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Introduction

In [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF], one of the authors proved the Gevrey estimates of the resolvent for a class of non selfadjoint second order elliptic operators satisfying a weighted coercive condition and applied them to establish large time expansions of the heat and Schrödinger semigroups with sub-exponential time-decay estimates on the remainder. For the Schrödinger semigroup, a global virial condition on the model potential has been used to ensure the absence of quantum resonances near threshold zero. In the present work we want to extend the results of [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] to larger classes of potentials in which only a virial condition outside some compact is needed for the Schrödinger case. We also consider threshold eigenvalue with arbitrary geometric multiplicity instead of geometrically simple one, which requires an analysis of more general Jordan structure analogous to that carried out in [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF] for quickly decreasing potentials.

Consider the non-selfadjoint Schrödinger operator

H = -∆ + V (x) (1.1)
which is regarded as perturbation of a model operator H 0 = -∆ + V 0 (x) where V (x) and V 0 (x) are complex-valued measurable functions on R n , n ≥ 1. Assume that V and V 0 are -∆-compact satisfying for some constants µ ∈]0, 1[ and ρ > 2µ:

|V 0 (x)| ≤ C x -2µ , |W (x)| ≤ C x -ρ , (1.2) 
for x outside some compact of R n . Here W (x) = V (x) -V 0 (x). An important condition for sub-exponential time-decay for the associated heat and Schödinger semigroups is the following weighted coercive condition on the model operator H 0 : there exist µ ∈]0, 1[ and

c 0 > 0 such that | H 0 u, u | ≥ c 0 ( ∇u 2 + x -µ u 2 ), ∀ u ∈ H 2 .
(1.3) Throughout this work, conditions (1.2) and (1.3) are always assumed to be satisfied. Set V 0 (x) = V 1 (x) -iV 2 (x) with V 1 (x) and V 2 (x) real and denote

H 1 = -∆ + V 1 (x), H = H 0 + W (x).
(1.4)

Under the condition 1.3, Gevrey estimates of the resolvent R 0 (z) = (H 0 -z) -1 are proved at threshold zero in appropriately weighted spaces ( [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]). In order to apply them to the semigroups e -tH and e -itH , t ≥ 0, we need additional conditions on the potentials. Recall the two classes of potentials introduced in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] for the heat and Schrödinger semigroups, respectively.

Definition 1.1. Let V be the class of complex-valued potentials V 0 (x) = V 1 (x) -iV 2 (x) satisfying (1.2), (1.3) and the condition H 1 ≥ -α∆ (1.5) for some constant α > 0. Here H 1 = -∆ + V 1 (x) is the selfadjoint part of H 0 . Definition 1.2. Let A denote the class of complex-valued potentials V 0 (x) such that (1.2) and (1.3) are satisfied for some constant µ ∈]0, 1[. Assume in addition that V 1 and V 2 are dilation analytic and extend holomorphically into a complex region of the form

Ω = {x ∈ C n ; |x| > c -1 , |Im x| < c |Re x|} (1.6)
for some c > 0 and satisfy for some constants c 1 , c 2 > 0 and R ∈ [0, +∞]

|V j (x)| ≤ c 1 Re x -2µ , x ∈ Ω, j = 1, 2, (1.7) V 2 (x) ≥ 0, ∀x ∈ R n , (1.8) 
x • ∇V 1 (x) ≤ -c 2 x 2 x 2µ+2 , x ∈ R n with |x| ≥ R, and

(1.9)

V 2 (x) ≥ c 2 x -2µ , x ∈ R n with |x| < R.
(1.10)

If Condition (1.10) is satisfied with R = 0, we assume in addition 0 < µ < 3 4 , if n = 2 and 0 < µ < 1, if n ≥ 3.

(1.11)

The conditions (1.9) and (1.10) can be regarded as a (damped) global virial condition and is used to prove the absence of quantum resonances near threshold zero in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF], where sub-exponential time-decay estimates are obtained for compactly supported perturbations of model potentials in V (for the heat semigroup) or in A (for the Schrödinger semigroup) and for geometrically simple zero eigenvalue of H. Note that for n = 3, the repulsive Coulomb potential V 0 (x) = c 0 |x| , c 0 > 0, belongs to A.

In this paper, we consider more general potentials and need the following condition to compute the singularity of the resolvent R(z) = (H -z) -1 at z = 0. Assumption (A1) Let zero be an eigenvalue of H of geometric multiplicity k. Assume that there exists a basis {ϕ 1 , • • • , ϕ k } of the eigenspace of H with eigenvalue zero verifying det ( ϕ j , Jϕ i ) 1≤i,j≤k = 0.

(1.12)

The following result on the heat semigroup e -tH will be proven by combining the ideas from [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF] and [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF].

Theorem 1.1. Let V 0 ∈ V and W = V -V 0 satisfy the condition (1.2) with ρ > 2κµ, where κ is the integer given by Proposition 2.2. Assume that zero is an eigenvalue of H with geometric multiplicity k and assumption (A1) holds. Then for any a > 0 there exist some constants c a , C a > 0 such that e -a x 1-µ   e -tH -λ∈σ d (H),Re λ≤0 e -tH Π λ -Π 0   ≤ C a e -cat β t > 0, (1.13) where β = 1-µ 1+κµ and Π 0 is the spectral projection defined by

Π 0 f = k j=0 f, JΨ j Ψ j , ∀ f ∈ L 2 , (1.14) 
where {Ψ 1 , • • • , Ψ k } ⊂ L 2 is a basis of the eigenspace of H associated with the eigenvalue zero satisfying the relations Ψ i , JΨ j = δ ij , (1.15)

with δ ij = 1 if i = j and δ ij = 0, otherwise.

Theorem 1.1 is proven in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] for W compactly supported and k = 1. The main step of the proof of Theorem 1.1 is the asymptotic expansion of the resolvent R(z) = (H -z) -1 at threshold zero with Gevrey estimates on the remainder (Theorem 3.5). To prove this result, we decompose H as H = h 0 + W c with h 0 = -∆ + v 0 verifying (1.3) and W c of compact support and use the equation R(z) = (1 + K(z)) -1 r 0 (z) for z ∈ σ(H), where r 0 (z) = (h 0 -z) -1 and K(z) = r 0 (z)W c . The condition (A1) is used to ensure the existence of an asymptotic expansion for (1 + K(z)) -1 at z = 0. In fact when 0 is an eigenvalue of geometric multiplicity k of H, -1 is an eigenvalue of K(0) with the same geometric multiplicity k and with finite algebraic multiplicity m = dim E, where E = {u ∈ L 2 ; ∃j, (1 + K) j u = 0}. Since dim Ker(1 + K(0)) = k, there exists a Jordan basis B of E such that the matrix of 1 + K(0) restricted onto E is of the Jordan form:

A = Diag(J m 1 , • • • , J m k )
where J m l is the Jordan bloc of order m l associated with the eigenvalue 0 and m 1 +• • • m k = m. By Grushin method, the existence of an asymptotic expansion for 1 + K(z) is reduced to that of an m × m matric E -+ (z) of the form

E -+ (z) = -A + zB + O(z 2 ). Set I = {1, • • • , m} \ {m 1 , m 1 + m 2 , • • • , m 1 + m 2 + • • • + m k }, J = {1, • • • , m} \ {1, m 1 + 1, • • • , m 1 + m 2 + • • • + m k-1 + 1}. If A is denoted by A = (a ij ) 1≤i,j≤m , then a ij = 1 if i ∈ I and j ∈ J and a ij = 0, otherwise. Then one can check that det E -+ (z) = z k D k + O(z k+1 ) (1.16)
for z near 0, where D k is, up to a sign, equal to the minor of order k obtained from B by deleting all i-th lines and j-th colons with i ∈ I and j ∈ J. One can prove by choosing appropriate bases of E that D k = 0 if and only if the assumption (A1) is satisfied (cf. Lemma 3.3). See also [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF] for non selfadjoint Schrödinger operators with quickly decreasing potentials and [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] in the case k = 1. Therefore the assumption (A1) is in some sense a necessary condition for R(z) to admit an asymptotic expansion at z = 0 with the leading term of the order 1 z . If one has for some l ∈ N det E -+ (z) = z k+l D k+l + O(z k+l+1 ) with D k+l = 0, then one can show that R(z) admits an asymptotic expansion at z = 0 with the leading term of the order 1 z l+1 . But we do not have any example for which this condition is satisfied with l ≥ 1.

The second main result of this work is about large-time expansion of the Schrödinger semigroup with sub-exponential time-decay estimates on the remainder. For this purpose, we introduce the following class of model potentials.

Definition 1.3. Let A 1 denote the subclass of potentials V 0 ∈ V satisfying that Im V 0 ≤ 0 and there exists some potential V 0 ∈ A with

V 0 (x) = V 0 (x), |x| > R 1 ,
(1.17)

for some R 1 > 0.

For V 0 ∈ A 1 , denote H 0 = -∆ + V 0 (x) and H 0 = -∆ + V 0 (x) where V 0 ∈ A coincides with V 0 (x) outside some compact. We use the technique of analytic distortion from quantum resonances to study e -itH and need the following analyticity condition on

W (x) = V (x) - V 0 (x):
W is holomorphic in a complex region Ω of the form (1.6) for some R 2 > 0 and

|W (x)| ≤ C Re x -2µ-, ∀x ∈ Ω.
(1.18) for some constants C > 0 and > 0. In addition, one assumes that there exists

R 3 > 0 such that Im W (x) ≤ 0, x ∈ R n with |x| > R 3 . (1.19)
Since Im W (x) is allowed to change sign in some bounded region, H may have outgoing positive resonances which are relevant to the asymptotic expansion of e -itH as t → +∞.

If V is of short-range:

V (x) = O( x -1-) for some > 0, λ > 0 is called real resonance of H = -∆+V (x) if the equation Hu = λu admits a non-trivial solution u ∈ H 2 loc (R n ) satisfying one of Sommerfeld radiation conditions: u(x) = e ±i √ λ|x| |x| n-1 2 (a ± (ω) + o(1)), |x| → ∞, (1.20) 
for some a ± ∈ L 2 (S n-1 ), a ± = 0. λ is called an outgoing (resp., incoming) positive resonance of H if u verifies (1.20) with sign + (resp. with sign -). In this paper, we use the same definition of real resonances as in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] because potential V (x) has a complex long-range tail.

Let

χ 1 ∈ C ∞ (R n ) with χ 1 (x) = 0 for |x| ≤ 1 and χ 1 (x) = 1 for |x| > 2. For R > 0 sufficiently large : R > 2 max{R 1 , R 2 , R 3 }, set χ R (x) = χ 1 ( x R ) and h 0 = -∆ + v 0 (x), v 0 = V 0 + χ R W, V c = (1 -χ R )V, W c = (1 -χ R )W.
(1.21) h 0 is a dissipative operator: Im h 0 ≤ 0 and the boundary value of the resolvent r 0 (λ + i0) = lim →0 + (h 0 -(λ + i )) -1 exists in B(-1, s; 1, -s) for any s > 1 2 and is continuous in λ > 0 ( [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF]). The resolvent equation R(z) = (1 + r 0 (z)W c ) -1 r 0 (z) motivates the following definition Definition 1.4. Let λ > 0 and G + 0 (λ) = r 0 (λ+i0). λ > 0 is called outgoing positive resonance of H = -∆+V (x) if -1 is an eigenvalue of the compact operator G + 0 (λ)W c in L 2,-s for s > 1 2 . Denote r + (H) the set of outgoing positive resonances of H. For λ ∈ r + (H), denote m(λ) the algebraic multiplicity of eigenvalue -1 of G + 0 (λ)W c and k(λ) its geometric multiplicity.

The above definition is independent of the cut-off χ R used. In fact if h 0 and h 0 are two operators constructed as above with two different cut-offs χ R and χ R with R and R sufficiently large and H = h 0 + W c , one deduces from the formula

1 + r 0 (z)W c = 1 + r 0 (z)(χ R -χ R )W 1 + r 0 (z) W c
and the similar one with χ R and χ R interchanged that -1 is an eigenvalue of G + 0 (λ)W c if and only if it is an eigenvalue of G + 0 (λ) W c . If V 0 and V are short-range potentials, one can check that λ > 0 is an outgoing resonance if and only if the equation (H -λ)u = 0 admits a solution satisfying the outgoing Sommerfeld radiation condition (1.20).

For λ ∈ r + (H), we define the symmetric bilinear form

B + λ associated with λ B + λ (ϕ, ψ) = G + 1 (λ)W c ψ, JW c ϕ for all ϕ, ψ ∈ L 2,-s (R n ), (1.22) 
where G + 1 (λ) = lim z→λ,Im z>0 d dz r 0 (z) in the norm sense of B(-1, s, 1, -s), s > 3/2, and J : f (x) → f (x) is the complex conjugation.

Assumption (A2): For all λ ∈ r + (H), one assumes that there exists {ψ

+ 1 , • • • , ψ + k(λ) } ⊂ L 2,-s , ∀s > 1/2, a basis of Ker(I + G + 0 (λ)W c ) such that det B + λ (ψ + i , ψ + j ) 1≤i,j≤k(λ) = 0. (1.23)
The condition (1.23) is similar to that used in [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF][START_REF] Wang | Time-decay of solutions to dissipative Schrödinger equations[END_REF] for quickly decreasing potentials.

Theorem 1.2. Let V 0 ∈ A 1 and W (x) = V (x) -V 0 (x) satisfy (1.
2), (1.18) and (1.19). Suppose that the conditions (A1) and (A2) hold for zero eigenvalue and positive outgoing resonances, respectively. Then the set of outgoing resonances r + (H) of H is at most finite and there exists c > 0 such that for any

χ ∈ C ∞ 0 (R n ), one has χ   e -itH - λ∈σ d (H)∩C + e -itH Π λ -Π 0 - ν∈r + (H) e -itν Π + 0 (ν)   χ ≤ C χ e -c t β t > 0. (1.24)
Here β = 1-µ 1+µ , Π λ denotes the Riesz projection associated with the discrete eigenvalue λ of H, Π 0 is the projector given in (1.14) and Π + 0 (ν) is an operator of rank k(ν) given by

Π + 0 (ν)f = k(ν) j=0 f, JΦ + j (ν) Φ + j (ν) for all f ∈ L 2,s , s > 1/2, (1.25) with B + ν (Φ + i (ν), Φ + j (ν)) = δ ij , (1.26) 
where B + ν is the bilinear form defined in (1.22) and

{Φ + 1 (ν), • • • , Φ + k(ν) (ν)} ⊂ L 2,-s , ∀s > 1/2
, is a basis of the eigenspace associated with the eigenvalue -1 of r 0 (λ + i0)W c .

Of course, if zero eigenvalue and/or positive outgoing resonances are absent, the asymptotic expansion (1.24) still holds with the associated terms disappeared.

Remark 1.5. 1. Theorem 1.2 can be compared with [12, Theorem 2.4 (b)], where the perturbation W = V -V 0 is compactly-supported with V 0 ∈ A (satisfying a global virial condition), the zero eigenvalue is supposed to be geometrically simple, the condition (A2) is not assumed and the contribution from positive outgoing resonances has not been explicitly calculated. Here V 0 satisfies only a virial condition outside some compact, the geometrical multiplicity of zero eigenvalue is arbitrary and the contribution of positive outgoing resonances is explicitly calculated in terms of an orthonormal basis relatively to B + ν (•, •).

2. The proofs of Theorem 1.2 and [12, Theorem 2.4 (b)] are both based on the resolvent expansions near the threshold eigenvalue and outgoing resonances. But the methods to establish the resolvent expansions are different. To study the asymptotic expansion of (1 + R 0 (z)W ) -1 in a sector below the positive half-axis, in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] we constructed an approximate Grushin problem with θ-independent bases (where θ is the complex parameter used in analytic deformation of operators), while in this work we study θ-dependent Grushin problems by constructing Jordan bases depending holomorphically on θ.

Example 1.6. Let ϕ ∈ C 2 (R n ; C) such that there exist some constants µ ∈]0, 1[ and R > 0 such that ϕ(x) = x 1-µ for |x| > R. The associated Witten Laplacian acting on functions is given by

-∆ ϕ = -∆ + V (x) with V (x) = (∇ϕ • ∇ϕ)(x) -∆ϕ(x). Take V 0 (x) = χ( x R ) + (1 -χ( x R )) (1-µ) 2
x 2µ where χ is a cut-off with 0 ≤ χ ≤ 1 and χ(x) = 1 if |x| ≤ 2; 0 if |x| ≥ 3. Then V (x) can be decomposed as V (x) = V 0 (x) + W (x) with V 0 ∈ A 1 and W satisfying the conditions of Theorem 1.2. But V (x) can not be decomposed as V (x) = V 0 (x) + W (x) with V 0 ∈ A (which in particular requires V 0 (x) to be dilation analytic) and W compactly supported. Therefore Theorem 1.2 can be applied to e it∆ϕ , while [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]Theorem 2.4 (b)] cannot.

The remaining part of this work is organized as follows. In Section 2, we recall from [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] the Gevrey estimates for the resolvent of the model operator needed in this paper. The asymptotic expansion of the resolvent R(z) (or the cut-off resolvent χR(z)χ with χ ∈ C ∞ 0 (R n )) near z = 0 is calculated in Section 3. In Section 4, we study resolvent expansion near positive resonances. Finally Theorems 1.1 and 1.2 are proved in Section 5.

Notation. We denote H r,s , r ≥ 0, s ∈ R the weighted Sobolev space of order r with the weight

x s on R n : H r,s = {u ∈ S (R n ); u r,s = x s (1 -∆) r 2 u L 2 < ∞}.
For r < 0, H r,s is defined as the dual space of H -r,-s with dual product identified with the scalar product •, • of L 2 (R n ). Set H 0,s = L 2,s . B(r, s; r , s ) stands for the space of continuous linear operators from H r,s to H r ,s . If (r, s) = (r , s ), we denote B(r, s) = B(r, s; r , s ). Unless otherwise mentioned explicitly, • denotes norm in L 2 (R n ) or in B(L 2 ) when no confusion is possible. C ± denote respectively the upper and the lower open half-plane and C ± their closure. Set C * = C \ {0}. For θ 1 < θ 2 and r > 0, S(θ 1 , θ 2 ) denotes the sector

S(θ 1 , θ 2 ) = {z ∈ C * ; θ 1 < arg z < θ 2 }
and Ω(r, θ 1 , θ 2 ) is a part of S(θ 1 , θ 2 ) near zero :

Ω(r, θ 1 , θ 2 ) = {z ∈ S(θ 1 , θ 2 ); |z| < r}.
In this work, the scalar product denoted as •, • is assumed to be linear with respect to the left variable.

Gevrey estimates for the resolvent of the model operators

For V 0 ∈ V and W = V -V 0 verifying (1.2), set v 0 (x) = V 0 (x) + χ 1 ( x R )W (x) where χ 1 ∈ C ∞ (R n ) is a cut-off function with χ 1 (x) = 0 for |x| ≤ 1 and χ 1 (x) = 1 for |x| ≥ 2.
Since ρ > 2µ, for R > 1 large enough, v 0 satisfies condition (1.3) and the results on Gevrey estimates of the resolvent of [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] can be applied to

h 0 = -∆ + v 0 (x). Let r 0 (z) = (h 0 -z) -1 . Define operator G 0 : Im h 0 → L 2 by G 0 f = lim Re z<0,z→0 r 0 (z)f, f ∈ Im h 0 . G 0 is an unbounded closed operator with D(G 0 ) = Im h 0 . It is proven that G 0 : L 2,s → L 2,s-2µ is continuous (cf. [12, Lemma 3.3]). The following result is consequence of [12, Theorem 2.1]. Theorem 2.1. Let V 0 ∈ V.
Then for any a > 0, there exist some constants C a , c a > 0 such that

x -τ e -a x 1-µ G N 0 x τ + x τ G N 0 e -a x 1-µ x -τ ≤ C a c N +τ a (N + τ ) τ 1-µ +γN (2.1)
for all N ∈ N * and τ ≥ 0. Here γ = 2µ 1-µ .

Theorem 2.1 is Gevrey estimates for the resolvent r 0 (z) at z = 0. To obtain sub-exponential time-decay estimates for the heat semi-group, we need Gevrey estimates of the resolvent in some region of the right half-plane. Recall first the following result on R 0

(z) = (H 0 -z) -1 ([12, Proposition 4.1]). Proposition 2.2. Let V 0 ∈ V for some µ ∈]0, 1[.

Then

(1) There exist µ ∈]0, 1] and C 0 > 0 such that the numerical range N (H 0 ) of H 0 is contained in a region of the form {z; Re z ≥ 0, |Im z| ≤ C 0 (Re z) µ }. Consequently, for δ > 0 small enough there exists some constant M 0 such that

R 0 (z) ≤ M 0 |z| 1 µ (2.2) for z ∈ O(δ)
where

O(δ) = {z ∈ C * ; |z| < δ, Re z < δ|Im z| 1 µ }. (2.3) (2) If κ is the smallest integer such that κ ≥ 1 µ , one has x -2κµ R 0 (z) ≤ C (2.4) uniformly in z ∈ O(δ).
Note that in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF], the constant µ used to describe the numerical range of H 0 is obtained from the generalized Hardy inequality. If one knows µ = 1 (for example if H 0 is selfadjoint), then κ can be taken to be 1 in the above proposition.

Proposition 2.3. Let V 0 ∈ V for some µ ∈]0, 1[ and κ be given by Proposition 2.2. Assume the condition (1.2) is satisfied for some ρ > 2κµ. Let h 0 be defined as above with R > 1 appropriately large. Then one has (a) h 0 has no eigenvalues in O(δ) and

x -2κµ r 0 (z) ≤ C (2.5) uniformly in z ∈ O(δ). In addition, lim z∈O(δ),z→0 r 0 (z) = G 0 (2.6)
as bounded operators from L 2,s to L 2,s-r for all s ∈ R and r > 2κµ. (b) One has the following Gevrey estimates of the resolvent r 0 (z): for any a > 0, there exist c, C > 0 such that

e -a x 1-µ d N -1 dz N -1 r 0 (z) ≤ Cc N N (1+κγ)N , ∀N ≥ 1, (2.7 
)

uniformly in z ∈ O 0 (δ) ≡ O(δ) ∪ {0}, where γ = 2µ 1-µ . Proof. (a). One has r 0 (z) = R 0 (z) -r 0 (z)χ R W R 0 (z). (2.8) Since ρ > 2κµ, it follows from (2.4) that if R > 1 is appropriately large, χ R W R 0 (z) ≤ CR -(ρ-2κµ) x -2κµ R 0 (z) < 1 uniformly in z ∈ O(δ). This proves 1 + χ R W R 0 (z) is invertible with uniformly bounded inverse. Therefore h 0 has no eigenvalues in O(δ) and r 0 (z) = R 0 (z)(1 + χ R W R 0 (z)) -1 , z ∈ O(δ),
which together with (2.4) gives the uniform estimate (2.5). (2.6) is deduced from (2.5) and the resolvent equation r 0 (z) -G 0 = zG 0 r 0 (z), (2.9) using the compactness of r 0 (z) -G 0 as operators from L 2,s to L 2,s-r for r > 2κµ.

(b) is derived from (a), Theorem 2.1 and the formula

r 0 (z) = q-1 j=0 z j G j+1 0 + z q G q 0 r 0 (z), z ∈ O(δ) (2.10) 
with q = κ. See [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]Corollary 4.2] for details when r 0 (z) is replaced by R 0 (z).

Resolvent expansion at threshold zero

In this section, we look at the case where H has an embedded eigenvalue zero with arbitrary geometric multiplicity. To obtain the asymptotic expansion of R(z) with Gevrey estimates on the remainder, we use the resolvent equation R(z) = (I + r 0 (z)W c ) -1 r 0 (z) for z / ∈ σ(H).

Asymptotic expansion of R(z).

In this subsection, we assume

V 0 ∈ V. Set K 0 (z) = r 0 (z)W c : L 2 → L 2 . The compact operator-valued function z → K 0 (z) is meromorphic on C \ R + with poles at discrete eigenval- ues of h 0 . The condition (1.
3) is satisfied for h 0 and zero is not an eigenvalue of h 0 . According to Proposition 2.3, if V 0 ∈ V and W satisfies (1.2) for some ρ > 2κµ, then G 0 is continuous as operator from L 2,s to L 2,s-r for all s ∈ R and r > 2κµ. In addition, K 0 := K 0 (0) = G 0 W c is a compact operator on L 2 . One can check that zero is an embedded eigenvalue of H if and only if -1 is a discrete eigenvalue of K 0 and their eigenspaces coincide in L 2 . Although the Riesz projection for the eigenvalue zero of H can not be defined, that for eigenvalue -1 of K 0 is well defined and is given by

Π 1 = 1 2iπ |z+1|= 0 (z -K 0 ) -1 dz,
for some 0 > 0 small enough such that -1 is the only eigenvalue of K 0 inside the cercle {z; |z + 1| = 0 }.

Let E = Range Π 1 , m = Rank Π 1 and k = dim Ker(I + K 0 ). E is a subspace of L 2 . Consider the non degenerate bilinear form B on E × E: ∀u, v ∈ E, B(u, v) = u, v * , (3.1) 
where v * := JW c v. Note that the relations h * 0 = Jh 0 J and

H * = JHJ imply that JW c K 0 = K * 0 JW c and JW c Π 1 = Π * 1 JW c . The mapping S : φ → φ * = JW c φ sends Range Π 1 to Range Π * 1 and Ker(1 + K) to Ker(1 + K * ).
It is injective on Ker(1 + K), because if φ ∈ Ker(1 + K) with φ = 0 and φ * = 0, then W c φ = 0 and hence h 0 φ = 0. This is impossible because 0 is not an eigenvalue of h 0 . We infer that if B is a Jordan basis of Range Π 1 , then

B * = S(B) is free in Range Π * 1 , hence S is injective from Range Π 1 into Range Π * 1 . Since Rank Π 1 = Rank Π * 1 , S is bijective from Range Π 1 onto Range Π * 1 .
The argument of Lemma 5.13 in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] based on the bijectivity of S shows that the bilinear form B(•, •) defined above is non-degenerate on E × E.

In order to study the case where the eigenvalue -1 of K 0 has arbitrary geometric multiplicity k ∈ N * , we decompose E into k invariant subspaces of K 0 , such that B restricted to each one is non-degenerate. More precisely, we have Lemma 3.1. Assume that -1 is an eigenvalue of K 0 of geometric multiplicity k ∈ N * and algebraic multiplicity m. Then there exist k invariant subspaces of K 0 , denoted by

E 1 , • • • , E k , such that (1) E = E 1 ⊕ • • • ⊕ E k ,
where ∀i = j: E i ⊥ E j with respect to the bilinear form B.

(2) ∀1 ≤ i ≤ k, there exists a basis U i := {u

(i) r = (I + K 0 ) m i -r u (i) m i , 1 ≤ r ≤ m i } ⊂ L 2 of E i such that (I + K 0 ) m i u (i)
m i = 0 and B(u

(i) 1 , u (i) m i ) = c i = 0. ( 3.2) 
(3) ∀1 ≤ j ≤ k, there exists a dual basis W j := {w

(j) 1 , • • • , w (j) m j } ⊂ L 2 of E j such that w (j) r ∈ Ker(I + K 0 ) m j +1-r |E j , B(u (i) l , w (j) r ) = δ lr δ ij . (4) dim ker(1 + K 0 ) |E j = 1, ∀j = 1, • • • , k.
Moreover, the matrix of

Π 1 (I + K 0 )Π 1 in the basis U := k i=1 U i of E is a k × k block diagonal matrix given by J = diag(J m 1 , J m 2 , • • • , J m k ), (3.3 
) where

J m j =         0 1 0 • • • 0 0 0 1 . . . . . . 0 0 . . . . . . 0 . . . . . . . . . . . . 1 0 0 • • • 0 0         m j ×m j (3.4)
is a Jordan block. We have also denoted

m j = dim E j for j = 1, • • • , k, such that m = m 1 + • • • + m k .
For the proof of the above lemma, we refer to that of Lemma 3.1 in [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF] in the case where 0 is an eigenvalue of -∆ + V (x) with a quickly decreasing complex-valued potential V (x). The proof is algebraic in nature and is still valid in the present case.

As consequence of Lemma 3.1, one has the following W i be constructed as in Lemma 3.1. Then the Riesz projection Π 1 can be represented as

Π 1 f = k i=1 m i j=1 B(f, w (i) j )u (i) j , ∀f ∈ L 2 . (3.5) 3.1.1. Grushin problem for I + K 0 (z). Denote Π 1 = I -Π 1 . Since I + K 0 is injective on Range Π 1 , it is invertible on Range Π 1
and by an argument of perturbation Π 1 (I + K 0 (z))Π 1 is invertible on Range Π 1 for z ∈ O(δ), δ > 0 small, with the inverse denoted by

E(z) = Π 1 (I + K 0 (z))Π 1 -1 Π 1 ∈ B(L 2 ). (3.6)
According to Proposition 2.3, K 0 (z) is continuous and uniformly bounded in z ∈ O(δ). Since W c is of compact support, (2.7) leads to the following Gevrey estimates on K 0 (z): there exist some constants C, c > 0 such that

K 0 (z) (N ) ≤ Cc N N (1+κγ)N , N ∈ N * , for z ∈ O 0 (δ).
Here • is the norm of bounded operators in L 2 and K 0 (z) (N ) denotes the N -th derivative of K 0 (z). By operations in Gevrey classes, one deduces that there exist constants C and c 1 > 0 such that E(z) satisfies the following Gevrey estimates:

E(z) (N ) ≤ C c N 1 N (1+κγ)N , (3.7) 
for all N ∈ N * and z ∈ O 0 (δ). In addition, for all q ∈ N, one has

E(z) = q j=0 z j E j + z q q (z), z ∈ O(δ), (3.8) 
in B(L 2 ), where

E 0 = Π 1 (I + K 0 )Π 1 -1
Π 1 and other terms E j , j = 1, • • • , q, can be computed explicitly. Moreover, the remainder q (z) satisfies the following Gevrey estimates: there exist C q , c q > 0 such that

q (z) (N ) ≤ C q c N q N (1+κγ)N , (3.9) 
for all N ∈ N * and z ∈ O 0 (δ).

Define S : C m → Range Π 1 and T :

L 2 → C m by Sc = k i=1 m j j=1 c (i) j u (i) j , ∀ c = k i=1 c (i) 1 , • • • , c (i) m i ∈ k i=1 C m i , T u = k i=1 u, (w (i) 1 ) * , • • • , u, (w (i) m i ) * , ∀ u ∈ L 2 .
Then one has T S = I m and ST = Π 1 . Set W (z) = 1 + K 0 (z) and

E + (z) = S -E(z)W (z)S, (3.10) E -(z) = T -T W (z)E(z), (3.11) E -+ (z) = -T W (z)S + T W (z)E(z)W (z)S.
(3.12)

Since E(z) and W (z) satisfy Gevrey estimates of the form (3.9) on O 0 (δ), E ± (z) and E -+ (z) satisfy similar estimates on O 0 (δ). In addition, E -+ (z) is invertible if and only if (I + K 0 (z)) is it and one has the formula

(I + r 0 (z)W c ) -1 = E(z) -E + (z)E -+ (z) -1 E -(z) on L 2 (R n ). (3.13)
In order to study the singularity of (I +r 0 (z)W c ) -1 we calculate the expansion of det E -+ (z) in power of z, as well as that of E -+ (z) -1 by using the method developed in [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF]. Lemma 3.3. Let V 0 ∈ V and W satisfy condition (1.2) for some ρ > 2κµ with κ ≥ 1 given by Proposition 2.2. Assume that -1 is an eigenvalue of K 0 = G 0 W c of geometric multiplicity k ≥ 1. Assume in addition that (A1) holds. Then, for all q ∈ N * , one has

det E -+ (z) = q j=0 σ j z k+j + o(|z| k+q ), (3.14) for z ∈ O(δ) with δ > 0 small, where σ 0 = σ × det ( ϕ j , Jϕ i ) 1≤i,j≤k = 0. Moreover, det E -+ (z)
satisfies Gevrey estimates of order 1 + κγ.

Proof. Using Lemma 3.1, we partition the matrix E -+ (z) as follows:

E -+ (z) = E (ij) -+ (z) 1≤i,j≤k with 
E (ij) -+ (z) = - I -(I + r 0 (z)W c )E(z) (I + r 0 (z)W c )u (j) r , JW c w (i) ,r
, is a m i × m j block. Introducing the expansion (2.10) for q ∈ N * into the previous formula, we obtain

E -+ (z) = q-1 =0 z E -+, + z q -+,q (z), (3.15) 
where

E (ij) -+,0 = -(I + G 0 W c )u (j) r , JW c w (i) ,r , E (ij) -+,1 = -G 0 W c u (j) r , JG 0 W c w (i) ,r , E (ij) -+,2 = -(I -G 0 W c E(0))G 2 0 W c u (j) r , JG 0 W c w (i) ,r
with

E(0) = Π 1 (I + G 0 W c )Π 1 -1 Π 1 .
Also other terms E -+, , = 3, • • • , q -1 can be calculated explicitly. In addition, it can be seen from (3.9) that the remainder -+,q (z) satisfies the following Gevrey estimates: ∃ c, C > 0 such that

d N -1 dz N -1 -+,q (z) ≤ Cc N N (1+κγ)N , (3.16) 
for all N ≥ 1 and z ∈ O 0 (δ), where the above norm is the matrix norm.

We can simplify the form of the above matrices as follows: Since u

(j) 1 ∈ Ker(I + G 0 W c ), (I + G 0 W c )u (j) r = u (j) r-1 , r = 2, • • • , m j , 1 ≤ j ≤ k, and w (i) m i = c -1 i u (i) 1 (c i , 1 ≤ i ≤ k, are given in (3.2)), then for all 1 ≤ i, j ≤ k we have E (ij) -+,0 =        0 -δ ij 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 • • • 0 -δ ij 0 0 • • • 0 0        m i ×m j and
(3.17)

E (ij) -+,1 =        * * • • • • • • * . . . . . . . . . . . . . . . . . . . . . . . . * * • • • • • • * a ij * • • • • • • *        m i ×m j with a ij = -c -1 i u (j) 1 , Ju (i) 1 .
(3.18) Thus, to obtain (3.14) we shall calculate det(E -+,0 + zE -+,1 ) by following the method used in [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF] which is based on Lidskii's idea ( [START_REF] Lidskii | Perturbation theory of non-conjugate operators[END_REF]).

First, for z = 0 we introduce the k × k block diagonal matrix L(z) partitioned conformally with the block structure of E -+ (z), given by

L(z) = diag(L 1 (z), • • • , L k (z)), (3.19) 
where

L i (z) = diag(1, • • • , 1, z -1 ), ∀1 ≤ i ≤ k. Let q ≥ 2. Set E 0,1 (z) = E -+,0 + zE -+,1
. Multiplying E 0,1 (z) on the left by L(z), we obtain

E 0,1 (z) := L(z)E 0,1 (z) = E 0 + z E 1 , (3.20)
where the block entries of the obtained matrices E 0 and E 1 have the following forms:

E (ij) 0 =        0 -δ ij 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 • • • 0 -δ ij a ij * • • • * *        m i ×m j , ∀1 ≤ i, j ≤ k, E (ij) 1 =        * * • • • • • • * . . . . . . . . . . . . . . . . . . . . . . . . * * • • • • • • * 0 0 • • • • • • 0        m i ×m j , ∀1 ≤ i, j ≤ k. (3.21)
The above terms a ij are given in (3.18).

Next, we calculate det E 0,1 (z) where it is clear from (3.20) that it is a polynomial of z. We have det

E 0,1 (z) = det E 0 + O(|z|), ∀z ∈ O(δ). (3.22)
Then, let us calculate det E 0 (0). By expanding the determinant of E 0,1 (0) along the rows of E 0,1 (0) that are containing only -1, we obtain

det E 0 = det (a ij ) 1≤i,j≤k = σ × det u (j) 1 , Ju (i) 1 1≤i,j≤k = 0, (3.23) 
where σ = (-1

) k c -1 1 • • • c -1
k by (3.18). (See also the proof of Theorem 2.1 in [START_REF] Moro | On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure[END_REF] for a specific example with 12 × 12 matrix that illustrates the method to calculate the determinant).

Finally, for z ∈ O(δ) with δ > 0 small, it follows from (3.20), (3.22) and (3.23) that

det E 0,1 (z) = (det L(z)) -1 det E 0 + O(|z|) = z k det (a ij ) 1≤i,j≤k + O(|z| k+1 ).
Thus (3.14) can be deduced from (3.15) and the previous equation. Moreover, Gevrey estimates of order 1 + κγ for det E -+ (z) on O 0 (δ) can be derived from that of E -+ (z).

In the previous lemma we have given an sufficient condition for the invertibility of E -+ (z) for z ∈ O(δ). Now we give the asymptotic expansion of its inverse. Lemma 3.4. Suppose that assumptions in Lemma 3.3 are satisfied. Then

E -+ (z) -1 = F -1 z + F(z) (3.24)
for z ∈ O(δ), δ > 0 small, where F -1 is a matrix of order m and of rank k, whose block entries are of the form

F (ij) -1 =      0 • • • 0 α ij 0 • • • 0 0 . . . . . . . . . 0 • • • 0 0      , ∀1 ≤ i, j ≤ k, (3.25) with (α ij ) 1≤i,j≤k = A -1 k , (3.26)
and the remainder F(z) is continuous up to z = 0 and satisfies Gevrey estimates of the form (3.16) on O 0 (δ).

Proof. To obtain the expansion of E -+ (z) -1 we compute the inverse of the leading term E 0,1 (z) = E -+,0 + zE -+,1 in (3.12). By regularity of the matrix L(z) for z = 0 given in (3.19), we observe that E 0,1 (z) is invertible if and only if E 0,1 (z) in (3.20) is invertible. Thus our problem is reduced to calculate E 0,1 (z) -1 if it does exist. Indeed, if the condition (1.12) holds, then by (3.23) the matrix E 0 is invertible with

E -1 0 = t Com E 0 det E 0 .
By using the same technique to calculate det E 0 , we can calculate the minors of the matrix E 0 . We obtain E -1 0 = F -1 + F 0 , where F -1 is given in (3.25) and the block entries of F 0 are of the form

F (ij) 0 =        * * • • • * 0 * 0 • • • 0 0 0 . . . . . . 0 . . . . . . . . . . . . 0 • • • 0 * 0        m i ×m j , ∀1 ≤ i, j ≤ k.
Moreover, to prove (3.26) we check by using the definition of coefficients

α ij , 1 ≤ i, j ≤ k, that (det A k )α ij = (-1) i+j |[A k ] i j |,
where we denoted by |[A k ] i j | the (j, i)-th minor of the matrix A k . Thus, for z ∈ O(δ), δ > 0 small enough, E 0,1 (z) is invertible, with

E 0,1 (z) -1 = F -1 + F 0 -z E -1 0 E 1 E -1 0 + F(z), (3.27) 
where the remainder F(z) is analytic in z ∈ O(δ) and continuous for z ∈ O 0 (δ). By regularity of the matrix L(z) for z = 0, it follows from (3.20) that

E 0,1 (z) -1 = E 0,1 (z) -1 L(z).
In addition, we can easily check that

F -1 L(z) = F -1 z and F 0 L(z) = F 0 .
This yields

E 0,1 (z) -1 = F -1 z + F 0 (I -E 1 F -1 ) + F 1 (z), for z ∈ O(δ), where F 1 (z) is analytic in z ∈ O(δ) and continuous for z ∈ O 0 (δ).
Finally, for z ∈ O(δ), the expansion (3.24) of E -+ (z) -1 follows directly from (3.15) and the above expansion of E 0,1 (z) -1 . In addition, Gevrey estimates of the remainder F(z) are derived from (3.16).

We can now prove the asymptotic expansion of the resolvent R(z) at threshold zero. Theorem 3.5. Let κ ∈ N * be given by Proposition 2.2. Assume that zero is an eigenvalue of H of geometric multiplicity k, k ∈ N * , and that assumption (A1) holds. Suppose that V 0 ∈ V and W = V -V 0 satisfies condition (1.2) for some ρ > 2κµ. Then, for z ∈ O(δ) and δ > 0 small enough

R(z) = - Π 0 z + R 1 (z), (3.28) 
where Π 0 is a spectral projection given by

Π 0 f = k i=1 f, JΨ i Ψ i , ∀f ∈ L 2 , (3.29) with {Ψ 1 , • • • , Ψ k }
is a basis of the eigenspace of H associated with eigenvalue 0 such that

Ψ i , JΨ j = δ ij , ∀1 ≤ i, j ≤ k.
The remainder R 1 (z) satisfies the estimate: ∃C, δ > 0 such that

x -2κµ R 1 (z) + R 1 (z) x -2κµ ≤ C (3.30)
for z ∈ O(δ). In particular,

σ d (H) ∩ O(δ) = ∅. (3.31)
In addition R 1 (z) is continuous up to z = 0 and for any a > 0, there exist C a , c a > 0 such that

e -a x 1-µ R (N ) 1 (z) + R (N ) 1 (z)e -a x 1-µ ≤ C a c N a N (1+κγ)N , (3.32) 
for any N ∈ N * and z ∈ O(δ) ∪ {0}.

Proof. Since condition (1.12) holds, E -+ (z) is invertible by Lemma 3.3. It follows from formulae (3.13) and (3.24) that (I + r 0 (z)W c ) -1 exists for z ∈ O(δ), δ > 0 small, with

(I + r 0 (z)W c ) -1 g = - SF -1 T g z + B 0 (z)g = - 1 z k i,j=1 α ij g, JW c w (j) m j u (i) 1 + B 0 (z)g = - 1 z k i,j=1 α ij c -1 j g, JW c u (j) 1 u (i) 1 + B 0 (z)g, (3.33) for g ∈ L 2
, where B 0 (z) is uniformly bounded for z ∈ O(δ) as operator in B(L 2 ) and there C 0 , c 0 > 0 such that

B (N ) 0 (z) ≤ C 0 c N 0 N (1+κγ)N , (3.34) 
for all N ∈ N * and z ∈ O 0 (δ).

Set

A k := (a ij ) 1≤i,j≤k , Q k := ( u (j) 1 , Ju (i) 1 ) 1≤i,j≤k , (3.35) 
where a ij are given in (3.18). We have

A k = -C k × Q k , C k = diag(c -1 1 , • • • , c -1 k ). (3.36)
For f ∈ L 2,2κµ , putting g = r 0 (z)f in the first term in the right hand side of (3.33), we obtain

k i,j=1 α ij c -1 j r 0 (z)f, JW c u (j) 1 u (i) 1 = k i,j=1 α ij c -1 j f, JG 0 W c u (j) 1 + z r 0 (z)f, JG 0 W c u (j) 1 u (i) 1 = - k i,j=1 α ij c -1 j f, Ju (j) 1 u 
(i)

1 + B 1 (z)f = - k i f, Jv i u (i) 1 + B 1 (z)f,
where by the identity (3.26), one has

   v 1 . . . v k    = A -1 k • C k    u (1) 1 
. . .

u (k) 1    = -Q -1 k    u (1) 1 
. . .

u (k) 1    .
In addition, the remainder B 1 (z) has the same regularity properties as B 0 (z) in (3.33). Finally, let Q -1 k = t P k P k be the Cholesky decomposition of the complex symmetric matrix Q -1 k , where P k = (p ij ) 1≤i,j≤k is an upper triangular matrix (cf. [START_REF] Rakotonirina | Matrices de commutation tensorielle: de l'équation de Dirac vers une application en physique des particules[END_REF]Proposition 25]). Then,

R(z)f = (I + r 0 (z)W c ) -1 r 0 (z)f = - 1 z k =1 k i,j=1 p i p j f, Ju (j) 1 u 
(i)

1 + R 1 (z)f.
This establishes (3.29) with

Ψ i = k =1 p i u ( ) 1 , ∀1 ≤ i ≤ k.
In addition, one checks that

Ψ j , JΨ i = k ,r=1 p jr p i u (r) 1 , Ju ( ) 1 = k r=1 p jr (P k Q k ) ir = (P k Q t k P k ) ij = δ ij .
The estimate (3.30) follows from uniformly boundedness of r 0 (z) in B(0, s, 0, s -2κµ), ∀s ∈ R (see (2.5)) and the resolvent equation R(z) = (I + r 0 (z)W c ) -1 r 0 (z). Moreover, (3.32) can be obtained from (2.7) and (3.34). See also [12, Proposition 5.12].

Expansion of the cut-off resolvent.

In this subsection we suppose V 0 ∈ A 1 and W satisfies conditions (1.2), (1.18) and (1.19). We want to use technics from quantum resonances to establish an asymptotic expansion for the cut-off resolvent χR(z)χ valid in a sector below the positive real axis. As before, denote

h 0 = -∆ + v 0 (x), v 0 = V 0 + χ R W and W c = (1 -χ R )W where χ R (x) = χ 1 ( x R ) for all x ∈ R n , χ 1 ∈ C ∞ (R n ) is a cut-off function with χ 1 (x) = 0 if |x| ≤ 1 and χ 1 (x) = 1 if |x| ≥ 2, where R is chosen such that R > 2 max{R 1 , R 2 , R 3 },
where R 1 , R 2 and R 3 are given in (1.17), (1.18) and (1.19), respectively. Remark that v 0 is still distorsion analytic outside some compact and Im v 0 ≤ 0, but v 0 may no longer belong to A 1 .

In order to obtain the asymptotic expansion at low energy of the cut-off resolvent χR

(z)χ, χ ∈ C ∞ 0 (R), we use analytic distortion of H outside the support of χ. Let R 0 > 2R such that supp χ ⊂ B(0, R 0 ). Let ρ ∈ C ∞ (R) with 0 ≤ ρ ≤ 1, ρ(r) = 0 if r ≤ 1 and ρ(r) = 1 if r ≥ 2. Set F θ (x) = x 1 + θρ |x| R 0 , x ∈ R n . (3.37) When θ ∈ R with |θ| sufficiently small, x → F θ (x) is a global diffeomorphism on R n . Set U θ f (x) = |DF θ (x)| 1 2 f (F θ (x)), f ∈ L 2 (R n ),
where DF θ (x) is the Jacobi matrix and |DF θ (x)| is the Jacobian of the change of variables:

x → F θ (x). One has

|DF θ (x)| = 1, |x| < R 0 , (1 + θ) n , |x| > 2R 0 . (3.38)
U θ is unitary in L 2 (R n ) for θ real with |θ| sufficiently small. Define the distorted operator H(θ) by

H(θ) = U θ HU -1 θ , θ ∈ R. (3.39) One can calculate that H(θ) = h 0 (θ) + W c (x), (3.40) 
where, for θ ∈ R,

h 0 (θ) = U θ h 0 U -1 θ = -∆ θ + v 0 (x, θ) (3.41) with ∆ θ = t ∇ θ • ∇ θ and v 0 (x, θ) = v 0 (F θ (x)), such that ∇ θ = ( t DF θ ) -1 • ∇ - 1 |DF θ | 2 ( t DF θ ) -1 • (∇|DF θ |). (3.42) 
In particular, ∇ θ f = (1 + θ) -1 ∇f if f is supported outside the ball B(0, 2R 0 ).

For z 0 ∈ C and > 0 small, let

D(z 0 , ) = {z ∈ C; |z -z 0 | < }, (3.43) 
be small complex neighborhood of z 0 and D + (z 0 , ) = D(z 0 , ) ∩ C + . If V 0 ∈ A 1 and W satisfies (1.18), then for R 0 > 2R with R > max{R 1 , R 2 }, H(θ) and h 0 (θ) can be extended to holomorphic families of type A for θ ∈ D + (0, ), > 0 small. We observe that the distorted operator h 0 (θ) is a perturbation of H 0 (θ) = -∆ θ + V 0 (x, θ) by (χ R W )(x, θ) which is relatively H 0 (θ)-compact by condition (1.18). From this we deduce that the essential spectrum of h 0 (θ) coincides with that of H 0 (θ) given by

σ ess (H 0 (θ)) = { r (1 + θ) 2 : r ≥ 0} (3.44) (see [12, Section 4.2]). Set r 0 (z, θ) = (h 0 (θ) -z) -1 . For θ ∈ R, r 0 (z, θ) is holomorphic in z ∈ C + and meromorphic in C \ R + .
For Im θ > 0, it follows from (3.44) that the resolvent r 0 (z, θ) defined for z ∈ C and Im z >> 1 can be meromorphically extended across the positive real axis R + into the sector {z; arg z > -Im θ}.

The aim of this subsection is to establish an expansion for the cut-off resolvent χR(z)χ for z in some complex domain defined for Im θ > 0 and δ > 0 small by

Ω(δ, θ) = {z ∈ C * ; |z| < δ, -δIm θ < arg z < 3π 2 -δ}. (3.45)
Let us begin by analyzing properties of the distorted model operator h 0 (θ). Let V 0 ∈ A 1 and W satisfy (1.2), (1.18) and (1.19). Since h 0 satisfies condition (1.3), for θ ∈ C with |θ| small the operator h 0 (θ) still satisfies (1.3) with some constant c 0 > 0 independent of R 0 > 0 and θ. Therefore, Lemma 3.1 in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] can be applied to h 0 (θ), so we can define G 0 (θ) by

G 0 (θ) = s - lim Re z<0,z→0 r 0 (z, θ) (3.46)
as operators from L 2,s to L 2,s-2µ for all s ∈ R. Moreover, an argument of perturbation shows that Theorem 3.4 in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] holds for G 0 (θ) uniformly in θ when |θ| is small.

The following proposition gives a uniform estimate on r 0 (z, θ) for z in the sector

S(-c 0 θ, γ 0 ) := {z ∈ C * ; -c 0 Im θ < arg z < γ 0 } (3.47)
for some c 0 > 0, γ 0 ∈]π, 3π 2 [ and θ ∈ C with |θ| small. We want to show that the resolvent estimate given in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]Proposition 4.7] still holds if the global virial condition is replaced by a virial condition at the infinity. Proposition 3.6. Let V 0 ∈ A 1 and W satisfy conditions (1.2), (1.18) and (1.19). Then there exist some constants c 0 > 0 and γ 0 ∈]π, 3π 2 [ such that for θ ∈ C with |θ| sufficiently small and Im θ > 0, one has σ(h 0 (θ)) ∩ S(-c 0 θ, γ 0 ) = ∅ (3.48) and there exists C > 0 such that

x -2µ r 0 (z, θ) ≤ C z , ∀z ∈ S(-c 0 θ, γ 0 ). (3.49) 
Proof. First, we prove that

x -2µ (H 0 (θ) -z) -1 ≤ C z , z ∈ S(-c 0 θ, γ 0 ). (3.50) 
Let R 0 > 2R where supp W c ⊂ B(0, 2R) and R is chosen such that R > max{R 1 , R 2 , R 3 }, where R j , j = 1, 2, 3, are given in (1.17)- (1.19). Let H 0 = -∆ + V 0 (x). Set H 0 (θ) = U (θ) -1 H 0 U (θ) and H 0 (θ) = U (θ) -1 H 0 U (θ) for θ ∈ R, |θ| small, where the distortion is made outside the ball B(0, R 0 ). Then H 0 (θ) and H 0 (θ) can be extended holomorphically in θ ∈ D + (0, δ) with δ > 0 small and their domains are constant. Fix θ ∈ C + , |θ| small. Denote R 0 (z, θ) = ( H 0 (θ) -z) -1 for z / ∈ σ( H 0 (θ)). By Proposition 4.7 in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF], there exists c 0 , C > 0 and γ 0 ∈]π, 3π 2 [ such that We compare R 0 (z, θ) with R 0 (z, θ) for |x| large and with R 0 (0, θ)

x -2µ R 0 (z, θ) ≤ C z , z ∈ S(-c 0 θ, γ 0 ). ( 3 
for |z| small. Let χ ∈ C ∞ 0 (R n ) such that χ(x) = 1 if |x| ≤ 2R 0 . Take χ ∈ C ∞ 0 (R n ) such that χχ = χ. On the support of 1 -χ, H 0 (θ) = H 0 (θ). For z ∈ S(-c 0 θ, γ 0 ) and |z| small, one has R 0 (z, θ) = R 0 (0, θ) + zR 0 (0, θ)R 0 (z, θ) = R 0 (0, θ) + zR 0 (0, θ)( χ + (1 -χ))R 0 (z, θ) = R 0 (0, θ) + zR 0 (0, θ) χR 0 (z, θ) (3.52) +zR 0 (0, θ)(1 -χ) R 0 (z, θ)(1 -χ) +zR 0 (0, θ)(1 -χ) R 0 (z, θ)[∆ θ , χ]R 0 (z, θ).
Then, it follows from formula (3.52) that for z ∈ S(-c 0 θ, γ 0 ) and |z| small

(I + K(z, θ)) x -2µ R 0 (z, θ) x -2µ = x -2µ R 0 (0, θ) x -2µ (3.53) +z x -2µ R 0 (0, θ)(1 -χ) R 0 (z, θ)(1 -χ) x -2µ
where

K(z, θ) = -z x -2µ R 0 (0, θ) χ x 2µ -z x -2µ R 0 (0, θ)(1 -χ) R 0 (z, θ)[∆ θ , χ] x 2µ (3.54)
One has that x -2µ R 0 (0, θ) is uniformly bounded in θ for Im θ > 0 and |θ| small. In addition, one can check that R 0 (z, θ)[∆ θ , χ] x 2µ is uniformly bounded for z ∈ S(-c 0 θ, γ 0 ) and |z| ≤ 1 (see proof of Proposition 4.7 in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]). This yields

K(z, θ) = O(|z|)
for z ∈ S(-c 0 θ, γ 0 ) uniformly in θ. Thus, for z ∈ S(-c 0 θ, γ 0 ) and |z| small enough, I + K(z, θ) is invertible in L 2 and there exists C 2 > 0 such that

(I + K(z, θ)) -1 ≤ C 2 ,
uniformly in z. In addition one observes from (3.51) that

x -2µ R 0 (z, θ) ≤ C,
uniformly in z ∈ S(-c 0 θ, γ 0 ) and θ ∈ C with Im θ > 0 and |θ| small. Consequently, for z ∈ S(-c 0 θ, γ 0 ) and |z| small enough

x -2µ R 0 (z, θ) x -2µ ≤ C 2 x -2µ R 0 (0, θ) 1 + C 3 |z| ≤ C 4 , (3.55) 
for some constants C 3 , C 4 > 0 independent of z and θ. Finally, (3.50) can be derived from (3.51), (3.55) and the equation

R 0 (z, θ) = R 0 (z, θ) + R 0 (z, θ)( V 0 (θ) -V 0 (θ)) R 0 (z, θ),
where V 0 (θ) -V 0 (θ) is compactly supported and relatively bounded with respect to -∆.

Next, one derives (3.49) from (3.50) by using an argument of perturbation. Indeed, for |x| large enough, (χ R W )(F θ (x)) = W ((1 + θ)x) which tends to 0 as |x| → +∞ by condition (1.18). Then, using (3.50) we can choose R > 0 large enough so that

(χ R W )(θ)R 0 (z, θ) ≤ C 1 C w R < 1
uniformly in θ for θ ∈ D + (0, θ 0 ) and z ∈ S(-c 0 θ, γ 0 ). This yields (I + χ R W (θ)R 0 (z, θ)) -1 exists for z in S(-c 0 θ, γ 0 ) and θ ∈ D + (0, θ 0 ) with

(I + χ R W (θ)R 0 (z, θ)) -1 ≤ C 2 (3.56)
uniformly in z and θ. Hence, (3.49) derives from the resolvent equation As consequence of the above proposition, we obtain the following Gevrey estimates (see [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]Corollary 4.8]): Corollary 3.7. For any a > 0 there exist some constants c, C > 0 such that

r 0 (z, θ) = R 0 (z, θ)(I + χ R W (θ)R 0 (z, θ)) -1 (3.
e -a x 1-µ r 0 (z, θ) N ≤ Cc N N γN , N ∈ N * , (3.58)
for all z ∈ Ω 0 (δ, θ) ≡ Ω(δ, θ) ∪ {0}, where Ω(δ, θ) is given in (3.45).

Set K 0 (θ) = G 0 (θ)W c , for θ ∈ C with |θ| small, where the distortion is made outside the ball B(0, R 0 ) for R 0 > 0 large enough chosen as in the proof of Proposition 3.6. K 0 (θ) is a family of compact operator on L 2 (R n ) for θ ∈ C with |θ| small. Lemma 3.8. Assume that assumptions in Proposition 3.6 hold. Then the mapping θ → K 0 (θ) ∈ B(L 2 ) is holomorphic in operator norm for θ ∈ D + (0, δ) with δ > 0 small and continuous for θ ∈ D + (0, δ). Here D + (0, δ) = D(0, δ) ∩ C + (see (3.43)).

Proof. We shall show the derivability of θ → K 0 (θ) in operator norm of B(L 2 ) for θ ∈ D + (0, δ). For this we prove that K 0 (θ + h) -K 0 (θ) h has a limit in operator norm as |h| → 0. Notice that

dF θ dθ (x) = ρ |x| R 0 x, ∀x ∈ R n (see (3.37)) and χ 1 ( x R )ρ( |x| R 0 ) = ρ( |x| R 0 ) if R 0 > 2R. Let θ ∈ D + (0, δ)
and h ∈ C * with |h| small. We have

K 0 (θ + h) -K 0 (θ) = G 0 (θ + h) -G 0 (θ) W c (x) = G 0 (θ + h) g 0 (θ) -g 0 (θ + h) G 0 (θ)W c (x),
where

g 0 (θ) -g 0 (θ + h) = (h + o(|h|)) (-∆ θ + ∆ θ+h ) + v 0 (F θ (x)) -v 0 (F θ+h (x)) = (h + o(|h|)) t (A θ (x)∇) • ∇ + b θ (x, ∇) -ρ |x| R 0 x • ∇V 0 (F θ (x)) -ρ |x| R 0 x • ∇W (F θ (x)) ,
with A θ (x) and b θ (x, ∇) are independent of h and it can be calculated explicitly from (3.42), where b θ (x, ∇) is a first order differential operator. Using (3.38), we can check that

G 0 (θ) t (A θ (x)∇) • ∇ and G 0 (θ)b θ (x, ∇)
are uniformly bounded in B(L 2,µ , L 2 ) for θ ∈ D + (0, δ) with δ > 0 small enough, since G 0 (θ) is uniformly bounded in θ as operator from L 2,2µ to L 2 (see 3.46). In addition, V 0 (x) = V 0 (x) for |x| > R 0 , V 0 ∈ A, and W satisfying condition (1.18) can be extended holomorphically into the region

{y = F θ (x), x ∈ R n , |x| > R 0 , θ ∈ D + (0, δ)} ⊂ C n . It follows that G 0 (θ + h)x • ∇V 0 (F θ (x)) + ∇W (F θ (x)) ρ |x| R 0 : L 2 (R n ) → L 2 (R n ),
is uniformly bounded with respect to θ and h for |θ| and |h| small. Indeed,

G 0 (θ + h)ρ |x| R 0 x • ∇V 0 (F θ (x)) = G 0 (θ + h)(-∆ + 1) d dθ (-∆ + 1) -1 V 0 (F θ (x)) ,
and the same argument done for

ρ |x| R 0 x • ∇W (F θ (x)). Consequently K 0 (θ + h) -K 0 (θ) -hK (1) (θ) u, v = o(h) u v (3.59)
uniformly for u, v ∈ L 2 and |θ|, |h| small, where

K (1) (θ) = G 0 (θ) t (A θ (x)∇) • ∇ + b θ (x, ∇) -ρ |x| R 0 x • ∇V 0 (F θ (x)) -ρ |x| R 0 x • ∇W (F θ (x)) G 0 (θ)W c (x).
Thus, (3.59) shows that θ → K 0 (θ) is derivable in operator norm for θ ∈ D + (0, δ). Moreover, the same arguments used to prove (3.59) show that K (1) (θ) is uniformly bounded in θ ∈ D + (0, δ). This proves the continuity of K 0 (θ) in θ ∈ D + (0, δ).

Consider the resolvent equation R(z, θ) = (Id + r 0 (z, θ)W c ) -1 r 0 (z, θ) for z ∈ S(-c 0 θ, γ 0 ) and θ ∈ C + with |θ| small. It is not difficult to check that -1 is a discrete eigenvalue of K 0 (θ) if and only if 0 is an embedded eigenvalue of H(θ) and they have the same geometric multiplicity.

Analyticity of the Riesz projection.

In order to express the Riesz projection associated with the eigenvalue -1 of K 0 (θ) in term of the resolvent of K 0 (θ) for θ ∈ D + (0, δ 0 ), we show that there exists some 0 > 0 small such that the disk D(-1, 0 ) does contain no eigenvalue of K 0 (θ) other than -1.

Let 1 > 0 be such that γ 1 ≡ {|z + 1| = 1 } ⊂ ρ(K 0 (0)) and Intγ 1 ∩ σ(K 0 (0)) = {-1}. For z ∈ γ 1 and θ ∈ D + (0, δ): (z -K 0 (θ))(z -K 0 (0)) -1 = I + (K 0 (0) -K 0 (θ)) (z -K 0 (0)) -1 .
Since the mapping θ → K 0 (θ) ∈ B(L 2 ) is continuous in operator norm for θ ∈ D + (0, δ), δ > 0 small, then there exists δ 1 > 0 such that for θ ∈ D + (0, δ 1 )

K 0 (θ) -K 0 (0) < 1 sup z∈γ 1 (z -K 0 (0)) -1 .
It follows that (z -K 0 (θ)) -1 exists for z ∈ γ 1 and θ ∈ D + (0, δ 1 ). Hence, the operator

Π 1 (θ) := 1 2iπ γ 1 (z -K 0 (θ)) -1 dz (3.60)
is well defined and is a projection. In particular Π 1 (0) = Π 1 , the Riesz projection associated with the eigenvalue -1 of K 0 (0) = G 0 W c . Lemma 3.9. 1). The mapping θ → Π 1 (θ) ∈ B(L 2 ) is holomorphic in operator norm for θ ∈ D + (0, δ) with some δ > 0 and

lim θ∈D + (0,δ),θ→0 Π 1 (θ) -Π 1 = 0. (3.61)
2). For θ ∈ D + (0, δ), -1 is an eigenvalue of K 0 (θ) with the same algebraic multiplicity as K 0 (0) and Π 1 (θ) is the Riesz projection associated with the eigenvalue -1 of K 0 (θ).

Proof. 1) follows from Lemma 3.8. To show 2), remark first that since Π 1 (θ) is a projection, the norm-continuity of the mapping θ → Π 1 (θ) implies that rank Π 1 (θ) = rank Π 1 = m (cf. [5, Lemma I-4.10]) where m is the algebraic multiplicity of the eigenvalue -1 of G 0 W c . It remains to show that for 1 > 0 sufficiently small, -1 is the only eigenvalue of K 0 (θ) inside the disc D(-1, 1 ) for θ ∈ D + (0, δ) with δ > 0 small enough. Indeed, it suffices to restrict ourselves to the holomorphic family of finite rank operators K 0 (θ)Π 1 (θ). For θ ∈ R and |θ| < δ with δ > 0 small, K 0 (θ)Π 1 (θ) is unitary equivalent to K 0 (0)Π 1 . So there exists 1 > 0 such that K 0 (θ)Π 1 (θ) has no eigenvalues in D(-1, 1 ) other than -1. By the theorem on finite dimensional analytic perturbation of eigenvalues ([5, Theorem 1.8 in Ch.2]), the eigenvalues of K 0 (θ)Π 1 (θ) are branches of analytic functions in θ ∈ D + (0, δ) with at worst algebraic singularity. Since theses functions are equal to -1 when θ is real, we deduce that -1 is the only eigenvalue of K 0 (θ)P (θ) in D(-1, 1 ) for θ ∈ D + (0, δ) if δ is small enough. This proves that Π 1 (θ) defined by (3.60) is the Riesz projection of K 0 (θ) associated with eigenvalue -1.

Denote E(θ) = Range Π 1 (θ) and E = Range Π 1 . We construct a basis of E(θ) as follows. Let U and W (respectively, U i ) be bases of E (respectively, E i ) given by Lemma 3.1. Set

U(θ) ≡ Π 1 (θ)U = k i=1 {Π 1 (θ)u (i) , 1 ≤ ≤ m i , u (i) ∈ U i }.
For 1 ≤ i ≤ k, the m i functions Π 1 (θ)u (i) ∈ E(θ) are linearly independent for Im θ > 0 with |θ| small since θ → Π 1 (θ) is holomorphic for θ ∈ D + (0, δ) and norm continuous at θ = 0. This shows that the above family U(θ) is a basis of E(θ) with the same properties as in Lemma 3.1 [START_REF] Aguilar | A class of analytic perturbations for one-body Schrödinger Hamiltonians[END_REF]. Similarly, we observe that W(θ) ≡ Π 1 (θ)W is the dual basis of E(θ) with respect to the bilinear form B defined in (3.1).

Lemma 3.10. Assume that V 0 ∈ A and W satisfies conditions (1.18) and (1.19). Then we have

Π 1 (θ)f = k j=1 m j i=1 f, JW c w (j) i (θ) u (j) i (θ), ∀f ∈ L 2 , (3.62) 
for θ ∈ D(0, δ 0 ) with δ 0 > 0 small.

Proof. For θ ∈ R and |θ| < θ 0 , the equality holds by the unitary equivalence. See Corollary 3.2. Since the both sides of (3.62) are continuous in θ in the closed half-disc D + (0, δ 0 ) and holomorphic in its interior, the equality still holds true for θ ∈ D(0, δ 0 ).

Theorem 3.11. Let V 0 ∈ A 1 and W = V -V 0 satisfy (1.2), (1.18) and (1.19) 
. Assume that zero is an embedded eigenvalue of H = -∆ + V (x) of geometric multiplicity k and assumption (A1) holds. Let χ ∈ C ∞ 0 (R n ) and Ω(δ, θ) be defined in (3.45) for some θ ∈ C with Im θ > 0. Then

χR(z)χ = - χΠ 0 χ z + R 2 (z) (3.63)
for z ∈ Ω(δ, θ), where Π 0 is the same projector as in Theorem 3.5 and the remainder R 2 (z) is continuous up to z = 0 and satisfies Gevrey estimates: ∃C χ , C > 0 such that

R 2 (z) (N ) ≤ C χ C N N (1+γ)N (3.64)
for z ∈ Ω(δ, θ) ∪ {0} and for all N ∈ N * .

Proof. Let χ ∈ C ∞ 0 (R n ). Let h 0 = -∆ + v 0 (x) with v 0 = V 0 + χ R W constructed as before with R > 1 large enough so that χχ R = 0. Then χW c = W c (see (1.21)). Let U θ be the analytic distorsion made outside the ball B(0, R 0 ) with R 0 sufficiently large, one has for θ ∈ R with |θ| < δ 0 χR(z)χ = χR(z, θ)χ = χ(I + r 0 (z, θ)W c ) -1 r 0 (z, θ)χ. (3.65) 
The above equality initially valid for θ ∈ R and z ∈ C + with Im z > 0 sufficiently large allows to extend χR(z)χ meromorphically into a sector below positive real axis when Im θ > 0 and appropriately small. Fix θ ∈ C + with |θ| small. In order to inverse the holomorphic family W (z, θ) ≡ I + r 0 (z, θ)W c for z in Ω(δ, θ) with δ > 0 small, we shall construct θ-dependent Grushin problem similar to the θ-independent one considered in the proof of Theorem 3.5.

For this purpose we use holomorphic families of vectors U(θ) and W(θ) constructed above.

Let Π 1 (θ) = I -Π 1 (θ). I + G 0 (θ)W c is injective on Range Π 1 (θ). Since the operator I + G 0 (θ)W c is compact, the Fredholm theorem implies that Π 1 (θ)(I + G 0 (θ)W c )Π 1 (θ) is invertible on Range Π 1 (θ). So is Π 1 (θ)(I + r 0 (z, θ)W c )Π 1 (θ) for z ∈ Ω(δ, θ) when δ > 0 is small. The inverse E(z, θ) := (Π 1 (θ)(1 + r 0 (z, θ)W c )Π 1 (θ)) -1 Π 1 (θ) (3.66)
is uniformly bounded in z ∈ Ω(δ, θ) (see Proposition 3.6) and satisfies by Corollary 3.7 Gevrey estimates of the form (3.64) on Ω 0 (δ, θ).

Define S(θ) :

C m → L 2 and T (θ) : L 2 → C m by S(θ)c = k i=1 m i j=1 c (i) j u (i) j (θ), c = ⊕ k i=1 (c (i) 1 , • • • , c (i) m i ) ∈ ⊕ k i=1 C m i , T (θ)u = ⊕ k i=1 B(u, w (i) 1 (θ)), • • • , B(u, w (i) m i (θ)) , u ∈ L 2 .
Then one has S(θ)T (θ) = Π 1 (θ) in view of Lemma 3.10 and T (θ)S(θ) = I m . Indeed, for θ ∈] -δ, δ[, T (θ)S(θ) = I m since Π 1 (θ) and Π 1 are unitary equivalent. Thus the equality still holds true for θ ∈ D + (0, δ) with δ > 0 small since θ → Π 1 (θ) is holomorphic in D + (0, δ) and norm-continuous for θ ∈ D + (0, δ) by Lemma 3.9. One can follow the same way as in the proof of Theorem 3.5 by using the following asymptotic expansion at threshold zero: for all

N ∈ N * r 0 (z, θ) = N -1 j=0 z j G 0 (θ) j+1 + z N G 0 (θ) N r 0 (z, θ), z ∈ Ω(δ, θ),
in B(0, s, 0, s -2N µ), ∀s ∈ R. For z ∈ Ω(δ, θ) with δ > 0 small and L ∈ N, we obtain

det E -+ (z, θ) = σ 0 (θ)z k + σ 1 (θ)z k+1 + • • • + σ L-1 (θ)z k+L-1 + O(|z| k+L ), (3.67) 
where

σ 0 (θ) = µ(θ) × det u (j) 1 (θ), Ju (i) 1 (θ) 
1≤i,j≤k

with µ(θ) = (-1) k c 1 (θ) -1 • • • c k (θ) -1 .
Indeed, if condition (1.12) holds, then det u 

(i) 1 (θ), u (i) m i (θ)) = 0, 1 ≤ i ≤ k, for Im θ ≥ 0 and |θ| small. From (3.65), one can deduce that R(z, θ)f = - 1 z k =1 k i,j=1 p i (θ) p j (θ) f, Ju (j) 1 (θ) u (i) 1 (θ) + R 2 (z, θ)f := - 1 z k i=1 f, JΨ i (θ) Ψ i (θ) + R 2 (z, θ)f for z ∈ Ω(δ, θ), where Ψ i (θ) = k =1 p i (θ)u (i) 1 (θ) and P k (θ) = (p ij (θ)) 1≤i,j≤k is such that t P k (θ)P k (θ) = Q k (θ) -1 with Q k (θ) = ( u (j) 1 (θ), Ju (i) 1 (θ) ) 1≤i,j≤k
is a holomorphic family of invertible matrices for θ ∈ C with |θ| small enough, by the above argument. Moreover, the remainder R 2 (z, θ) is continuous up to z = 0 and satisfies uniform Gevrey estimates as in (3.58). The detail of calculation is similar to the proof of Theorem 3.5 and is not repeated here. This shows that

χR(z)χ = - P 0 z + R 2 (z), ∀z ∈ Ω(δ, θ), (3.68) 
where

P 0 = k i=1 •, JχΨ i (θ) χΨ i (θ),
and the remainder R 2 (z) is continuous up to z = 0 and satisfies the estimates (3.64). See also the proof of Theorem 5.20 in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] for Gevrey estimates of the remainder R 2 (z).

Finally, we affirm that P 0 is independent of θ and is equal to χΠ 0 χ. In fact, since V 0 ∈ V, we can apply Theorem 3.5 to R(z) for Re z < 0 without utilizing analytic deformation. It follows that

χR(z)χ = - χΠ 0 χ z + χR 1 (z)χ. (3.69)
Thus the comparison between (3.68) and (3.69) yields P 0 = χΠ 0 χ and R 2 (z) = χR 1 (z)χ for Re z < 0 and |z| small.

Resolvent expansion near positive resonances

In this section we compute the expansions of R(z) and χR(z)χ near outgoing positive resonances of H by the method similar to that used in [START_REF] Aafarani | Large-time behavior of solutions to Schrödinger equation with complex-valued potential[END_REF] for quickly decreasing potentials. When there is no analyticity condition on the potential, the expansion of R(z) is calculated for z in a half-disk in C + around an outgoing positive resonance, while if the potential is analytic, we use the analytic distortion method to calculate the expansion of χR(z)χ for z in a pointed disk in C centered at an outgoing positive resonance.

The case of non-analytic potentials.

Consider the non-selfadjoint Schrödinger operator H = -∆ + V which is a compactly supported perturbation of the model operator h 0 = -∆ + v 0 , where V -v 0 = W c . Assumption (A3). 1. Assume that Im v 0 ≤ 0 and that v 0 satisfies for some C > 0 and

ρ 1 > 0 |v 0 (x)| ≤ C x -ρ 1 , ∀x ∈ R n and |x| > R (4.70)
for some R > 0;

2. (x • ∇ x ) j v 0 is -∆-compact for all integers j ∈ N;

3. W c is of compact support and is -∆-compact.

Let r + (H) be the set of outgoing positive resonances of H defined by Definition 1.4. One has r + (h 0 ) = ∅ because h 0 is dissipative, and the boundary value of the resolvent

r 0 (λ + i0) = lim z→λ,Im z>0 (h 0 -z) -1
exists in B(-1, s, 1, -s), ∀s > 1/2, for all λ > 0. Moreover, for ∈ N * and s > + 1/2 the above limit r 0 (λ + i0) defines a function of class C on ]0, +∞[ with values in B(-1, s, 1, -s) (cf. [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF]), where

1 j! d j dλ j r 0 (λ + i0) = lim z→λ,Im z>0 r 0 (z) j+1 , j = 1, 2, • • • , . (4.71) 
For simplicity, we denote for λ > 0

G + j (λ) = 1 j! d j dλ j r 0 (λ + i0), j = 0, 1, • • • , . (4.72) 
By Definition 1.4, λ 0 ∈ r + (H) if and only if -1 is an eigenvalue of the compact operator K + 0 (λ 0 ) := G + 0 (λ 0 )W c in L 2,-s for all s > 1/2. We denote by Π + 1 the Riesz projection associated with the eigenvalue -1 of K + 0 (λ 0 ) given by

Π + 1 = 1 2iπ |z+1|= 0 (z -K + 0 (λ 0 )) -1 dz : L 2,-s → L 2,-s
for some 0 > 0 small. Set E + (λ 0 ) = Range Π + 1 (λ 0 ). Denote m(λ 0 ) = dim E + (λ 0 ) and k 0 = dim Ker(I + K + 0 (λ 0 )). Notice that Lemma 3.1 is still true for E + (λ 0 ) ⊂ L 2,-s in the present case. In particular, we have the following basis of E + (λ 0 ):

U + = k 0 i=1 U + i with U + i = {ϕ (i) 1 , • • • , ϕ (i) 
m i (λ 0 ) }, i = 1, • • • , k 0 ,
and its dual basis with respect to the bilinear form B(•, •) in (3.1) well defined on E + (λ 0 ) × E + (λ 0 ):

W + = k 0 i=1 W + i with W + i = {ψ (i) 1 , • • • , ψ (i) 
m i (λ 0 ) }, i = 1, • • • , k 0 .
In order to compute the asymptotic expansion of R(z) for z in a small domain of the form

Ω + (δ) = {z ∈ C + , |z -λ 0 | < δ} (4.73) 
for δ > 0 small, we use the formula

R(z) = (1 + r 0 (z)W c ) -1 r 0 (z) (4.74)
and construct for 1 + r 0 (z)W c a Grushin problem similarly as in Section 3 (with z ∈ Ω + (δ) and U and W replaced by U + and W + , respectively). Let

(1 + r 0 (z)W c ) -1 = E(z) -E + (z)E -+ (z) -1 E -(z) (4.75)
be the resulting representation formula. Recall that

r 0 (z) = j=0 (z -λ 0 ) j G + j (λ 0 ) + r + (z, λ 0 ), z ∈ Ω + (δ), (4.76) 
which is valid in B(0, s, 0, -s) for s > + 1/2 and ∈ N, where the remainder r + (z, λ 0 ) is holomorphic in Ω + (δ) and continuous up to λ ∈]λ 0 -δ, λ 0 + δ[. In addition, the limit

r + (λ + i0, λ 0 ) = lim z→λ,z∈Ω + (δ) r + (z, λ 0 )
defines a function of λ of class C on (]λ 0 -δ, λ 0 + δ[). Thus for ∈ N and z ∈ Ω + (δ), the expansion of E -+ (z) in (3.15) has the following form:

E -+ (z) = j=0 (z -λ 0 ) j E + j (λ 0 ) + E -+, (z, λ 0 ), (4.77) 
where

(E + 0 (λ 0 )) (ij) = -        0 δ ij 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 • • • 0 δ ij 0 0 • • • 0 0        m i (λ 0 )×m j (λ 0 )
and (4.78)

(E + 1 (λ 0 )) (ij) =        * * • • • * . . . . . . . . . . . . . . . . . . * * • • • * a ij (λ 0 ) * • • • *        m i (λ 0 )×m j (λ 0 ) , ∀1 ≤ i, j ≤ k, (4.79) with a ij (λ 0 ) = -c i (λ 0 ) -1 G + 1 (λ 0 )W c ϕ (j) 1 , JW c ϕ (i) 1 , ∀1 ≤ i, j ≤ k 0 . ( 4 
.80) In addition, the remainder E -+, (z, λ 0 ) is analytic in z ∈ Ω + (δ) as matrix-valued function and for λ ∈]λ 0 -δ, λ 0 +δ[ the limit E -+, (λ+i0, λ 0 ) defines a function of class C on ]λ 0 -δ, λ 0 +δ[. Lemma 4.1. Let the assumptions (A2) and (A3) be satisfied and λ 0 ∈ r + (H). Then for any

N ∈ N det E -+ (z) = σ k 0 (λ 0 )(z -λ 0 ) k 0 + • • • + σ k 0 +N (λ 0 )(z -λ 0 ) k 0 +N + o(|z -λ 0 | k 0 +N ), (4.81) for z ∈ Ω + (δ), where σ k 0 (λ 0 ) = det (a ij (λ 0 )) 1≤i,j≤k 0 = 0.
The proof of Lemma 3.3 can be repeated here to prove Lemma 4.1, using the expansion (4.77). Lemma 4.1 implies in particular the following Corollary 4.2. Under the conditions of Lemma 4.1, λ 0 is an isolated point in r + (H).

Proof. Lemma 4.1 shows that there exists some δ > 0 such that E -+ (z) -1 exists for z such that 0 < |z -λ 0 | < δ and Im z ≥ 0. From (4.75), it follows that for λ ∈]λ 0 -δ, 0[∪]0, λ 0 + δ[, 1 + r 0 (λ + i0)W c is invertible as operator in L 2,-s , s > 1 2 . Therefore λ is not an outgoing positive resonance of H. This proves r + (H)∩]λ 0 -δ, λ 0 + δ[= {λ 0 }. Theorem 4.3. Suppose that Assumptions (A2) and (A3) are satisfied. Let ∈ N, s > + 3/2 and λ 0 ∈ r + (H). Then the resolvent expansion has the following form

R(z) = - Π + 0 (λ 0 ) z -λ 0 + R + 1 (z, λ 0 ) (4.82) in B(-1, s, 1, -s) for z ∈ Ω + (δ).
Here

Π + 0 (λ 0 ) = k 0 i=1 •, JΨ + i Ψ + i with (4.83) B + λ 0 (Ψ + i , Ψ + j ) = δ ij , ∀1 ≤ i, j ≤ k 0 , (4.84) 
where

{Ψ + 1 , • • • , Ψ + k 0 } is a basis of Ker(I + K + 0 (λ 0 )) in L 2 
,-s and B + λ 0 is the bilinear form defined in (1.22). Moreover, the remainder term R + 1 (z, λ 0 ) is analytic in Ω + (δ) and for λ > 0 with |λ -λ 0 | < δ, the limit Proof. Under the condition (1.23), the matrix

R + 1 (λ + i0, λ 0 ) = lim z∈Ω + (δ),z→λ R + 1 (z, λ 0 ) ( 4 
B + λ 0 (ϕ (i) 1 , ϕ (j) 1 ) 
1≤i,j≤k 0 

E(z) = j=0 (z -λ 0 ) j E j (λ 0 ) + (z), (4.87) 
in the norm sense of B(L 2,-s ), where the terms E j , j = 0, • • • , , can be obtained explicitly. By (4.85), the remainder term (z) is analytic in Ω + (δ) and for |λ-λ 0 | < δ the limit (λ+i0) belongs to C (]λ 0 -δ, λ 0 + δ[, B(L 2,-s )).

Following the same method used to calculate the expansion (3.24), we obtain

E -+ (z) -1 = F -1 (λ 0 ) z -λ 0 + F(z, λ 0 ), ∀z ∈ Ω + (δ), (4.88) 
where

F -1 (λ 0 ) is k 0 × k 0 block matrix, with block entries F (ij)
-1 (λ 0 ) are of the same form as

F (ij) -1 in (3.25) with entries γ ij (λ 0 ) instead of α ij , 1 ≤ i, j ≤ k 0 , such that (γ ij (λ 0 )) 1≤i,j≤k 0 = (a ij (λ 0 )) 1≤i,j≤k 0 -1
, where a ij (λ 0 ) are given in (4.80). Moreover, the remainder term F(z, λ 0 ) is continuous up to ]λ 0 -δ, λ 0 +δ[ and the limit F(λ+i0, λ 0 ) defines a C ∞ matrix-valued function on ]λ 0 -δ, λ 0 +δ[. Since the techniques of the rest of the proof are close to those used in the proof of Theorem 3.5, we omit details. We only note that in the present case the matrix in (4.86) will play the role of Q k in (3.35) which yields the leading term in (4.82).

Note that because of the singularity (z -λ 0 ) -1 in (4.88), the expansion (4.87) of E(z) up to order + 1 is required, so s > + 3/2. Moreover, for the remainder R + 1 (z, λ 0 ), the regularity C ]λ 0 -δ, λ 0 + δ[, B(-1, s, 1, -s) of R + 1 (λ + i0, λ 0 ) derives from the regularity properties of the remainders of E(z) and E -+ (z) -1 in (4.87) and (4.88), respectively, and from formulae (4.74) and (4.75).

The case of analytic potentials.

In this subsection, we assume that all conditions of Theorem 1.2 are satisfied. In particular, we can decompose H as H = h 0 + W c as in Subsection 3.2 with h 0 = -∆ + v 0 (x) and

v 0 = V 0 + χ R W . Let H(θ) = U θ HU -1 θ = h 0 (θ) + W c (x), θ ∈ R, where h 0 (θ) = U θ h 0 U -1 θ = -∆ θ + v 0 (x, θ),
be the distorted operator defined in Section 3. Here the distortion is made outside a sufficiently large ball. Then h 0 (θ) and H(θ) define holomporphic families of type A for θ in a complex neighborhood of zero. For Im θ > 0 and |θ| < θ 0 with θ 0 > 0 small, it has been shown in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]Theorem 5.1] that σ d (H(θ)) (the discrete spectrum of H(θ) ) verifies

σ d (H(θ)) ∩ R + = r + (H), (4.89) σ d (H(θ)) ∩ C + = σ d (H) ∩ C + .
(4.90)

In particular, H has at most a countable set of outgoing positive resonances with zero as the only possible accumulation point. Theorem 3.11 says that zero is not an accumulation point of σ d (H(θ)), so the set r + (H) is finite under the condition of Theorem 1.2.

We observe that r 0 (z, θ) = (h 0 (θ) -z) -1 defined initially for Im z > 0 and θ ∈ R can be holomorphically extended in θ for θ ∈ C with |θ| small. Then, for θ ∈ D + (0, θ 0 ) with θ 0 > 0 small, r 0 (z, θ) is holomorphic in z ∈ {Im z > -cIm θRe z}. In particular, for Im θ > 0 and λ 0 > 0 we have that r + 0 (λ 0 , θ) := (h 0 (θ) -λ 0 -i0) -1 is a bounded operator on L 2 (R n ). In addition, for any L ∈ N, the expansion of r + 0 (λ 0 , θ) in B(L 2 ) is written

r 0 (z, θ) = L j=0
(z -λ 0 ) j G +,j 0 (λ 0 , θ) + r + 1 (z, λ 0 , θ), ∀z ∈ Ω λ 0 (δ), (4.91) where G +,j 0 (λ 0 , θ), j = 0, 1, • • • , L, are bounded operators on L 2 (R n ) defined as in (4.72) with r 0 (z) replaced by r 0 (z, θ) and Ω λ 0 (δ) is given by Ω λ 0 (δ) = Ω(δ) ∪ {λ 0 } with Ω(δ) := {z ∈ C; 0 < |z -λ 0 | < δ}, (

for some 0 < δ < λ 0 Im θ. Moreover, the remainder r + 1 (z, λ 0 , θ) is holomorphic in z ∈ Ω λ 0 (δ).

Set K + 0 (θ) = r + 0 (λ 0 , θ)W c . The same proof as that of Lemma 3.8 shows that K + 0 (θ) is a holomorphic family of compact operators on L 2,-s (R n ), ∀s > 1/2, for θ ∈ D + (0, ) with > 0 small, and norm-continuous for θ ∈ D + (0, ). We recall that by definition of outgoing positive resonances, λ ∈ r + (H) if -1 is a discrete eigenvalue of the compact operator K + 0 = K + 0 (0) on L 2,-s , ∀s > 1/2. Thus Lemma 3.9 can be applied here to x -s Π + 1 (θ) x s , ∀s > 1/2, where Π + 1 (θ) is defined similarly to Π 1 (θ) with K 0 (θ) replaced by K + 0 (θ), because θ → K + 0 (θ) ∈ B(L 2,-s ) is norm-continuous for θ ∈ D + (0, ). We obtain that the family Π + 1 (θ) ∈ B(L 2,-s ) of Riesz projections associated with the eigenvalue -1 of K + 0 (θ) is holomorphic in θ ∈ D + (0, ) and ∀s > 1/2 lim θ→0, θ∈D + (0, )

x -s (Π + 1 (θ) -Π + 1 (0)) x s = 0. 

Proofs of the main theorems

In this section we prove the main theorems. In theorems 1.1 and 1.2 when zero is an eigenvalue of H we are interested in the contribution of the eigenvalue zero to the leading term of the asymptotic expansion in time for the heat semigroup e -tH and Shrödinger semigroup e -itH . With the Gevrey estimates on the remainders in resolvent expansions, the sub-exponential time-decay estimates in (1.13) and (1.24) can be proved in the same way as in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF]Section 5], therefore the details are omitted here.

Proof of Theorem 1.1. The same proof as that of Theorem 2.4 in [START_REF] Wang | Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups[END_REF] can be done here. The large-time expansion of e -tH follows directly from Theorem 3. 

Corollary 3 . 2 .

 32 Let a basis B ≡ k i=1 U i of E and its B-dual basis B * ≡ k i=1

  .51) Using an argument of perturbation, the estimate (3.50) for |z| large follows from (3.51). To prove (3.50) for |z| bounded we use the same argument as in the proof of [12, Proposition 4.7].

  57) and uniform estimates (3.50) and (3.56). It follows from (3.50) that σ d (H 0 (θ)) ∩ S(-c 0 θ, γ 0 ) = ∅, so does r 0 (z) using the resolvent equation (3.57) and (3.56). (3.48) is proved. (3.49) follows from (3.50) and (3.57).

  θ → Π 1 (θ) is continuous at θ = 0. In the same way one can see thatc i (θ) := B(u

  .85) exists in B(-1, s, 1, -s) and defines a function of λ of class C on (]λ 0 -δ, λ 0 + δ[) with values in B(-1, s, 1, -s).

Remark 4 . 1 .

 41 (a) In the above theorem, the outgoing resonance λ 0 is shown to be a simple pole of the the resolvent under Assumption (A2) and the leading term of the resolvent expansion near λ 0 is computed explicitly.(b) The result of Theorem 4.3 was obtained in [1, Theorem 2.5] for rapidly decreasing potential V under the condition that V (x) = O( x -ρ ), ∀x ∈ R 3 , for some ρ > 2 + 3.

( 4 .

 4 86) is invertible. Then by Lemma 4.1, the matrix E -+ (z) is invertible for z ∈ Ω + (δ). Thus, the same Grushin problem constructed in the proof of Theorem 3.5 for I + G 0 (z)W c is invertible for z ∈ Ω + (δ). For ∈ N, s > + 1/2 and z ∈ Ω + (δ), introducing the expansion (4.76) in (3.6) yields the following expansion of E(z)

Theorem 4 . 4 .

 44 Assume that V 0 ∈ A 1 and that conditions (1.2), (1.18) and (1.19) are satisfied. Let λ 0 ∈ r + (H) verifying the assumption (A2) and χ ∈ C ∞ 0 (R n ). Then for z ∈ Ω(δ), 0 < δ < λ 0 Im θ with θ ∈ D + (0, ) and > 0 small, one hasχR(z)χ = -χΠ + 0 (λ 0 )χ z -λ 0 + R + 2 (z, λ 0 ) (4.93) in B(L 2 (R n )), where Π + 0 (λ 0 ) is given in Theorem 4.3 and the remainder R + 2 (z, λ 0 ) is analytic in z ∈ Ω λ 0 (δ).

Theorem 4 .

 4 4 can be proven by combining the methods used in the proofs of Theorem 3.11 and Theorem 4.3 and by using formulae (3.65) for z ∈ Ω(δ, θ) and (4.91) for z ∈ Ω λ 0 (δ) and by studying the Grushin problem constructed with bases Π + 1 (θ)U + and Π + 1 (θ)W + . The details are omitted here.

  5 and the formula e -tH -λ∈σ d (H),Re λ≤0 e -tH Π λ = i 2π lim →0 + Γ( ) e -tz R(z)dz + O(e -ct ) (5.94) where c > 0 and Γ( ) = {z; |z| ≥ , Re z ≥ 0, |Im z| = C(Re z) µ } ∪ {z; |z| = , | arg z| ≥ ω 0 } for some appropriate constants C, µ > 0. Here ω 0 is the argument of the point z 0 with |z 0 | = , Re z 0 > 0 and Im z 0 = C(Re z 0 ) µ . According to Theorem 3.5, if the assumption (A1) holds, then H has no discrete eigenvalues in some domain O(δ) given in (2.3) for δ > 0 small. Since discrete eigenvalues located on the left of the curve Γ(0) = {z; Re z ≥ 0, |Im z| = C(Re z) µ } can accumulate only at zero, it follows that H has at most a finite number of eigenvalues there. These discrete eigenvalues contribute to e -tH the term λ∈σ d (H),Re λ≤0 e -tH Π λ + O(e -ct ). By Theorem 3.5, one can evaluate e -a x 1-µ i 2π lim →0 + Γ( ) e -tz R(z)dz -Π 0 ≤ Ce -ct β with C, c > 0 and β = 1-µ 1+κµ . Theorem 1.1 is proved. The large-time expansion for the Shrödinger semigroup e -itH can be derived from Theorem 3.11 and Theorem 4.4 by taking into account the contribution from discrete eigenvalues in the upper-half plane and outgoing positive resonances. Proof of Theorem 1.2. For χ ∈ C ∞ 0 (R n ), we use analytic distorsion outside some sufficiently large ball (including the support of χ). Let R(z, θ) = (H(θ) -z) -1 . The formula χR(z)χ = χR(z, θ)χ with Im θ > 0 gives a meromorphic extension of the cut-off resolvent into a sector below the positive half-axis. As seen before, the outgoing positive resonances are discrete eigenvalues of the distorted operator H(θ) in ]0, +∞[ and their number is finite. Under the conditions of Theorem 1.2, outgoing positive resonances are simple poles of the cut-off resolvent χR(z)χ according to Theorem 4.4.Let Γ η ( ) be the contour defined byΓ η ( ) = {z = re -iη , r ≥ } ∪ {z = -re iη , r ≥ } ∪ {z; |z| = , -η ≤ arg z ≤ π + η}for some η > 0, where η > 0 is chosen such that χR(z)χ has no poles with negative imaginary part between Γ η ( ) and the real axis. Since χR(z)χ has only a finite number of poles located above Γ η ( ) which are discrete eigenvalues of H in C + and the outgoing positive resonances, we obtain from Theorem 4.4 the formula χ e -itH -λ∈σ d (H)∩C + e -itH Π λ -ν∈r + (H) e -itν Π + 0 (ν) χ = i 2π lim →0 + Γη( )e -itz χR(z)χdz + O(e -ct ).Since Im z < 0 for z ∈ Γ η (0) and z = 0, one can derive from Theorem 3.11 that e -a x 1-µ i 2π lim→0 + Γη( )e -tz χR(z)χdz -χΠ 0 χ ≤ Ce -ct β with C, c > 0 and β = 1-µ 1+µ . Theorem 1.2 is proved.