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On the Coverage Probability and Spectral

Efficiency in LoRa Networks
Lam-Thanh Tu, Abbas Bradai and Yannis Pousset

Abstract

The coverage probability (Pcov) and the potential spectral efficiency (PSE) in LoRa networks

are investigated. In particular, we propose an approximated but tractable mathematical framework by

using tools from stochastic geometry and point processes. Based on the proposed framework, closed-

form expressions for Pcov and PSE are provided. In addition, the impact of the average number of

end-devices (EDs), the transmit power, the transmission bandwidth and the radius of the considered

networks, are analyzed. Our findings reveal that Pcov and PSE have the same performance trends

as a function of the transmit power, the radius of the networks and the transmission bandwidth.

As for the average number of EDs, on the other hand, Pcov and PSE have a different behavior.

Specifically, Pcov is a convex and monotonic decreasing property as a function of the number of

EDs and the PSE is either a unimodal function or monotonic increasing function depending on

the transmit power of the EDs. Moreover, a closed-form expression of the optimal number of EDs

which maximizes the PSE is obtained. Finally, the proposed analytical frameworks and performance

trends are validated with the aid of Monte Carlo simulations.

Index Terms

LoRa Networks, Stochastic Geometry, Coverage Probability, Spectral Efficiency.

I. INTRODUCTION

It is expected that by the end of the year there will be over 50 billion end-devices (EDs) to

be connected to the Internet that realizes the Internet-of-Things (IoTs) networks [2]. However,

such this massive devices network also poses some challenges, e.g., how to support all devices

with different quality-of-services (QoSs) levels simultaneously and how to cut down the power

consumption as least as possible. At the first attempt, the cellular networks seems to be a wise

choice with its well-standardised networks combined with super-dense deployment of the base

stations (BSs). Nonetheless, such ultra-dense networks makes it too bulky and consume too

much power as well. It, as a result, is essential to look for novel networks which is able to

not only support a massive connected devices but also consume less power. Fortunately, low
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power wide area network (LPWAN) has recently regarded as one of the promising networks

thanks to its properties, e.g., low power consumption, low cost and wide coverage area.

Compared with other available LPWAN technologies, i.e., Sigfox, NB-IoT, Weightless and

so on, LoRa is considered as the most suitable one which attracts lots of attention from

both academia and industry [3]. One of the main advantages of LoRa compared to other

technologies is its patented modulation technology, i.e., the chirp spread spectrum (CSS)

modulation [4], that has many benefits comparing with conventional modulations, e.g., PSK

and QAM, respectively. Moreover, LoRa is also able to serve a large range of IoT applications

with different QoS levels, i.e., e-Health, smart home, smart infrastructure monitoring and so

forth, by actively fine-tuning its parameters, namely, the coding rate (CR), the spreading

factor (SF), and the bandwidth (BW) and so forth. To further reduce the power consumption

at end-devices, all kinds of synchronizations as well as sensing the availability of the medium

are skipped in LoRa networks. It, as a consequence, allows end-devices to freely access the

medium regardless of the channel occupancy. On the other hand, stochastic geometry (SG)

is a mathematical tool which studies random point patterns. Hence, it is considered as a

proper tool to evaluate the performance of wireless networks where the EDs and/or BSs

are randomly distributed in a large area. Consequently, in the present paper, we address the

performance of LoRa networks by utilizing tools from stochastic geometry. Before moving

to the main contribution, some state-of-the-art of LoRa networks are discussed in the sequel.

One of the seminal works examining the performance of LoRa networks by using SG was

in [5]. This work, nevertheless, did not take into account the correlation between noise and

interference at the receiver. In [6], the performance of LoRa network with multiple receive

antenna was studied. However, like in [5], the correlation between noise and interference

were ignored. Moreover, it is apparent that multiple antennas seem to be impractical in LoRa

networks as most of the EDs and/or gateway are low cost devices with simple hardware.

Danielle et al. in [7] investigated the impact of imperfect orthogonality of LoRa networks.

This work, however, focused on link-level that had a limited number of EDs. The symbol

error rate and frame error rate were investigated, again, at link-level in [8]. The Pcov and

potential spectral efficiency (PSE) were investigated in [9] by assuming that the EDs were

distributed according to the Matern cluster process. Nevertheless, numerical computations

were utilized to compute the system metrics rather than by using closed-form expressions; it,

in addition, also constrained the paper’s findings. To be more specific, all insights were drawn

based on numerical computations in lieu of the mathematical framework which heavily relied

on the simulation setups. The energy efficiency resource allocation of LoRa networks was

addressed in [10] and a distributed network slicing strategy was proposed in [11] to address

the question of scalability of large-scale LoRa networks.

In this paper, different to these above-mentioned works, we capitalize on the mathematical
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tools of stochastic geometry to analyze and identify the insights of both Pcov and PSE of LoRa

networks respect to several essential parameters. Particularly, the novelties and contributions

of this manuscript can be summarized as follows.

• A recent definition of the coverage probability is yielded which is able to take into

account the correlation between noise and interference at the receiver.

• The approximated but tractable, closed-form expressions of both Pcov and PSE under

Nakagami-m fading are provided.

• The trends of the Pcov are investigated based on the proposed mathematical frameworks

instead of numerical computations. Particularly, the Pcov is a monotonic decreasing

function with convex property respect to the average number of EDs; the impact of

the transmit power, on the contrary, is totally opposite. In fact, Pcov is a concave

function with monotonic increasing property respect to the transmit power. As for the

transmission bandwidth and the network radius, Pcov is a unimodal function respect

to the transmission bandwidth and is a monotonic decreasing function respect to the

network radius. In addition, the optimal value of the bandwidth that maximizes the

Pcov is computed either in closed-form or semi closed-form expressions. To the best of

authors’ knowledge, these findings are novel especially the impact of the transmission

bandwidth.

• As for the PSE, its insights respect to the average number of EDs, the transmit power, the

transmission bandwidth and the network radius are also identified. We prove that PSE

has identical behaviors with Pcov if the transmit power, network radius and transmission

bandwidth are considered. However, the trends of PSE respect to the average number of

ED totally disagree with Pcov as it either monotonically increases with concave property

or is a unimodal function and changes from concave to convex relying on the transmit

power. Furthermore, the insights of the optimal value of the average number of EDs are

also investigated as a function of the transmit power, network radius and the path-loss

exponent, respectively.

• The trends of Pcov and PSE respect to both the transmit power and the average number

of EDs simultaneously are unveiled too. It shows that it always exists a pair of the

transmit power and the average number of EDs that maximizes the PSE while the Pcov

is simply a concave function of these variables.

The rest of this paper is organized as follows. In Section II, the considered system model

is presented. In Section III, both the exact and approximated frameworks of PSE and Pcov

are derived and the performances of both metrics respect to various important parameters are

investigated in Section IV. In Section V, Monte Carlo simulations are supplied to clarify the

correctness of our framework. Finally, Section VI concludes the paper.
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TABLE I: Main notations and mathematical symbols/shorthand
δ = 2/β, A = R−2 (K0/θ)

−δ , C = Rβ (K0/θ), D = AG, G = λAπR2 = ρAN , B = σ2γD/Ptx, F = mθ,
Ã = R−2(K0/F)

−δ , C̃ = R−βF/K0, D̃ = ÃG, Tx (t), x ∈ {0, 1, 2}, is an auxiliary function;
φx, x ∈ {1, . . . , 11}, is shorthand.

Symbol Definition
E {.}, Pr (.) Expectation and probability operators
Γ (.), γ (., .) Gamma and incomplete lower gamma functions

exp (.), log (.) Exponential and natural logarithm functions
FX (x), fX (x) Cumulative distribution function and probability density function of RV X
1 (x), max {.} Indicator and maximum function.

f (x) = df(x) /dx First-order derivative of f respect to x..
f (x) = d2f(x) /dx2 Second-order derivative of f respect to x

∂f/∂x Partial derivative of function f respect to x
ho, h2o Fading coefficient and channel gain from ED o to gateway
ro, Lo Distance and path-loss from ED o to gateway

Det{X}, R The determinant of X matrix and network radius
HX (x, y) The Hessian matrix of function X with variables x and y
λ, λA, N The density, active density and average number of EDs
β, K0, σ2 The path-loss exponent, path-loss constant and noise variance

Ptx The transmit power of each ED
SF, CR, Lpac Spreading factor, coding rate and packet length
Tin, NF, BW Average packet inter-arrival time, noise figure and bandwidth
m, θ, fc Shape and scale parameters of Gamma distribution, carrier frequency
ΨA, Ω Set of active ED and scaling factor of Nakagami-m fading
γI, γD Rejection threshold and QoS threshold

SNR, SIR Signal-to-noise ratio and signal-to-interference ratio
Pcov (γD), P̃cov (γD) Exact and Approximation of the coverage probability
PSE (γD), P̃SE (γD) Exact and Approximation of the potential spectral efficiency

II. SYSTEM MODEL

A. LoRa Networks Modeling

Considering an uplink LoRa networks with single gateway locates at the origin of the

coordinate system and the EDs which are randomly distributed in the considered region, Q,

around the gateway. We assume that the EDs are modelled according to an inhomogeneous

Poisson point process (PPP), Ψ, with intensity function λ > 0 in Q and 0 otherwise. For

simplicity, assuming that the considered region, Q, is a disc with radius, R, from the gateway.

Consequently, the average number of EDs denoted by N , is computed as N = λπR2. In this

work, we assume that interference from other LPWAN technologies which operate at the

same industrial, scientific and medical (ISM) band are not taken into account as well since

we consider only the LoRa networks [5].

B. Channel Modelling

Let us consider a generic signal from an arbitrary ED to the gateway, it is impaired by

both the small-scale fading and the large-scale path-loss. It should be emphasized that the

impact of the shadowing is implicitly studied by modifying the density of the EDs [12].

1) Small-scale fading: Let us denote ho, is the small-scale fading from an arbitrary

node o to the gateway which follows by Nakagami-m fading with severity m ≥ 1/2, and
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scaling factor, Ω. The channel gain, h2
o, as a result, is followed Gamma distribution with

corresponding shape and scale parameters, m and θ = m
Ω

, respectively. It is obvious that

Nakagami-m fading is one of the most general fading channel which can be turned into

other well-known fading distribution by properly setting its severity parameter, e.g., m = 1,

is Rayleigh fading and m = 1/2, is the single-sided Gaussian distribution. In addition, we

assume that time is slotted and the fading remains constant during one time-slot and changes

between time-slot.

2) Large-scale path-loss: Let us consider a transmission link from a generic node o to

the gateway, the large-scale path-loss is formulated as

Lo = l (ro) = K0r
β
o . (1)

Here ro is the distance from the ED o to the gateway; β > 2 and K0 =
(

4πfc
c

)2
are the

path-loss exponent and the path-loss constant, respectively. Here, fc is the carrier frequency

and c = 3× 108 (in meter per second) is the speed of light.

C. Signal-to-Interference Ratio (SIR) and Signal-to-Noise Ratio (SNR)

1) Signal-to-Interference Ratio (SIR): Under the considered networks, the signal-to-interference

ratio (SIR) from an arbitrary node to the gateway, SIR, is formulated as

SIR =
PtxS0

PtxIS
=

Ptxh
2
0/L0

Ptx
∑

i∈ΨA\(0)

h2i
Li

(2)

where Ptx is the transmit power of end-devices; S0 is the signals from the ED of interest to

the gateway; IS is the aggregate interference from all active EDs except for the desired ED.

h2
0, h2

i are the channel gain from desired ED and interferer i to the gateway; and L0, Li are

the large-scale path-loss from the ED of interest and interferer i to the gateway. ΨA\ (0) is

the set of active EDs except for the desired ED and follows an homogeneous PPP which

density λA = pAλ in Q. Here, pA = 1
Tin

Lpac

Rbit
being active probability; Tin, Lpac are the average

packet inter arrival time and the packet length, respectively. The length of the packet assumes

to be fixed and Rbit is bit rate and computes as Rbit = SFBW
2SF CR [3]; SF, CR and BW are the

spreading factor, coding rate and transmission bandwidth, respectively. Table I summarizes

all notations/symbols are used in the paper.

2) Signal-to-Noise Ratio (SNR): Let us denote SNR is the signal-to-noise ratio (SNR) of

an arbitrary node to the gateway and is formulated as

SNR =
PtxS0

σ2
, (3)

where σ2 = 10(−174+NF+10 log10 BW)/10 [5] is the noise variance of AWGN noise; NF is the

noise figure (in dBm) at receiver and log10 (.) is the logarithm base 10 function.
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III. PERFORMANCE ANALYSIS

A. Performance Metrics

In this manuscript, we are interested in investigating the performance of LoRa networks

from two perspectives, namely, from the end-devices and from the whole networks point

of view. From the viewpoint of EDs, the coverage probability (Pcov) is selected while the

potential spectral efficiency (PSE) is chosen from the viewpoint of the whole networks.

1) Coverage Probability: Considering a generic ED, the coverage probability denoted by

Pcov (γD), refers to the probability that both SIR and SNR are greater than the pre-defined

thresholds and is formulated as follows [13]:

Pcov (γD) = Pr {SIR ≥ γI,SNR ≥ γD} , (4)

where Pr {.} is the probability operator; γD is a given quality-of-services threshold and

relying on the spreading factor [3]; γI is the rejection threshold. In LoRa, the receiver can

successfully decode its desired signal provided that no other signals with the same SF is

greater than 6 dB, i.e., γI = 6 dB [3].

By direct inspection the Pcov definition in (4), it is no doubt that it has taken into account

the correlation between the interference and background noise. The work in [5], [6], on the

other hand, were totally omitted this relationship. Comparing with the definition based on

signal-to-interference-plus-noise ratio (SINR) in [9]. The proposed one can be seen as an

approximated but more tractable, moreover, it also allows identifying the impact of several

important metrics by utilizing the mathematical framework instead of numerical results like

in [9].

2) Potential Spectral Efficiency: The potential spectral efficiency in (bit/s/m2) measures the

network information rate per unit area which corresponds to the minimum QoS requirement

and is formulated as follows [12]:

PSE (γD) =λABWlog2 (1 + γD) Pcov (γD) . (5)

From (4) and (5), it is evident that in order to compute the PSE and Pcov, the distribution of

both the intended signal and the aggregate interference are required. In LoRa, a number of

concurrent transmissions are limited due to the strict constraint of the duty cycle; as a conse-

quence, it typically approximates the aggregate interference by the dominant interference [5],

[6]. Thus, the approximated SIR is given as SIR = PtxS0

PtxIS
≈ PtxS0

PtxIM
, where IM = max

i∈ΨA\(0)
(h2

i /Li)

is the strongest interferer. Three following Lemmas are essential to calculate the performance

of both PSE and Pcov and are given as follow.

Lemma 1: Let us denote γ (., .) is the lower incomplete gamma function and δ = 2/β then

the cumulative distribution function (CDF), FS0 (x), and probability density function (PDF),
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fS0 (x), of the intended signal are provided as follows

FS0 (x) = (Γ (m))−1 (γ (m, Cx)−Ax−δγ (δ +m, Cx)
)
,

fS0 (x) = (δA/Γ (m))x−δ−1γ (δ +m, Cx) , (6)

where A = 1
R2

(
K0

θ

)−δ; C = Rβ
(
K0

θ

)
and Γ (.) is the Gamma function.

Proof: The proof begins with the definition of the CDF follow by substituting the

distribution of h2
0 and rβ0 . Mathematical speaking, we have following:

FS0 (x) = Pr

{
h2

0

K0r
β
0

< x

}
= Pr

{
h2

0 < xK0r
β
0

}
(a)
=

1

Γ (m)

2

R2

1

β

Rβ∫
t=0

γ

(
m,

xK0t

θ

)
tδ−1dt (7)

(b)
=γ (m, Cx) /Γ (m)−Ax−δγ (δ +m, Cx) /Γ (m) ,

where (a) is obtained by applying the CDF of the small-scale fading, h2
0, and the PDF of

the distance from the desired ED to the gateway, r0; follow by changing the variable, t = rβ0 ;

(b) is attained from [14]. The PDF is effortlessly derived by taking the first-order derivative

of FS0 (x) respect to x as fS0 (x) =
.
FS0 (x) =

dFS0 (x)

dx
and is shown in (6), we conclude the

proof here.

Lemma 2: Let us define G = λAπR2 = ρAN is the number of active EDs then the

cumulative distribution function of the strongest interferer is provided as

FIM (x) = exp

(
−Dx−δ γ (δ +m, Cx)

Γ (m)
− G+G γ (m, Cx)

Γ (m)

)
, (8)

where D = AG and exp (.) is the exponential function.

Proof: The proof is obtained by utilizing the order statistics theorem. In particular, from

order statistics, the CDF of the maximum of i ∈ N, independent and identical distributed

(i.i.d.) random variables (RVs) with CDF FI (x) is calculated as FIM (x) = (FI (x))i. In

addition, under the considered system, the number of active interferer is followed Poisson

distribution with mean G. As a result, the CDF of the dominant interferer is given as

FIM (x)
(a)
= exp (−G)

∞∑
i=0

[
γ (m, Cx)

Γ (m)
−A
xδ
γ (δ +m, Cx)

Γ (m)

]i
(G)i

i!

(b)
= exp

(
−Dx−δ γ (δ+m, Cx)

Γ (m)
−G+Gγ (m, Cx)

Γ (m)

)
. (9)

Here (a) is attained by substituting the CDF of an arbitrary interferer and taking the average

over number of interferer; (b) is held by using the definition of the exponential function,
∞∑
i=0

xi

i!
= exp (x) and D = AG. We complete the proof here.
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Lemma 3: Let us denote S̃0 ≈ S0 =
E{h20}
L0

, ĨMk ≈ IM = max
i∈ΨA\(0)

E{h2i}
Li

are the approxi-

mated desired signal and dominant interferer, respectively. Then, the PDF of the signals of

interest and the CDF of the strongest interferer are computed as

FS̃0
(x) = Pr

{
E {h2

0}
K0r

β
0

≤ x

}
=
(

1− Ãx−δ
)
1
(
x− C̃

)
,

fS̃0
(x) =δÃx−δ−11

(
x− C̃

)
FĨM

(x) = exp
(
−G1

(
C̃ − x

))
exp

(
−D̃x−δ1

(
x− C̃

))
, (10)

where Ã = 1
R2

(
K0

F

)−δ, C̃ = F
RβK0

, D̃ = ÃG; F = mθ; E {.} is the mean operator and 1 (x)

is the indicator function which is equal to 1 if x > 0 and 0 for otherwise.

Proof: The proof is straightforwardly derived by following the same steps as Lemmas

1 and 2.

Lemmas 1 and 2 provide the statistics of the intended signal and the strongest interferer

in the exact frameworks while Lemma 3 gives the approximated one. The core reason of

using approximated frameworks is that the closed-form expression of the Pcov can only be

obtained by the approximated framework, the exact one, on the other hand, is not able to

attain even the simplest case, i.e., Rayleigh fading or m = 1, is taken into consideration, i.e.,

equation (11). Moreover, it is emphasized that the trends of both Pcov and PSE can merely

be drawn based on the rigorous mathematical frameworks providing that the approximated

signals are yielded.

B. Performance Analysis

From Lemmas 1 and 2, the coverage probability formulated in (4) is computed as follows

Pcov (γD) =
δA

Γ (m)
exp (−G)

∞∫
x=B

x−δ−1γ (δ +m, Cx)

× exp

(
−Dx−δ(γI)

δ γ
(
δ +m,xC(γI)

−1)
Γ (m)

+ G
γ
(
m,xC(γI)

−1)
Γ (m)

)
dx, (11)

Proof: Equation (11) is easily derived from the definition of Pcov in (4) as

Pcov (γD) = Pr {S0/γI ≥ IM, S0 ≥ B} =
∫∞
x=B FIM (x/γI) fS0 (x) dx and B = σ2γD/Ptx.

By direct examination (11), it is obvious that the integration is not able to compute in

closed-form expression even with the simplest case, m = 1 (Rayleigh fading) or in the high

transmit power regime, i.e., Ptx → ∞ ⇒ B → 0, owing to the generality of the path-loss

exponent as well as the composition function of the lower incomplete gamma function and the

exponential function. As a result, we propose a simple but tractable approximation framework

in order to not only obtain the closed-form expression but also derive the trends of Pcov

respect to some essential parameters based on the rigorous frameworks. The accuracy of the
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proposed approximation framework versus its counterpart are extensively studied in Section

V. Considering the small-scale fading remains constant over a lengthy of time, consequently,

following approximation can be applied: h2
w ≈ E {h2

w}, w ∈ {0, i}, then the approximated

Pcov is provided in Proposition 1 as follows

Proposition 1: Let us denote P̃cov (γD) is the approximated of Pcov (γD), it is formulated

and computed as

P̃cov (γD)≈Pr
{
S̃0/ĨM ≥ γI, PtxS̃0/σ

2 ≥ γD

}
=(G)−1(γI)

−δ
(

1− exp

(
− (γI)

δD̃

×
(

max
{
B, γIC̃

})−δ))
+Ãexp (−G)

((
max

{
C̃,B

})−δ
−
(
γIC̃
)−δ)

1
(
γIC̃ − B

)
, (12)

where max {., .} is the maximum function.

Proof: See Appendix I.

Having the Pcov in hand, we are now able to compute the PSE by substituting (11) and

(12) into (5). It is worth noting that if (12) is yielded then we have the approximated PSE

denoted by P̃SE (γD) instead of the exact one. In the sequel, the insights of both Pcov and

PSE will be studied based on the approximated frameworks.

IV. PERFORMANCE TRENDS

The goal of this section is to investigate the impact of some vital parameters, i.e., the

average number of EDs, the transmit power, the network radius and the transmission band-

width, on the performance of the considered LoRa networks. In particular, based on the

approximation framework in equations (12) and (5), we unveil the insights of both Pcov and

PSE under the rigorous mathematical framework which is almost impossible to get the same

conclusions providing that (11) is considered.

For clarification, in the following, let us denote the parameter of interest as follows ω = N ,

ξ = Ptx, ς = BW and $ = R. Without loss of generality, only the parameter of interest, e.g.,

ω, ξ, ς and $, is explicitly shown in the framework of both Pcov and PSE, thus, it implicitly

means that other parameters are constant and for ease of notation, following shorthand are

introduced P̃cov (γD) = P̃ (x); P̃SE = S̃ (x), x ∈ {ω, ξ, ς,$}. For example, P̃ (ξ) means

the coverage probability is solely a function of the transmit power and other parameters are

fixed.

A. Coverage Probability

Let us first investigate the behaviors of Pcov respect to the average number of EDs, N ,

which is provided in Proposition 2.

Proposition 2: Let us consider ω = N , the followings are held: i) P̃ (ω) has the convexity,

monotonic decreasing properties respect to ω; ii) P̃ (ω → +∞) = 0; and iii) P̃ (ω → 0) =
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Ã
[(

max
{
B, γIC̃

})−δ
+

((
max

{
C̃,B

})−δ
−
(
γIC̃
)−δ)

1
(
γIC̃ − B

)]
.

Proof: See Appendix II.

Remark 1: By direct inspection (11), we can also draw the same conclusion that Pcov is

monotonically decreasing to zero at

Pcov (γD)
N→0
= P (ω → 0) = (δA/Γ (m))

∞∫
x=B

x−δ−1γ (δ +m, Cx) dx

=1− (Γ (m))−1
(
γ (m,BC)−A(B)−δγ (δ +m,BC)

)
. (13)

The second-order property of Pcov, however, is not able to immediately derive from the exact

framework, i.e., equation (11). As a result, our findings in Proposition 2 are not trivial.

Remark 2: It is also interested in stating that the asymptotic of Pcov when N → 0, i.e.,

P (ω → 0), can be intuitively derived from (4) if the considered networks is noise-limited.

Mathematical speaking, we have

Pcov (γD)=Pr

{
SNR =

PtxS0

σ2
≥ γD

}
(a)
= F S0 (B) . (14)

Here FX (x) is the complementary cumulative distribution function (CCDF) of random

variable X , i.e., FX (x) = 1− FX (x), and (a) is held by using the result of (7).

Remark 3: Looking at the framework of P̃ (ω → 0), in general, the upper bound of Pcov

when ω → 0 is not equal to 1. It is facile to explain that although the system is no longer

interference-limited, the impact of the fading and noise on the Pcov, on the other hand, are

not non-negligible. Nevertheless, if keep increasing the transmit power that B → 0, then

Pcov approaches 1 as expected.

In the sequel, the impact of the transmit power on the performance of Pcov is provided by

following proposition.

Proposition 3: Let us consider ξ = Ptx, the followings are true: i) P̃ (ξ) monotonically in-

creases and has concavity property with ξ; ii) P̃ (ξ → +∞) = (G)−1(γI)
−δ (1− exp (−G))+

exp (−G)
(

1− (γI)
−δ
)

; iii) P̃ (ξ → 0) = 0.

Proof: See Appendix III.

Remark 4: It is apparent that the Pcov’s behaviors respect to ξ = Ptx, are not able to derive

from (11) due to the extremely high complexity of the function inside the integration. On the

contrary, it is not a problem if we inspect the definition of Pcov provided in (4). However,

for the second-order property, it is impossible to proof the trends by direct inspection either

(11) or (4). Hence, once again, our findings are valuable and also confirm the necessity of

the closed-form expression of the Pcov.

Remark 5: From Proposition 3, we observe that there is an upper bound of Pcov when

Ptx → ∞ and this bound, in general, does not approach one. Indeed, it can only go to one
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providing that two following conditions, i.e., Ptx →∞ and G → 0, are concurrently satisfied

and this coincides with findings in Remark 3.

Propositions 2 and 3 investigate the properties of Pcov separately. In the sequel, the

impact of both the average number of EDs, N , and the transmit power, Ptx, on the coverage

probability are simultaneously addressed.

Proposition 4: Let us define ω = N and ξ = Ptx, the Pcov as a function of both ω and ξ,

P̃ (ω, ξ), is a concave function.

Proof: Let us explicitly represent Pcov respect to both ω and ξ as follows

P̃ (ω, ξ) = (γI)
−δ (G (ω))−1

(
1− exp

(
−ÃG (ω) (γI)

δ

(
max

{
B (ξ) , γIC̃

}−δ)))
+ Ã exp (−G (ω))

(
max

{
B (ξ) , C̃

}−δ
−
(
γIC̃
)−δ)

1
(
γIC̃ − B (ξ)

)
. (15)

To find out the concavity property of a given function, the determinant of the Hessian matrix

of P̃ (ω, ξ) is computed as

HP̃ (ω, ξ) =

[
∂2P̃(ω,ξ)
∂2ω

∂2P̃(ω,ξ)
∂ω∂ξ

∂2P̃(ω,ξ)
∂ξ∂ω

∂2P̃(ω,ξ)
∂2ξ

]

Det
{
HP̃ (ω, ξ)

}
=
∂2P̃ (ω, ξ)

∂2ω

∂2P̃ (ω, ξ)

∂2ξ
−

(
∂2P̃ (ω, ξ)

∂ω∂ξ

)2

≤0. (16)

Here HX (a, b) is the Hessian matrix of function X respect to variables a, b; Det{X} is

the determinant of matrix X; ∂f
∂a

is the partial derivative of f respect to variable a; (16) is

obtained directly by exploiting the outcomes of Propositions 2 and 3 that ∂2P̃(ω,ξ)
∂2ω

≥ 0, ∀ω
and ∂2P̃(ω,ξ)

∂2ξ
≤ 0,∀ξ. As the determinant of the Hessian matrix is always negative, hence,

Pcov is a concave function and we close the proof here.

Remark 6: Proposition 4 means that there always exists a pair of (ω, ξ) that maximizes

the Pcov.

The impact of other equal-important parameters, i.e., the transmission bandwidth and the

network radius, are provided by two following Propositions.

Proposition 5: Let us define ς = BW, the coverage probability of EDs is a parabola

function with concave down property respect to ς . Given the value of the transmit power,

the optimal value of ς denoted by ς∗P = BW∗, that maximizes Pcov is computed as follows

ς∗P=


[
(γI)

δÃφ8(φ9)−δ(ς∗1 )−1
] 1

1+δ
Ptx≤ φ7γDφ8

γIC̃ς∗1

ς∗2 Ptx ∈
(
φ7γDφ8
γIÃς∗1

, φ7γDφ8
δC̃

]
PtxÃ
φ7γD

Ptx >
φ7γDφ8
δC̃

(17)

where φ7 = 10(−174+NF)/10; φ8 = LpacN2SF

SFTinCR
; φ9 = φ7γD/Ptx; ς∗1 and ς∗2 are the solution of
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following equations

1− exp (−ς∗1 ) (ς∗1 (1 + δ) + 1) = 0 (18)

Ã(B (ς∗2 ))−δ exp (−G (ς∗2 )) (G (ς∗2 )− δ) + (γI)
−δ (G (ς∗2 ))−1

×
[
1− exp (−G (ς∗2 ))

(
1 + G (ς∗2 ) + (G (ς∗2 ))2)] = 0 (19)

Proof: See Appendix IV.

Remark 7: It is noted that if the transmit power goes to infinity then ς∗P approaches infinity

too. The Pcov, as a result, is monotonically increasing to one for this case study.

Remark 8: To the best of authors’ knowledge, none of works in the literature examines

the performance of Pcov respect to the transmission bandwidth in LoRa networks; thus, the

results reported in Proposition 5 are novel and unique. Moreover, it is, for sure, impossible

to have the same conclusions if the exact framework is taken into consideration.

Remark 9: It is worth noting that although ς∗P is computed either in full or semi closed-

form expression because ς∗1 and ς∗2 need to be calculated by using numerical methods via some

commercial software, e.g., Matlab or Mathematica. However, these values can be effortlessly

found, for example, looking at (18), it is quite simple and relies solely on the path-loss

exponent, β, via the term δ.

Proposition 6: Let us consider $ = R, the followings are true: i) P̃ ($) is monotonically

decreasing with $; ii) P̃ ($ → 0) = (G)−1(γI)
−δ (1− exp (−G)) + exp (−G)

(
1− (γI)

−δ
)

;

and iii) P̃ ($ → +∞) = 0.

Proof: The proof can be derived straightforwardly by computing the first-order derivative

of Pcov respect to the network radius as follows

P̃ ($) =(G)−1(γI)
−δ
(

1− exp

(
− (γI)

δ
(

max
{
B, γIC̃ ($)

})−δ
Ã ($)G

))
(20)

+ Ã ($) exp (−G)

((
max

{
C̃ ($) ,B

})−δ
−
(
γIC̃ ($)

)−δ)
1
(
γIC̃ ($)− B

)
.
P̃ ($) =

.
Ã ($)(B)−δ exp

(
−(γI)

δ(B)−δÃ ($)G
)
1
(
B − γIC̃ ($)

)
+

.
Ã ($) exp (−G) (B)−δ1

(
γIC̃ ($)− B

)
1
(
B − C̃ ($)

)
≤ 0, ∀$ > 0, (21)

where Ã ($) = 1
$2

(
K0

F

)−δ ⇒ .
Ã ($) = − 2

$3

(
K0

F

)−δ and C̃ ($) = F
$βK0

. As for the

asymptotic performance of Pcov when $ → 0, it is not difficult to derive from (20), i.e.,

$ → 0⇒ C̃ ($)→ +∞⇒ max
{
C̃ ($) ,B

}
= C̃ ($) and we complete the proof here.

Remark 10: It is interested in pointing out that the asymptotic behavior of Pcov when

R → 0 is exactly the same as Ptx → ∞. This can be simply explicated by observing

that max
{
B, γIC̃

}
= γIC̃ and max

{
B, C̃

}
= C̃ when either R → 0 or Ptx → ∞, hence,

it converges to the same mathematical framework and the system narrows to noise-limited

scenario.
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In next section, the insights of PSE respect to these important parameters are rigorously

derived from (12) and (5).

B. Potential Spectral Efficiency

Let us pay our attention to the PSE in (5), the trends of the PSE are also investigated

respect to N , Ptx, BW and R similar to the Pcov. However, unlike the Pcov which, to some

extend, is able to find out the behavior by direct inspection (11), e.g., respect to N . The

P̃SE, on the other hand, is unable to intuitively get the conclusion from (11) owing to the

multiplicative factor λABW log2 (1 + γD) which depends on N . The findings in this section,

as a result, are not trivial and to the best of our knowledge, they have not been mathematically

proved elsewhere too. The separate impact of N , Ptx are reported in Propositions 7 and 8

while Proposition 9 provide the insights of PSE where N and Ptx are taken into account

together. Furthermore, the trends of PSE respect to the bandwidth and network radius are

shown in Propositions 10 and 11, respectively.

Proposition 7: Let us define ω = N , the following findings are held: i) The P̃SE is a uni-

modal function and attains its maximum at ω∗=

(
1 + (γI)

−δ
[
Ã
((

max
{
C̃,B

})−δ
−
(
γIC̃
)−δ)]−1)

×(pA)
−1; and its inflection point at ω∗∗ =

(
2 + (γI)

−δ
[
Ã
((

max
{
C̃,B

})−δ
−
(
γIC̃
)−δ)]−1)

(pA)
−1

providing that B < γIC̃; otherwise, PSE is an increasing function with concavity property;

ii) S̃ (ω → +∞) = (γI)
−δ BW log2(1+γD)

πR2 and iii) S̃ (ω → 0) = 0.

Proof: See Appendix V.

Remark 11: It is re-emphasized that the results reported in Proposition 7 cannot directly

take from the exact framework, i.e., (11) and (5). Moreover, we observe that there is a counter

benefit between Pcov and PSE respect to the average number of EDs from Propositions 2 and

7. More precisely, Proposition 2 states that increasing N will be harmful for the Pcov; the

PSE, on the other hand, is on the opposite direction that increases with N (to some extent).

This contradict behavior will be discussed more detail in Section V.

Remark 12: By examination the expressions of ω∗ and ω∗∗, it is apparent that ω∗∗ > ω∗;

in addition, two points, generally, are identical, thus, the insights of ω∗∗ (or ω∗) respect to all

parameters can be freely obtained from ω∗ (or ω∗∗). In particular, three following Corollaries

study the behavior of both ω∗ and ω∗∗ respect to the Ptx, the network radius, R, and the

path-loss exponent, β, respectively.

Corollary 1: By direct inspection the maximum and inflection points of PSE in Proposition

7 as a function of the transmit power, we have following conclusions: Both ω∗ and ω∗∗ are

monotonically decreasing respect to the transmit power, Ptx, if σ2γD
γIC̃
≤ Ptx ≤ σ2γD

C̃
and remains

constant at ω∗ =

(
1 +

(
(γI)

δ − 1
)−1
)

(pA)−1 and ω∗∗ =

(
2 +

(
(γI)

δ − 1
)−1
)

(pA)−1

providing that Ptx >
σ2γD
C̃

.
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Proof: The proof is directly derived by taking the first-order derivative of ω∗ (or ω∗∗)
respect to ξ = Ptx as follows

.
ω∗ (ξ) =δ

.
B (ξ) (pA)

−1
(γI)

−δ Ã(B (ξ))
−δ−1(

Ã(B (ξ))
−δ −

(
γIC̃
)−δ)2 ≤ 0,

σ2γD

γIC̃
≤ Ptx ≤

σ2γD

C̃
(22)

and .
ω∗ (ξ) = 0, Ptx > σ2γD

C̃
; where B (ξ) = σ2γD

ξ
⇒

.
B (ξ) = −σ2γD

ξ2
; and ω∗ =(

1 +
(

(γI)
δ − 1

)−1
)

(pA)−1 is obtained by simply replacing max
{
C̃,B

}
= C̃. It is noted

that .
ω∗ (ξ) =

.
ω∗∗ (ξ), so we can readily obtain the derivation of .

ω∗∗ (ξ) from (22) and close

the proof here.

Corollary 2: By direct inspection the maximum and inflection points of PSE in Proposition

7 respect to the network radius, i.e., R, we have following conclusion: ω∗, and ω∗∗ simply

increase with the network radius, R.

Proof: As like Corollary 1, the proof can be obtained via the first-order derivative of

both ω∗ and ω∗∗ respect to the network radius, $ = R, and is given as

.
ω∗($) = − (pA)−1

.
Ã ($) (γIB)−δ(

Ã ($) (B)−δ − (γI)
−δ
)21

(
B − C̃ ($)

)
1
(
γIC̃ ($)− B

)
≥0 (23)

where
.
Ã ($) = − 2

$3

(
K0

F

)−δ ≤ 0 and we finish the proof here.

Corollary 3: The maximum and inflection points of PSE in Proposition 7 respect to the

path-loss exponent, β, ω∗ and ω∗∗, monotonically increase with the path-loss exponent β.

Proof: Let us consider the mathematical framework of ω∗ as a function of the path-loss

exponent β for case C̃ ≤ B ≤ γIC̃ as follows

ω∗ (β) =1+

(
1

R2

(
γI

B
F
K0

)δ(β)

− 1

)−1

(24)

Here δ (β) = 2/β and we ignore the constant term pA. Next, taking the first-order derivative

of (24) respect to β, we have

.
ω∗ (β) =

1

R2

2

β2

(
1

R2

(
γI

B
F
K0

)δ(β)

− 1

)−2(
γI

B
F
K0

)δ(β)

log

(
γI

B
F
K0

)
≥ 0. (25)

Here, (25) is always true as γI
B
B
K0

> 1 thus .
ω∗ is positive; log (.) is the natural logarithm

function. Next, let us move to the second case where C̃ > Bk and taking the first-order

derivative of ω∗ respect to β, we have following

.
ω∗ (β) =

2

β2

(
(γI)

δ(β) − 1
)−2

(γI)
δ(β) log (γI) ≥ 0. (26)

From (25) and (26), we state that both ω∗ and ω∗∗ are monotonically increasing with the

path-loss exponent.
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Remark 13: From Corollaries 1 and 2, we find out that N
∗

improves when R increases

and Ptx decreases. Nonetheless, as proven in Propositions 3 and 6 that reducing the transmit

power will decrease the coverage probability; the same statement is held for the network

radius that increasing R will obviously reduce the Pcov. Thus, once again, it confirms the

contradiction behavior between the Pcov and the PSE respect to N .

Proposition 8: Let us define ξ = Ptx, the following findings are true: i) S̃ (ξ) monotonically

increase with concavity property respect to ξ; ii) S̃ (ξ → +∞) = λABWlog2 (1 + γD)×(
(G)−1(γI)

−δ (1− exp (−G)) + exp (−G)
(

1− (γI)
−δ
))

and iii) S̃ (ξ → 0) = 0.

Proof: From the definition of the PSE, we have S̃ (ξ) = λABWlog2 (1 + γD) P̃ (ξ).

Thus, we directly obtain the findings by using the outcomes from Proposition 3.

Remark 14: By comparing Proposition 3 and 8, it is evident that both Pcov and PSE have

the same behavior respect to the transmit power that is a concavity function with monotonic

increasing property. Thus, this trend is totally opposite to the scenario versus the average

number of EDs.

As the trends of PSE are inverse to the Pcov respect to N , it, in the contrast, is identical

to the Pcov respect to Ptx. The question is: what are the behaviors of PSE respect to both

N and Ptx simultaneously? Is it the same or different of Pcov? The following Proposition is

provided to address such questions.

Proposition 9: Let us define ω = N and ξ = Ptx, followings are true: i) the PSE denoted

by S̃ (ω, ξ), is a concave function when C̃ < B (ξ) < γIC̃; ii) there exists an inflection point

of (ω, ξ) that the PSE changes from convex to concave and vice versa when B (ξ) ≥ γIC̃.

Proof: See Appendix VI.

Remark 15: From Proposition 9, it is clear that the insight of PSE respect to both ω and

ξ is not identical to the Pcov. Particularly, depending on the transmit power the PSE can be

either concave or convex function rather than simply concave like Pcov. Moreover, increasing

N while fixing Ptx tends to improve the PSE in lieu of reducing the Pcov.

Proposition 10: Let us define ς = BW, the potential spectral efficiency is a parabola

function with concave down property respect to ς . Given a value of the transmit power, the

optimal value of ς denoted by ς∗S = BW∗ which maximizes PSE is computed as follows

ς∗S = φ8log2(1+γD)
πR2 ς∗P where ς∗P is provided in (17).

Proof: Let us re-write the PSE as a function of the transmission bandwidth, ς = BW,

then we have

S̃ (ς) =λAςlog2 (1 + γD) P̃ (ς) =
φ8log2 (1 + γD)

πR2
P̃ (ς) . (27)

Looking at (27), it is trivial to conclude that PSE has exactly the same behavior as Pcov,

hence, we can re-use the outcomes of Proposition 5 and conclude the proof here.

Proposition 11: Let us consider $ = R, the following is true: i) S̃ ($) is monotonically



16

TABLE II: Setup of parameters [15] (unless
otherwise stated)

Parameters [Unit] Value
Ptx [dBm] 10

N 4500
SF 7
CR 4/5

γD [dBm] -6
Lpac [bytes] 20
Tin [s] 600
β 2.8

fc [MHz] 868
BW [KHz] 125
γI [dB] 6
R [m] 3000

NF [dBm] 6
m 3.5
Ω 9.5
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Fig. 1. Coverage probability (a) and potential spectral
efficiency (b) versus the transmit power, Ptx, with different
fading channels, i.e., Rayleigh, current setups and no fading.
Here, SF = 8, CR = 0.5, Lpac = 1 byte, Tin = 60 secs,
γD = 6 dBm and N = 1500. Solid lines show the exact
framework; dot lines show the approximation framework
of both Pcov and PSE and are computed by equations
(11), (12) and (5), respectively. Markers show Monte-Carlo
simulations. Curves with marker “x” correspond to case sum
of interference, IS. The curves “Inf” relate to case Ptx →∞,
which are provided in Propositions 3 and 8.

decreasing with $.

Proof: Let us start formulating the PSE as a function of $ = R explicitly as follows

S̃ ($) =
G
π

log2 (1 + γD)$−2P̃ ($) = φ11$
−2P̃ ($)

.
S̃ (x) = φ11

[
−2$−3P̃ ($) +$−2

.
P̃ ($)

]
≤ 0,∀$ (28)

where φ11 = G
π

log2 (1 + γD), we directly obtain the proof by taking the findings in Proposition

6 that
.
P̃ ($) ≤ 0 so we complete the proof here.

Remark 16: From Propositions 10 and 11, it is no doubt that PSE has the same trends as

Pcov respect to the bandwidth and network radius.

V. NUMERICAL RESULTS

In this section, numerical results are provided to confirm the exactitude of our mathematical

framework as well as to substantiate our findings in Section IV. A class of IoTs application

which applies into smart home, i.e., home security application, is taken into account. Unless

otherwise stated, the numerical parameters are provided in Table II.

Fig. 1 verifies the correctness of our proposed approximation versus the exact one via

Monte-Carlo simulations with different fading channels, i.e., Rayleigh, setups in Table II

and no fading. Particularly, the approximation frameworks of both Pcov and PSE computed

by (12) and (5) are close to both the curves based on the dominant interferer computed in

(11) and the sum of all interferer, IS (via Monte-Carlo simulation), especially in low and
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Fig. 2. Coverage probability (a) and potential spectral
efficiency (b) versus the QoS threshold, i.e., γD. Solid
lines show the exact, the approximation framework of both
Pcov and PSE and computed by equations (11), (12), (5),
respectively. Markers are Monte Carlo simulation. Curves
with marker “x” correspond to case sum of interference, IS.
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Fig. 3. Coverage probability (a) and potential spectral
efficiency (b) versus the network radius, R. Solid lines show
the exact framework which is computed by (Eqs. (11) and
(5)), dash lines show the approximation framework (Eqs.
(12), (5)) and the asymptotic framework when R → 0 of
Pcov is obtained from Propositions 6.

high transmit power regimes. In addition, it is expected that Rayleigh fading performance is

the worst since it requires the highest transmit power to reach the maximum; the no fading

curves, on the other hand, is the best as around -10 dBm has already achieved the maximum.

Moreover, Fig. 1 also confirms the accuracy of our findings in Propositions 3 and 8 that both

Pcov and PSE reach its maximum when the transmit power is sufficiently large.

Figure 2 shows the performances of Pcov and PSE as a function of QoS threshold, γD.

The correctness of the proposed mathematical frameworks are confirmed again by Monte

Carlo simulations. It is evident that Pcov based on sum of interferer, IS, are indistinguishable

with IM, hence, validating our assumption, IS ≈ IM. Furthermore, it is apparent that Pcov is

a monotonic decreasing function respect to γD from its definition in (4). On the other hand,

the PSE is a unimodal function of γD.

The impact of network radius on the performance of both Pcov and PSE is provided in

figure 3. As noted in Propositions 6 and 11, both Pcov and PSE are decreasing function of

the network radius. Moreover, although Pcov and PSE attain its maximum when R → 0,

they are not the same. In fact, Pcov achieves its maximum which is different to one, the

PSE, on the contrary, goes to infinity if R→ 0 due to the unbounded path-loss model which

can be immediately derived from its definition in (5). Looking at the performance of Pcov

in Figs. 1 and 3, we experience that they have the same asymptotic value case N = 4500,

thus, confirming our findings in Remark 10.

Figure 4 studies the performance of both Pcov and PSE versus N , case B < γIC̃. Again,

there is a good agreement between the mathematical framework and the computer-based

simulations. As proved in Proposition 2, the coverage probability is a convex function with

monotonic decreasing property with N regardless of the value of B versus γIC̃ and the same
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Fig. 4. Coverage probability (a) and potential spectral
efficiency (b) versus N = λπR2, case B < γIC̃ with two
cases: parameters of the first case is provided in Table II
and the second case is provided as SF = 8, CR = 0.5, Lpac

= 1 byte, Tin = 60 sec, γD = 6 dBm and N = 1500. Solid
lines show the exact, the approximation and the asymptotic
framework of both Pcov and PSE and are calculated by
equations (11), (12), (5) and Propositions 2, 7 respectively.
Markers show Monte Carlo simulation. The curves “Inf”
correspond to case N →∞ of PSE while the curves “Zero”
show Pcov when N → 0. The markers “u” and “H” are
the maximum and inflection point from the approximation
framework, Propositions 7.
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Fig. 5. The trends of N
∗

versus the transmit power (a),
Ptx; the network radius (b), R; and the path-loss exponent,
(c), β. These curves are plotted by using the formula in
Proposition 7; the red line in case (a) are drawn based on
the findings in Corollary 1.

observation for case respect to the transmit power and network radius. The PSE, on the other

hand, is a unimodal function in this case study. Moreover, we observe that the maximum

denoted by “u”, based on the approximated framework provided in Proposition 7 is very

close to the exact one which can only obtain via the exhaustive search. Furthermore, as the

function changes from concavity to convexity, it means that the minimum always appears

at the convex region and from the figure, it is evident that the minimum is achieved when

N � 1. It, in addition, also means that network densification or increasing N does not

always boost the PSE. Figure 4 also unveils that there is a contradict behavior of Pcov and

PSE respect to the number of end-devices. To be more specific, keep increasing N will

improve PSE (to some extent), however, the performance of Pcov significantly reduces with

this augmentation. Thus, there is a dilemma issue when solving the scalability problem in

LoRa networks. From the network perspective, increasing N obviously benefits, nonetheless,

from the viewpoint of end-devices, increasing N , of course, soaring the transmission failure.

Optimizing the benefits of both sides, however, is out of scope of the current paper and is

left for future works. In Fig. 5, we are interested in investigating the behavior of both N
∗

and N
∗∗

for this case study, B < γIC̃.

To be specific, insights of N
∗

respect to the transmit power, the network radius and the

path-loss exponent are shown in Fig. 5(a), 5(b) and 5(c), correspondingly. These figures
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Fig. 6. Coverage probability versus the transmission bandwidth with various scenarios; (a) case 1: Ptx≤ φ7γDφ8

γIC̃ς∗1
; (b) case

2: Ptx ∈
(
φ7γDφ8

γIÃς∗1
, φ7γDφ8

δC̃

]
; (c) case 3: Ptx >

φ7γDφ8

δC̃
and (d) case 4: Ptx → ∞. The marker “u” is the maximum point

which is computed by utilizing the formula in Proposition 5. The solid lines are plotted based on the expression (12) and
the vertical curves “BW1” and “BW2” are obtained according to the condition B = C̃ and B = γIC̃, respectively.

substantiate our conclusions in Corollaries 1, 2 and 3. From the figure, we have following

conclusions: i) the smaller the transmit power, the higher the N
∗
; ii) the larger the network

radius and the path-loss exponent, the bigger the N
∗
. Nevertheless, recalling that the necessary

condition for this case study is B < γIC̃. It, consequently, always exists a minimum value

of Ptx (maximum for R and β) so that N
∗

is still a meaningful number, i.e., 0 < N
∗
<∞.

In fact, N
∗

tends to infinity if B → γIC̃. The trends of N
∗∗

respect to the transmit power,

the network radius and the path-loss exponent are identical to N
∗∗

, thus, we do not report

here. Moreover, by checking the trends of Pcov respect to the transmit power, the network

radius and the path-loss exponent in Figs. 1(a), 3(a) and 8(a), respectively. It is apparent

that decreasing the transmit power (or enhancing the network radius and the path-loss) will

primarily decrease the coverage probability. It, again, confirms the dilemma problem between

the benefits of end-devices and the whole network’s performance.

Fig. 6 confirms our derivations in Proposition 5. In particular, the figure verifies that

the coverage probability is a parabola function respect to the transmission bandwidth, BW.

Moreover, it also clarifies that depending on the transmit power the maximum point which

is denoted by “u” is located in different non-overlap regions. For example, if Ptx≤ φ7γDφ8
γIC̃ς∗1

,

the optimal value is located at the region B ≥ γIC̃ which is the right side of the vertical

curve “BW2” and is computed by using expression, i.e., ς∗P =
[
(γI)

δÃφ8(φ9)−δ(ς∗1 )−1
] 1

1+δ
in

Proposition 5 or another case when Ptx >
φ7γDφ8
δC̃

the optimal value is at the crossing point

between the vertical curve “BW1” and the Pcov. Figure 6(d) justifies our findings in Remark
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7 that the Pcov simply rises up to one if the transmit power is adequately large or ς∗P →∞.

Fig. 7 investigates the insights of PSE when the condition B < γIC̃, no longer satisfied.

Particularly, we see that PSE monotonically increases to its maximum at N → +∞, when

B ≥ γIC̃ and justifies our findings in Proposition 7. It, however, should be indicated that this

case study rarely exists in practical LoRa networks [16] as it requires an extremely small

transmit power.

The trends of both Pcov and PSE if changing the path-loss exponent, i.e., β, are revealed

in Fig. 8. This figure illustrates that both Pcov and PSE start increasing moderately when β is

close to 2 follow by dramatically plunging when β is fairly large. Then, they keep decreasing

with lower pace.

Figs. 9 and 10 investigate the behaviors of both Pcov and PSE respect to both the trans-

mit power and the average number of end-devices simultaneously. These figures prove the

accuracy of our derivations in Propositions 4 and 9. In particular, it exists a pair of
(
N,Ptx

)
that maximizes the PSE. In addition, in Fig. 10, we also observe that keep increasing N

while fixing Ptx, the PSE approaches its asymptotic value as reported in Fig. 4. On the other

hand, fixing N and increasing Ptx simply improves the PSE. As for the Pcov, it is a concave

function as proven and achieves its maximum when N tends to zero accompany with Ptx is

sufficient large, i.e., Ptx ≥ 0, in Fig. 9.

VI. CONCLUSION

In this paper, the comprehensive performance of two vital metrics of LoRa networks, i.e,

Pcov and PSE are investigated. Our proposed approximation frameworks are computed in
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both the average number of EDs, N and the transmit power,
Ptx. The figure is plotted by using (5).

closed-form expression and checked by Monte Carlo simulations. Furthermore, the insights

of both Pcov and PSE as a function of lots of system parameters, namely, the average number

of EDs, the transmit power, the network radius and the bandwidth, are studied based on the

proposed mathematical frameworks. Our findings show that there is a counter benefit between

the PSE and Pcov respect to the average number of EDs. The transmit power, on the other

hand, always bring benefits regardless of the considered metrics, Pcov or PSE.

APPENDIX I

PROOF OF EQ. (12)

Let us start re-writing the definition of the approximated coverage probability as follows

P̃cov (γD) ≈ Pr
{
S̃0/ĨM ≥ γI, PtxS̃0/σ

2 ≥ γD

}
=

∫ ∞
x=B

δÃx−δ−1 exp
(
−G1

(
γIC̃ − x

))
1
(
x− C̃

)
exp

(
−x−δD̃(γI)

δ1
(
x− γIC̃

))
dx

(a)
=(G)−1 (γI)

−δ
(

1− exp

(
−(γI)

δD̃
(

max
{
B, γIC̃

})−δ))
+ Ã exp (−G)

×
((

max
{
C̃,B

})−δ
−
(
γIC̃
)−δ)

1
(
γIC̃ − B

)
. (29)

Here (a) is held by splitting the integration into three cases: i) γIC̃ ≤ B; ii) C̃ ≤ B <

γIC̃ and iii) B < C̃; and utilizing following results:
∫ b
x=a

x−c−1dx = c−1 (a−c − b−c) and∫∞
x=a

x−c−1 exp (−bx−c) dx = (bc)−1 (1− exp (−ba−c)), we conclude the proof here.
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APPENDIX II

PROOF OF PROPOSITION 2

Let us rewrite the Pcov as a function of the average number of EDs as

P̃ (ω) = φ1(G (ω))−1 (1− exp (−φ2G (ω))) + φ3 exp (−G (ω))1
(
γIC̃ − B

)
. (30)

In (30), we explicitly represent P̃cov (γD) as a function of ω = N via the term G (ω) = pAω;

other shorthands, i.e., φ1 = (γI)
−δ;φ2 = (γI)

δ
(

max
{
B, γIC̃

})−δ
Ã and

φ3 = Ã
((

max
{
C̃,B

})−δ
−
(
γIC̃
)−δ)

are independent of ω.

Next, let us take the first-order derivative of (30) respect to ω, we have following
.
P̃ (ω) =−φ1

.
G (ω) (G (ω))−2[1−exp(−φ2G (ω)) (1 + φ2G (ω))]

− φ3

.
G (ω) exp (−G (ω))1

(
γIC̃ − B

)
≤ 0,∀ω ≥ 0. (31)

Here
.
P̃ (ω) is always negative because the first-order derivative of G (ω), i.e.,

.
G (ω) = pA ≥ 0

is always positive. As a result, we can state that P̃cov (γD) is monotonically decreasing with

ω = N .

As for the convexity property, the second-order derivative test is needed, from (31), the

second-order derivative of P̃cov (γD) denoted by
..
P̃ (ω) is provided as follows

..
P̃ (ω) =φ3

[ .
G (ω)

]2

exp (−G (ω))1
(
γIC̃ − Bk

)
+ φ1

[ .
G (ω)

]2

(G (ω))−3 (2− exp (−φ2G (ω))
(
1 + (1 + φ2G (ω))2)) ≥ 0. (32)

Eq. (32) is always correct as the term 2 − exp (−φ2G (ω))
(
1 + (1 + φ2G (ω))2) is a

monotonic increasing function respect to φ2G (ω) and attains its maximum at φ2G (ω) = 0.

Finally, the asymptotic behavior when ω → +∞ can be derived simply from (30) and

when ω → 0 is derived as follows

lim
ω→0
P̃ (ω) = lim

ω→0

(
φ1

1− exp (−φ2G (ω))

G (ω)
+ φ3 exp (−G (ω))1

(
γIC̃ − B

))
(a)
=φ1φ2 + φ31

(
γIC̃ − B

)
, (33)

where (a) is obtained by using L’Hôpital’s rule and we close the proof here.
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APPENDIX III

PROOF OF PROPOSITION 3

At first, let us rewrite the approximation framework of Pcov as a function of the transmit

power, i.e., ξ = Ptx, as follows:

P̃ (ξ) =φ4

(
1− exp

(
−φ5

(
max

{
B (ξ) , γIC̃

})−δ))
+ φ6

((
max

{
B (ξ) , C̃

})−δ
−
(
γIC̃
)−δ)

1
(
γIC̃ − B (ξ)

)
, (34)

where φ4 = (G)−1(γI)
−δ;φ5 = (γI)

δÃG;φ6 = Ã exp (−G) are shorthand and independent of

ξ. In (34), it is noted that Pcov depends on ξ through the unique term B (ξ) = σ2γDξ
−1.

Next, taking the first-order derivative of (34) respect to ξ, we have
.
P̃ (ξ) =− δÃ

.
B (ξ) (B(ξ))−δ−1

[
exp

(
−(γI)

δÃG(B (ξ))−δ
)

(35)

×1
(
B (ξ)− γIC̃

)
+ exp (−G)1

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)]
≥ 0,∀ξ ≥ 0,

where
.
B (ξ) = −σ2γDξ

−2 ≤ 0. The second-order property of the Pcov is derived as follows

..
P̃ (ξ) = −δφ4φ5 exp

(
−φ5(B (ξ))−δ

)(
(B (ξ))−δ−2 T0 (ξ) + φ5δ

[ .
B (ξ) (B (ξ))−δ−1

]2
)

× 1
(
B (ξ)− γIC̃

)
− δφ6(B (ξ))−δ−2T0 (ξ)1

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)
≤ 0. (36)

Here T0 (ξ) =
..
B (ξ)B (ξ) − (δ + 1)

( .
B (ξ)

)2

= (σ2γDξ
−2)

2
[2− (δ + 1)] ≥ 0, δ < 1. From

(36), we are able to state that the coverage probability is a concave function respect to the

transmit power. Finally, the asymptotic of P̃ (ξ) when ξ → 0 and ξ → +∞ are directly

drawn from (34) by substituting B (ξ → 0) = +∞ and B (ξ → +∞) = 0, respectively; and

we finish the proof here.

APPENDIX IV

PROOF OF PROPOSITION 5

In this section, the behavior of Pcov as a function of BW is investigated. Let us start

rewriting the Pcov as a function of BW as follows

P̃ (ς = BW) = (G (ς))−1(γI)
−δ
(

1− exp

(
−(γI)

δÃG (ς)
(

max
{
B (ς) , γIC̃

})−δ))
+ Ã exp (−G (ς))

((
max

{
C̃,B (ς)

})−δ
−
(
γIC̃
)−δ)

1
(
γIC̃ − B (ς)

)
(37)

= V1 (ς)1
(
B (ς)− γIC̃

)
+ V3 (ς)1

(
C̃ − B (ς)

)
+ V2 (ς)1

(
γIC̃ − B (ς)

)
1
(
B (ς)− C̃

)
,

where B (ς) = φ9ς ⇒
.
B (ς) = φ9 ≥ 0; G (ς) = φ8

ς
⇒

.
G (ς) = −φ8

ς2
≤ 0; φ8, φ9 are defined in

Proposition 5.
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From the first sight, (37) is too complicated to figure out the behavior of Pcov as a function

of BW. Hence, we split the Pcov into three cases denoted by Vs (ς), s ∈ {1, 2, 3}. We are

going to inspect the behavior for each case; let us begin with V1 (ς) as

V1 (ς) =
(γI)

−δ

G (ς)

(
1− exp

(
−(γI)

δÃG (ς) (B(ς))−δ
))

.
V1 (ς) =

dV1 (ς)

dς
=

(γI)
−δ

φ8

T1

(
(γI)

δ ÃG (ς) (B(ς))−δ
)

(38)

Here T1 (t) = 1 − exp (−t) (t (1 + δ) + 1) , t ≥ 0. It is straightforward to claim that T1

changes from negative to positive and cross the horizontal axis at t∗ ≥ δ ≥ 0 or T1 (t∗) = 0.

So
.
V1 (ς) is changing from positive to negative as (γI)

δ ÃG (ς) (B(ς))−δ is a decreasing

function of ς . As a result, V1 (ς) is a unimodal function and attains its maximum at ς∗P given

as follows

ς∗1 = (γI)
δÃφ8(φ9)−δ(ς∗P)−δ−1 ⇒ ς∗P =

[
(γI)

δÃφ8(φ9)−δ(ς∗1 )−1
] 1
δ+1
, (39)

where ς∗1 is the solution of T1 (ς∗1 ) = 0. Recalling that the necessary condition for this case

study is: B (ς) ≥ γIC̃ ⇔ ς ≥ γIC̃
φ9

, so the sufficient condition that the optimal value of ς , i.e.,

ς∗, belongs to this region is following

ς∗P ≥ ς ⇔
[
(γI)

δÃφ8(φ9)−δ(ς∗1 )−1
] 1
δ+1 ≥ γIC̃

φ9

⇔ Ptx≤
φ7γDφ8

γIC̃ς∗1
(40)

In short, for this case study, Pcov is a unimodal function and reaches its maximum at ς∗P
provided that Ptx≤ φ7γDφ8

γIC̃ς∗1
, otherwise, Pcov monotonically decreases with ς since ς is greater

than the maximal value as ς∗P ≤
γIC̃
φ9
≤ ς . Now, let us go to the second case

V2 (ς) =
(γI)

−δ

G (ς)
(1− exp (−G (ς))) + Ã exp (−G (ς))

(
(B (ς))−δ −

(
γIC̃
)−δ)

.
V2 (ς) =ς−1Ã (B (ς))−δ exp (−G (ς)) (G (ς)− δ) + (γI)

−δ (ςG (ς))−1

×
(
1− exp (−G (ς))

(
1 + G (ς) + (G (ς))2)) . (41)

By using the property (γI)
−δ = Ã

(
γIC̃
)−δ
≤ Ã(B (ς))−δ ≤ Ã

(
C̃
)−δ

= 1 and assuming

that G (ς) ≤ δ, (41) can be written as follows

.
V2 (ς) ≤ (γI)

−δ (ςG (ς))−1 T1 (G (ς)) ≤ 0. (42)

Eq. (42) is obtained by the fact that T1 (t) ≤ 0 providing that t = G (ς) ≤ δ ≤ t∗ as proven

in previous case. The sufficient condition for this scenario is φ14
δ
≤ PtxC̃

φ7γD
⇔ Ptx ≥ φ7γDφ8

δC̃
.

This condition is obtained by combining two following conditions, G (ς) ≤ δ ⇔ φ8
δ
≤ ς and
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C̃ ≤ B (ς)⇔ PtxC̃
φ7γD
≤ ς . Now, considering another scenario, G (ς) ≥ δ, then we have

.
V2 (ς) ≥ (γI)

−δ (ςG (ς))−1 T1 (G (ς)) . (43)

From previous case,
.
V1 (ς), we know that T1 (G (ς)) changes from negative to positive

respect to G (ς), thus, the right hand side of (43) also changes from negative to positive with

G (ς) or from positive to negative respect to ς . As a result, the sufficient condition that
.
V2 (ς)

is positive is G (ς) ≥ ς∗1 ≥ δ and B (ς) < γIC̃, then, we have Ptx <
φ7γDφ8
γIC̃ς∗1

. Finally, Pcov is

a unimodal function with ς and attains its maximum at ς∗2 that is the solution of (41) if

δ ≤ G (ς) ≤ ς∗1 and the corresponding condition is Ptx ∈
(
φ7γDφ8
γIC̃ς∗1

, φ7γDφ8
δC̃

]
. Now, let us move

to the last case as follows

V3 (ς) =
(γI)

−δ

G (ς)
(1− exp (−G (ς))) + exp (−G (ς))

(
1− (γI)

−δ
)

.
V3 (ς) =− (γI)

−δ .
G (ς)

(G (ς))2 (1− exp (−G (ς)) (1 + G (ς)))︸ ︷︷ ︸
≥0

−
.
G (ς) exp (−G (ς))

(
1− (γI)

−δ
)
≥ 0,∀ς ≥ 0. (44)

From (44), it is apparent that Pcov in this case is increasing with ς and approaches its

maximum at B (ς) = C̃ ⇔ ς∗P = PtxC̃
φ9γD

.

Finally, by combining the results from three above cases, we conclude that Pcov is a

unimodal function of ς and its optimal value, ς∗P , is computed in (17) and we conclude the

proof here.

APPENDIX V

PROOF OF PROPOSITION 7

Let us first re-write the P̃SE as a function of ω as follows

P̃SE =S̃ (ω) = λABWlog2 (1 + γD) P̃cov (γD) = φ10G (ω) P̃ (ω) (45)

where G (ω) = pAω, φ10 = BWlog2(1+γD)
πR2 . Taking the first-order derivative respect to ω, we

have
.
S̃ (ω) =dS̃ (ω) /dω = φ10

[ .
G (ω) P̃ (ω) + G (ω)

.
P̃ (ω)

]
(46)

=φ1φ2

.
G (ω) exp (−φ2G (ω)) + φ3

.
G (ω) (1− G (ω)) exp (−G (ω))1

(
γIC̃ − B

)
In (46), we ignore the constant term φ10. From (46), we directly hold following conclusion:

.
S (ω) ≥ 0 if B ≥ γIC̃. As for case B < γIC̃, we have φ2 = 1, so (46) can be rewritten as

follows

.
S (ω) = (φ1 + φ3 − φ3G (ω))

.
G (ω) exp (−G (ω)) . (47)
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From (47), it is quite trivial to conduct following conclusion: S̃ (ω) attains its maximum at

ω∗ = (pA)−1 (1 + φ1/φ3). To study the asymptotic behavior of S̃ (ω) when ω goes to either

zero or infinity, we re-write the PSE as follows

S̃ (ω) =φ10φ1 (1− exp (−φ2G (ω))) + φ10φ3G (ω) exp (−G (ω))1
(
γIC̃ − B

)
. (48)

From (48), it is facile to conclude that ω → 0 ⇒ S̃ (ω) → 0. As for case ω → ∞, we

have following

lim
ω→∞

(
S̃ (ω)

)
(a)
=φ1φ10 = (γI)

−δ BW log2 (1 + γD)

πR2
(49)

where (a) is held by using L’Hôpital’s rule. Now, let us go to study the convexity property

of the PSE, we have
..
S̃ (ω) =− 2φ1

.
G (ω) (G (ω))−2 [1− exp (−φ2G (ω)) (1 + φ2G (ω))]

+
[
−2φ3

.
G (ω) exp (−G (ω)) + φ3

.
G (ω)G (ω) exp (−G (ω))

]
(50)

× 1
(
γI C̃ − B

)
+ φ1

.
G (ω)(G (ω))−2 (2− exp (−φ2G (ω))

(
1 + (1 + φ2G (ω))2))

Here, we ignore the constant term φ10pA. Now, considering the first case where B ≥ γIC̃ and

after some manipulations, (50) can be written as
..
S̃ (ω) = −φ1

.
G (ω) (φ2)2 exp (−φ2G (ω)) ≤ 0 (51)

As a consequence, PSE is a concave function for this case study and let us consider the

remain case B < γIC̃, (50) is written as
..
S̃ (ω) = −

.
G (ω) exp (−G (ω)) (φ1 + φ3 (2− G (ω))) (52)

In (52), it is straightforward to identify the inflection point at ω∗∗ = (pA)−1
(

2 + φ1
φ3

)
where

the PSE changes from concave to convex respect to ω. Finally, from (46), (47), (51) and (52),

we summarize that the PSE is monotonic increasing with concavity property providing that

B ≥ γIC̃; otherwise, it is a unimodal function and changing from concave to convex, we

conclude the proof here.
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APPENDIX VI

PROOF OF PROPOSITION 9

In this section, the same approach as Proposition 4 is utilized, let us formulate the Hessian

matrix and its determinant as follows

HS̃ (ω, ξ) =

[
∂2S̃(ω,ξ)
∂2ω

∂2S̃(ω,ξ)
∂ω∂ξ

∂2S̃(ω,ξ)
∂ξ∂ω

∂2S̃(ω,ξ)
∂2ξ

]

Det
{
HS̃ (ω, ξ)

}
=
∂2S̃ (ω, ξ)

∂2ω

∂2S̃ (ω, ξ)

∂2ξ
−

(
∂2S̃ (ω, ξ)

∂ω∂ξ

)2

(53)

From Propositions 7 and 8, we have ∂2S̃(ω,ξ)
∂2ω

= −pAφ10φ1
.G (ω) (φ2)2 exp (−φ2G (ω)) ≤ 0

when γIC̃ ≤ B; ∂2S̃(ω,ξ)
∂2ω

= −pAφ10

.
G (ω) exp (−G (ω)) (φ1 + φ3 (2− G (ω))) when γIC̃ > B;

∂2S̃(ω,ξ)
∂2ξ

≤ 0 when C̃ ≤ B and ∂2S̃(ω,ξ)
∂2ξ

= 0 when C̃ > B.

It should be noted that different to the coverage probability, the PSE, from the first sight,

is impossible to identify that PSE is either concave or convex respect to both ω and ξ. The

mixed partial derivative of ω and ξ, as a result, is required and is given as

∂2S̃ (ω, ξ)

∂ω∂ξ
=δ

.
B (ξ) (B (ξ))−δ−1Ã

.
G (ω) exp

(
− (γI)

δ (B (ξ))−δ ÃG (ω)
)
1
(
B (ξ)− γIC̃

)
×
(

(γI)
δ (B (ξ))−δ ÃG (ω)− 1

)
− 1

(
γIC̃ − B (ξ)

)
1
(
B (ξ)− C̃

)
× δ(B (ξ))−δ−1 .

B (ξ)
.
G (ω) Ã (1− G (ω)) exp (−G (ω)) ≥ 0 (54)

Having all the necessary derivative, we are going to check the sign of the determinant of

Hessian. Let us firstly consider case B (ξ) ≥ γIC̃ as

Det
{
HS̃ (ω, ξ)

}
=δ
(
φ10Ã

.
G (ω)

.
B (ξ) (B (ξ))−δ−1 exp

(
−ÃG (ω) (γI)

δ(B (ξ))−δ
))2

×
[(
G (ω) (γI)

δ (B (ξ))−δ Ã
)

(1 + δ)− δ
]

(55)

From (55), it is obvious that the sign of the determinant merely relies on the term inside

the bracket and denoted by T2 (ω, ξ) =
(
G (ω) (γI)

δ (B (ξ))−δ Ã
)

(1 + δ) − δ. In addition,

T2 (ω, ξ) can be either positive or negative as well which depends on the pair of (ω, ξ). It, as

a consequence, always exists pair of (ω, ξ) which act as an inflection point of PSE providing

that B (ξ) ≥ γIC̃.

Now, let us move to the second case study where following condition is satisfied C̃ ≤
B (ξ) < γIC̃. The determinant of this case study is provided as

Det
{
HS̃ (ω, ξ)

}
= δÃ(B (ξ))−δ−2

(
φ10 exp (−G (ω))

.
G (ω)

.
B (ξ)

)2

×
(
Ã(B (ξ))−δ

(
(1− δ)− (1− G (ω))2)− G (ω) (1− δ) (γI)

−δ (1− G (ω))2
)

(56)
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It is reminded that from Proposition 7, we have ∂2S̃(ω,ξ)
∂2ω

≥ 0 providing that G (ω) ≥
(2 + φ1/φ3) so Det

{
HS̃ (ω, ξ)

}
≤ 0. However, looking at (56), it is obvious that it can

be either positive or negative, e.g., if (1− δ)− (1− G (ω))2 ≤ 0⇔ G (ω) < 1−
√

1− δ ∪
G (ω) > 1 +

√
1− δ then (56) is negative; on the other hand, if G (ω) = 1, (56) is positive

regardless of the value of B (ξ). Consequently, it always exists pair of (ω, ξ) which act as an

inflection point of PSE providing that C̃ ≤ B (ξ) < γIC̃.

Now, let us consider the last case study where B (ξ) < C̃, the determinant of this case

study is equal to zero since both second-order partial derivative respect to ξ, i.e., ∂2S̃(ω,ξ)
∂2ξ

and

the mixed derivative, ∂2S̃(ω,ξ)
∂ω∂ξ

, are equal to zero.

Finally, by combining these above findings, the PSE as a function of both density of EDs

and the transmit power is either a concave or convex function and always exists pair of (ω, ξ)

that the PSE changes it properties.
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