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On the Spectral Efficiency of LoRa Networks:
Performance Analysis, Trends and Optimal Points

of Operation
Lam-Thanh Tu, Abbas Bradai, Senior Member, IEEE, Yannis Pousset and Alexis I. Aravanis

Abstract— In the present paper a closed-form framework
is derived for the analysis and optimization of the coverage
probability (Pcov) and of the area spectral efficiency (ASE) in
long-range (LoRa) networks. The proposed framework exploits
stochastic geometry tools to associate the Pcov and the ASE to
the end device (ED) transmit power and to the ED density. The
analysis reveals the trends of the Pcov and of the ASE curves, with
respect to both of the two parameters, while the robustness of
the framework holds even at the asymptotic cases. Building upon
the derived framework, the analysis demonstrates that no joint
global optimum exists that jointly maximizes the Pcov over both
parameters, suggesting that the optimization of the Pcov must
be performed separately, for the two key network parameters
considered. As opposed to that, the analysis demonstrates that
a set of global optima exists that jointly maximize the ASE
over both parameters, and these global maxima are subsequently
derived in closed form. Thus, the derived framework fully
characterizes the performance of LoRa networks, while defining
in closed form the optimal points of operation that can be proven
of significant value, for the transceiver and network design, of
practical LoRa networks.

Index Terms— LPWAN, LoRa Networks, Stochastic Geometry,
System-Level Analysis, Spectral Efficiency.

I. INTRODUCTION

The emerging technology of low power wide area networks
(LPWANs) has arisen as a prime candidate for supporting
the interconnection of massive number of internet-of-things
(IoT) devices, that are characterized by different quality-of-
service (QoS) objectives. Among all available LPWAN tech-
nologies such as long-range (LoRa), Sigfox and Narrowband-
IoT (NB-IoT), LoRa has received an increasing attention both
from the industrial and the academic research communities
and is widely regarded as the most promising technology
toward realizing the LPWAN objectives [2]. The main driving
force behind LoRa’s success is its patented chirp spread
spectrum (CSS) modulation, which outperforms significantly
the conventional modulation schemes, like QAM and PSK,
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with respect to the suppression of noise and fading [3].
Moreover, LoRa can support a wide range of IoT devices and
applications, that belong to different QoS tiers, through the
appropriate adjustment of its intrinsic parameters, such as the
spreading factor (SF), the coding rate (CR) and the bandwidth
(BW). In addition, LoRa obviates the need for sensing the
medium’s availability or for applying any procedure to access
the medium thanks to the ALOHA protocol. This allows for
the reduction of the ED energy consumption, and allows for
the EDs to actively access the medium regardless of the chan-
nel occupancy, while the resulting increased interference (com-
pared to other protocols) can be combated at the receiver, due
to the intrinsic LoRa characteristics as will be demonstrated in
the following sections. Due to these features, LoRa allows for
optimizing the overall network performance, and for devising
optimization strategies tailored to the network in hand. The
development of such strategies, however, is preconditioned
on the system-level analysis of the LoRa network, and on
the understanding of the performance trends that govern its
operation.

In the direction of performing such system-level analysis of
LoRa networks, stochastic geometry (SG) can be employed
in order to model the random deployment of EDs and gate-
ways, by employing a tractable mathematical framework. The
employment of SG for the study of LoRa networks was first
performed by Orestis et al. in [4], where the deployment of
EDs was modelled by a homogeneous Poisson point process
(PPP). In their work, however, the correlation, at the re-
ceiver, between the signal-to-noise ratio (SNR) and the signal-
to-interference-ratio (SIR) is ignored. In [5], the EDs are
distributed according to the Matern cluster process and the
study focuses on the coverage probability (Pcov) and the area
spectral efficiency (ASE) of the network. The employment of
the Matern cluster point process allows for capturing more
accurately the characteristics of the ED deployments in LoRa
networks, however, it introduces a significant intractability
in the mathematical framework. In particular, it imposes the
employment of numerical techniques for the computation of
the system metrics, which does not allow for understanding
the system trends and for obtaining insights into the network
behaviour. Hoeller et al. studied the performance of LoRa
networks for gateways that employ multiple antennas [6].
They, however, also ignore the correlation between the SNR
and the SIR at the receiver.

In [7], the Pcov is computed considering either the aggregate
interference of all EDs or the interference arising only by the
dominant interferer. In spite of the employment of a tractable
PPP for the modelling of the ED distribution and of the
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dominant interferer approximation, the Pcov, still, cannot be
derived in a closed form. Therefore, numerical computations
are employed instead. However, their findings demonstrated
that the Pcov derived by taking into account only the dominant
intra-SF interferer constitutes a very accurate approximation of
the exact Pcov that is derived by taking into account the ag-
gregate intra-SF interference. In [8], the coverage probability
and the energy efficiency in LoRa networks is compared for
different MAC protocols, i.e., pure ALOHA, slotted ALOHA
and CSMA. The results demonstrate that the slotted ALOHA
achieves the highest performance among all considered pro-
tocols. However, the analysis also assumes that the SNR and
the SIR are independent at the receiver. Experimental results
in [9] also revealed that the slotted ALOHA protocol improves
significantly the energy efficiency of LoRa network. In [10],
the authors developed a framework based on tools from SG for
analysing the energy efficiency of LoRa networks, by taking
into account the energy consumption at each operating state
of the EDs. These states included among others the wake up,
sleep, and waiting states.

The performance of LoRa networks has also been inves-
tigated under different frameworks, that do not employ SG
for the modelling of the ED deployment. In [11], Reynders et
al. proposed a novel SF allocation scheme, to guarantee a fair
collision probability among all SFs. The proposed scheme out-
performs the conventional distance-based allocation scheme
with respect to the packet error rate, while an extension
to this scheme was introduced in [12]. In [13] the authors
study the resource allocation problem for LoRa networks with
respect to the energy efficiency, introducing a joint power and
channel allocation scheme. The end-to-end (e2e) latency of
LoRa transmissions is then examined in [14], with the study
showing that the e2e latency in LoRa networks can be reduced
though the appropriate reduction of the arrival rate.

Building upon the aforementioned works, the present paper,
studies the system-level performance of LoRa networks em-
ploying a PPP for modelling the distribution of the EDs, while
assuming that the small-scale fading follows a Nakagami-
m distribution (that incorporates many fading distributions
including Rayleigh). As opposed to [4], [6], [8] the introduced
framework takes into account the correlation between the
SNR and the SIR at the receiver. Moreover, as opposed
to [5], [7] where the Pcov and the ASE were computed
through numerical computations, the present paper derives
approximate, albeit accurate, closed-form expressions for both
metrics. This allows for gaining insights into the performance
trends of the network by associating the Pcov and the ASE to
fundamental network and ED design parameters, namely the
ED density and the ED transmit power. This allows for the
optimal transceiver design and the optimization of the LoRa
network parameters, with respect to the maximization of the
Pcov and the ASE. More precisely, the main contributions of
the present paper can be outlined as follows:

• A novel formulation of the coverage probability is in-
troduced, that takes into account the correlation between
the SIR and the SNR at the receiver. Building upon this
definition, we derive approximate, albeit tight, closed-
form expressions for both the Pcov and the ASE.

• The derived closed-form framework provides insights into
the behavior of Pcov with respect to key network param-
eters, namely, the ED density and the transmit power. In
particular, Pcov is demonstrated to be a monotonically
decreasing convex function with respect to the density
of EDs and a concave, monotonically increasing function
with respect to the transmit power. Pcov is also computed
for the asymptotic cases where the ED density and the
transmit power tend to infinity and zero respectively.
The introduced Pcov approximation is also compared,
via numerical simulations, against the pervasive Pcov
approximation that ignores the correlation between the
SNR and the SIR at the receiver, demonstrating the
superior performance of the introduced approximation
with respect to the accuracy of the results.

• Subsequently, focusing on the ASE, the derived closed-
form framework provides insights into the behavior of
the ASE with respect to the density of EDs and the
transmit power. It is demonstrated that the ASE has an
identical behavior with Pcov with respect to the transmit
power, while the trends of the ASE with respect to the
density of EDs is more complex than that of the Pcov.
In particular, the ASE is either a concave function that
increases monotonically with the ED density or is a
unimodal function of the ED density.

• The trade-off between the path-loss exponent and the
optimal density of EDs is examined.

• Subsequently, the trends of the Pcov and of the ASE are
studied jointly, taking into account the impact of both
the transmit power and the ED density in the analysis.
It is, thus, evinced that no pair of ED transmit power
and ED density exists that jointly maximizes the Pcov,
and that the optimization with respect to Pcov needs
to be therefore performed individually for each of the
two terms. However, it is proven that a set of pairs of
ED transmit power and ED density exists that jointly
maximize the ASE, that is the figure of merit quantifying
the overall network performance. The set of optimum
pairs maximizing the ASE is derived in closed form, thus
allowing for the optimal transceiver design (with respect
to transmit power) and the optimization of the LoRa
network deployment (with respect to the ED density).

• Numerical results are also provided to corroborate the
accuracy of the derived mathematical framework, while
the introduced approach considering only the dominant
intra-SF interferer is shown to serve as a tight upper
bound for the case where the sum of the aggregate (both
intra-SF and inter-SF) interference is taken into account.

Compared to the conference version, we have added the
following contributions:

• We have considered two spreading factor allocations,
namely, the fair-collision and the random SF allocations
as opposed to only the random allocation.

• We have examined the behavior of the Pcov and of the
ASE with respect to both the transmit power and the
density of EDs simultaneously.

• We have derived the joint optimums of the ASE in closed



3

TABLE I: Main notations and mathematical symbols

Symbol Definition
E {.}, Pr (.) Expectation and probability operators
Γ (.), γ (., .) Gamma and lower incomplete gamma functions
exp (.), ln (.) Exponential and logarithm functions

FX (x) Cumulative distribution function (CDF) of RV X
fX (x) Probability density function (PDF) of RV X
1 (x), Indicator function.

f (x) = df(x) /dx First-order derivative of f with respect to x..
f (x) = d2f(x) /dx2 Second-order derivative of f with respect to x

max {.} Maximum function
Pcov (γD,k, s) Exact Pcov of SF k and s SF allocation scheme
P̃cov (γD,k, s) Approximated Pcov of SF k and s SF allocation scheme
ASEs, ÃSEs Exact and Approximated ASE of s SF allocation scheme

Det {X} The determinant of the X matrix
H (x, y) The Hessian matrix of variables x and y
λk, Nk The density and average number of EDs of SF k
β, K0 The path-loss exponent and path-loss constant
Ptx, σ2 The transmit power and noise variance

form, maximizing the ASE over both the transmit power
and the density of EDs.

• We have provided full derivations of all Propositions and
Theorems.

• We have provided a thorough justification for all consid-
ered approximations.

• We have employed the exact framework for the packet
length.

• We have derived in closed form the inflection point of
the ASE with respect to the average number of EDs.

• We have investigated the trends of the optimum and of the
inflection point of the ASE with respect to the path-loss
exponent.

• We have produced new figures and more numerical
results (based on the aggregate interference (both co-
SF and inter-SF interference) accounting also for the
case where the SIR and the SNR are considered to be
independent). These numerical results are then compared
with our approximate framework that does not assume
(for simplicity) the SNR and SIR to be independent
demonstrating the superior performance of the latter.

The remainder of the paper is organized as follows. Section
II, introduces the system model. Section III, presents the
framework for the analysis of the Pcov and of the ASE.
Subsequently the trends and behaviors of those metrics are
investigated in Section IV. Section V, presents the Monte
Carlo simulations corroborating the accuracy of the proposed
framework. Finally, Section VI concludes the paper and
presents perspectives.

II. SYSTEM MODEL

A. LoRa Networks Modeling

Let us consider an uplink LoRa network comprising a
gateway located at the center of a disc of radius R and a
set of EDs randomly deployed within the area of the disc
according to the inhomogeneous PPP Ψ. The intensity function

is λ = N/Q > 0 where N is the average number of EDs in
the area of the disc and Q = πR2 is the area of the disc (i.e.
the area of the considered network). The interference from
different technologies that may operate at the same industrial,
scientific or medical (ISM) band is not considered, as is
typically the case in the literature [4], [6], [7].

B. Channel Modelling

The signals transmitted by the EDs to the gateway are
subjected to both small-scale fading and large-scale path-loss.
The impact of the shadowing is not taken into account, as
its effects can be simply incorporated into the analysis by
appropriately scaling the value of λ [18].

1) Small-scale fading: The small-scale fading from an
arbitrary node o to the gateway is denoted by ho and ho

is assumed to follow a Nakagami-m distribution with shape
and spread parameters m ≥ 1/2 and Ω, respectively. As a
result, the channel gain h2

o follows a Gamma distribution of
shape and scale parameters m and θ = Ω/m, respectively.
The Nakagami-m fading is considered for the analysis, since
it constitutes a general case of fading that can represent a
wide range of fading distributions through the appropriate
adjustment of the shape parameters. For instance, for m = 1
the fading follows a Rayleigh distribution and for m = 1/2 it
follows the single-sided Gaussian distribution.

2) Large-scale path-loss: Focusing on the transmission link
from a generic node o to the gateway, then the large-scale
path-loss of the link is given by [10]

Lo = l (ro) = K0r
β
o , (1)

where ro is the distance from the ED o to the gateway.

Moreover, β > 2 is the path-loss exponent and K0 =
(

4πfc
c

)2
is the path-loss constant. fc is the carrier frequency and
c = 3 × 108 (in meters per second) is the speed of light.
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C. Spreading Factor Allocation

1) Fair-collision scheme: The SF allocation scheme
adopted herein is the one proposed in [11], that guarantees a
fair collision probability among all available SFs. This scheme
has been chosen since it improves the network performance
significantly compared to the popular distance-based allocation
scheme [11], [12]. Under this scheme, the probability that an
ED is assigned the SF k is given by

pfa
k = (k/2k)/

∑12

i=7
(i/2i), k ∈ {7, . . . , 12} . (2)

Hence, the density of EDs of SF k under the fair-collision
scheme is given by λfa

k = pfa
kλ.

2) Random scheme: Alternatively, under a random assign-
ment regime, each ED can be randomly assigned an arbitrary
SF by the gateway and the probability that an ED is assigned
the SF k is pra

k = 1/6,∀k while the density of EDs of SFk is
then given by λra

k = pra
kλ = λ/6.

D. Interference Modeling

In LoRa, the number of concurrent transmissions is limited
due to the strict constraints on the duty cycle. However, even
in the case of concurrent transmissions the receiver can still
decode correctly the transmitted symbol, provided that (a) the
received signal strength from the intended ED is higher than
that from an interfering ED that transmits using the same SF
1 and (b) that the intended ED and the interfering ED using
the same SF do not transmit the same symbol simultaneously
[8]. However, the probability of having the same symbol being
transmitted simultaneously by two messages is, for instance,
for a SF7 and a SF12 around 3% and 0.1%, respectively.
Moreover, regardless of the signal strength, the receiver can
still correctly decode the signal, as long as at least five symbols
of a desired and of an interfering signal using the same SF do
not completely overlap. Due to these characteristics of intra-
SF interference, the latter is approximated by the interference
created only from the dominant intra-SF interferer, in the
present paper. Moreover, the inter-SF interference is neglected.
Both assumptions are typical in the literature [4], [6], [8],
while the accuracy of the dominant interferer approximation
(versus that of the aggregate interference of all intra-SF
and inter-SF interferers) is also verified by the Monte Carlo
simulations of the present paper in Section V.

III. PERFORMANCE ANALYSIS

As already outlined, the present analysis focuses on two
metrics of LoRa networks, namely, the Pcov and the ASE. The
former metric quantifies the performance of the LoRa network
from the transmitting ED’s point of view and the latter metric
from the network’s point of view. Thus, the combination of
both metrics can act complementarily, allowing for the holistic
assessment of the network performance [5], [15], [16].

A. Coverage Probability

Considering an arbitrary ED of SF k, that is assigned to the
ED by employing either of the two SF allocation schemes s,

1In practice though, the adopted co-SF interference thresholds can vary
greatly.

where s ∈ {fa, ra}, then the coverage probability is denoted
by Pcov (γD,k, s) and refers to the probability that both the
SIR and the SNR are greater than the respective reliability
thresholds. Hence, the Pcov is formally formulated as [20]:

Pcov (γD,k, s) =Pr {SIRk,s ≥ γI, SNRk ≥ γD,k} ,

SIRk,s =
PtxS0,k

PtxIk,s
=

Ptxh
2
0,k/L0,k

Ptx max
i∈ΨA

k,s\(0)

{
h2
i,k

Li,k

} ,
SNRk =PtxS0,k/σ

2, (3)

where Pr {.} is the probability operator; γD,k is the QoS
threshold and is a function of the spreading factor k [2]; γI
is the interference rejection threshold and is independent of
the SF due to the lack of inter-SF interference. In LoRa, the
receiver can successfully decode the desired signal provided
that the SIR over the intra-SF interferers is greater than 1 dB,
i.e., γI = 6 dB [4], Ptx is the transmit power of all EDs;
S0,k is the signal from the ED of interest to the gateway; Ik,s
is the interference from the dominant interferer among the
transmitting EDs of SF k, while k is assigned under the SF
allocation scheme s. h2

0,k, h2
i,k, L0,k and Li,k are the small-

scale fading and large-scale path-loss from the ED of interest
0 and from the interfering ED i of SF k. ΨA

k,s\ (0) is the set
of active (i.e. transmitting) EDs excluding the ED of interest
0, while ΨA

k,s follows an homogeneous PPP which density
λA
k,s = ρAk λ

s
k, s ∈ {fa, ra} in Q. Here, ρAk = 1

Tin,k

Lpac,k

Rk
is the

probability that an ED of SF k is active (i.e. in transmission
mode); Tin,k is the average packet inter arrival time and it is
assumed to be the same for all SFs, i.e., Tin,k = Tin,∀k; Rk

is the bit rate of SF k and is given by Rk = k Bw
2k

4
4+Cr [2];

and Lpac,k is the packet length (in bits) of SF k and is given
by [21]

Lpac,k= k ((Npre + 4.25)+8+ (4)

max

{⌈
8PL− 4k+ 28 + 16CRC − 20H

4k

⌉
(4 + Cr) , 0

})
,

where Npre is the number of preamble symbols; PL is the
physical payload length (in bytes); Cr ∈ {1, . . . , 4} is the
coding rate; CRC indicates the presence (i.e. CRC = 1) or
absence (i.e. CRC = 0) of a cyclic redundancy check (CRC)
field. H = 0, indicates that the header is enabled and H =
1 that it isn’t. ⌈·⌉ and max are the ceiling and maximum
functions, respectively. σ2 = 10(−174+NF+10 log10 Bw)/10 [4] is
the variance of the Additive White Gaussian Noise (AWGN);
NF is the noise figure (in dBm) at the receiver, Bw is the
transmission bandwidth and log10 (.) is the logarithm base 10
function. Table I summarizes main notations/symbols that are
used throughout the paper.

The Pcov in (3), explicitly takes into account the correlation
between the SIR and the SNR at the receiver, which was either
not taken into account hitherto [4], [6], [8], or was introduced
employing the signal-to-interference-plus-noise ratio (SINR),
giving rise to intractable mathematical frameworks for the
derivation of the Pcov [5].

Employing the formulation of (3), the Pcov is hereafter
computed both under an exact and under an approximate
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Pcov (γD,k, s)=
δA

Γ (m)
exp (−Gk,s)

∫ ∞

x=Bk

x−δ−1γ (δ +m, Cx) exp

(
−
Dk,sx

−δ(γI)
δγ
(
δ +m,xC(γI)

−1)
Γ (m)

+
Gk,sγ

(
m,xC(γI)

−1)
Γ (m)

)
dx. (7)

framework.
1) Exact Framework: In order to compute Pcov employing

(3), the distribution of both random variables, i.e. of the
intended signal S0,k and of the interference Ik,s needs to be
derived. The following two Lemmas define the cumulative dis-
tribution function (CDF) of the interference from the dominant
interferer and the CDF and probability density function (PDF)
of the desired signal from the ED of interest.

Lemma 1: Let us denote by γ (., .) the lower incomplete
gamma function, and δ = 2/β. Then, the CDF FS0,k

(x) and
the PDF fS0,k

(x) of the signal from the intended ED are given
by

FS0,k
(x) = (Γ (m))

−1 (
γ (m, Cx)−Ax−δγ (δ +m, Cx)

)
,

fS0,k
(x) = (δA/Γ (m))x−δ−1γ (δ +m, Cx) , (5)

where A = 1
R2

(
K0

θ

)−δ
, C = Rβ

(
K0

θ

)
and Γ (.) is the

Gamma function.
Proof: See Appendix I.

Lemma 2: Let us denote by Gk,s = λA
k,sπR

2 =

ρAk p
s
kλπR

2 = ρAk Nk,s, Nk,s is the average number of active
EDs of SF k under the SF allocation scheme s. The CDF of
the strongest interferer is then given by

FIk,s
(x) = exp

(
−Dk,sx

−δ γ (δ +m, Cx)
Γ (m)

−Gk,s + Gk,s
γ (m, Cx)
Γ (m)

)
, (6)

where Dk,s = AGk,s and exp (.) is the exponential function.
Proof: See Appendix II.

Having obtained the distribution of both random variables, the
Pcov of an arbitrary ED of SF k under scheme s can then be
computed by (7) at the top of this page and Bk = σ2γD,k/Ptx.

2) Approximation Framework: The expression of (7), and
particularly the involved integral cannot be computed in
closed-form, even for the simplest case of m = 1 (Rayleigh
fading). Therefore, a tractable approximation is introduced
which allows for the computation of the Pcov and of the ASE
in closed-form. This will allow for unveiling the trends of
these metrics with respect to key network parameters such as
λ and Ptx. In order to develop this approximate framework,
it is noted that in LoRa networks, the impact of the large-
scale path-loss is much more dominant than the impact of
the small-scale fading due to the long transmission distances.
Hence, the mathematical framework derived in this section
takes into account the long-term characteristic of the small-
scale fading, i.e., its expectation, in place of the instantaneous
value. In Section V, we show that the accuracy of the proposed
approximation holds over a wide range of parameters. The
approximated Pcov for an ED of SF k under scheme s, denoted
by P̃cov (γD,k, s) can then be computed employing Proposition
1.

Proposition 1: Let us define as S̃0,k (x) and Ĩk,s (x) the
approximated desired signal and dominant interference among

all transmitting ED of SF k, respectively. The approximated
Pcov denoted by P̃cov (γD,k, s) is then given by (8) at the top
of the next page. Here Ã = 1

R2

(
K0

F
)−δ

, C̃ = F
RβK0

, D̃k,s =

ÃGk,s, F = mθ, max {.} is the maximum function and 1 (x)
is the indicator function which is equal to 1 if x > 0 and equal
to 0 otherwise.

Proof: See Appendix III.

B. Area Spectral Efficiency

The area spectral efficiency (in bit/s/m2) quantifies the
network information rate per unit area that meets the minimum
QoS objectives, as imposed by the reliability thresholds γD,k

and γI. Mathematically, the exact ASE of the considered
networks under scheme s ∈ {fa, ra} is given by [22]:

ASEs =
∑12

k=7
ρAk p

s
kλRkPcov (γD,k, s)

=
∑12

k=7
λA
k,sRkPcov (γD,k, s) =

∑12

k=7
ASEk,s. (9)

Similarly, by replacing the exact Pcov (γD,k, s) with the
approximate P̃cov (γD,k, s) into (9) we obtain the approxi-
mated ASE denoted by ÃSEs. In the next section, the trends
and behaviors of both the Pcov and the ASE are examined,
employing the introduced approximate framework that allows
for the derivation of closed form expressions. The exact frame-
work, is also presented for comparison whenever possible.

IV. PERFORMANCE TRENDS

The main goal of the present section is to investigate the
impact of two key parameters of the network, namely, of the
ED density and of the ED transmit power, on the performance
of the two previously derived metrics that is the Pcov and
the ASE. In this course, we delve into the behavior of Pcov
and ASE by employing the approximate framework of (8). The
Pcov is the same for all SFs and for both SF allocation schemes
considered, hence the subscripts k and s can be skipped from
Pcov for simplicity in the notation. Similarly, according to (9),
the ASE is derived by summing up Pcov multiple times over
different regions. Since Pcov is identical in every region then
the subscripts k and s affect only the scaling factors in the
summation of these identical terms, while the ASE depends
on all of these summed terms and not explicitly on a single k.
Hence, k and s can also be skipped altogether from ASE for
simplicity in the notation. We therefore, employ the following
simplified notation P̃cov (γD,k, s) = P̃ and ÃSEk,s = S̃.

A. Coverage Probability

The trends of the coverage probability P̃cov (γD,k, s) under
the impact of the density of EDs λ and of the ED transmit
power Ptx are examined in Propositions 2 and 3.

Proposition 2: Let us define ω = λ, then the following
hold: i) P̃ (ω) is a convex monotonically decreasing function
of ω; ii) P̃ (ω → +∞) = 0 and
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P̃cov (γD,k, s) = Pr

{
S̃0,k

Ĩk,s
≥ γI,

PtxS̃0,k

σ2
≥ γD,k

}
= (Gk,s)

−1
(γI)

−δ
(
1− exp

(
−(γI)

δD̃k,s (8)

×
(
max

{
Bk, γIC̃

}−δ
)))

+Ã exp(−Gk,s)

((
max

{
C̃,Bk

})−δ

−
(
γIC̃
)−δ

)
1
(
γIC̃ − Bk

)
,

iii) P̃ (ω → 0) = Ã
[(

max
{
B, γIC̃

})−δ

]

+

((
max

{
C̃,B

})−δ

−
(
γIC̃
)−δ

)
1
(
γIC̃ − B

)]
.

Proof: See Appendix IV.
The exact expression of (7) can also be employed to prove
the monotonically decreasing behavior of the Pcov, however,
the second derivative of (7), cannot be computed, hence the
convexity of the Pcov could not be proven hitherto. This
highlights the impact of the approximate P̃cov (γD,k, s) and
of Proposition 2 on the system level analysis.

From the asymptotic behavior of Pcov in Proposition 2, it
is demonstrated that the Pcov converges to an upper bound
when the system is sparsely-loaded, i.e. when λ → 0. This
bound is, in general, not equal to one due to the impairment
of noise. Nevertheless, Pcov will approach one if we increase
the transmit power so that B → 0, where Bk = σ2γD,k/Ptx.
Proposition 2 also evinces that network densification is simply
destructive for the Pcov due to the increase of interference.

Proposition 3: Let us define ξ = Ptx, then the following
hold: i) P̃ (ξ) is a concave monotonically increasing function
of ξ; ii) P̃ (ξ → +∞) = (G)−1

(γI)
−δ

(1− exp (−G)) +

exp (−G)
(
1− (γI)

−δ
)

2 and iii) P̃ (ξ → 0) = 0.
Proof: See Appendix V.

It is evident that the exact expression of (7) cannot be
employed to study the trends and behavior of the Pcov with
respect to Ptx due to the complexity of the function inside
the integral. Examining Propositions 2 and 3 it can be seen
that there exists an antipodal behavior of the Pcov under the
density of EDs and under the ED transmit power. In particular,
Pcov approaches its peak when the transmit power goes to
infinity, whereas it reaches its peak when λ goes to zero. On
a different note, the maximum value of Pcov is not equal to
one in general, neither as a function of λ nor as a function of
Ptx. A valuable conclusion drawn from the previous analysis is
that, in order to maximize Pcov, the following two conditions
need to be satisfied concurrently, that is, Ptx ≫ 1 and λ ≪ 1.

Propositions 2 and 3 study separately the influence of Ptx
and of λ on Pcov. Although these findings give rise to several
conclusions that are valuable for system design, the joint effect
of the two parameters on Pcov, needs to be examined as
well, to demonstrate whether any joint optimum exists or any
common behavior over both parameters that cannot be revealed
by the standalone analyses. Moreover, the joint asymptotic
cases need to be examined as well, when for instance both
Ptx → ∞ and λ → ∞. Hence, in the following Proposition,

2The behavior of the Pcov when Ptx → ∞ is influenced in practice by
the practical limitations of the transceiver hardware. Therefore all presented
insights need to be examined by considering the effect of the hardware
limitations at this asymptotic case.

we study the trends of Pcov under the joint effect of both λ
and Ptx.

Proposition 4: Let us define ω = λ and ξ = Ptx, then the
joint coverage probability denoted by P̃ (ω, ξ) is neither jointly
convex nor jointly concave and no optimal pair (ω,ξ) exists,
that maximizes Pcov.

Proof: See Appendix VI.
Proposition 4 evinces that no optimal pair (ω,ξ) exists, that
maximizes Pcov. Hence, the standalone analyses of proposi-
tions 2 and 3, suffice for the separate optimization of Pcov
with respect to each of the two parameters Ptx and λ.

B. Area Spectral Efficiency

Having concluded the Pcov analysis, the present section,
investigates the impact of λ and of Ptx on the behavior and
trends of the ASE, employing the approximate framework
defined by ÃSEk,s = S̃. The impact of λ on the ASE is
examined in Proposition 5 while the behavior of the ASE with
respect to Ptx follows the behavior of the Pcov with respect
to Ptx. Hence, the trends of the ASE with respect to Ptx can
be studied employing the framework already derived for the
Pcov, and are therefore stated, hereafter, without additional
derivations.

Proposition 5: Let us define ω = λ, then the following
conclusions hold; i) If B < γIC̃, then S̃ (ω) is a unimodal
function, attaining its maximum at ω∗ = υ (1) where

υ (x)=

(
x+ (γI)

−δ

[
Ã
((

max
{
C̃,B

})−δ

−
(
γIC̃
)−δ
)]−1

)
×
(
ρAπR2

)−1
. Additionally, the ASE changes from a concave

function of ω into a convex function at the inflection point
ω∗∗ = υ (2); ii) If B ≥ γIC̃, then the ASE is a concave
increasing function of ω; iii) In the asymptotic case of the
interference-limited regime, namely when ω → ∞ the ASE
is given by S̃ (ω → +∞) = (γI)

−δ R/
(
πR2

)
and iv) The

ASE does not go to zero unless the ED density goes to zero,
i.e. S̃ (ω → 0) = 0.

Proof: See Appendix VII.
Proposition 5 demonstrates that the mathematical framework
for deriving both critical points, i.e., ω∗ and ω∗∗, is identical.
Additionally, since ω∗ < ω∗∗, this means that the maximum
ω∗ resides in the concave region of the function. Examining
Propositions 2 and 5, it becomes evident that with respect
to λ, ASE and Pcov exhibit a very different behaviour.
Specifically, ASE is either a monotonically increasing or a
unimodal function of λ, while Pcov is simply a decreasing
function of λ. Proposition 5 demonstrates that when the ASE
is a unimodal function of λ, the optimum λ, maximizing the
ASE can be computed in closed-form. Building upon that
finding, we hereafter examine how the value of the path-loss
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exponent β affects this optimal value of λ. In this direction,
the following Corollary is stated.

Corollary 1: Examining υ (x) defined in Proposition 5,
it is evinced that υ (x) increases with β if F ≥
K0 exp

(
− ln(γI/z)

1−(γI/z)
−1

)
, where z = B for C̃ ≤ B ≤ γIC̃ and

z = 1 for C̃ > B.
Proof: See Appendix VIII.

Having concluded the analysis of the standalone impact of
λ on the ASE, the following two propositions examine the
trends of the ASE as a standalone function of Ptx and as a
joint function of λ and Ptx.

Proposition 6: Let us define ξ = Ptx, then S̃ (ξ) is a
concave monotonically increasing function of ξ. Additionally,
S̃ (ξ) approaches its upper bound
λAR

(
(G)−1

(γI)
−δ

(1− exp (−G)) + exp (−G)
(
1− (γI)

−δ
))

when ξ → +∞ and its lower bound 0 when ξ → 0.
Propositions 3 and 6 demonstrate the similarity between

the behaviors of the ASE and Pcov functions with respect to
Ptx. However, Propositions 2 and 5 demonstrated that the two
curves have a different behaviour with respect to the density
of EDs. Hence, it is natural to raise the question, whether
the behavior of ASE with respect to both λ and Ptx is also
analogous to that of Pcov or not. That is, whether it is also
universally neither jointly convex nor jointly concave. The
answer is provided by the following proposition.

Proposition 7: Let us define ω = λ and ξ = Ptx, then the
following statements are true: i) the ASE is not characterized
by a common universal behavior over the whole domain.
Hence, there are regions where the ASE is neither jointly
convex nor joinlty concave and other regions where the same
behaviour is exhibited with respect to both parameters ω and
ξ. ii) In the region where the ASE is jointly concave a set
of joint optimums exist maximizing the ASE over both ω
and ξ. This set of joint optimums is defined by the segment
ξ∗ ≥ σ2γD

C and ω∗ =
(
ρAπR2

)−1
(1 + ϕ1/ϕ3), in which

the ASE attains its maximum value, where ϕ1 = (γI)
−δ and

ϕ3 = Ã
((

max
{
C̃,B

})−δ

−
(
γIC̃
)−δ

)
.

Proof: See Appendix IX.

V. NUMERICAL RESULTS
The present section provides the numerical results cor-

roborating the validity of the considered assumptions while
substantiating the findings of Section IV demonstrating the
accuracy of the derived mathematical framework. In this
course, a LoRa network of IoT devices is simulated, that is a
home security system, that is characterized by the transmission
parameters that are explicitly defined by the in-home machine
to machine (M2M) communications framework. In particular,
in the present section (unless otherwise stated) the following
setup is considered [24]: β = 2.9, Bw = 125 kHz, NF = 6
dBm, γI = 6 dB, fc = 868 MHz, R = 2000 m, m = 3.53,

3Recently, the authors of [25] proved that even in harsh propagating
environments, i.e., indoor environments, the multi-path propagation in LoRa
systems is still dominated by a single component of the signal and that the
Rayleigh distribution is not an appropriate distribution for modelling the fast
fading in LoRa networks. Consequently, the fading severity m = 3.5 is
selected in the present paper.
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Fig. 1. Coverage probability (a) and area spectral efficiency (b) versus
the transmit power under random SF allocation scheme. The marked solid
lines show the exact, and approximate analytical framework, while the plain
solid line shows the asymptotic behavior when Ptx → ∞ for both the Pcov
and ASE as computed by equations (7), (8) and (9). The markers show the
respective Monte Carlo simulations.

Ω = 9.5, N = 4000, Ptx = 10 dBm, PL = 20 bytes, Npre = 8,
CRC = 1, H = 0, Cr = 1 and Tin = 600 seconds.

Figure 1 depicts the Pcov and the ASE as a function of the
transmit power under the random SF allocation scheme and
under various small-scale fading distributions, i.e., Rayleigh
fading (m = 1, θ = 2.7144) and no fading (m = 15,
θ = 2.7144). The accuracy of the proposed mathematical
frameworks is verified by Monte Carlo simulations. Evidently,
the approximate frameworks defined by equation (8) and
the ensuing approximate expression for the ASE, give rise
to curves that are very close to those of the exact frame-
works arising from (7) and (9). Moreover, if the SINR-
based approach would be adopted, it would coincide with
the “Sum” curves and would serve as a lower bound of
the proposed approximate framework [26]. We also observe
that the approximation of the interference by the dominant
interferer, that is employed in the approximate framework,
is tight since it exactly coincides with the exact framework
that employs the aggregate interference particularly in the no
fading case (where the fading approximation does not affect
the results). Moreover, as expected, when fading is present,
the system performs worse that in the case of no fading, while
the performance of both systems converges when Ptx increases
substantially. That is, since for a high Ptx the SNR surpasses
the respective threshold regardless of the presence or absence
of fading. In that case, the performance of Pcov and ASE is
independent of the small-scale fading distributions. The figure
also confirms the finding of Propositions 3 and 6 that both the
Pcov and ASE converge to a maximum value as Ptx tends to
infinity.

Figure 2 illustrates the performances of Pcov and ASE
with respect to the average number of EDs N (which in
turn defines λ) under random SF allocation and for different
SF indices. Again, there is a tight matching between the
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Fig. 2. Coverage probability (a) and area spectral efficiency (b), versus the
average number of ED N under random SF allocation scheme. The solid
lines correspond to the exact framework computed by (7), (9); the dashed
lines correspond to the approximate framework computed by (8) and (9) and
the downward-pointing triangles correspond to the popular approximation
that ignores the correlation between the SNR and the SIR at the receiver
(that is computed by Monte Carlo simulations). The plus sign markers show
the Monte Carlo simulations accounting for the aggregate interference intra-
SF interference. The dotted lines show the asymptotic behavior defined in
Proposition 2 as N → 0 . The diamond markers indicate the maximum ASE
defined in Proposition 5.

mathematical framework and the computer-based simulations,
with the introduced approximation of the Pcov practically
coinciding with the exact curve, as opposed to the popular
approximation of [4], [6], [8] that ignores the correlation
between the SNR and the SIR at receiver (denoted by ”Inde”)
that deviates significantly from the exact curve as the ED
density increases. The “Sum”, again, serves as the lower
bound of these curves and will coincide with the SINR-
based definition (if considered). Fig. 2(a) verifies the finding
of Proposition 2 that Pcov decreases as N increases. Thus,
demonstrating that network densification has a detrimental
effect to the coverage probability. Additionally, under random
SF allocation scheme it can be seen that as the SF increases
the Pcov and the ASE decrease. The reason is that the
packets of larger SFs are being transmitted for a longer period
of time, thus experiencing more interference. Also figure 2
depicts the asymptotic behaviour of the Pcov when N goes
to zero. Figure 2(b) illustrates the performance of the ASE
versus N , for different SFs. As expected, the ASE of the
lower SF significantly outperforms the ASE of the higher
SF, due to the corresponding performance gap of the two
respective Pcov. Moreover, this figure also corroborates the
finding of Proposition 5 that the ASE is either a unimodal
or an increasing function of N (or λ). The optimal value
of N , denoted by N

∗
which is computed in Proposition 5

is also plotted in Figure 2(b) (with the marker “♦”). The
optimal value of N demonstrates that the value of N that
maximizes the ASE is a value where the Pcov of a standalone
ED significantly decreases due to the number of surrounding
EDs. This antipodal behavior demonstrates that since LoRa
networks do not include a single ED but a multitude of them,
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Fig. 3. Coverage probability (a) and area spectral efficiency (b), versus Ptx
under a fair-collision SF allocation scheme. The solid lines correspond to
the exact framework of (7), and (9); the dashed lines show the approximate
framework of (8) and (9) and the dotted dashed lines show the asymptotic
behavior as Ptx → ∞. The plus sign markers show the Monte Carlo
simulations accounting only for the aggregate interference intra-SF interferer,
while the downward-pointing triangles show the simulations considering the
aggregate interference (of all inter-SF and intra-SF interferers).

the ASE is a more sensible figure of merit for network design.
Thus, implicitly highlighting the importance of Proposition 7,
for network design, that derives in closed form the joint global
optimum that maximizes the network ASE.

As opposed to Figure 2, Figure 3(a) demonstrates that,
under a fair-collision scheme, the Pcov of a smaller SF is
not constantly superior to that of a larger SF. Particularly,
before the asymptotic regime the Pcov of a higher SF is higher
than the Pcov of a lower SF. The reason for that is that the
respective reliability threshold is higher for a lower SF, i.e.,
γD,7 > γD,12, whereas the transmit power and the background
noise are the same. Hence, (if not at the asymptotic regime)
the SNR of the lower SF is more difficult to exceed the higher
reliability threshold. However, at the asymptotic regime, when
Ptx is high enough for the SNR to always exceed the reliability
threshold, the impact of the SIR comes into play, and the Pcov
of the lower SF outperforms its counterpart of high SF by
virtue of the higher activation probability ρAk in the latter case
that entails an increased interference by active intra-SF EDs.
This figure also reveals that the adopted approach accounting
only for the dominant intra-SF interferer serves as a tight
upper bound of the approach accounting for the aggregate
interference of all inter-SF and intra-SF interferers. Fig. 3(b)
depicts the summed ASE (that arises by the summation over
all SFs) versus the ED transmit power Ptx. As evinced by
Proposition 6 the trends of the ASE function with respect to
Ptx are the same as the trends of the Pcov.

Figure 4 depicts the Pcov versus Tin and the ASE versus
the PL employing the closed form expressions of (8), (9), and
demonstrating a monotonic increase of both the Pcov and ASE
with respect to these two parameters. More precisely, the ASE
experiences a three-to-five-fold increase as the packet length
increases from 10 to 200 bytes while the Pcov experiences
a three-to-five-fold increase as the inter-arrival time between
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Fig. 5. The summed ASE versus N with various values of Ptx. Lines are
plotted by approximation framework (8), (9). Marker shows the asymptotic
framework in Proposition 5.

two packets Tin rises from 100 to 2000 seconds. That is
since by increasing Tin we decrease the activation probability
ρAk , which in turn reduces the interference. Thus improving
the two metrics, while intuitively quantifying the impact of
the interference on both metrics. Additionally, the curves
employing a fair SF allocation scheme always outperform the
random SF allocation schemes for all SFs.

Figure 5 illustrates the summed ASE as a function of the
average number of EDs for different values of Ptx. The figure
confirms that the ASE is either a unimodal or a monotonically
increasing function of Ptx as proved in Proposition 5. More-
over, the ASE always exhibits the same asymptotic behavior
as N increases, regardless of the transmit power. This figure
also corroborates that the fair-collision SF allocation scheme
always outperforms the random SF allocation scheme.
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Fig. 6. N
∗ versus β with SF = 9 and Ptx = 10 dBm. Curves are plotted

base on υ (1) in Proposition 5.

Fig. 7. The coverage probability as a function of both the average number
of EDs N and the transmit power Ptx under fair SF allocation scheme for
SFk = 8.

Fig. 6 depicts the trend of the optimal value of the average
number of EDs N

∗
corresponding to the path-loss exponent.

We observe that N
∗

turns up when β goes up and confirms
our findings in Corollary 5. Additionally, the fair-collision is
better than its counterpart due to pfa

9 < pra
9 .

Figure 7 shows the Pcov under a fair SF allocation scheme
for SF k = 8. The figure corroborates the findings of
Proposition 4, since the joint coverage probability is indeed
neither jointly convex nor jointly concave and no optimal pair
(ω, ξ) exists, that maximizes Pcov, apart from the asymptotic
case of N → 0.

Figure 8 shows the summed ASE under a random SF
allocation scheme with respect to both N and Ptx. As al-
ready evinced in Proposition 7 the ASE is not characterized
by any common universal behavior over the whole domain,
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Fig. 8. The summed area spectral efficiency as a function of both the average
number of EDs N and the transmit power Ptx under random SF allocation
scheme.

with regions where the ASE is neither jointly convex nor
joinlty concave and other regions where the same behaviour is
exhibited with respect to both parameters. More importantly
as already evinced, in the region where the ASE is jointly
concave a set of joint optimums exist maximizing the ASE
over both N and Ptx and this set of joint optimums is the one
defined in Proposition 7, where the ASE attains its maximum
value.

VI. CONCLUSION

The derived, closed-form framework, fully characterizes the
system Pcov and ASE, with respect to the transmit power Ptx
and the ED density λ under different SF allocation schemes,
and even in the asymptotic cases. More importantly it evinces
that no joint optimum exists that maximizes the Pcov with
respect to both parameters, but that the standalone optimization
of the two parameters needs to be followed. As opposed to
that it is proven that a joint optimum exists that maximizes
the ASE, which constitutes a figure of merit that quantifies the
overall network performance. This joint optimum is defined in
closed form. Thus the derived framework arises as an impor-
tant tool, of significant practical value, for the optimization of
the network deployment and for the transceiver design in IoT
LoRa networks.

APPENDIX I
PROOF OF EQ. (5)

In this section, the CDF and PDF of S0,k are derived. Let
us start with the definition of the CDF as follows:

FS0,k
(x) =Pr

{
h2
0,k/

(
K0r

β
0,k

)
< x

}
= Pr

(
h2
0,k < xK0r

β
0,k

)
(a)
=

1

Γ (m)

2

R2

1

β

Rβ∫
t=0

γ

(
m,

xK0t

θ

)
tδ−1dt (10)

(b)
=γ (m, Cx) /Γ (m)−Ax−δγ (δ +m, Cx) /Γ (m) ,

where (a) is obtained by employing the CDF of the small-
scale fading h2

0,k and the PDF of the distance r0,k from the
intended ED to the gateway after changing the variable of the
PDF into t = rβ0,k; (b) arises from [28]; A, C and δ are defined
in Lemma 1. Taking the first-order derivative of FS0,k

(x) with
respect to x we obtain the PDF. QED.

APPENDIX II
PROOF OF EQ. (6)

According to order statistics, assuming i ∈ N independent
and identical distributed (i.i.d.) random variables with CDF
FI (x), then the CDF of the maximum random variable among
the i variables is given by FIM (x) = (FI (x))

i. Moreover, the
number of active interferers of SF k under the SF allocation
scheme s ∈ {fa, ra} follows a Poisson distribution with mean
Gk,s = λA

k,sπR
2 = ρAk p

s
kλπR

2 = ρAk Nk,s. Hence, the CDF
of the interference from the dominant interferer is given by

FIk,s(x)
(a)
=exp (−Gk,s)

∞∑
i=0

[
γ (m, Cx)
Γ (m)

− A
xδ

γ (δ +m, Cx)
Γ (m)

]i
(Gk,s)

i

i!

(b)
= exp

(
−Dk,sx

−δ γ (δ +m, Cx)
Γ (m)

−Gk,s+Gk,s
γ (m, Cx)
Γ (m)

)
, (11)

where (a) is attained by averaging the CDF of the maximum
interference among i interferers, over all possible numbers
of active interferers i; (b) employs the definition of the
exponential function

∑∞
i=0

xi

i! = exp (x) [27, Eq. 1.211.1]
and Dk,s = AGk,s. QED.

APPENDIX III
PROOF OF EQ. (8)

Let us commence this appendix by computing the CDF
and the PDF of the approximated desired signal denoted
by S̃0,k = F/L0,k and the CDF of the interference from
the dominant interferer among all transmitting EDs of SF k
denoted by Ĩk,s = max

i∈ΨA
k,s\(0)

{F/Li,k}. The respective CDFs

and PDF are given by

FS̃0,k
(x) =Pr

{
F

K0r
β
0,k

≤ x

}
(a)
=

(
2

R2

∫ R

r=(F)
1
β (K0x)

− 1
β

rdr

)
× 1

(
x− C̃

)
=
(
1− Ãx−δ

)
1
(
x− C̃

)
,

fS̃0,k
(x) =dFS̃0,k

(x)/dx = δÃx−δ−11
(
x− C̃

)
(12)

FĨk
(x) = exp (−Gk,s)

∞∑
i=0

[(
1− Ãx−δ

)
1
(
x− C̃

)]i (Gk,s)
i

i!

= exp
(
−Gk,s1

(
C̃ − x

))
exp

(
−D̃k,sx

−δ1
(
x− C̃

))
.

In (12), (a) is obtained by applying the PDF of the distance
and FĨk,s

(x) is derived by employing the same steps as in
(11).

Employing (12) the approximated coverage probability of
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an ED of SF k under the SF allocation scheme s is given by

P̃cov (γD,k, s) = Pr
{
S̃0,k/Ĩk,s ≥ γI, PtxS̃0,k/σ

2 ≥ γD,k

}
=

∫ ∞

x=Bk

δÃx−δ−1 exp
(
−Gk,s1

(
γIC̃ − x

))
1
(
x− C̃

)
× exp

(
−x−δD̃k,s(γI)

δ
1
(
x− γIC̃

))
dx (13)

(a)
=J1

(
max

{
Bk, γIC̃

})
+J2

(
max

{
Bk, C̃

}
, γIC̃

)
1
(
γIC̃− Bk

)
.

Here (a) is obtained by splitting the integration into three
cases, namely: i) γIC̃ ≤ Bk; ii) C̃ ≤ Bk < γIC̃ and iii)
Bk < C̃; Moreover, J1 (a) and J2 (a, b) are given by:
J1 (a) =

∫∞
x=a

δÃx−δ−1 exp
(
−x−δD̃k,s(γI)

δ
)
dx =

(Gk,s)
−1

(γI)
−δ
(
1− exp

(
−(γI)

δ
(a)

−δD̃k,s

))
and

J2 (a, b) = exp (−Gk,s)
∫ b

x=a
δÃx−δ−1dx =

Ã exp (−Gk,s)
(
(a)

−δ − (b)
−δ
)

. The employment of
(13) by inputting J1 (a) and J2 (a, b) gives (8). QED.

APPENDIX IV
PROOF OF PROPOSITION 2

Let us rewrite Pcov as a function of the ED density ω

P̃ (ω) =ϕ1(G (ω))
−1

(1− exp (−ϕ2G (ω)))

+ ϕ3 exp (−G (ω))1
(
γIC̃ − B

)
. (14)

In (14), the P̃cov (γD,k, s) depends on ω = λ, via the
term G (ω), which is given by G (ω) = ρAπR2ω, while the
following terms of (14) are defined hereafter, and do not

depend on ω: ϕ1 = (γI)
−δ , ϕ2 = (γI)

δ
(
max

{
B, γIC̃

})−δ

Ã

and ϕ3 = Ã
((

max
{
C̃,B

})−δ

−
(
γIC̃
)−δ

)
. By computing the

first-order derivative of (14) with respect to ω we obtain
.
P̃ (ω) = −ϕ1

.
G (ω) (G (ω))

−2
[1− exp (−ϕ2G (ω)) (1 + ϕ2

×G (ω))]− ϕ3

.
G(ω) exp (−G(ω))1

(
γIC̃−B

)
≤0,∀ω≥0, (15)

where
.
f (x) = df (x) /dx is the first-order derivative of f

with respect to x;
.
P̃ (ω) ≤ 0 because, for the first-order

derivative of G (ω) it holds that,
.
G (ω) = ρAπR2 ≥ 0. Hence,

P̃cov (γD,k, s) decreases monotonically with ω = λ.
In order to evince the convexity of the function, we derive

the second-order derivative of P̃cov (γD,k, s) denoted by
..
P̃ (ω),

which is given by
..
P̃ (ω) =ϕ3

[ .
G (ω)

]2
exp (−G (ω))1

(
γIC̃ − B

)
+ ϕ1

[ .
G (ω)

]2
× (G (ω))

−3
(2− exp (−ϕ2G (ω))

×
(
1 + (1 + ϕ2G (ω))

2
))

≥ 0. (16)

The term [2− exp (−ϕ2G (ω))
(
1 + (1 + ϕ2G (ω))

2
)
] of (16)

is a monotonically increasing function of ϕ2G (ω), with a
minimum that is equal to 0 (for ϕ2G (ω) = 0). The equality

in (16) holds only for ω → ∞, where
..
P̃(ω → ∞)= ϕ3

[ .
G (ω)

]2
exp (−G (ω))︸ ︷︷ ︸

=0

1
(
γIC̃ − B

)
+ ϕ1

[ .
G (ω)

]2

×(G (ω))−3︸ ︷︷ ︸
=0

2− exp (−ϕ2G (ω))
(
1 + (1 + ϕ2G (ω))2

)︸ ︷︷ ︸
V10

 = 0

V10 = lim
ω→∞

(
2 + 2ϕ2G (ω) + (ϕ2G (ω))2

exp (G (ω))

)
(a)
= 2ϕ2 lim

ω→∞

(
ϕ2

.
G (ω).

G (ω) exp (G (ω))

)
= 0, (17)

where (a) is obtained by using L’Hôpital’s rule. Hence, P̃ (ω)

is a convex function, while
.
P̃ (ω) is a monotonically increasing

function and attains its maximum at
.
P̃ (ω → ∞)=−ϕ1

( .
G (ω)

)1− exp (−ϕ2G (ω)) (1 + ϕ2G (ω))

(G (ω))
2

− ϕ3 (G (ω)) exp (−G (ω)) 1
(
γIC̃ − B

)
= −ϕ1

( .
G (ω)

)

×

 1

(G (ω))
2︸ ︷︷ ︸

=0

− exp (−ϕ2G (ω))

(G (ω))
2︸ ︷︷ ︸

=0

− ϕ2 exp (−ϕ2G (ω))

(G (ω))︸ ︷︷ ︸
=0


− ϕ3 (G (ω)) exp (−G (ω))︸ ︷︷ ︸

=0

1
(
γIC̃ − B

)
= 0 (18)

Since
.
P̃ (ω) is a monotonically increasing function, from (15)

and (18), we conclude that
.
P̃ (ω) is strictly negative and

becomes equal to 0 only for ω → ∞. Hence, P̃ (ω) is a
convex monotonically decreasing function of ω. Finally, the
asymptotic behavior of Pcov when ω → 0 is given by

lim
ω→0

P̃ (ω) = lim
ω→0

(ϕ1 (1− exp (−ϕ2G (ω))) /G (ω) (19)

+ϕ3 exp (−G (ω))1
(
γIC̃ − B

))
(a)
= ϕ1ϕ2 + ϕ31

(
γIC̃ − B

)
,

where (a) is obtained by employing L’Hôpital’s rule. QED.

APPENDIX V
PROOF OF PROPOSITION 3

At first, the approximate expression for Pcov is defined as
a function of the transmit power ξ = Ptx

P̃ (ξ) = ϕ4

(
1− exp

(
−ϕ5(max {B (ξ) , ϕ7})−δ

))
(20)

+ ϕ6

((
max

{
B (ξ) , C̃

})−δ

− (ϕ7)
−δ

)
1 (ϕ7 − B (ξ)) ,

where the terms ϕ4 = (G)−1
(γI)

−δ
, ϕ5 = (γI)

δÃG, ϕ6 =

Ã exp (−G) and ϕ7 =
(
γIC̃
)−δ

are independent of ξ, while
the Pcov depends on ξ via B (ξ) = σ2γDξ

−1. Taking the first-
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..
P̃ (ξ) = −δϕ4ϕ5 exp

(
−ϕ5(B (ξ))−δ

)
1
(
B (ξ)− γIC̃

)( ..
B (ξ) (B (ξ))−δ−1 − (δ + 1)

[ .
B (ξ)

]2
(B (ξ))−δ−2 + ϕ5δ

[ .
B (ξ) (B (ξ))−δ−1

]2)
− δϕ61

(
B (ξ)− C̃

)( ..
B (ξ) (B (ξ))−δ−1 − (δ + 1)

[ .
B (ξ)

]2
(B (ξ))−δ−2

)
1
(
γIC̃ − Bk (ξ)

)
= −δϕ4ϕ5 exp

(
−ϕ5(B (ξ))−δ

)
(22)

×
(
(B (ξ))−δ−2 T21 (ξ) + ϕ5δ

[ .
B (ξ) (B (ξ))−δ−1

]2)
1
(
B (ξ)− γIC̃

)
− δϕ6(B (ξ))−δ−1T21 (ξ)1

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)
≤ 0,

..
P̃ (ξ → ∞) = −δϕ4ϕ5 exp

(
−ϕ5(B (ξ))−δ

)(
(B (ξ))−δ−2 T21 (ξ) + ϕ5δ

[ .
B (ξ) (B (ξ = ∞))−δ−1

]2)
× 1

(
B (ξ = ∞)− γIC̃

)
︸ ︷︷ ︸

→0

−δϕ6(B (ξ))−δ−1T21 (ξ)1
(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)
︸ ︷︷ ︸

→0

= 0. (23)

.
P̃ (ξ → ∞)=−δÃ

.
B (ξ) (B(ξ))−δ−1

exp(−(γI)
δÃG(B (ξ))−δ

)
1
(
B (ξ)− γIC̃

)
︸ ︷︷ ︸

=0

+exp (−G)1
(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)
︸ ︷︷ ︸

=0

=0. (24)

order derivative of (20) with respect to ξ we have
.
P̃(ξ)=−δϕ4ϕ5

.
B (ξ) (B(ξ))−δ−1exp

(
−ϕ5(B (ξ))−δ

)
1
(
B (ξ)−γIC̃

)
− δϕ6

.
B (ξ) (B (ξ))−δ−11

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)
=−δÃ

.
B (ξ) (B(ξ))−δ−1

[
exp

(
−(γI)δÃG(B (ξ))−δ

)
1
(
B (ξ)−γIC̃

)
+exp (−G)1

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)]
≥ 0, ∀ξ ≥ 0, (21)

where
.
B (ξ) = −σ2γDξ

−2 ≤ 0. The second-order derivative
of Pcov is then computed, in order to prove the concavity of
the function in (22) at the top of this page. Here T21 (ξ) =
..
B (ξ)B (ξ)− (δ + 1)

( .
B (ξ)

)2
=
(
σ2γDξ

−2
)2

[2− (δ + 1)] ≥
0, and δ < 1, since β > 2. From (22) it is evinced that
the coverage probability Pcov is a concave function of the
transmit power Ptx. The equality in (22) holds only for ξ →
∞ and is given in (23) at the top of this page. Since

..
P̃ (ξ)

is a negative function for ξ < ∞,
.
P̃ (ξ) is a monotonically

decreasing function of ξ and attains its minimum for ξ → ∞
and is given by (24) at the top of this page. Since

.
P̃ (ξ) is

a monotonically decreasing function, from (21) and (24), it
holds that

.
P̃ (ξ) is strictly positive and becomes equal to 0

only for ξ → ∞. Hence, P̃ (ξ) is a concave monotonically
increasing function of ξ. Finally, the asymptotic behavior of
P̃ (ξ) when ξ → 0 and when ξ → +∞ is computed directly
from (20) since B (ξ → 0) = +∞ and B (ξ → +∞) = 0,
respectively. QED.

APPENDIX VI
PROOF OF PROPOSITION 4

In this appendix, we prove that Pcov is neither jointly
convex nor jointly concave with respect to both the ED density
and the transmit power. Moreover, we evince that no joint
optimum pair of ω and ξ exists, jointly maximizing the Pcov.
We commence by rewriting Pcov in (25) at the top of the
next page. The Hessian matrix and the Hessian determinant

of P̃ (ω, ξ) are then given by

HP̃ (ω, ξ) =

[
∂2P̃(ω,ξ)

∂2ω

∂2P̃(ω,ξ)
∂ω∂ξ

∂2P̃(ω,ξ)
∂ξ∂ω

∂2P̃(ω,ξ)

∂2ξ

]
, (26)

Det
{
HP̃ (ω, ξ)

}
=

∂2P̃ (ω, ξ)

∂2ω

∂2P̃ (ω, ξ)

∂2ξ
−

(
∂2P̃ (ω, ξ)

∂ω∂ξ

)2

<0,

where (26) holds for ω < ∞, ξ < ∞, since according
to Propositions 2, ∂2P̃ (ω, ξ)/∂2ω > 0, for ω < ∞ and
according to Proposition 3, ∂2P̃ (ω, ξ)/∂2ξ < 0, for ξ < ∞.

Since HP̃ (ω, ξ) has only 2 arguments (i.e. ω and ξ),
the determinant Det

{
HP̃ (ω, ξ)

}
is equal to the product of

the eigenvalues of HP̃ (ω, ξ). Hence, since the product of
the eigenvalues is negative, the eigenvalues are of opposite
sign and the Hessian is neither positive semi-definite nor
negative semi-definite. Pcov is therefore neither jointly con-
vex nor jointly concave. Moreover, according to the second
partial derivative test, since Det

{
HP̃ (ω, ξ)

}
< 0, then even

if ∂P̃(ω,ξ)
∂ω = ∂P̃(ω,ξ)

∂ξ = 0 at (ω0,ξ0), then (ω0,ξ0) is only
a saddle point. Hence, no global optimum (ω,ξ) exists, that
jointly maximizes the Pcov, and as a result the standalone
approaches of Propositions 2 and 3 can be followed for the
standalone optimization of ω and ξ respectively. QED.

APPENDIX VII
PROOF OF PROPOSITION 5

Let us first define the ÃSEk,s as a function of ω as follows

ÃSEk,s= S̃ (ω=λ)=λARP̃cov (γD, s)=ϕ8G (ω) P̃ (ω), (27)

where ϕ8 = R/
(
πR2

)
. Taking the first-order derivative of

S̃ (ω) with respect to ω we have
.
S̃ (ω) /ϕ8 = dS̃ (ω) /dω =

.
G (ω) P̃ (ω) + G (ω)

.
P̃ (ω)

= ϕ1ϕ2

.
G (ω) exp (−ϕ2G (ω)) + ϕ3

.
G (ω) (1− G (ω))

× exp (−G (ω))1
(
γIC̃ − B

)
. (28)

Here, the constant term ϕ8 has been moved to the left hand
side of (28) to simplify the notation in the analysis. From (28)
the following conclusions hold: i) if B ≥ γIC̃, then

.
S̃ (ω) > 0



13

P̃ (ω, ξ) = (γI)
−δ

(G (ω))
−1

(
1− exp

(
−ÃG (ω) (γI)

δ

(
max

{
B (ξ) , γIC̃

}−δ
)))

+ Ã exp (−G (ω))

(
max

{
B (ξ) , C̃

}−δ

−
(
γIC̃
)−δ

)
1
(
γIC̃ − B (ξ)

)
. (25)

..
S̃ (ω) /ϕ8 =2

.
G (ω)

.
P̃ (ω) + G (ω)

..
P̃ (ω) = ρAπR2

(
2

.
P̃ (ω) + ω

..
P̃ (ω)

)
=− 2ϕ1

.
G (ω) (G (ω))

−2
[1− exp (−ϕ2G (ω)) (1 + ϕ2G (ω))]

+
[
−2ϕ3

.
G (ω) exp (−G (ω)) + ϕ3

.
G (ω)G (ω) exp (−G (ω))

]
× 1

(
γI C̃ − B

)
+ ϕ1

.
G (ω)(G (ω))

−2
(
2− exp (−ϕ2G (ω))

(
1 + (1 + ϕ2G (ω))

2
))

, (30)

if ω < ∞ and
.
S̃ (ω) = 0 if ω → ∞. ii) if B < γIC̃ then

ϕ2 = 1 and (28) is rewritten as follows
.
S̃ (ω) =

.
G (ω) (ϕ1 + ϕ3 − ϕ3G (ω)) exp (−G (ω)) . (29)

From (29), the root of
.
S (ω), is given by ω∗ =(

ρAπR2
)−1

(1 + ϕ1/ϕ3).
Now the convexity or concavity of the ASE is examined by

computing the second-order derivative of S (ω) and is given
by (30) at the top of this page where again the constant term
ϕ8, has been moved to the left hand side of the equation to
simplify the notation. Focusing again on the first case study
where i) B ≥ γI C̃, (30) can be rewritten as follows

..
S̃ (ω) = ϕ8

[
−ϕ1

.
G (ω) (ϕ2)

2
exp (−ϕ2G (ω))

]
≤ 0. (31)

As a result, in this first case the ASE is a concave function of
ω. Subsequently focusing on the second case where ii) B <
γI C̃, then (30) can be rewritten as follows

..
S̃ (ω) = −

.
G (ω) exp (−G (ω)) (ϕ1 + ϕ3 (2− G (ω))) . (32)

The inflection point of (32) is given by ω∗∗ =(
ρAπR2

)−1
(2 + ϕ1/ϕ3), and S̃ (ω) is a concave function for

ω < ω∗∗ and a convex function otherwise.
Subsequently, in order to study the asymptotic behavior of

S̃ (ω) when ω goes to either zero or infinity, we rewrite the
ASE as follows

S̃ (ω) =ϕ8ϕ1 (1− exp (−ϕ2G (ω))) + ϕ8ϕ3G (ω)

× exp (−G (ω))1
(
γIC̃ − B

)
. (33)

Based on (33) it straightforwardly holds that when ω → 0 ⇒
S̃ (ω) → 0 and when ω → ∞, it holds that

lim
ω→∞

(
S̃ (ω)

)
= ϕ8 (ϕ1 + ϕ3) = lim

ω→∞

(
G (ω)

exp (G (ω))

)
× 1

(
γIC̃ − B

)
(a)
= ϕ1ϕ8 = (γI)

−δ (R/πR2
)
, (34)

where (a) is derived by employing L’Hospital’s rule. QED.

APPENDIX VIII
PROOF OF COROLLARY 1

The behavior of ω∗ (and ω∗∗) with respect to the path-loss
exponent β is studied hereafter. Focusing on the case where
i) C̃ ≤ B ≤ γIC̃ and utilising the functions Ã = 1

R2

(
K0

F
)−δ

,

C̃ = F
RβK0

and δ (β) = 2/β, υ (x) of Proposition 5 is rewritten
as

υ (β;x) =
(
pAπR2

)−1(
x+R2(K0/ (γIF)−1)δ(β)

×
(
(B)−δ(β) − (γI)

−δ(β)
)−1

)
. (35)

Taking the first-order derivative of (35) with respect to β we
have

.
υ (β;x) =(2/β2)R2(K0/F)

δ(β)
(
(B)−δ(β) − (γI)

−δ(β)
)−2

× T33 (K0/F , γI/B, δ) (36)

where T33
(
K0

F , γI

B , δ
)
=
[
log
(
K0

F
)
−
(
γI

B
)δ(β)

log
(

BK0

γIF

)]
.

Hence, in order to examine the sign of (36) the sign of
T33
(
K0

F , γI

B , δ
)

needs to be examined first. Recalling that
δ ∈ (0, 1), T33

(
K0

F , γI

B , δ
)

has the following properties: 0 ≤ ln
(
K0
F

)
− ln

(
BK0
γIF

)
≤ T33

(
K0
F , γI

B , δ
)

K0
F < B

γI

ln
(
K0
F

)
− B

γI
ln
(

BK0
γIF

)
≤ T33

(
K0
F , γI

B , δ
)

K0
F ≥ B

γI

. (37)

Hence, T33
(
K0

F , γI

B , δ
)

is always non-negative if ln
(
K0

F
)
−

B
γI

ln
(

BK0

γIF

)
≥ 0 ⇔ F ≥ K0 exp

(
− log(γI/B)

1−(γI/B)−1

)
.

Subsequently, focusing on the second case where ii) C̃ > B
and taking the first-order derivative of ω∗ wih respect to β we
obtain

.
υ (β;x) =

2

β2
R2

(
K0

γIF

)δ(β)(
1− (γI)

−δ(β)
)−2

(38)

×
[
(γI)

−δ(β)
log (γI)− log

(
K0

γIF

)(
1− (γI)

−δ(β)
)]

=
2

β2
R2

(
K0

F

)δ(β)(
1− (γI)

−δ(β)
)−2

T33
(
K0

F
, γI, δ

)
.

From (38) it is demonstrated that .
υ (β;x) has a similar

behaviour as (36), and therefore .
υ (β;x) is again non-negative

if F ≥ K0 exp
(
− log(γI)

1−(γI)
−1

)
. Hence, for both cases (i.e. i

and ii) υ (x) is an increasing function of β provided that the
following unified condition holds F ≥ K0 exp

(
− log(γI/v)

1−(γI/v)
−1

)
where v = B if C̃ ≤ B ≤ γIC̃ and respectively v = 1 if C̃ > B.
This concludes the proof.
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.
S̃ξ (ω

∗, ξ) =− ϕ8G (ω∗) δÃ
.
B (ξ) (B(ξ))−δ−1

[
exp

(
−(γI)

δÃG (ω∗) (B (ξ))−δ
)
1
(
B (ξ)− γIC̃

)
+ exp (−G (ω∗))1

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)]
= ϕ8 (1 + ϕ1/ϕ3) δÃ

.
B (ξ) (B(ξ))−δ−1

[
exp

(
−(γI)

δÃ (1 + ϕ1/ϕ3) (B (ξ))−δ
)

×1
(
B (ξ)− γIC̃

)
+ exp ((1 + ϕ1/ϕ3))1

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)]
, (40)

.
S̃ξ (ω

∗, ξ) =ϕ8δ

(
A− (γI)

−δ
(
(γIC)−δ − (B (ξ))−δ

)−1
)( .

B (ξ)
)
(B (ξ))−δ−1

× exp

(
−(γI)

δ

(
A− (γI)

−δ
(
(γIC)−δ − (B (ξ))−δ

)−1
)
(B (ξ))−δ

)
(41)

APPENDIX IX
PROOF OF PROPOSITION 7

Following the same steps as in Proposition 4, the Hessian
matrix and the Hessian determinant of S̃ (ω, ξ) are given by

HS̃ (ω, ξ) =

[
∂2S̃(ω,ξ)

∂2ω
∂2S̃(ω,ξ)
∂ω∂ξ

∂2S̃(ω,ξ)
∂ξ∂ω

∂2S̃(ω,ξ)
∂2ξ

]
(39)

Det
{
HS̃ (ω, ξ)

}
=
∂2S̃ (ω, ξ)

∂2ω

∂2S̃ (ω, ξ)

∂2ξ
−

(
∂2S̃ (ω, ξ)

∂ω∂ξ

)2

.

From Propositions 5 and 6, we have
∂2S̃(ω,ξ)

∂2ω = −ρAπR2ϕ8ϕ1

.
G (ω) (ϕ2)

2
exp (−ϕ2G (ω)) ≤ 0

when γIC̃ ≤ B; ∂2S̃(ω,ξ)
∂2ω =

−ρAπR2ϕ8

.
G (ω) exp (−G (ω)) (ϕ1 + ϕ3 (2− G (ω))) when

γIC̃ > B; and ∂2S̃(ω,ξ)
∂2ξ ≤ 0 when C̃ ≤ B and ∂2S̃(ω,ξ)

∂2ξ = 0

when C̃ > B. Hence, as opposed to the coverage probability
that is characterized by a common universal behavior over
the whole domain (i.e. being neither jointly convex nor
jointly concave) the ASE is not characterized by a common
universal behavior over the whole domain. That is, since the
Hessian determinant takes both negative and positive values
which asserts that there are indeed regions where the ASE is
neither jointly convex nor joinlty concave and other regions
where the same behaviour is exhibited with respect to both
parameters ω and ξ. Since the ASE is not characterized by
a common behaviour, the analysis focuses on examining
whether a global joint optimum exist maximizing the ASE
over both ω and ξ.

In this course, we depart from (29) and its root ω∗ and
examine whether the first derivative

.
S̃ξ(ω

∗, ξ) with respect to

ξ becomes equal to zero. We commence by defining
.
S̃ξ (ω

∗, ξ)
which is given by (40) at the top of this page. Here ϕ1 =

(γI)
−δ and ϕ3 = Ã

((
max

{
C̃,B

})−δ

−
(
γIC̃
)−δ

)
.

From (40), three different behaviours of
.
S̃ξ (ω

∗, ξ) arise. In
particular:

i) If B (ξ) ≥ γIC > C : (B (ξ))
−δ − (γIC)−δ

< 0, then
we obtain (41) at the top of this page. And solving for the
root ξ∗ we obtain

.
S̃ξ (ω

∗, ξ∗) = 0 ⇒ ξ∗ = 0 as a possible
solution that corresponds to an indeterminate case and for
which the limit

.
S̃ (ω∗, ξ → 0) needs to be computed. Since

the considered range is B (ξ) ≥ γIC ⇔ σ2γDξ
−1 ≥ γIC ⇔

ξ ≤ σ2γD

γIC then ξ∗ = 0 is indeed a possible solution within this

range. However, by definition the case Ptx = 0 is a minimum
of the ASE and not a maximum. Hence, we proceed with the
analysis.

ii) If γIC ≥ B (ξ) > C : (B (ξ))
−δ − (γIC)−δ ≥ 0, then we

have
.
S̃ξ (ω

∗, ξ)=ϕ8δ

(
A+ϕ1

(
(B (ξ))−δ − (γIC)−δ

)−1
)( .

B (ξ)
)

(42)

×(B (ξ))−δ−1 exp

(
1+(γI)

−δ
(
A
(
(B (ξ))−δ − (γIC)−δ

))−1
)
̸=0

iii) If γIC > C ≥ B (ξ) : (C)−δ−(γIC)−δ ≥ 0, then we have
(43) at the top of the next page. Hence out of the 3 cases, a
joint maximum can be attained at C ≥ B (ξ∗) ⇔ σ2γDξ

∗−1 ≤
C ⇔ ξ∗ ≥ σ2γD

C and ω∗ =
(
ρAπR2

)−1
(1 + ϕ1/ϕ3) where

according to (29) and (43)
.
S̃ξ (ω

∗, ξ∗) =
.
S̃ω (ω∗, ξ∗) = 0.

In order to determine whether S̃ (ω∗, ξ∗) is indeed a maxi-
mum of the ASE, it needs to be determined whether S̃ (ω, ξ)
is concave at (ω∗, ξ∗). By denoting by η1,2 the eigenvalues of
the Hessian matrix HS̃ (ω, ξ), then it holds that

Det
{
HS̃ (ω∗, ξ∗)− ηI

}
=η2 − ηTr

{
HS̃ (ω∗, ξ∗)

}
+ Det

{
HS̃ (ω∗, ξ∗)

}
, (44)

where Tr denotes the trace operator and I the identity
matrix. Employing (44) we will hereafter examine the
sign of the eigenvalues η1, η2 in the region of interest(
ω, ξ∗ = ξ ≥ σ2γD

C

)
, to determine whether HS̃ (ω, ξ∗) is pos-

itive semi definite or negative semi definite. Let us derive the
Det

{
HS̃ (ω, ξ∗)

}
hereafter

Det
{
HS̃ (ω, ξ∗)

}
=
∂2S (ω, ξ∗)

∂2ω

∂2S (ω, ξ∗)

∂2ξ
−
(
∂2S (ω, ξ∗)

∂ω∂ξ

)2
(45)

where

∂2S (ω, ξ∗)/∂2ξ = −δϕ4ϕ5ϕ8G (ω) exp
(
−ϕ5(B (ξ∗))

−δ
)
(T21(ξ

∗)

×(B (ξ∗))
−δ−2

+ϕ5δ
[( .
B (ξ∗)

)
(B (ξ∗))

−δ−1
]2)

1(B (ξ∗)− γIC)−δϕ6ϕ8

× G (ω) (B (ξ∗))
−δ−1T21 (ξ

∗)1 (γIC − B (ξ∗))1 (B (ξ∗)− C) = 0

∂2S (ω, ξ∗)/∂ω∂ξ =

[
δ
( .
B (ξ∗)

)
(B (ξ∗))

−δ−1A
( .
G (ω)

)
× exp

(
−(γI/B (ξ∗))

δG (ω)
)[

(γI/B (ξ∗))
δAG (ω)− 1

]]
× 1 (B (ξ∗)− γIC)− 1 (γIC − B (ξ∗))1 (B (ξ∗)− C) (46)

×
(
δ(B (ξ∗))

−δ−1
( .
B (ξ∗)

)( .
G (ω)

)
A (1− G (ω)) exp (−G (ω))

)
=0,

Which proves that Det {HS (ω, ξ∗)} = 0. Now, let us
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.
S̃ξ (ω

∗, ξ) =ϕ8δ

(
A+ ϕ1

(
(C)−δ − (γIC)−δ

)−1
)
(B (ξ))+(B (ξ))−δ−1

[
exp

(
−(γI)

δ

(
A+ ϕ1

(
(C)−δ − (γIC)−δ

)−1
)
(B (ξ))−δ

)

× 1 (B (ξ)− γIC)︸ ︷︷ ︸
=0

+exp

(
1 + ϕ1

(
A
(
(C)−δ − (γIC)−δ

))−1
)
1 (γIC − B (ξ))1 (B (ξ)− C)︸ ︷︷ ︸

=0

 = 0. (43)

η1,2 =
1

2

(
Tr {HS̃ (ω, ξ∗)} ±

√(
Tr {HS̃ (ω, ξ∗)}

)2 − 4Det{HS̃ (ω, ξ∗)}
)

=

 η1 = Tr {HS̃ (ω, ξ∗)} =
∂2S(ω,ξ∗)

∂2ω
=

∂2S(ω,ξ∗)
∂2ω

=

 η1 < 0 ω < ω∗∗

η1 > 0 ω > ω∗∗

η1 = 0 ω = ω∗∗

η2 = 0

, (47)

examine the eigenvalues of HS (ω, ξ∗), η1,2 which is given
by (47) at the top of this page. Here ω∗∗ is the inflection
point given in (32).

From (47), we can conclude that HS̃ (ω < ω∗∗, ξ∗) is
negative semi definite and HS̃ (ω > ω∗∗, ξ∗) is positive
semi definite. Thus, S̃ (ω < ω∗∗, ξ∗) is concave function and
S̃ (ω > ω∗∗, ξ∗) is convex function. Since ω∗ < ω∗∗, this
means that the segment defined by ξ∗ ≥ σ2γD

C and ω∗ =(
ρAπR2

)−1
(1 + ϕ1/ϕ3), where

.
S̃ξ (ω

∗, ξ∗) =
.
S̃ω (ω∗, ξ∗) =

0, lies also in a region where S̃ (ω, ξ) is jointly concave
(although not strictly concave) and this segment is therefore a
global maximum of the ASE. QED.
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Ferrari and E. Sisinni, “Energy Efficiency of Slotted LoRaWAN
Communication With Out-of-Band Synchronization,” in IEEE
Trans. Instrum. Meas., vol. 70, pp. 1-11, 2021.

[10] L. -T. Tu, A. Bradai, Y. Pousset and A. I. Aravanis, ”Energy Ef-
ficiency Analysis of LoRa Networks,” IEEE Wireless Commun.
Lett., vol. 10, no. 9, pp. 1881-1885, Sept. 2021.

[11] B. Reynders, W. Meert and S. Pollin, “Power and spreading
factor control in low power wide area networks,” IEE ICC 2017,
Paris, 2017, pp. 1-6.

[12] K. Q. Abdelfadeel, V. Cionca and D. Pesch, “Fair Adaptive Data
Rate Allocation and Power Control in LoRaWAN,” IEEE 19th
WoWMoM, Chania, 2018, pp. 14-15.

[13] B. Su, Z. Qin and Qiang Ni, “Energy Efficient Resource
Allocation for Uplink LoRa Networks ”, Proc. GLOBECOM
2018, Abu Dhabi, United Arab Emirates, Dec. 2018.

[14] R. B. Sørensen et. al., “Analysis of Latency and MAC-Layer
Performance for Class A LoRaWAN,” IEEE Wireless Commun.
Lett., vol. 6, no. 5, pp. 566-569, Oct. 2017.

[15] J. Lyu, D. Yu and L. Fu, “Analysis and Optimization for Large-
Scale LoRa Networks: Throughput Fairness and Scalability,”
IEEE Internet Things J., Early Access.

[16] R. Fernandes, R. Oliveira, M. Luı́s and S. Sargento, “On
the Real Capacity of LoRa Networks: The Impact of Non-
Destructive Communications,” IEEE Commun. Lett., vol. 23, no.
12, pp. 2437-2441, Dec. 2019.

[17] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita and I.
Tinnirello, “Impact of LoRa Imperfect Orthogonality: Analysis
of Link-Level Performance,” IEEE Commun. Lett., vol. 22, no.
4, pp. 796-799, April 2018.

[18] T. T. Lam and M. Di Renzo, “On the Energy Efficiency
of Heterogeneous Cellular Networks With Renewable Energy
Sources—A Stochastic Geometry Framework,” IEEE Trans.
Wireless Commun., vol. 19, no. 10, pp. 6752-6770, Oct. 2020.

[19] J. Haxhibeqiri, F. Van den Abeele, I. Moerman and Hoebeke, J.
“LoRa Scalability: A Simulation Model Based on Interference
Measurements,” Sensors 2017, 17, 1193.

[20] M. Di Renzo, L. T. Tu, A. Zappone and M. Debbah, “A
Tractable Closed-Form Expression of the Coverage Probability
in Poisson Cellular Networks”, IEEE Wireless Commun. Lett.,
vol. 8, no. 1, pp. 249 - 252, Feb. 2017.

[21] R. Marini, W. Cerroni and C. Buratti, “A Novel Collision-Aware
Adaptive Data Rate Algorithm for LoRaWAN Networks,” IEEE
Internet Things J., Early Access.

[22] M. Di Renzo, A. Zappone, L. T. Tu and M. Debbah, “System-
Level Modeling and Optimization of the Energy Efficiency in
Cellular Networks – A Stochastic Geometry Framework”, IEEE
Trans. Wireless Commun., vol. 17, no. 4, pp. 2539 - 2556, Apr.
2018.

[23] N. Sorni, M. Luis, T. Eirich, T. Kramp, and O. Hersent,
LoRaWAN Specification, LoRa Alliance, San Ramon, CA, USA,
Jan. 2015.



16

[24] IEEE 802.16p-11/0014, IEEE 802.16p Machine to Machine
(M2M) Evaluation Methodology Document (EMD). [Online].
Available: http://ieee802.org/16/m2m/index.html

[25] W. Xu, J. Y. Kim, W. Huang, S. S. Kanhere, S. K. Jha and
W. Hu, “Measurement, Characterization, and Modeling of LoRa
Technology in Multifloor Buildings,” IEEE Internet Things J.,
vol. 7, no. 1, pp. 298-310, Jan. 2020.

[26] M. Di Renzo, T. T. Lam, A. Zappone and M. Debbah, “A
Tractable Closed-Form Expression of the Coverage Probability
in Poisson Cellular Networks,” IEEE Wireless Commun. Lett.,
vol. 8, no. 1, pp. 249-252, Feb. 2019.

[27] I. S. Gradshteyn et. al., “Table of Integrals, Series, and Products
7th edition”, Academic Press, 2007.

[28] Wolfram Mathematica document. [Online]. Available:
http://functions.wolfram.com/06.06.21.0002.01.

Lam-Thanh TU was born in Ho Chi Minh City,
Vietnam. He received the B.Sc. degree in electronics
and telecommunications engineering from the Ho
Chi Minh City University of Technology, Vietnam,
in 2009, the M.Sc. degree in telecommunications
engineering from the Posts and Telecommunications
Institute of Technology, Vietnam, in 2014, and the
Ph.D. degree from the laboratory of Signals and
Systems, Paris-Saclay University, Paris, France, in
2018. From 2015 to 2018, he was with the French
National Center for Scientific Research (CNRS),

Paris, as an Early Stage Researcher of the European-funded Project H2020
ETN-5Gwireless. He is currently a Research Fellow with the Institute Xlim,
University of Poitiers, Poitiers, France. He was an IEEE Transactions on
Communications exemplary reviewer for 2016 and a recipient of the 2017
IEEE SigTelCom Best Paper Award. He was an assistant project manager
of the H2020 MCSA 5Gwireless and 5Gaura projects. His research interests
include stochastic geometry, LoRa networks, physical layer security, energy
harvesting, and machine learning applications for wireless communications.

Abbas Bradai received his PhD at
LaBRI/University of Bordeaux, France, in 2012.
He is actually associate professor at university
of Poitiers and research fellow at XLIM lab,
Poitiers. His main research interests are multimedia
communications over wired and wireless networks,
cognitive radio, software defined network and
virtualization. Abbas Bradai is/was involved in
many French and European projects (ANR, FP7,
H2020) such as ENVISION, VITAL, SAFE.

Pousset Yannis was born in 1971. He received
the Ph.D. degree in mobile radio communication
from the University of Poitiers, in 1998. Since 2012,
he is professor at the University of Poitiers in the
department of electrical engineering. He develops
its research activities in the XLIM laboratory. His
research interests include the study of adaptive links
related to the optimal transmission of data over
wireless spatio-temporal radio channel.

Alexis I. Aravanis was born in Athens, Greece
in 1988. He received the Dipl.-Ing. (MSc ECE)
Degree in Electrical and Computer Engineering
from the National Technical University of Athens
(NTUA), Athens, Greece in 2012 and in 2019 the
Ph.D. Degree in Telecommunications Engineering
from Universitat Politecnica de Catalunya (UPC),
Barcelona, Spain, seconded to Centre National de la
Recherche Scientifique (CNRS), Paris, France, under
a Marie Curie ESR Fellowship (2016). He is also the
recipient of a Marie Curie Individual Fellowship (IF)

with CNRS, Paris, France. Since 2020 he is with CentraleSupelec where he is
a Tenured Assistant Professor in the Laboratory of Signals and Systems (L2S)
of CNRS, CentraleSupelec and University of Paris-Saclay, Paris, France. He
serves as the Secretary of the RIS Emerging Technology Initiative of the
IEEE Communications Society and of the RISE and REFLECTIONS Special
Interest Groups of the IEEE Communications Society. He has served as the
Managing Editor of IEEE Communications Letters, he is a member of the
Technical Chamber of Greece (TEE) and an Onassis Foundation Scholar.


