0 such that

‖R0(z)‖ ≤ M0

|z|
1
µ′

(2.2)

for z ∈ O(δ) where

O(δ) = {z ∈ C∗; |z| < δ,Re z < δ|Im z|
1
µ′ }. (2.3)

(2) If κ is the smallest integer such that κ ≥ 1
µ′ , one has

‖〈x〉−2κµR0(z)‖ ≤ C (2.4)

uniformly in z ∈ O(δ).

Note that in [12], the constant µ′ used to describe the numerical range of H0 is obtained
from the generalized Hardy inequality. If one knows µ′ = 1 (for example if H0 is selfadjoint),
then κ can be taken to be 1 in the above proposition.

Proposition 2.3. Let V0 ∈ V for some µ ∈]0, 1[ and κ be given by Proposition 2.2. Assume
the condition (1.2) is satisfied for some ρ > 2κµ. Let h0 be defined as above with R > 1
appropriately large. Then one has

(a) h0 has no eigenvalues in O(δ) and

‖〈x〉−2κµr0(z)‖ ≤ C (2.5)

uniformly in z ∈ O(δ). In addition,

lim
z∈O(δ),z→0

r0(z) = G0 (2.6)

as bounded operators from L2,s to L2,s−r for all s ∈ R and r > 2κµ.
(b) One has the following Gevrey estimates of the resolvent r0(z): for any a > 0, there

exist c, C > 0 such that

‖e−a〈x〉1−µ d
N−1

dzN−1
r0(z)‖ ≤ CcNN (1+κγ)N , ∀N ≥ 1, (2.7)

uniformly in z ∈ O0(δ) ≡ O(δ) ∪ {0}, where γ = 2µ
1−µ .

Proof. (a). One has
r0(z) = R0(z)− r0(z)χRWR0(z). (2.8)

Since ρ > 2κµ, it follows from (2.4) that if R > 1 is appropriately large,

‖χRWR0(z)‖ ≤ CR−(ρ−2κµ)‖〈x〉−2κµR0(z)‖ < 1

uniformly in z ∈ O(δ). This proves 1 + χRWR0(z) is invertible with uniformly bounded
inverse. Therefore h0 has no eigenvalues in O(δ) and

r0(z) = R0(z)(1 + χRWR0(z))−1, z ∈ O(δ),

which together with (2.4) gives the uniform estimate (2.5). (2.6) is deduced from (2.5) and
the resolvent equation

r0(z)−G0 = zG0r0(z), (2.9)

using the compactness of r0(z)−G0 as operators from L2,s to L2,s−r for r > 2κµ.

(b) is derived from (a), Theorem 2.1 and the formula

r0(z) =

q−1∑
j=0

zjGj+1
0 + zqGq0r0(z), z ∈ O(δ) (2.10)
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with q = κ. See [12, Corollary 4.2] for details when r0(z) is replaced by R0(z). �

3. Resolvent expansion at threshold zero

In this section, we look at the case where H has an embedded eigenvalue zero with arbitrary
geometric multiplicity. To obtain the asymptotic expansion of R(z) with Gevrey estimates on
the remainder, we use the resolvent equation R(z) = (I + r0(z)Wc)

−1r0(z) for z /∈ σ(H).

3.1. Asymptotic expansion of R(z).

In this subsection, we assume V0 ∈ V. Set K0(z) = r0(z)Wc : L2 → L2. The compact
operator-valued function z 7→ K0(z) is meromorphic on C\R+ with poles at discrete eigenval-
ues of h0. The condition (1.3) is satisfied for h0 and zero is not an eigenvalue of h0. According
to Proposition 2.3, if V0 ∈ V and W satisfies (1.2) for some ρ > 2κµ, then G0 is continuous
as operator from L2,s to L2,s−r for all s ∈ R and r > 2κµ. In addition, K0 := K0(0) = G0Wc

is a compact operator on L2. One can check that zero is an embedded eigenvalue of H if and
only if −1 is a discrete eigenvalue of K0 and their eigenspaces coincide in L2. Although the
Riesz projection for the eigenvalue zero of H can not be defined, that for eigenvalue −1 of K0

is well defined and is given by

Π1 =
1

2iπ

∫
|z+1|=ε0

(z −K0)−1 dz,

for some ε0 > 0 small enough such that −1 is the only eigenvalue of K0 inside the cercle
{z; |z + 1| = ε0}.

Let E = Range Π1, m = Rank Π1 and k = dim Ker(I + K0). E is a subspace of L2.
Consider the non degenerate bilinear form B on E × E:

∀u, v ∈ E, B(u, v) = 〈u, v∗〉, (3.1)

where v∗ := JWcv. Note that the relations h∗0 = Jh0J and H∗ = JHJ imply that JWcK0 =
K∗0JWc and JWcΠ1 = Π∗1JWc. The mapping S : φ → φ∗ = JWcφ sends Range Π1

to Range Π∗1 and Ker(1 + K) to Ker(1 + K∗). It is injective on Ker(1 + K), because if
φ ∈ Ker(1 +K) with φ 6= 0 and φ∗ = 0, then Wcφ = 0 and hence h0φ = 0. This is impossible
because 0 is not an eigenvalue of h0. We infer that if B is a Jordan basis of Range Π1, then
B∗ = S(B) is free in Range Π∗1, hence S is injective from Range Π1 into Range Π∗1. Since
Rank Π1 = Rank Π∗1, S is bijective from Range Π1 onto Range Π∗1. The argument of Lemma
5.13 in [12] based on the bijectivity of S shows that the bilinear form B(·, ·) defined above is
non-degenerate on E × E.

In order to study the case where the eigenvalue −1 of K0 has arbitrary geometric multiplicity
k ∈ N∗, we decompose E into k invariant subspaces of K0, such that B restricted to each one
is non-degenerate. More precisely, we have

Lemma 3.1. Assume that −1 is an eigenvalue of K0 of geometric multiplicity k ∈ N∗ and
algebraic multiplicity m. Then there exist k invariant subspaces of K0, denoted by E1, · · · , Ek,
such that

(1) E = E1 ⊕ · · · ⊕ Ek, where ∀i 6= j: Ei ⊥ Ej with respect to the bilinear form B.

(2) ∀1 ≤ i ≤ k, there exists a basis Ui := {u(i)
r = (I + K0)mi−ru

(i)
mi , 1 ≤ r ≤ mi} ⊂ L2 of

Ei such that

(I +K0)miu(i)
mi = 0 and B(u

(i)
1 , u(i)

mi) = ci 6= 0. (3.2)
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(3) ∀1 ≤ j ≤ k, there exists a dual basis Wj := {w(j)
1 , · · · , w(j)

mj} ⊂ L2 of Ej such that

w(j)
r ∈ Ker(I +K0)

mj+1−r
|Ej , B(u

(i)
l , w

(j)
r ) = δlrδij .

(4) dim ker(1 +K0)|Ej = 1, ∀j = 1, · · · , k.

Moreover, the matrix of Π1(I+K0)Π1 in the basis U :=
⋃k
i=1 Ui of E is a k×k block diagonal

matrix given by
J = diag(Jm1 , Jm2 , · · · , Jmk), (3.3)

where

Jmj =



0 1 0 · · · 0

0 0 1
. . .

...

0 0
. . .

. . . 0
...

...
. . .

. . . 1
0 0 · · · 0 0


mj×mj

(3.4)

is a Jordan block. We have also denoted mj = dim Ej for j = 1, · · · , k, such that m =
m1 + · · ·+mk.

For the proof of the above lemma, we refer to that of Lemma 3.1 in [1] in the case where 0
is an eigenvalue of −∆ + V (x) with a quickly decreasing complex-valued potential V (x). The
proof is algebraic in nature and is still valid in the present case.

As consequence of Lemma 3.1, one has the following

Corollary 3.2. Let a basis B ≡
k⋃
i=1
Ui of E and its B-dual basis B∗ ≡

k⋃
i=1
Wi be constructed

as in Lemma 3.1. Then the Riesz projection Π1 can be represented as

Π1f =

k∑
i=1

mi∑
j=1

B(f, w
(i)
j )u

(i)
j , ∀f ∈ L2. (3.5)

3.1.1. Grushin problem for I + K0(z). Denote Π
′
1 = I − Π1. Since I + K0 is injective on

Range Π
′
1, it is invertible on Range Π

′
1 and by an argument of perturbation Π

′
1(I +K0(z))Π

′
1

is invertible on Range Π
′
1 for z ∈ O(δ), δ > 0 small, with the inverse denoted by

E(z) =
(

Π
′
1(I +K0(z))Π

′
1

)−1
Π
′
1 ∈ B(L2). (3.6)

According to Proposition 2.3, K0(z) is continuous and uniformly bounded in z ∈ O(δ). Since
Wc is of compact support, (2.7) leads to the following Gevrey estimates on K0(z): there exist
some constants C, c > 0 such that

‖K0(z)(N)‖ ≤ CcNN (1+κγ)N , N ∈ N∗,

for z ∈ O0(δ). Here ‖·‖ is the norm of bounded operators in L2 and K0(z)(N) denotes the N -th
derivative of K0(z). By operations in Gevrey classes, one deduces that there exist constants

C
′

and c1 > 0 such that E(z) satisfies the following Gevrey estimates:

‖E(z)(N)‖ ≤ C ′cN1 N (1+κγ)N , (3.7)

for all N ∈ N∗ and z ∈ O0(δ). In addition, for all q ∈ N, one has

E(z) =

q∑
j=0

zj Ej + zqεq(z), z ∈ O(δ), (3.8)
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in B(L2), where E0 =
(

Π
′
1(I +K0)Π

′
1

)−1
Π
′
1 and other terms Ej , j = 1, · · · , q, can be com-

puted explicitly. Moreover, the remainder εq(z) satisfies the following Gevrey estimates: there
exist Cq, cq > 0 such that

‖εq(z)(N)‖ ≤ CqcNq N (1+κγ)N , (3.9)

for all N ∈ N∗ and z ∈ O0(δ).

Define S : Cm → Range Π1 and T : L2 → Cm by

Sc =

k∑
i=1

mj∑
j=1

c
(i)
j u

(i)
j , ∀ c =

k⊕
i=1

(
c

(i)
1 , · · · , c(i)

mi

)
∈

k⊕
i=1

Cmi ,

Tu =

k⊕
i=1

(
〈u, (w(i)

1 )∗〉, · · · , 〈u, (w(i)
mi)
∗〉
)
, ∀u ∈ L2.

Then one has TS = Im and ST = Π1. Set W (z) = 1 +K0(z) and

E+(z) = S − E(z)W (z)S, (3.10)

E−(z) = T − TW (z)E(z), (3.11)

E−+(z) = −TW (z)S + TW (z)E(z)W (z)S. (3.12)

Since E(z) and W (z) satisfy Gevrey estimates of the form (3.9) on O0(δ), E±(z) and E−+(z)
satisfy similar estimates on O0(δ). In addition, E−+(z) is invertible if and only if (I +K0(z))
is it and one has the formula

(I + r0(z)Wc)
−1 = E(z)− E+(z)E−+(z)−1E−(z) on L2(Rn). (3.13)

In order to study the singularity of (I+r0(z)Wc)
−1 we calculate the expansion of detE−+(z)

in power of z, as well as that of E−+(z)−1 by using the method developed in [1].

Lemma 3.3. Let V0 ∈ V and W satisfy condition (1.2) for some ρ > 2κµ with κ ≥ 1 given
by Proposition 2.2. Assume that -1 is an eigenvalue of K0 = G0Wc of geometric multiplicity
k ≥ 1. Assume in addition that (A1) holds. Then, for all q ∈ N∗, one has

detE−+(z) =

q∑
j=0

σjz
k+j + o(|z|k+q), (3.14)

for z ∈ O(δ) with δ > 0 small, where σ0 = σ
′ × det (〈ϕj , Jϕi〉)1≤i,j≤k 6= 0. Moreover,

detE−+(z) satisfies Gevrey estimates of order 1 + κγ.

Proof. Using Lemma 3.1, we partition the matrix E−+(z) as follows:

E−+(z) =
(
E

(ij)
−+ (z)

)
1≤i,j≤k

with

E
(ij)
−+ (z) = −

(〈(
I − (I + r0(z)Wc)E(z)

)
(I + r0(z)Wc)u

(j)
r , JWcw

(i)
`

〉)
`,r
,

is a mi×mj block. Introducing the expansion (2.10) for q ∈ N∗ into the previous formula, we
obtain

E−+(z) =

q−1∑
`=0

z`E−+,` + zqε−+,q(z), (3.15)
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where

E
(ij)
−+,0 = −

(〈
(I +G0Wc)u

(j)
r , JWcw

(i)
`

〉)
`,r
,

E
(ij)
−+,1 = −

(〈
G0Wcu

(j)
r , JG0Wcw

(i)
`

〉)
`,r
,

E
(ij)
−+,2 = −

(〈
(I −G0WcE(0))G2

0Wcu
(j)
r , JG0Wcw

(i)
`

〉)
`,r

with

E(0) =
(

Π
′
1(I +G0Wc)Π

′
1

)−1
Π
′
1.

Also other terms E−+,`, ` = 3, · · · , q − 1 can be calculated explicitly. In addition, it can be
seen from (3.9) that the remainder ε−+,q(z) satisfies the following Gevrey estimates: ∃ c, C > 0
such that ∥∥∥ dN−1

dzN−1
ε−+,q(z)

∥∥∥ ≤ CcNN (1+κγ)N , (3.16)

for all N ≥ 1 and z ∈ O0(δ), where the above norm is the matrix norm.

We can simplify the form of the above matrices as follows: Since u
(j)
1 ∈ Ker(I + G0Wc),

(I +G0Wc)u
(j)
r = u

(j)
r−1, r = 2, · · · ,mj , 1 ≤ j ≤ k, and w

(i)
mi = c−1

i u
(i)
1 (ci, 1 ≤ i ≤ k, are given

in (3.2)), then for all 1 ≤ i, j ≤ k we have

E
(ij)
−+,0 =


0 −δij 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 0 · · · 0 −δij
0 0 · · · 0 0


mi×mj

and (3.17)

E
(ij)
−+,1 =


∗ ∗ · · · · · · ∗
...

...
. . .

...
...

...
. . .

...
∗ ∗ · · · · · · ∗
aij ∗ · · · · · · ∗


mi×mj

with aij = −c−1
i 〈u

(j)
1 , Ju

(i)
1 〉. (3.18)

Thus, to obtain (3.14) we shall calculate det(E−+,0 + zE−+,1) by following the method used
in [1] which is based on Lidskii’s idea ([6]).

First, for z 6= 0 we introduce the k × k block diagonal matrix L(z) partitioned conformally
with the block structure of E−+(z), given by

L(z) = diag(L1(z), · · · , Lk(z)), (3.19)

where

Li(z) = diag(1, · · · , 1, z−1), ∀1 ≤ i ≤ k.

Let q ≥ 2. Set E0,1(z) = E−+,0 + zE−+,1. Multiplying E0,1(z) on the left by L(z), we obtain

Ẽ0,1(z) := L(z)E0,1(z) = Ẽ0 + z Ẽ1, (3.20)
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where the block entries of the obtained matrices Ẽ0 and Ẽ1 have the following forms:

Ẽ
(ij)
0 =


0 −δij 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 0 · · · 0 −δij
aij ∗ · · · ∗ ∗


mi×mj

, ∀1 ≤ i, j ≤ k,

Ẽ
(ij)
1 =


∗ ∗ · · · · · · ∗
...

...
. . .

...
...

...
. . .

...
∗ ∗ · · · · · · ∗
0 0 · · · · · · 0


mi×mj

, ∀1 ≤ i, j ≤ k. (3.21)

The above terms aij are given in (3.18).

Next, we calculate det Ẽ0,1(z) where it is clear from (3.20) that it is a polynomial of z. We
have

det Ẽ0,1(z) = det Ẽ0 +O(|z|), ∀z ∈ O(δ). (3.22)

Then, let us calculate det Ẽ0(0). By expanding the determinant of Ẽ0,1(0) along the rows of

Ẽ0,1(0) that are containing only −1, we obtain

det Ẽ0 = det (aij)1≤i,j≤k = σ
′′ × det

(
〈u(j)

1 , Ju
(i)
1 〉
)

1≤i,j≤k
6= 0, (3.23)

where σ
′′

= (−1)kc−1
1 · · · c

−1
k by (3.18). (See also the proof of Theorem 2.1 in [7] for a specific

example with 12× 12 matrix that illustrates the method to calculate the determinant).

Finally, for z ∈ O(δ) with δ > 0 small, it follows from (3.20), (3.22) and (3.23) that

detE0,1(z) = (detL(z))−1
(

det Ẽ0 +O(|z|)
)

= zkdet (aij)1≤i,j≤k +O(|z|k+1).

Thus (3.14) can be deduced from (3.15) and the previous equation. Moreover, Gevrey esti-
mates of order 1 + κγ for det E−+(z) on O0(δ) can be derived from that of E−+(z). �

In the previous lemma we have given an sufficient condition for the invertibility of E−+(z)
for z ∈ O(δ). Now we give the asymptotic expansion of its inverse.

Lemma 3.4. Suppose that assumptions in Lemma 3.3 are satisfied. Then

E−+(z)−1 =
F−1

z
+ F(z) (3.24)

for z ∈ O(δ), δ > 0 small, where F−1 is a matrix of order m and of rank k, whose block
entries are of the form

F (ij)
−1 =


0 · · · 0 αij
0 · · · 0 0
...

...
...

0 · · · 0 0

 , ∀1 ≤ i, j ≤ k, (3.25)

with

(αij)1≤i,j≤k = A−1
k , (3.26)
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and the remainder F(z) is continuous up to z = 0 and satisfies Gevrey estimates of the form
(3.16) on O0(δ).

Proof. To obtain the expansion of E−+(z)−1 we compute the inverse of the leading term
E0,1(z) = E−+,0 +zE−+,1 in (3.12). By regularity of the matrix L(z) for z 6= 0 given in (3.19),

we observe that E0,1(z) is invertible if and only if Ẽ0,1(z) in (3.20) is invertible. Thus our

problem is reduced to calculate Ẽ0,1(z)−1 if it does exist. Indeed, if the condition (1.12) holds,

then by (3.23) the matrix Ẽ0 is invertible with

Ẽ−1
0 =

tComẼ0

det Ẽ0

.

By using the same technique to calculate det Ẽ0, we can calculate the minors of the matrix

Ẽ0. We obtain

Ẽ−1
0 = F−1 + F̃0,

where F−1 is given in (3.25) and the block entries of F̃0 are of the form

F̃ (ij)
0 =


∗ ∗ · · · ∗ 0
∗ 0 · · · 0 0

0
. . .

. . . 0
...

. . .
. . .

...
0 · · · 0 ∗ 0


mi×mj

, ∀1 ≤ i, j ≤ k.

Moreover, to prove (3.26) we check by using the definition of coefficients αij , 1 ≤ i, j ≤ k, that

(detAk)αij = (−1)i+j |[Ak]ij |,

where we denoted by |[Ak]ij | the (j, i)-th minor of the matrix Ak. Thus, for z ∈ O(δ), δ > 0

small enough, Ẽ0,1(z) is invertible, with

Ẽ0,1(z)−1 = F−1 + F̃0 − zẼ−1
0 Ẽ1Ẽ

−1
0 + F̃(z), (3.27)

where the remainder F̃(z) is analytic in z ∈ O(δ) and continuous for z ∈ O0(δ). By regularity
of the matrix L(z) for z 6= 0, it follows from (3.20) that

E0,1(z)−1 = Ẽ0,1(z)−1L(z).

In addition, we can easily check that

F−1L(z) =
F−1

z
and F̃0L(z) = F̃0.

This yields

E0,1(z)−1 =
F−1

z
+ F̃0(I − Ẽ1F−1) + F1(z),

for z ∈ O(δ), where F1(z) is analytic in z ∈ O(δ) and continuous for z ∈ O0(δ).

Finally, for z ∈ O(δ), the expansion (3.24) of E−+(z)−1 follows directly from (3.15) and
the above expansion of E0,1(z)−1. In addition, Gevrey estimates of the remainder F(z) are
derived from (3.16). �

We can now prove the asymptotic expansion of the resolvent R(z) at threshold zero.

Theorem 3.5. Let κ ∈ N∗ be given by Proposition 2.2. Assume that zero is an eigenvalue of
H of geometric multiplicity k, k ∈ N∗, and that assumption (A1) holds. Suppose that V0 ∈ V
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and W = V − V0 satisfies condition (1.2) for some ρ > 2κµ. Then, for z ∈ O(δ) and δ > 0
small enough

R(z) = −Π0

z
+R1(z), (3.28)

where Π0 is a spectral projection given by

Π0f =
k∑
i=1

〈f, JΨi〉Ψi, ∀f ∈ L2, (3.29)

with {Ψ1, · · · ,Ψk} is a basis of the eigenspace of H associated with eigenvalue 0 such that

〈Ψi, JΨj〉 = δij , ∀1 ≤ i, j ≤ k.

The remainder R1(z) satisfies the estimate: ∃C, δ > 0 such that

‖〈x〉−2κµR1(z)‖+ ‖R1(z)〈x〉−2κµ‖ ≤ C (3.30)

for z ∈ O(δ). In particular,

σd(H) ∩O(δ) = ∅. (3.31)

In addition R1(z) is continuous up to z = 0 and for any a > 0, there exist Ca, ca > 0 such
that

‖e−a〈x〉1−µR(N)
1 (z)‖+ ‖R(N)

1 (z)e−a〈x〉
1−µ‖ ≤ CacNa N (1+κγ)N , (3.32)

for any N ∈ N∗ and z ∈ O(δ) ∪ {0}.

Proof. Since condition (1.12) holds, E−+(z) is invertible by Lemma 3.3. It follows from
formulae (3.13) and (3.24) that (I + r0(z)Wc)

−1 exists for z ∈ O(δ), δ > 0 small, with

(I + r0(z)Wc)
−1g = −SF−1Tg

z
+B0(z)g

= −1

z

k∑
i,j=1

αij〈g, JWcw
(j)
mj 〉u

(i)
1 +B0(z)g

= −1

z

k∑
i,j=1

αijc
−1
j 〈g, JWcu

(j)
1 〉u

(i)
1 +B0(z)g, (3.33)

for g ∈ L2, where B0(z) is uniformly bounded for z ∈ O(δ) as operator in B(L2) and there
C0, c0 > 0 such that

‖B(N)
0 (z)‖ ≤ C0c

N
0 N

(1+κγ)N , (3.34)

for all N ∈ N∗ and z ∈ O0(δ).

Set

Ak := (aij)1≤i,j≤k, Qk := (〈u(j)
1 , Ju

(i)
1 〉)1≤i,j≤k, (3.35)

where aij are given in (3.18). We have

Ak = −Ck ×Qk, Ck = diag(c−1
1 , · · · , c−1

k ). (3.36)



GEVREY ESTIMATES OF THE RESOLVENT 15

For f ∈ L2,2κµ, putting g = r0(z)f in the first term in the right hand side of (3.33), we obtain

k∑
i,j=1

αijc
−1
j 〈r0(z)f, JWcu

(j)
1 〉u

(i)
1 =

k∑
i,j=1

αijc
−1
j

[
〈f, JG0Wcu

(j)
1 〉+ z〈r0(z)f, JG0Wcu

(j)
1 〉
]
u

(i)
1

= −
k∑

i,j=1

αijc
−1
j 〈f, Ju

(j)
1 〉u

(i)
1 +B1(z)f

= −
k∑
i

〈f, Jvi〉u(i)
1 +B1(z)f,

where by the identity (3.26), one hasv1
...
vk

 = A−1
k · Ck

u
(1)
1
...

u
(k)
1

 = −Q−1
k

u
(1)
1
...

u
(k)
1

 .

In addition, the remainder B1(z) has the same regularity properties as B0(z) in (3.33). Finally,
let

Q−1
k = tPkPk

be the Cholesky decomposition of the complex symmetric matrix Q−1
k , where Pk = (pij)1≤i,j≤k

is an upper triangular matrix (cf. [8, Proposition 25]). Then,

R(z)f = (I + r0(z)Wc)
−1r0(z)f

= −1

z

k∑
`=1

k∑
i,j=1

p`i p`j〈f, Ju
(j)
1 〉u

(i)
1 +R1(z)f.

This establishes (3.29) with Ψi =
k∑̀
=1

pi`u
(`)
1 , ∀1 ≤ i ≤ k. In addition, one checks that

〈Ψj , JΨi〉 =
k∑

`,r=1

pjrpi`〈u
(r)
1 , Ju

(`)
1 〉 =

k∑
r=1

pjr(PkQk)ir = (PkQ
t
kPk)ij = δij .

The estimate (3.30) follows from uniformly boundedness of r0(z) in B(0, s, 0, s− 2κµ), ∀s ∈ R
(see (2.5)) and the resolvent equation R(z) = (I + r0(z)Wc)

−1r0(z). Moreover, (3.32) can be
obtained from (2.7) and (3.34). See also [12, Proposition 5.12]. �

3.2. Expansion of the cut-off resolvent.

In this subsection we suppose V0 ∈ A1 and W satisfies conditions (1.2), (1.18) and (1.19).
We want to use technics from quantum resonances to establish an asymptotic expansion for
the cut-off resolvent χR(z)χ valid in a sector below the positive real axis. As before, denote
h0 = −∆ + v0(x), v0 = V0 +χRW and Wc = (1−χR)W where χR(x) = χ1( xR) for all x ∈ Rn,
χ1 ∈ C∞(Rn) is a cut-off function with χ1(x) = 0 if |x| ≤ 1 and χ1(x) = 1 if |x| ≥ 2, where R
is chosen such that R > 2 max{R1, R2, R3}, where R1, R2 and R3 are given in (1.17), (1.18)
and (1.19), respectively. Remark that v0 is still distorsion analytic outside some compact and
Im v0 ≤ 0, but v0 may no longer belong to A1.

In order to obtain the asymptotic expansion at low energy of the cut-off resolvent χR(z)χ,
χ ∈ C∞0 (R), we use analytic distortion of H outside the support of χ. Let R0 > 2R such that
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supp χ ⊂ B(0, R0). Let ρ ∈ C∞(R) with 0 ≤ ρ ≤ 1, ρ(r) = 0 if r ≤ 1 and ρ(r) = 1 if r ≥ 2.
Set

Fθ(x) = x

(
1 + θρ

( |x|
R0

))
, x ∈ Rn. (3.37)

When θ ∈ R with |θ| sufficiently small, x 7→ Fθ(x) is a global diffeomorphism on Rn. Set

Uθf(x) = |DFθ(x)|
1
2 f(Fθ(x)), f ∈ L2(Rn),

where DFθ(x) is the Jacobi matrix and |DFθ(x)| is the Jacobian of the change of variables:
x 7→ Fθ(x). One has

|DFθ(x)| =
{

1, |x| < R0,
(1 + θ)n, |x| > 2R0.

(3.38)

Uθ is unitary in L2(Rn) for θ real with |θ| sufficiently small. Define the distorted operator
H(θ) by

H(θ) = UθHU
−1
θ , θ ∈ R. (3.39)

One can calculate that

H(θ) = h0(θ) +Wc(x), (3.40)

where, for θ ∈ R,

h0(θ) = Uθh0U
−1
θ = −∆θ + v0(x, θ) (3.41)

with

∆θ =t ∇θ · ∇θ and v0(x, θ) = v0(Fθ(x)),

such that

∇θ = (tDFθ)
−1 · ∇ − 1

|DFθ|2
(tDFθ)

−1 · (∇|DFθ|). (3.42)

In particular, ∇θf = (1 + θ)−1∇f if f is supported outside the ball B(0, 2R0).

For z0 ∈ C and ε > 0 small, let

D(z0, ε) = {z ∈ C; |z − z0| < ε}, (3.43)

be small complex neighborhood of z0 and D+(z0, ε) = D(z0, ε) ∩ C+. If V0 ∈ A1 and W
satisfies (1.18), then for R0 > 2R with R > max{R1, R2}, H(θ) and h0(θ) can be extended to
holomorphic families of type A for θ ∈ D+(0, ε), ε > 0 small. We observe that the distorted
operator h0(θ) is a perturbation of H0(θ) = −∆θ +V0(x, θ) by (χRW )(x, θ) which is relatively
H0(θ)-compact by condition (1.18). From this we deduce that the essential spectrum of h0(θ)
coincides with that of H0(θ) given by

σess(H0(θ)) = { r

(1 + θ)2
: r ≥ 0} (3.44)

(see [12, Section 4.2]). Set r0(z, θ) = (h0(θ) − z)−1. For θ ∈ R, r0(z, θ) is holomorphic in
z ∈ C+ and meromorphic in C \ R+. For Im θ > 0, it follows from (3.44) that the resolvent
r0(z, θ) defined for z ∈ C and Im z >> 1 can be meromorphically extended across the positive
real axis R+ into the sector {z; arg z > −Im θ}.

The aim of this subsection is to establish an expansion for the cut-off resolvent χR(z)χ for
z in some complex domain defined for Im θ > 0 and δ > 0 small by

Ω(δ, θ) = {z ∈ C∗; |z| < δ,−δIm θ < arg z <
3π

2
− δ}. (3.45)

Let us begin by analyzing properties of the distorted model operator h0(θ). Let V0 ∈ A1

and W satisfy (1.2), (1.18) and (1.19). Since h0 satisfies condition (1.3), for θ ∈ C with |θ|
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small the operator h0(θ) still satisfies (1.3) with some constant c0 > 0 independent of R0 > 0
and θ. Therefore, Lemma 3.1 in [12] can be applied to h0(θ), so we can define G0(θ) by

G0(θ) = s− lim
Re z<0,z→0

r0(z, θ) (3.46)

as operators from L2,s to L2,s−2µ for all s ∈ R. Moreover, an argument of perturbation shows
that Theorem 3.4 in [12] holds for G0(θ) uniformly in θ when |θ| is small.

The following proposition gives a uniform estimate on r0(z, θ) for z in the sector

S(−c0θ, γ0) := {z ∈ C∗;−c0Im θ < arg z < γ0} (3.47)

for some c0 > 0, γ0 ∈]π, 3π
2 [ and θ ∈ C with |θ| small. We want to show that the resolvent

estimate given in [12, Proposition 4.7] still holds if the global virial condition is replaced by a
virial condition at the infinity.

Proposition 3.6. Let V0 ∈ A1 and W satisfy conditions (1.2), (1.18) and (1.19). Then there
exist some constants c0 > 0 and γ0 ∈]π, 3π

2 [ such that for θ ∈ C with |θ| sufficiently small and
Im θ > 0, one has

σ(h0(θ)) ∩ S(−c0θ, γ0) = ∅ (3.48)

and there exists C > 0 such that

‖〈x〉−2µr0(z, θ)‖ ≤ C

〈z〉
, ∀z ∈ S(−c0θ, γ0). (3.49)

Proof. First, we prove that

‖〈x〉−2µ(H0(θ)− z)−1‖ ≤ C

〈z〉
, z ∈ S(−c0θ, γ0). (3.50)

Let R0 > 2R where suppWc ⊂ B(0, 2R) and R is chosen such that R > max{R1, R2, R3},
where Rj , j = 1, 2, 3, are given in (1.17)-(1.19). Let H̃0 = −∆ + Ṽ0(x). Set H0(θ) =

U(θ)−1H0U(θ) and H̃0(θ) = U(θ)−1H̃0U(θ) for θ ∈ R, |θ| small, where the distortion is

made outside the ball B(0, R0). Then H0(θ) and H̃0(θ) can be extended holomorphically in
θ ∈ D+(0, δ) with δ > 0 small and their domains are constant. Fix θ ∈ C+, |θ| small. Denote

R̃0(z, θ) = (H̃0(θ) − z)−1 for z /∈ σ(H̃0(θ)). By Proposition 4.7 in [12], there exists c0, C > 0
and γ0 ∈]π, 3π

2 [ such that

‖〈x〉−2µR̃0(z, θ)‖ ≤ C

〈z〉
, z ∈ S(−c0θ, γ0). (3.51)

Using an argument of perturbation, the estimate (3.50) for |z| large follows from (3.51). To
prove (3.50) for |z| bounded we use the same argument as in the proof of [12, Proposition 4.7].

We compare R0(z, θ) with R̃0(z, θ) for |x| large and with R0(0, θ) for |z| small.
Let χ ∈ C∞0 (Rn) such that χ(x) = 1 if |x| ≤ 2R0. Take χ̃ ∈ C∞0 (Rn) such that χ̃χ = χ. On

the support of 1− χ, H0(θ) = H̃0(θ). For z ∈ S(−c0θ, γ0) and |z| small, one has

R0(z, θ) = R0(0, θ) + zR0(0, θ)R0(z, θ)

= R0(0, θ) + zR0(0, θ)(χ̃+ (1− χ̃))R0(z, θ)

= R0(0, θ) + zR0(0, θ)χ̃R0(z, θ) (3.52)

+zR0(0, θ)(1− χ̃)R̃0(z, θ)(1− χ)

+zR0(0, θ)(1− χ̃)R̃0(z, θ)[∆θ, χ]R0(z, θ).

Then, it follows from formula (3.52) that for z ∈ S(−c0θ, γ0) and |z| small

(I +K(z, θ))〈x〉−2µR0(z, θ)〈x〉−2µ = 〈x〉−2µR0(0, θ)〈x〉−2µ (3.53)

+z〈x〉−2µR0(0, θ)(1− χ̃)R̃0(z, θ)(1− χ)〈x〉−2µ
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where

K(z, θ) = −z〈x〉−2µR0(0, θ)χ̃〈x〉2µ − z〈x〉−2µR0(0, θ)(1− χ̃)R̃0(z, θ)[∆θ, χ]〈x〉2µ (3.54)

One has that ‖〈x〉−2µR0(0, θ)‖ is uniformly bounded in θ for Im θ > 0 and |θ| small. In

addition, one can check that ‖R̃0(z, θ)[∆θ, χ]〈x〉2µ‖ is uniformly bounded for z ∈ S(−c0θ, γ0)
and |z| ≤ 1 (see proof of Proposition 4.7 in [12]). This yields

‖K(z, θ)‖ = O(|z|)

for z ∈ S(−c0θ, γ0) uniformly in θ. Thus, for z ∈ S(−c0θ, γ0) and |z| small enough, I+K(z, θ)
is invertible in L2 and there exists C2 > 0 such that

‖(I +K(z, θ))−1‖ ≤ C2,

uniformly in z. In addition one observes from (3.51) that

‖〈x〉−2µR̃0(z, θ)‖ ≤ C,

uniformly in z ∈ S(−c0θ, γ0) and θ ∈ C with Im θ > 0 and |θ| small. Consequently, for
z ∈ S(−c0θ, γ0) and |z| small enough

‖〈x〉−2µR0(z, θ)〈x〉−2µ‖ ≤ C2‖〈x〉−2µR0(0, θ)‖
(

1 + C3|z|
)
≤ C4, (3.55)

for some constants C3, C4 > 0 independent of z and θ. Finally, (3.50) can be derived from
(3.51), (3.55) and the equation

R0(z, θ) = R̃0(z, θ) +R0(z, θ)(Ṽ0(θ)− V0(θ))R̃0(z, θ),

where Ṽ0(θ)− V0(θ) is compactly supported and relatively bounded with respect to −∆.

Next, one derives (3.49) from (3.50) by using an argument of perturbation. Indeed, for
|x| large enough, (χRW )(Fθ(x)) = W ((1 + θ)x) which tends to 0 as |x| → +∞ by condition
(1.18). Then, using (3.50) we can choose R > 0 large enough so that

‖(χRW )(θ)R0(z, θ)‖ ≤ C1Cw
〈R〉ε

< 1

uniformly in θ for θ ∈ D+(0, θ0) and z ∈ S(−c0θ, γ0). This yields (I + χRW (θ)R0(z, θ))−1

exists for z in S(−c0θ, γ0) and θ ∈ D+(0, θ0) with

‖(I + χRW (θ)R0(z, θ))−1‖ ≤ C2 (3.56)

uniformly in z and θ. Hence, (3.49) derives from the resolvent equation

r0(z, θ) = R0(z, θ)(I + χRW (θ)R0(z, θ))−1 (3.57)

and uniform estimates (3.50) and (3.56). It follows from (3.50) that σd(H0(θ))∩S(−c0θ, γ0) =
∅, so does r0(z) using the resolvent equation (3.57) and (3.56). (3.48) is proved. (3.49) follows
from (3.50) and (3.57). �

As consequence of the above proposition, we obtain the following Gevrey estimates (see [12,
Corollary 4.8]):

Corollary 3.7. For any a > 0 there exist some constants c, C > 0 such that

‖e−a〈x〉
1−µ

r0(z, θ)N‖ ≤ CcNNγN , N ∈ N∗, (3.58)

for all z ∈ Ω0(δ, θ) ≡ Ω(δ, θ) ∪ {0}, where Ω(δ, θ) is given in (3.45).

Set K0(θ) = G0(θ)Wc, for θ ∈ C with |θ| small, where the distortion is made outside the
ball B(0, R0) for R0 > 0 large enough chosen as in the proof of Proposition 3.6. K0(θ) is a
family of compact operator on L2(Rn) for θ ∈ C with |θ| small.
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Lemma 3.8. Assume that assumptions in Proposition 3.6 hold.
Then the mapping θ 7→ K0(θ) ∈ B(L2) is holomorphic in operator norm for θ ∈ D+(0, δ) with

δ > 0 small and continuous for θ ∈ D+(0, δ). Here D+(0, δ) = D(0, δ) ∩ C+ (see (3.43)).

Proof. We shall show the derivability of θ 7→ K0(θ) in operator norm of B(L2) for θ ∈
D+(0, δ). For this we prove that

K0(θ + h)−K0(θ)

h
has a limit in operator norm as |h| → 0. Notice that

dFθ
dθ

(x) = ρ
( |x|
R0

)
x, ∀x ∈ Rn

(see (3.37)) and χ1( xR)ρ( |x|R0
) = ρ( |x|R0

) if R0 > 2R. Let θ ∈ D+(0, δ) and h ∈ C∗ with |h| small.
We have

K0(θ + h)−K0(θ) =
(
G0(θ + h)−G0(θ)

)
Wc(x)

= G0(θ + h)
(
g0(θ)− g0(θ + h)

)
G0(θ)Wc(x),

where

g0(θ)− g0(θ + h) = (h+ o(|h|))
[
(−∆θ + ∆θ+h) + v0(Fθ(x))− v0(Fθ+h(x))

]
= (h+ o(|h|))

[
t(Aθ(x)∇) · ∇+ bθ(x,∇)− ρ

( |x|
R0

)
x · ∇V0(Fθ(x))

− ρ
( |x|
R0

)
x · ∇W (Fθ(x))

]
,

with Aθ(x) and bθ(x,∇) are independent of h and it can be calculated explicitly from (3.42),
where bθ(x,∇) is a first order differential operator. Using (3.38), we can check that

G0(θ)t(Aθ(x)∇) · ∇ and G0(θ)bθ(x,∇)

are uniformly bounded in B(L2,µ, L2) for θ ∈ D+(0, δ) with δ > 0 small enough, since G0(θ)

is uniformly bounded in θ as operator from L2,2µ to L2 (see 3.46). In addition, V0(x) = Ṽ0(x)

for |x| > R0, Ṽ0 ∈ A, and W satisfying condition (1.18) can be extended holomorphically into
the region

{y = Fθ(x), x ∈ Rn, |x| > R0, θ ∈ D+(0, δ)} ⊂ Cn.
It follows that

G0(θ + h)x ·
(
∇V0(Fθ(x)) +∇W (Fθ(x))

)
ρ
( |x|
R0

)
: L2(Rn)→ L2(Rn),

is uniformly bounded with respect to θ and h for |θ| and |h| small. Indeed,

G0(θ + h)ρ
( |x|
R0

)
x · ∇V0(Fθ(x)) = G0(θ + h)(−∆ + 1)

d

dθ

[
(−∆ + 1)−1V0(Fθ(x))

]
,

and the same argument done for ρ
(
|x|
R0

)
x · ∇W (Fθ(x)). Consequently∣∣∣〈 (K0(θ + h)−K0(θ)− hK(1)(θ)

)
u, v
〉∣∣∣ = o(h)‖u‖‖v‖ (3.59)

uniformly for u, v ∈ L2 and |θ|, |h| small, where

K(1)(θ) = G0(θ)
[
t(Aθ(x)∇) · ∇+ bθ(x,∇)− ρ

( |x|
R0

)
x · ∇V0(Fθ(x))

−ρ
( |x|
R0

)
x · ∇W (Fθ(x))

]
G0(θ)Wc(x).



20 MAHA AAFARANI AND XUE PING WANG

Thus, (3.59) shows that θ 7→ K0(θ) is derivable in operator norm for θ ∈ D+(0, δ). Moreover,

the same arguments used to prove (3.59) show that ‖K(1)(θ)‖ is uniformly bounded in θ ∈
D+(0, δ). This proves the continuity of K0(θ) in θ ∈ D+(0, δ). �

Consider the resolvent equation R(z, θ) = (Id + r0(z, θ)Wc)
−1r0(z, θ) for z ∈ S(−c0θ, γ0)

and θ ∈ C+ with |θ| small. It is not difficult to check that -1 is a discrete eigenvalue of
K0(θ) if and only if 0 is an embedded eigenvalue of H(θ) and they have the same geometric
multiplicity.

3.2.1. Analyticity of the Riesz projection.

In order to express the Riesz projection associated with the eigenvalue −1 of K0(θ) in term
of the resolvent of K0(θ) for θ ∈ D+(0, δ0), we show that there exists some ε0 > 0 small such
that the disk D(−1, ε0) does contain no eigenvalue of K0(θ) other than −1.

Let ε1 > 0 be such that γ1 ≡ {|z + 1| = ε1} ⊂ ρ(K0(0)) and Intγ1 ∩ σ(K0(0)) = {−1}. For

z ∈ γ1 and θ ∈ D+(0, δ):

(z −K0(θ))(z −K0(0))−1 = I + (K0(0)−K0(θ)) (z −K0(0))−1.

Since the mapping θ 7→ K0(θ) ∈ B(L2) is continuous in operator norm for θ ∈ D+(0, δ), δ > 0

small, then there exists δ1 > 0 such that for θ ∈ D+(0, δ1)

‖K0(θ)−K0(0)‖ < 1

supz∈γ1 ‖(z −K0(0))−1‖
.

It follows that (z −K0(θ))−1 exists for z ∈ γ1 and θ ∈ D+(0, δ1). Hence, the operator

Π1(θ) :=
1

2iπ

∫
γ1

(z −K0(θ))−1 dz (3.60)

is well defined and is a projection. In particular Π1(0) = Π1, the Riesz projection associated
with the eigenvalue −1 of K0(0) = G0Wc.

Lemma 3.9. 1). The mapping θ 7→ Π1(θ) ∈ B(L2) is holomorphic in operator norm for
θ ∈ D+(0, δ) with some δ > 0 and

lim
θ∈D+(0,δ),θ→0

‖Π1(θ)−Π1‖ = 0. (3.61)

2). For θ ∈ D+(0, δ), −1 is an eigenvalue of K0(θ) with the same algebraic multiplicity as
K0(0) and Π1(θ) is the Riesz projection associated with the eigenvalue −1 of K0(θ).

Proof. 1) follows from Lemma 3.8. To show 2), remark first that since Π1(θ) is a projection,
the norm-continuity of the mapping θ 7→ Π1(θ) implies that rank Π1(θ) = rank Π1 = m (cf.
[5, Lemma I-4.10]) where m is the algebraic multiplicity of the eigenvalue −1 of G0Wc. It
remains to show that for ε1 > 0 sufficiently small, −1 is the only eigenvalue of K0(θ) inside

the disc D(−1, ε1) for θ ∈ D+(0, δ) with δ > 0 small enough. Indeed, it suffices to restrict
ourselves to the holomorphic family of finite rank operators K0(θ)Π1(θ). For θ ∈ R and |θ| < δ
with δ > 0 small, K0(θ)Π1(θ) is unitary equivalent to K0(0)Π1. So there exists ε1 > 0 such
that K0(θ)Π1(θ) has no eigenvalues in D(−1, ε1) other than −1. By the theorem on finite
dimensional analytic perturbation of eigenvalues ([5, Theorem 1.8 in Ch.2]), the eigenvalues
of K0(θ)Π1(θ) are branches of analytic functions in θ ∈ D+(0, δ) with at worst algebraic
singularity. Since theses functions are equal to −1 when θ is real, we deduce that −1 is the
only eigenvalue of K0(θ)P (θ) in D(−1, ε1) for θ ∈ D+(0, δ) if δ is small enough. This proves
that Π1(θ) defined by (3.60) is the Riesz projection of K0(θ) associated with eigenvalue −1.
�
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Denote E(θ) = Range Π1(θ) and E = Range Π1. We construct a basis of E(θ) as follows.
Let U and W (respectively, Ui) be bases of E (respectively, Ei) given by Lemma 3.1. Set

U(θ) ≡ Π1(θ)U =

k⋃
i=1

{Π1(θ)u
(i)
` , 1 ≤ ` ≤ mi, u

(i)
` ∈ Ui}.

For 1 ≤ i ≤ k, the mi functions Π1(θ)u
(i)
` ∈ E(θ) are linearly independent for Im θ > 0 with

|θ| small since θ 7→ Π1(θ) is holomorphic for θ ∈ D+(0, δ) and norm continuous at θ = 0. This
shows that the above family U(θ) is a basis of E(θ) with the same properties as in Lemma 3.1
(2). Similarly, we observe that W(θ) ≡ Π1(θ)W is the dual basis of E(θ) with respect to the
bilinear form B defined in (3.1).

Lemma 3.10. Assume that V0 ∈ A and W satisfies conditions (1.18) and (1.19). Then we
have

Π1(θ)f =
k∑
j=1

mj∑
i=1

〈f, JWcw
(j)
i (θ)〉u(j)

i (θ), ∀f ∈ L2, (3.62)

for θ ∈ D(0, δ0) with δ0 > 0 small.

Proof. For θ ∈ R and |θ| < θ0, the equality holds by the unitary equivalence. See Corollary

3.2. Since the both sides of (3.62) are continuous in θ in the closed half-disc D+(0, δ0) and
holomorphic in its interior, the equality still holds true for θ ∈ D(0, δ0). �

Theorem 3.11. Let V0 ∈ A1 and W = V − V0 satisfy (1.2), (1.18) and (1.19). Assume that
zero is an embedded eigenvalue of H = −∆+V (x) of geometric multiplicity k and assumption
(A1) holds. Let χ ∈ C∞0 (Rn) and Ω(δ, θ) be defined in (3.45) for some θ ∈ C with Im θ > 0.
Then

χR(z)χ = −χΠ0χ

z
+R2(z) (3.63)

for z ∈ Ω(δ, θ), where Π0 is the same projector as in Theorem 3.5 and the remainder R2(z) is
continuous up to z = 0 and satisfies Gevrey estimates: ∃Cχ, C > 0 such that

‖R2(z)(N)‖ ≤ CχCNN (1+γ)N (3.64)

for z ∈ Ω(δ, θ) ∪ {0} and for all N ∈ N∗.

Proof. Let χ ∈ C∞0 (Rn). Let h0 = −∆ + v0(x) with v0 = V0 + χRW constructed as before
with R > 1 large enough so that χχR = 0. Then χWc = Wc (see (1.21)). Let Uθ be the
analytic distorsion made outside the ball B(0, R0) with R0 sufficiently large, one has for θ ∈ R
with |θ| < δ0

χR(z)χ = χR(z, θ)χ = χ(I + r0(z, θ)Wc)
−1r0(z, θ)χ. (3.65)

The above equality initially valid for θ ∈ R and z ∈ C+ with Im z > 0 sufficiently large allows
to extend χR(z)χ meromorphically into a sector below positive real axis when Im θ > 0 and
appropriately small. Fix θ ∈ C+ with |θ| small. In order to inverse the holomorphic family
W (z, θ) ≡ I + r0(z, θ)Wc for z in Ω(δ, θ) with δ > 0 small, we shall construct θ-dependent
Grushin problem similar to the θ-independent one considered in the proof of Theorem 3.5.
For this purpose we use holomorphic families of vectors U(θ) and W(θ) constructed above.

Let Π
′
1(θ) = I − Π1(θ). I + G0(θ)Wc is injective on Range Π

′
1(θ). Since the operator

I + G0(θ)Wc is compact, the Fredholm theorem implies that Π
′
1(θ)(I + G0(θ)Wc)Π

′
1(θ) is

invertible on Range Π
′
1(θ). So is Π

′
1(θ)(I + r0(z, θ)Wc)Π

′
1(θ) for z ∈ Ω(δ, θ) when δ > 0 is

small. The inverse

E(z, θ) := (Π
′
1(θ)(1 + r0(z, θ)Wc)Π

′
1(θ))−1Π

′
1(θ) (3.66)
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is uniformly bounded in z ∈ Ω(δ, θ) (see Proposition 3.6) and satisfies by Corollary 3.7 Gevrey
estimates of the form (3.64) on Ω0(δ, θ).

Define S(θ) : Cm → L2 and T (θ) : L2 → Cm by

S(θ)c =
k∑
i=1

mi∑
j=1

c
(i)
j u

(i)
j (θ), c = ⊕ki=1(c

(i)
1 , · · · , c(i)

mi) ∈ ⊕
k
i=1Cmi ,

T (θ)u = ⊕ki=1

(
B(u,w

(i)
1 (θ)), · · · , B(u,w(i)

mi(θ))
)
, u ∈ L2.

Then one has S(θ)T (θ) = Π1(θ) in view of Lemma 3.10 and T (θ)S(θ) = Im. Indeed, for
θ ∈]− δ, δ[, T (θ)S(θ) = Im since Π1(θ) and Π1 are unitary equivalent. Thus the equality still

holds true for θ ∈ D+(0, δ) with δ > 0 small since θ 7→ Π1(θ) is holomorphic in D+(0, δ) and

norm-continuous for θ ∈ D+(0, δ) by Lemma 3.9. One can follow the same way as in the proof
of Theorem 3.5 by using the following asymptotic expansion at threshold zero: for all N ∈ N∗

r0(z, θ) =

N−1∑
j=0

zjG0(θ)j+1 + zNG0(θ)Nr0(z, θ), z ∈ Ω(δ, θ),

in B(0, s, 0, s− 2Nµ), ∀s ∈ R. For z ∈ Ω(δ, θ) with δ > 0 small and L ∈ N, we obtain

detE−+(z, θ) = σ0(θ)zk + σ1(θ)zk+1 + · · ·+ σL−1(θ)zk+L−1 +O(|z|k+L), (3.67)

where

σ0(θ) = µ(θ)× det
(
〈u(j)

1 (θ), Ju
(i)
1 (θ)〉

)
1≤i,j≤k

with µ(θ) = (−1)kc1(θ)−1 · · · ck(θ)−1.

Indeed, if condition (1.12) holds, then det
(
〈u(j)

1 , Ju
(i)
1 〉
)

1≤i,j≤k
6= 0. Thus, for Im θ ≥ 0 and

|θ| small enough

det
(
〈u(j)

1 (θ), Ju
(i)
1 (θ)〉

)
1≤i,j≤k

6= 0,

since θ 7→ Π1(θ) is continuous at θ = 0. In the same way one can see that

ci(θ) := B(u
(i)
1 (θ), u(i)

mi(θ)) 6= 0, 1 ≤ i ≤ k,

for Im θ ≥ 0 and |θ| small. From (3.65), one can deduce that

R(z, θ)f = −1

z

k∑
`=1

k∑
i,j=1

p`i(θ) p`j(θ)〈f, Ju
(j)
1 (θ)〉u(i)

1 (θ) +R2(z, θ)f

:= −1

z

k∑
i=1

〈f, JΨi(θ)〉Ψi(θ) +R2(z, θ)f

for z ∈ Ω(δ, θ), where Ψi(θ) =
k∑̀
=1

p`i(θ)u
(i)
1 (θ) and Pk(θ) = (pij(θ))1≤i,j≤k is such that

tPk(θ)Pk(θ) = Qk(θ)
−1 with

Qk(θ) = (〈u(j)
1 (θ), Ju

(i)
1 (θ)〉)1≤i,j≤k

is a holomorphic family of invertible matrices for θ ∈ C with |θ| small enough, by the above
argument. Moreover, the remainder R2(z, θ) is continuous up to z = 0 and satisfies uniform
Gevrey estimates as in (3.58). The detail of calculation is similar to the proof of Theorem 3.5
and is not repeated here. This shows that

χR(z)χ = −P0

z
+R2(z), ∀z ∈ Ω(δ, θ), (3.68)
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where

P0 =

k∑
i=1

〈·, JχΨi(θ)〉χΨi(θ),

and the remainder R2(z) is continuous up to z = 0 and satisfies the estimates (3.64). See also
the proof of Theorem 5.20 in [12] for Gevrey estimates of the remainder R2(z).

Finally, we affirm that P0 is independent of θ and is equal to χΠ0χ. In fact, since V0 ∈ V,
we can apply Theorem 3.5 to R(z) for Re z < 0 without utilizing analytic deformation. It
follows that

χR(z)χ = −χΠ0χ

z
+ χR1(z)χ. (3.69)

Thus the comparison between (3.68) and (3.69) yields P0 = χΠ0χ and R2(z) = χR1(z)χ for
Re z < 0 and |z| small. �

4. Resolvent expansion near positive resonances

In this section we compute the expansions of R(z) and χR(z)χ near outgoing positive
resonances of H by the method similar to that used in [1] for quickly decreasing potentials.
When there is no analyticity condition on the potential, the expansion of R(z) is calculated for
z in a half-disk in C+ around an outgoing positive resonance, while if the potential is analytic,
we use the analytic distortion method to calculate the expansion of χR(z)χ for z in a pointed
disk in C centered at an outgoing positive resonance.

4.1. The case of non-analytic potentials.

Consider the non-selfadjoint Schrödinger operator H = −∆ + V which is a compactly sup-
ported perturbation of the model operator h0 = −∆ + v0, where V − v0 = Wc.

Assumption (A3). 1. Assume that Im v0 ≤ 0 and that v0 satisfies for some C > 0 and
ρ1 > 0

|v0(x)| ≤ C〈x〉−ρ1 , ∀x ∈ Rn and |x| > R (4.70)

for some R > 0;

2. (x · ∇x)jv0 is −∆−compact for all integers j ∈ N;

3. Wc is of compact support and is −∆-compact.

Let r+(H) be the set of outgoing positive resonances of H defined by Definition 1.4. One
has r+(h0) = ∅ because h0 is dissipative, and the boundary value of the resolvent

r0(λ+ i0) = lim
z→λ,Im z>0

(h0 − z)−1

exists in B(−1, s, 1,−s), ∀s > 1/2, for all λ > 0. Moreover, for ` ∈ N∗ and s > ` + 1/2 the
above limit r0(λ+ i0) defines a function of class C` on ]0,+∞[ with values in B(−1, s, 1,−s)
(cf. [9]), where

1

j!

dj

dλj
r0(λ+ i0) = lim

z→λ,Im z>0
r0(z)j+1, j = 1, 2, · · · , `. (4.71)

For simplicity, we denote for λ > 0

G+
j (λ) =

1

j!

dj

dλj
r0(λ+ i0), j = 0, 1, · · · , `. (4.72)
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By Definition 1.4, λ0 ∈ r+(H) if and only if −1 is an eigenvalue of the compact operator
K+

0 (λ0) := G+
0 (λ0)Wc in L2,−s for all s > 1/2. We denote by Π+

1 the Riesz projection
associated with the eigenvalue −1 of K+

0 (λ0) given by

Π+
1 =

1

2iπ

∫
|z+1|=ε0

(z −K+
0 (λ0))−1 dz : L2,−s → L2,−s

for some ε0 > 0 small. Set E+(λ0) = Range Π+
1 (λ0). Denote m(λ0) = dimE+(λ0) and

k0 = dim Ker(I + K+
0 (λ0)). Notice that Lemma 3.1 is still true for E+(λ0) ⊂ L2,−s in the

present case. In particular, we have the following basis of E+(λ0):

U+ =

k0⋃
i=1

U+
i with U+

i = {ϕ(i)
1 , · · · , ϕ(i)

mi(λ0)}, i = 1, · · · , k0,

and its dual basis with respect to the bilinear form B(·, ·) in (3.1) well defined on E+(λ0) ×
E+(λ0):

W+ =

k0⋃
i=1

W+
i with W+

i = {ψ(i)
1 , · · · , ψ(i)

mi(λ0)}, i = 1, · · · , k0.

In order to compute the asymptotic expansion of R(z) for z in a small domain of the form

Ω+(δ) = {z ∈ C+, |z − λ0| < δ} (4.73)

for δ > 0 small, we use the formula

R(z) = (1 + r0(z)Wc)
−1r0(z) (4.74)

and construct for 1 + r0(z)Wc a Grushin problem similarly as in Section 3 (with z ∈ Ω+(δ)
and U and W replaced by U+ and W+, respectively). Let

(1 + r0(z)Wc)
−1 = E(z)− E+(z)E−+(z)−1E−(z) (4.75)

be the resulting representation formula. Recall that

r0(z) =
∑̀
j=0

(z − λ0)jG+
j (λ0) + r+

` (z, λ0), z ∈ Ω+(δ), (4.76)

which is valid in B(0, s, 0,−s) for s > ` + 1/2 and ` ∈ N, where the remainder r+
` (z, λ0) is

holomorphic in Ω+(δ) and continuous up to λ ∈]λ0 − δ, λ0 + δ[. In addition, the limit

r+
` (λ+ i0, λ0) = lim

z→λ,z∈Ω+(δ)
r+
` (z, λ0)

defines a function of λ of class C` on (]λ0 − δ, λ0 + δ[). Thus for ` ∈ N and z ∈ Ω+(δ), the
expansion of E−+(z) in (3.15) has the following form:

E−+(z) =
∑̀
j=0

(z − λ0)jE+
j (λ0) + E−+,`(z, λ0), (4.77)
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where

(E+
0 (λ0))(ij) = −


0 δij 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 0 · · · 0 δij
0 0 · · · 0 0


mi(λ0)×mj(λ0)

and (4.78)

(E+
1 (λ0))(ij) =


∗ ∗ · · · ∗
...

...
...

...
...

...
∗ ∗ · · · ∗

aij(λ0) ∗ · · · ∗


mi(λ0)×mj(λ0)

, ∀1 ≤ i, j ≤ k, (4.79)

with
aij(λ0) = −ci(λ0)−1〈G+

1 (λ0)Wcϕ
(j)
1 , JWcϕ

(i)
1 〉, ∀1 ≤ i, j ≤ k0. (4.80)

In addition, the remainder E−+,`(z, λ0) is analytic in z ∈ Ω+(δ) as matrix-valued function and

for λ ∈]λ0−δ, λ0 +δ[ the limit E−+,`(λ+i0, λ0) defines a function of class C` on ]λ0−δ, λ0 +δ[.

Lemma 4.1. Let the assumptions (A2) and (A3) be satisfied and λ0 ∈ r+(H). Then for any
N ∈ N

detE−+(z) = σk0(λ0)(z − λ0)k0 + · · ·+ σk0+N (λ0)(z − λ0)k0+N + o(|z − λ0|k0+N ), (4.81)

for z ∈ Ω+(δ), where σk0(λ0) = det (aij(λ0))1≤i,j≤k0 6= 0.

The proof of Lemma 3.3 can be repeated here to prove Lemma 4.1, using the expansion
(4.77). Lemma 4.1 implies in particular the following

Corollary 4.2. Under the conditions of Lemma 4.1, λ0 is an isolated point in r+(H).

Proof. Lemma 4.1 shows that there exists some δ > 0 such that E−+(z)−1 exists for z such
that 0 < |z − λ0| < δ and Im z ≥ 0. From (4.75), it follows that for λ ∈]λ0 − δ, 0[∪]0, λ0 + δ[,
1 + r0(λ + i0)Wc is invertible as operator in L2,−s, s > 1

2 . Therefore λ is not an outgoing
positive resonance of H. This proves r+(H)∩]λ0 − δ, λ0 + δ[= {λ0}. �

Theorem 4.3. Suppose that Assumptions (A2) and (A3) are satisfied. Let ` ∈ N, s > `+3/2
and λ0 ∈ r+(H). Then the resolvent expansion has the following form

R(z) = −Π+
0 (λ0)

z − λ0
+R+

1 (z, λ0) (4.82)

in B(−1, s, 1,−s) for z ∈ Ω+(δ). Here

Π+
0 (λ0) =

k0∑
i=1

〈·, JΨ+
i 〉Ψ

+
i with (4.83)

B+
λ0

(Ψ+
i ,Ψ

+
j ) = δij , ∀1 ≤ i, j ≤ k0, (4.84)

where {Ψ+
1 , · · · ,Ψ

+
k0
} is a basis of Ker(I + K+

0 (λ0)) in L2,−s and B+
λ0

is the bilinear form

defined in (1.22). Moreover, the remainder term R+
1 (z, λ0) is analytic in Ω+(δ) and for λ > 0

with |λ− λ0| < δ, the limit

R+
1 (λ+ i0, λ0) = lim

z∈Ω+(δ),z→λ
R+

1 (z, λ0) (4.85)

exists in B(−1, s, 1,−s) and defines a function of λ of class C` on (]λ0−δ, λ0 +δ[) with values
in B(−1, s, 1,−s).
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Remark 4.1. (a) In the above theorem, the outgoing resonance λ0 is shown to be a simple pole
of the the resolvent under Assumption (A2) and the leading term of the resolvent expansion
near λ0 is computed explicitly.

(b) The result of Theorem 4.3 was obtained in [1, Theorem 2.5] for rapidly decreasing
potential V under the condition that V (x) = O(〈x〉−ρ), ∀x ∈ R3, for some ρ > 2`+ 3.

Proof. Under the condition (1.23), the matrix(
B+
λ0

(ϕ
(i)
1 , ϕ

(j)
1 )
)

1≤i,j≤k0
(4.86)

is invertible. Then by Lemma 4.1, the matrix E−+(z) is invertible for z ∈ Ω+(δ). Thus, the
same Grushin problem constructed in the proof of Theorem 3.5 for I +G0(z)Wc is invertible
for z ∈ Ω+(δ). For ` ∈ N, s > ` + 1/2 and z ∈ Ω+(δ), introducing the expansion (4.76) in
(3.6) yields the following expansion of E(z)

E(z) =
∑̀
j=0

(z − λ0)jEj(λ0) + ε`(z), (4.87)

in the norm sense of B(L2,−s), where the terms Ej , j = 0, · · · , `, can be obtained explicitly.
By (4.85), the remainder term ε`(z) is analytic in Ω+(δ) and for |λ−λ0| < δ the limit ε`(λ+i0)
belongs to C`(]λ0 − δ, λ0 + δ[,B(L2,−s)).
Following the same method used to calculate the expansion (3.24), we obtain

E−+(z)−1 =
F−1(λ0)

z − λ0
+ F(z, λ0), ∀z ∈ Ω+(δ), (4.88)

where F−1(λ0) is k0 × k0 block matrix, with block entries F (ij)
−1 (λ0) are of the same form as

F (ij)
−1 in (3.25) with entries γij(λ0) instead of αij , 1 ≤ i, j ≤ k0, such that

(γij(λ0))1≤i,j≤k0 =
(

(aij(λ0))1≤i,j≤k0

)−1
,

where aij(λ0) are given in (4.80). Moreover, the remainder term F(z, λ0) is continuous up to
]λ0−δ, λ0+δ[ and the limit F(λ+i0, λ0) defines a C∞ matrix-valued function on ]λ0−δ, λ0+δ[.

Since the techniques of the rest of the proof are close to those used in the proof of Theorem
3.5, we omit details. We only note that in the present case the matrix in (4.86) will play the
role of Qk in (3.35) which yields the leading term in (4.82).

Note that because of the singularity (z−λ0)−1 in (4.88), the expansion (4.87) of E(z) up to
order `+ 1 is required, so s > `+ 3/2. Moreover, for the remainder R+

1 (z, λ0), the regularity

C`
(

]λ0− δ, λ0 + δ[, B(−1, s, 1,−s)
)

of R+
1 (λ+ i0, λ0) derives from the regularity properties of

the remainders of E(z) and E−+(z)−1 in (4.87) and (4.88), respectively, and from formulae
(4.74) and (4.75). �

4.2. The case of analytic potentials.

In this subsection, we assume that all conditions of Theorem 1.2 are satisfied. In particular,
we can decompose H as H = h0 + Wc as in Subsection 3.2 with h0 = −∆ + v0(x) and
v0 = V0 + χRW . Let

H(θ) = UθHU
−1
θ = h0(θ) +Wc(x), θ ∈ R,

where
h0(θ) = Uθh0U

−1
θ = −∆θ + v0(x, θ),
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be the distorted operator defined in Section 3. Here the distortion is made outside a sufficiently
large ball. Then h0(θ) and H(θ) define holomporphic families of type A for θ in a complex
neighborhood of zero. For Im θ > 0 and |θ| < θ0 with θ0 > 0 small, it has been shown in [12,
Theorem 5.1] that σd(H(θ)) (the discrete spectrum of H(θ) ) verifies

σd(H(θ)) ∩ R+ = r+(H), (4.89)

σd(H(θ)) ∩ C+ = σd(H) ∩ C+. (4.90)

In particular, H has at most a countable set of outgoing positive resonances with zero as the
only possible accumulation point. Theorem 3.11 says that zero is not an accumulation point
of σd(H(θ)), so the set r+(H) is finite under the condition of Theorem 1.2.

We observe that r0(z, θ) = (h0(θ) − z)−1 defined initially for Im z > 0 and θ ∈ R can be
holomorphically extended in θ for θ ∈ C with |θ| small. Then, for θ ∈ D+(0, θ0) with θ0 > 0
small, r0(z, θ) is holomorphic in z ∈ {Im z > −cIm θRe z}. In particular, for Im θ > 0 and
λ0 > 0 we have that r+

0 (λ0, θ) := (h0(θ) − λ0 − i0)−1 is a bounded operator on L2(Rn). In
addition, for any L ∈ N, the expansion of r+

0 (λ0, θ) in B(L2) is written

r0(z, θ) =

L∑
j=0

(z − λ0)jG+,j
0 (λ0, θ) + r+

1 (z, λ0, θ), ∀z ∈ Ωλ0(δ), (4.91)

where G+,j
0 (λ0, θ), j = 0, 1, · · · , L, are bounded operators on L2(Rn) defined as in (4.72) with

r0(z) replaced by r0(z, θ) and Ωλ0(δ) is given by

Ωλ0(δ) = Ω(δ) ∪ {λ0} with Ω(δ) := {z ∈ C; 0 < |z − λ0| < δ}, (4.92)

for some 0 < δ < λ0Im θ. Moreover, the remainder r+
1 (z, λ0, θ) is holomorphic in z ∈ Ωλ0(δ).

Set K+
0 (θ) = r+

0 (λ0, θ)Wc. The same proof as that of Lemma 3.8 shows that K+
0 (θ) is a

holomorphic family of compact operators on L2,−s(Rn), ∀s > 1/2, for θ ∈ D+(0, ε) with ε > 0

small, and norm-continuous for θ ∈ D+(0, ε). We recall that by definition of outgoing positive
resonances, λ ∈ r+(H) if −1 is a discrete eigenvalue of the compact operator K+

0 = K+
0 (0) on

L2,−s, ∀s > 1/2. Thus Lemma 3.9 can be applied here to 〈x〉−sΠ+
1 (θ)〈x〉s, ∀s > 1/2, where

Π+
1 (θ) is defined similarly to Π1(θ) with K0(θ) replaced by K+

0 (θ), because θ 7→ K+
0 (θ) ∈

B(L2,−s) is norm-continuous for θ ∈ D+(0, ε). We obtain that the family Π+
1 (θ) ∈ B(L2,−s) of

Riesz projections associated with the eigenvalue -1 of K+
0 (θ) is holomorphic in θ ∈ D+(0, ε)

and ∀s > 1/2

lim
θ→0, θ∈D+(0,ε)

‖〈x〉−s(Π+
1 (θ)−Π+

1 (0))〈x〉s‖ = 0.

Theorem 4.4. Assume that V0 ∈ A1 and that conditions (1.2), (1.18) and (1.19) are satisfied.
Let λ0 ∈ r+(H) verifying the assumption (A2) and χ ∈ C∞0 (Rn). Then for z ∈ Ω(δ), 0 < δ <
λ0Im θ with θ ∈ D+(0, ε) and ε > 0 small, one has

χR(z)χ = −χΠ+
0 (λ0)χ

z − λ0
+R+

2 (z, λ0) (4.93)

in B(L2(Rn)), where Π+
0 (λ0) is given in Theorem 4.3 and the remainder R+

2 (z, λ0) is analytic
in z ∈ Ωλ0(δ).

Theorem 4.4 can be proven by combining the methods used in the proofs of Theorem 3.11
and Theorem 4.3 and by using formulae (3.65) for z ∈ Ω(δ, θ) and (4.91) for z ∈ Ωλ0(δ) and by
studying the Grushin problem constructed with bases Π+

1 (θ)U+ and Π+
1 (θ)W+. The details

are omitted here.
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5. Proofs of the main theorems

In this section we prove the main theorems. In theorems 1.1 and 1.2 when zero is an eigen-
value of H we are interested in the contribution of the eigenvalue zero to the leading term of the
asymptotic expansion in time for the heat semigroup e−tH and Shrödinger semigroup e−itH .
With the Gevrey estimates on the remainders in resolvent expansions, the sub-exponential
time-decay estimates in (1.13) and (1.24) can be proved in the same way as in [12, Section 5],
therefore the details are omitted here.

Proof of Theorem 1.1. The same proof as that of Theorem 2.4 in [12] can be done here.
The large-time expansion of e−tH follows directly from Theorem 3.5 and the formula

e−tH −
∑

λ∈σd(H),Reλ≤0

e−tHΠλ =
i

2π
lim
ε→0+

∫
Γ(ε)

e−tzR(z)dz +O(e−ct) (5.94)

where c > 0 and

Γ(ε) = {z; |z| ≥ ε,Re z ≥ 0, |Im z| = C(Re z)µ
′} ∪ {z; |z| = ε, | arg z| ≥ ω0}

for some appropriate constants C, µ′ > 0. Here ω0 is the argument of the point z0 with |z0| = ε,

Re z0 > 0 and Im z0 = C(Re z0)µ
′
. According to Theorem 3.5, if the assumption (A1) holds,

then H has no discrete eigenvalues in some domain O(δ) given in (2.3) for δ > 0 small. Since

discrete eigenvalues located on the left of the curve Γ(0) = {z; Re z ≥ 0, |Im z| = C(Re z)µ
′}

can accumulate only at zero, it follows that H has at most a finite number of eigenvalues there.
These discrete eigenvalues contribute to e−tH the term

∑
λ∈σd(H),Reλ≤0 e

−tHΠλ+O(e−ct). By

Theorem 3.5, one can evaluate

‖e−a〈x〉1−µ
(
i

2π
lim
ε→0+

∫
Γ(ε)

e−tzR(z)dz −Π0

)
‖ ≤ Ce−ctβ

′

with C, c > 0 and β′ = 1−µ
1+κµ . Theorem 1.1 is proved. �

The large-time expansion for the Shrödinger semigroup e−itH can be derived from Theorem
3.11 and Theorem 4.4 by taking into account the contribution from discrete eigenvalues in the
upper-half plane and outgoing positive resonances.

Proof of Theorem 1.2. For χ ∈ C∞0 (Rn), we use analytic distorsion outside some sufficiently
large ball (including the support of χ). Let R(z, θ) = (H(θ)− z)−1. The formula

χR(z)χ = χR(z, θ)χ

with Im θ > 0 gives a meromorphic extension of the cut-off resolvent into a sector below the
positive half-axis. As seen before, the outgoing positive resonances are discrete eigenvalues
of the distorted operator H(θ) in ]0,+∞[ and their number is finite. Under the conditions
of Theorem 1.2, outgoing positive resonances are simple poles of the cut-off resolvent χR(z)χ
according to Theorem 4.4.

Let Γη(ε) be the contour defined by

Γη(ε) = {z = re−iη, r ≥ ε} ∪ {z = −reiη, r ≥ ε} ∪ {z; |z| = ε,−η ≤ arg z ≤ π + η}

for some η > 0, where η > 0 is chosen such that χR(z)χ has no poles with negative imaginary
part between Γη(ε) and the real axis. Since χR(z)χ has only a finite number of poles located

above Γη(ε) which are discrete eigenvalues of H in C+ and the outgoing positive resonances,
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we obtain from Theorem 4.4 the formula

χ
(
e−itH −

∑
λ∈σd(H)∩C+

e−itHΠλ −
∑

ν∈r+(H)

e−itνΠ+
0 (ν)

)
χ

=
i

2π
lim
ε→0+

∫
Γη(ε)

e−itzχR(z)χdz +O(e−ct).

Since Im z < 0 for z ∈ Γη(0) and z 6= 0, one can derive from Theorem 3.11 that

‖e−a〈x〉1−µ
(
i

2π
lim
ε→0+

∫
Γη(ε)

e−tzχR(z)χdz − χΠ0χ

)
‖ ≤ Ce−ctβ

with C, c > 0 and β = 1−µ
1+µ . Theorem 1.2 is proved. �
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