
HAL Id: hal-02971865
https://hal.science/hal-02971865v1

Preprint submitted on 19 Oct 2020 (v1), last revised 25 May 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Causal models for Real Time Bidding with repeated
user interactions

Martin Bompaire, Alexandre Gilotte, Benjamin Heymann

To cite this version:
Martin Bompaire, Alexandre Gilotte, Benjamin Heymann. Causal models for Real Time Bidding with
repeated user interactions. 2020. �hal-02971865v1�

https://hal.science/hal-02971865v1
https://hal.archives-ouvertes.fr


Causal models for Real Time Bidding with repeated user interactions
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A large portion of online display advertising inventory is sold through real time auctions. The bidding algorithms need to estimate

precisely the value of each display. Many bidding models estimate this value as the probability that a sale is attributed to this display,

but this approach does not capture that a user may be shown a sequence of several displays. By mixing tools from causal reasoning

and reinforcement learning to model this sequence of auctions, we derive a simple rule to improve this estimate. We test the change

online in a production environment and the results validate the approach. We believe this methodology could be adapted to tackle the

notoriously difficult problem of building an incremental bidder.
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1 INTRODUCTION1

Display advertising is a form of online advertising in which a marketer pays a website owner (the publisher) for the2

right to show banners to its visitors (users) in the hope of triggering some future sales. It is a large industry: last year, it3

was estimated that display advertising generated more than 57 billions USD in the United States [Fisher, 2019].4

When the internet user reaches the publisher page, he triggers a complex mechanism called Real Time Bidding5

(RTB). Real Time Bidding involves several intermediaries (DSP, Ad exchange, SSP, ...) in a chain of calls that finishes6

its run in the advertisers’ server in the form of a bid request. In each advertiser’s server lives an algorithmic bidding7

agent (the bidder) that implements the advertiser’s strategy. When the bidder receives the bid request, it only has a few8

milliseconds to answer with a bid. Then, the highest bidder receives the right to show a banner to the user, in exchange9

for a payment that depends on the mechanism implementation. The bidder can make a marketing campaign succeed10

or fail, because it decides for whom, when, where and at which price to buy a banner. Estimation of economic value11

is an important component in most bidding architectures. The purpose of the present paper is to discuss how such12

estimation should be made.13

The standard to evaluate the quality of a bidder is to use an attribution algorithm that assigns the credits of online14

sales to marketing events (such as the display of a banner on a news site). For instance, the most commonly used15

attribution algorithm is the fairly simple last click rule: when a sale occurs, all the credit goes to the last banner clicked16

that precedes the sale in the user history. This methodology has an obvious flaw because the last click rule does not17
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measure how many additional sales the campaign is bringing. Such flaw motivated some critics in the literature. A18

famous experiment, reported in [Blake et al., 2015], showed that eBay used to attribute many credits to search advertising19

because people often do a search to reach eBay instead of typing the URL directly. The first link that would appear in20

the search results was usually an eBay ad. The experiment consisted in observing that shutting down search advertising21

did not decrease the overall performance, because people would then click on the first search result which would also22

redirect to eBay’s website anyway. This state of affair is unsatisfactory for the industry at large, and explains the trend23

in designing offline metrics and bidders with causal inference methods to improve the number of incremental sales –24

sales that would not have occurred without the marketing effort. Fortunately, several tracks of research provide tools to25

stay away from the correlation is causation pitfall.26

Our aim is to show that tools from causal reasoning [Pearl, 1995, 2009, Peters et al., 2017] can indeed improve the27

performance of a bidder. However, what we propose is slightly different from the above-mentioned literature: we use28

causal methods to increase the performance of a bidder measured with an attribution rule instead of being measured29

as the total number of sales as in the eBay example. The motivation behind focusing on the received attribution is30

threefold: (a) the attribution is still the main metric in the industry, which is something that might persist because of31

the business models of digital advertising, (b) our approach can ingest causally motivated attribution as input, which is32

currently an active track of research [Dalessandro et al., 2012, Singal et al., 2019], (c) from a practical and methodological33

perspective, it is easier to work with attributed sales – for which we have methodologies, models and benchmarks –34

than with incremental sales, so while the models to address the two questions are similar, it is much easier, to test,35

measure, compare results and improve with attributed sales than it is with incremental sales.36

Our model relies on the common approximation that a non clicked display has no more effect on the user than no37

display at all. We also explicitly assume that the display should impact the state of the next requests for this user. This38

allows us to produce counterfactual estimates. While our methodology is simple, our experimental results indicate that39

it is robust enough to allow for the rough theoretical assumptions and implementation choices we made.40

In Section 2, we explain why we think the bidding problem is not fully solved in the literature. In Section 3, we41

challenge the common assumption that the bidding problem reverts to estimating accurately the probability that a42

sale would be attributed to this display. We provide a detailed description of the bidder’s problem and the hypotheses43

we need to turn it into an optimization procedure solved with classic statistical tools. In Section 4, we propose a new44

way to estimate this causal effect on sales, relying on some additional hypotheses on the causal links between displays45

and sales. In Section 5, we propose a new incrementality metric which can be used to run offline evaluations of our46

model. Section 6 presents some experimental offline experiments on a public data set from Criteo –a large Demand Side47

Platform that allows its clients to externalize the bidding process– and the results we have obtained online on a large48

scale experiment.49

2 RELATEDWORK AND CONTRIBUTION50

Real Time Bidding (RTB) has been the standard for selling ad inventory on the Internet for almost one decade, fueling51

an extensive literature [Choi et al., 2020, Wang et al., 2016] on online bidding. In the early stages, the bidders were52

typically getting revenue from clicks, and much work was thus done on click prediction models [Chapelle et al., 2014,53

McMahan et al., 2013].54

Clicks however are not the ultimate goal of advertising. What matters the most is to increase the number of sales on55

the advertiser’s website. To bridge the gap between clicks and sales, one may rely on heuristics to determine which56

clicked display, if any, would have caused a sale. On one hand, last click – the most common attribution rule – states57
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that a sale should be attributed to the last click preceding it. On the other hand, several more sophisticated attribution58

rules rely on advanced Machine Learning models [Dalessandro et al., 2012, Ji et al., 2016, Singal et al., 2019, Zhang et al.,59

2014]. Bidders are then incentivized on attributed sales, so that it is now usual to estimate the value of a display as “Cost60

Per Action (CPA) × Probability that the display will receive an attribution”. A game theoretical analysis of the situation61

is provided in [Berman, 2018].62

Over the decade, the bid formula shifted from this display value estimate for several reasons. First, the market globally63

moved from second-price auctions to first-price auctions [Despotakis et al., 2019, Heymann, 2020]. The bidder now64

needs to estimate the distribution of the price to beat – the highest bid of the competition – to compute its optimal65

bid [Krishna, 2009]. Second, it is common for the bidder to have some constraints on the advertising campaign, such66

as a maximum budget per day, or a maximum cost per click [Conitzer et al., 2018, Heymann, 2019]. While in several67

cases a linear scaling applied to the display valuation may be enough to optimally satisfy a budget constraint, the value68

of this scaling factor is not known in advance, and several articles propose to update the bidding strategy to better69

take such constraint into account [Cai et al., 2017, Grislain et al., 2019, Lee et al., 2013, Yang et al., 2019]. In the present70

work, we do not consider such constraints, but those methods might be applied on top of ours. Finally, bidding with the71

probability that a sale is attributed to current display may not be optimal when there are several display opportunities72

on the same user. The authors of [Diemert et al., 2017] present a simple but efficient heuristic for taking into account73

user sequences with several clicks, explicitly lowering the bids right after a click. The idea that showing several displays74

in a row does not serve the advertiser well is at the origin of several works on pacing and probabilistic throttling.75

While an analytical solution of the pacing problem for display advertising is presented in [Fernandez-Tapia, 2019]. Most76

industrial solutions rely on heuristics [Agarwal et al., 2014, Chen et al., 2011, Lee et al., 2013, Xu et al., 2015].77

We propose in Section 3 a formulation of the bidder problem on the sequence of bid requests for one user, and78

retrieve the intuitive result that we should account for the probability that the display caused the attributed sale. Our79

formulation is closely inspired by Reinforcement Learning [Sutton et al., 1998], defining the sequences of requests80

for one user as an episode. While Reinforcement learning has already been proposed to improve the bidder in [Cai81

et al., 2017], previous approaches only encoded the remaining budget into the state, assuming i.i.d. requests. To our82

knowledge, this is the first work to explicitly assume that the display should impact the state of the next requests for this83

user.84

Closely related to the sequentiality of the interactions with the user, the question of incrementality is an attractive85

field of research [Lewis and Rao, 2015, Lewis et al., 2011]. Incremental sales are those that needed the display to happen86

and may be measured with an A/B test by switching the bidder off on a part of the population. As argued in [Xu et al.,87

2016], it would be in the interest of the advertiser that the bidders value a display with the lift, which we may understand88

as the probability that the display cause the sale. The difficulty here is that we never directly observe incremental sales.89

We either observe a sale on a user after a sequence of displays, or – in the case of an A/B test of incrementality – after90

no display at all. This is a typical case of a causal inference problem, where we want to estimate the effect of a treatment91

(here bidding to buy display ads) on an outcome (in this case the sale).92

Several works have already proposed bidding methods optimized for incremental sales. For instance, [Diemert et al.,93

2018] proposed to estimate the causal effect on sales of bidding on a user, by applying randomized bid factor on each94

user. This allows learning models predicting which users are impacted by display ads. However, if those users are95

seeing several displays, as it is typical, it does not allow retrieving which of those displays caused the sale. Similar to96

our work [Rahier et al., 2020] leverage the way the causal effect is mediated to derive an uplift estimate. A method to97

decrease the noise of incremental sales measurement is presented in [Johnson et al., 2017]98
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Some authors also proposed to use observational data to estimate the causal impact of a display. Observational99

studies typically require to assume that there are no unobserved confounders; but because of the large state space100

they usually also need additional assumptions to lower the variance. [Xu et al., 2016] propose to sample user states of101

random times, and instead of looking if a specific display is won, they rather check if there is at least one won display in102

the following time window. The (implicit) hypotheses here seems to be that the display only impact the sale through the103

“number of displays in a time window” variable. Similarly [Moriwaki et al., 2020] propose to unbias a model estimating104

the probability that a user is led to buy after a request by using inverse propensity weights, but also summarize the105

impact of winning a display by the increase of the variable “number of displays”. Such hypothesis seems imperfect, as106

variables such as the size of the display or the quality of the publisher are known to have a huge impact at least on clicks107

or attributed sales; and it seems therefore likely that they also have great impact on incremental sales. By contrast, our108

methodology allows taking into account all the information available on the user and the display opportunity. Finally,109

another issue of bidding for incremental sales is that the bidder is not paid for incremental sales.110

This paper assumes a given attribution mechanism but does not challenge it.s To better align bidders and advertisers111

objectives, a better attribution, based on causality, seems to be necessary.112

3 THE BIDDING PROBLEM113

In this section, we propose a formalization of the bidder’s problem trying to maximize its revenue. In particular, we114

carefully consider the fact that a bidder will have a sequence of opportunities to display ads to the same user. Our115

framework is general enough to apply to a bidder retributed for either attributed sales or incremental sales. The main116

result of this section is Theorem 3.2, which states that a display valuation should be the difference of two terms:117

• Its impact on expectation of attributed sales.118

• And its impact on expected cost paid by the bidder at later
1
time steps.119

The bidder should then find the bid which maximizes the expected difference of display value and cost on the current120

auction (for example, bidding with the display value when the auction is second price). While intuitively simple, this121

result allows us to cleanly separate the display valuation from all the issues related to the type of auction. The correct122

mathematical definition of those terms, however requires a few technical hypotheses, which are often implicitly used by123

most authors, and that we state explicitly. In addition, we carefully consider the fact that a bidder will have a sequence of124

opportunities to display ads to the same user. Our framework is general enough to apply either to a bidder maximizing125

attributed sales or incremental sales.126

3.1 Mathematical formulation127

When a user browses the internet, he encounters pages with ad banners to display. Each of these will trigger an auction,128

where advertisers may bid to buy the display opportunity. The highest bidder will then show a display to the user, and129

pay a price to the auctioneer. From the point of view of a bidder, the sequence of bid requests for a given user defines a130

stochastic process, where at each time step 𝑡 :131

• A bidder receives a bid request containing the state 𝑋𝑡 of the user. It encodes everything relevant on this user132

and request, such as the user past interactions with the partner website, the timestamp, the displays made at133

previous time steps, the current website from which the request is received, the size of the ad on this page, etc.134

• The bidder outputs a bid 𝑏𝑡 for this auction.135

1
not including the cost of current display

4



Causal models for Real Time Bidding with repeated user interactions ,

• It then receives a binary variable 𝐷𝑡 telling if it did win the display (in which case 𝐷𝑡 = 1) or not (and then136

𝐷𝑡 = 0) , and the associated cost 𝐶𝑜𝑠𝑡𝑡 . (the cost is by definition 0 if 𝐷𝑡 = 0).137

• If the bidder wins, it can also later observe the click 𝐶𝑡 , defined as 1 if the display is clicked and 0 if it is not.138

(Clicks is not what the bidder optimizes for, so they could be ignored to define the bidder’s problem; but we will139

use clicks in the model of Section 4).140

During the sequence, the user may buy some items, and at the end of the sequence, the advertiser may decide to

attribute some of those sales to the bidder. The bidder thus observes the number of attributed sales 𝑆 at the end of the

sequence, and receives a payment 𝑆 ·𝐶𝑃𝐴 where 𝐶𝑃𝐴 is a constant defining the value (in euro) of an attributed sale.

The bidder processes in parallel the sequences of the thousand or sometimes millions of users in its campaign. The

bidder chooses a bidding policy 𝜋 , which is formally a mapping from the space of states to distributions on bids (so the

bid at time 𝑡 𝑏𝑡 is sampled from 𝜋 (𝑥𝑡 )). The bidder maximizes its expected payoff:

E

[
𝑆 ·𝐶𝑃𝐴 −

∑
𝑡 ∈𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝐶𝑜𝑠𝑡𝑡

]
.

Note that this expectation depends on 𝜋 , even if we do not write it explicitly to simplify the notations.141

3.2 Assumptions142

In order to derive a bidding formula from this model we formulate a series of assumptions.143

Assumptions 1 (Fully observable MDP). The state 𝑋𝑡 is fully observable, and the sequence (𝑋𝑡 , 𝑏𝑡 ) of states and bids144

on a given user forms a Markov Decision Process (MDP).145

Assumptions 2 (Independent users). Each user is an independent instance of this MDP.146

With the first two hypotheses, the proposed framework would become an instance of a Reinforcement Learning (RL)147

problem, where we would have one trajectory per user, the continuous actions would be the bids 𝑏𝑡 , the reward at step148

𝑡 would be −𝐶𝑜𝑠𝑡𝑡 , and the sequence ends with a final reward 𝑆 ·𝐶𝑃𝐴.149

Assumptions 3 (Auction structure). The auctions are second-price.150

More generally, the structure of the auctions (first price, second price, ...) is known. We will for simplicity assume151

that those are only second price auctions, knowing that the bidding strategy could be adapted in the case of first price152

auctions.153

Assumptions 4 (Bid impacts future only through the display). The next state 𝑋𝑡+1 only depends on 𝑋𝑡 and 𝐷𝑡 ,154

not on the bid 𝑏𝑡 .155

Note that the cost 𝐶𝑜𝑠𝑡𝑡 and the display 𝐷𝑡 depend on the bid; this assumptions states that both the bidder and the156

environment forgets about the exact bid and cost at time 𝑡 after observing 𝐷𝑡 . Formally, this means that, for any policy157

𝜋 of the bidder, the sequence of variables (𝑋𝑡 , 𝐷𝑡 ) forms a Markov chain.158

Remark 1. Assumption 4 means that expectations on the future of the sequence after a display (or after no display),159

such as E(𝑆 |𝑋𝑡 = 𝑥𝑡 , 𝐷𝑡 = 1) only depend on the policy of the bidder after time 𝑡 , not on its exact bid at time 𝑡 .160

The causal graph of Figure 1 summarizes those hypotheses.161

Remark 2. Those assumptions may not be fully satisfied in practice. For example162
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𝑋𝑡 𝑋𝑡+1
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Fig. 1. Causal graph of the bidding process. The user state 𝑋𝑡 is modeled as a Markov Chain, where the transition matrix from 𝑋𝑡 to
𝑋𝑡+1 only depends on 𝐷𝑡 , the variable that encodes the realisation of a display at time 𝑡 .

• Competitors might have some private information on the user. Since display winning rate and final sale may depend163

on this private information, that would make Assumption 1 wrong.164

• Assumption 4 would be violated if the auctioneer uses the bid at time 𝑡 to compute a reserve price on a next auction165

for the same user at time 𝑡 + 𝑘 ; or if the bidder itself decides to modulate its next bids as a function of 𝐶𝑜𝑠𝑡𝑡 .166

Despite those possible shortcomings, we believe those assumptions to be reasonable. We would like also to note that they are167

usually implicitly assumed when the display is valued with a function depending only on the state, for example with a168

click-through rate or conversion rate depending only on 𝑥𝑡 , which to our knowledge includes most (if not all) prior work.169

3.3 Greedy policy170

As discussed before, the advertiser typically attributes the sales with some simple rule such as attributing to the last171

click of the user. Such a rule specifies exactly to which display the sale is attributed. This allows to naturally replace the172

final attributed sale 𝑆 on the whole sequence of events by a sequence of attributed sales 𝑆𝑡 defined at each time step: 𝑆𝑡173

is 1 if a sale is attributed to the display at time 𝑡 , and 0 otherwise. In this setting, we define 𝑆 ≜
∑
𝑡 𝑆𝑡 , and the goal is174

still to maximise 𝐶𝑃𝐴 · 𝑆 −∑
𝑡 𝐶𝑜𝑠𝑡𝑡 . Note however that the variable 𝑆𝑡 is only observed at the end of the sequence,175

when the advertiser provides the attribution, and not immediately after the action (bid) at time 𝑡 . In particular, 𝑆𝑡 might176

be impacted by displays at later time steps.177

We now define a greedy bidder: it tries to maximize, at each time step, the expected payoff at this time step,

E(𝐶𝑃𝐴 · 𝑆𝑡 −𝐶𝑜𝑠𝑡𝑡 ). It is clear that when the bidder looses the auction at time 𝑡 , i.e. if 𝐷𝑡 = 0, then this expected pay-of

is equal to 0 (indeed the cost is 0, and no sale is attributed to a lost display). On a second price auction, it is well-known

that the solution is then to bid its expected gain
2
:

𝑏𝑡 = 𝐶𝑃𝐴 · E(𝑆𝑡 |𝑋𝑡 = 𝑥𝑡 , 𝐷𝑡 = 1)

On other kind of auctions, such as first price auctions, the bidder may use its knowledge (from past data) of the178

distribution of the clearing price to find the bid maximizing the expected gain at time 𝑡 . While not optimal for the whole179

sequence, the greedy bidder is still widely used in practice due to its simplicity.180

2
Note that this expectation actually depends on the policy of the bidder after time 𝑡 , because 𝑆𝑡 may be impacted by future displays. In practice, this

technicality is ignored, and the expectation is estimated with data generated with a previous version of the bidder policy.
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Remark 3 (Why the greedy policy is not optimal). The first reason is that the attribution is not perfect. For instance,181

supposing that a first display caused a sale that is yet to come, showing a second display will steal the attribution of the182

first display, but in total, the bidder will get the same reward (if we skipped the second display, the sale would have been183

attributed to the first). In addition, not only does the display at time 𝑡 impacts the attribution, it also impacts the future184

costs. Indeed, it is quite accepted that the clicks have decreasing marginal effect on the sales probability. Hence, displays are185

likely to decrease the future costs.186

3.4 Optimal policy at time step 𝜏187

Next we derive the optimal bid at time 𝑡 , assuming we know that the bidder will follow a predefined policy 𝜋 in the188

future. We define the future cost 𝐹𝐶𝑜𝑠𝑡𝜏 ≜
∑
𝑡>𝜏 𝐶𝑜𝑠𝑡𝑡 , and the impact of the display on the expected reward and future189

costs190

Δ𝑆 (𝑥𝜏 ) ≜ E[𝑆 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 1] − E[𝑆 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 0] (1)

and191

Δ𝐹𝐶𝑜𝑠𝑡 (𝑥𝜏 ) ≜ E[𝐹𝐶𝑜𝑠𝑡𝜏 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 1] − E[𝐹𝐶𝑜𝑠𝑡𝜏 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 0] . (2)

We poinpoint that Equations (1) and (2) only refer to observational data. The following result, that relies on using Pearl’s192

do operator [Pearl, 1995, 2009, Peters et al., 2017], tells us that we can nonetheless interprete them as interventional193

quantities.194

Proposition 3.1.

Δ𝑆 (𝑥𝜏 ) = E[𝑆 |𝑋𝜏 = 𝑥𝜏 , 𝑑𝑜 (𝐷𝜏 = 1)] − E[𝑆 |𝑋𝜏 = 𝑥𝜏 , 𝑑𝑜 (𝐷𝜏 = 0)]

and

Δ𝐹𝐶𝑜𝑠𝑡 (𝑥𝜏 ) = E[𝐹𝐶𝑜𝑠𝑡𝜏 |𝑋𝜏 = 𝑥𝜏 , 𝑑𝑜 (𝐷𝜏 = 1)] − E[𝐹𝐶𝑜𝑠𝑡𝜏 |𝑋𝜏 = 𝑥𝜏 , 𝑑𝑜 (𝐷𝜏 = 0)]

Proof. The variable 𝑆 and 𝐷𝜏 are d-separated in a graph were the outcoming edges from 𝐷𝜏 are removed. We can195

thus apply Pearl’s Action/observation exchange [Pearl, 1995] . A similar argument applies for 𝐹𝑐𝑜𝑠𝑡𝜏 and 𝐷𝜏 . □196

As noted previously, those quantities depend on 𝜋 but do not depend on the current bid 𝑏𝜏 . We can now state the197

main result:198

Theorem 3.2 (Optimal bid at time step 𝜏 ). At time 𝜏 , the optimal bid is𝑏∗𝜏 ≜ argmax𝑏E
[
𝐷𝜏 ·(𝑉 (𝑥𝜏 )−𝐶𝑜𝑠𝑡𝜏 ) |𝐵𝑖𝑑𝑡 = 𝑏

]
with the display valuation defined as

𝑉 (𝑥𝜏 ) ≜ 𝐶𝑃𝐴 · Δ𝑆 (𝑥𝜏 ) − Δ𝐹𝐶𝑜𝑠𝑡 (𝑥𝜏 ) .

Note that the expectation in the formula of 3.2 is only on the randomness of the auction at time 𝑡 . Only 𝐷𝑡 and𝐶𝑜𝑠𝑡𝑡199

are random variables in this formula. In particular, if the auction is second price, the optimal bid is 𝑏∗ = 𝑉 (𝑥𝜏 ). On200

other types of auctions, the bidder may adapt its bid accordingly, using exactly the same methods as in the case of the201

greedy policy.202

Proof. Noting that the cost paid at previous steps,

∑
𝑡<𝜏 𝐶𝑜𝑠𝑡𝑡 , can now be viewed as a constant and thus removed203

from the optimisation problem, the bidder wants to maximize the expected payoff after a bid 𝑏𝜏 :204

E[𝐶𝑃𝐴 · 𝑆 − 𝐹𝐶𝑜𝑠𝑡𝜏 −𝐶𝑜𝑠𝑡𝜏 |𝑋𝜏 = 𝑥𝜏 , 𝑏𝜏 ]
7
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Since the bid only impacts future through the display, when the bidder looses this auction (𝐷𝜏 = 0), its payoff is:205

𝐶𝑃𝐴 · E[𝑆 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 0] − E[𝐹𝐶𝑜𝑠𝑡𝜏 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 0] . (3)

While if he wins (𝐷𝜏 = 1), he would receive206

𝐶𝑃𝐴 · E[𝑆 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 1] − E[𝐹𝐶𝑜𝑠𝑡𝜏 |𝑋𝜏 = 𝑥𝜏 , 𝐷𝜏 = 1] (4)

and pay the cost 𝐶𝑜𝑠𝑡𝜏 . As noted in Remark 1, the quantities in Equations (3) and (4) do not depend on the bid. Up to a207

constant term, the payoff of the bidder is thus 𝐷𝜏 · (𝑉 (𝑥𝜏 ) −𝐶𝑜𝑠𝑡𝜏 ).208

□209

3.5 Policy iteration and convergence210

While we are not strictly in a Reinforcement Learning setup, we may define a policy iteration, which converges to the211

optimal policy [Sutton et al., 1998] under mild technical assumptions
3
.212

To be more specific: we have only derived the optimal bid at some time step 𝜏 , when the policy 𝜋 at the next time213

steps is frozen. From this, we then build a new policy: at every time step, answer with the bid which would be optimal214

if 𝜋 was used in the future. A recursion argument shows that this policy is an improvement (i.e. has a higher expected215

return) on 𝜋 at every state. Theoretically, we can then define a sequence of policies by iterating this policy improvement216

process, converging to an optimal policy –which can be shown with a recursion on the length of the sequence when217

those sequences are of bounded length– exactly as in the usual case of policy iteration in Reinforcement Learning.218

4 MODELING THE CAUSAL EFFECT OF CLICKS219

According to Theorem 3.2, we need to estimate the impact of the display on the attributed sales and on future cost,220

Δ𝑆 (𝑋𝜏 ) and Δ𝐹𝐶𝑜𝑠𝑡 (𝑋𝜏 ). In this paper, we propose a new method to estimate Δ𝑆 (𝑋𝑡 ) by leveraging the randomness of221

clicks. We leave methods to estimate the impact of the display 𝐷𝑡 on future cost 𝐹𝐶𝑜𝑠𝑡𝑡 to future work, and approximate222

this impact by 0 in the online experiments.223

Let us notice that for a given sample, we observe either what happens after 𝐷𝑡 = 1 or after 𝐷𝑡 = 0, but never both:224

we need here to estimate the causal effect of the display 𝐷𝑡 on the reward in Equation (1). Although we assume that225

all variables are observed, this may still be challenging due to the large dimension of the state space, and the high226

probability that 𝑆 = 0.227

In this section, we sometimes drop the index 𝑡 for simplicity, as we now only care about variables at time of the

bid. Moreover, we assimilate binary random variables such as 𝐷 and 𝐶 to the events 𝐷 = 1, 𝐶 = 1. Thus we wrote

𝑃 (𝐶 |𝐷,𝑋=𝑥) for of 𝑃 (𝐶=1|𝐷=1, 𝑋=𝑥); and we note 𝐷 , 𝐶 the events 𝐷 = 0 or 𝐶 = 0. Finally, since in practice having

several sales is very rare, we assume that 𝑆 is binary, and thus note 𝑆 to the event 𝑆 > 0. This also allows us to fit 𝑆 with

a logistic regression. Hence Equation (1) becomes

Δ𝑆 (𝑥) = P(𝑆 |𝑋 = 𝑥, 𝐷) − P(𝑆 |𝑋 = 𝑥, 𝐷) .

This quantity can be understood as “the causal effect of display 𝐷 on the attributed sale 𝑆”. We are thus trying to retrieve228

which display(s) caused the attribution. Also, because a user is typically exposed to dozens of displays on a single day229

and a sale is a rare event, the dilution of the sale signal prevents the use of directly fitting the model. We thus rely on a230

few more assumptions.231

3
It is sufficient to assume a finite upper bound on the length of sequences.
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𝑆𝑋𝑡 𝐷𝑡 𝐶𝑡𝑋𝑡 𝐷𝑡 𝐶𝑡

𝑋𝑡+1 𝐷𝑡+1 𝐶𝑡+1𝑋𝑡+1 𝐷𝑡+1 𝐶𝑡+1

Fig. 2. Causal Graph of (𝑋𝑡 , 𝐷𝑡 ,𝐶𝑡 , 𝑆) . Comparing with Figure 1, bid and cost are omitted because we turn the focus on 𝑆 . We also
add the Assumption that the effect of 𝐷𝑡 on 𝑆 is mediated by𝐶𝑡 .

𝑋 𝐷 𝐶 𝑆

Fig. 3. Focus on the Causal graph for the Display-Click-Sale triplet (𝑡 is omitted). Only a clicked display may have an impact on the
probability of seeing a sale.

4.1 Assumptions232

A common assumption here, used implicitly by most attribution systems, is that non clicked displays have no impact233

on sales. This greatly reduces the number of displays one should consider when trying to find “which display might234

have caused the sale”.235

Assumptions 5 (No Post Display Effect.). The system is well represented by the causal graph in Figure 2. In particular,236

𝐶𝑡 blocks all directed paths starting from 𝐷𝑡 and finishing to 𝑆 .237

In other words, displays may only cause a sale through a click. This assumption is represented in the simplified

graph of Figure 3. We now have:

P(𝑆 |𝑋 = 𝑥, 𝐷) = P(𝑆 |𝑋 = 𝑥, 𝐷,𝐶) = P(𝑆 |𝑋 = 𝑥, 𝐷,𝐶) .

The first equality comes from the fact that a click cannot occur without a display. The second equality can be derived238

using Pearl’s d-separation, after observing that 𝑆 ⊥⊥ 𝐷 | (𝑋,𝐶), where ⊥⊥ is the d-separation symbol.239

Remark 4 (Discussion on the assumptions). • The no post display effect assumption is quite commonly as-240

sumed in the industry when attributing the sales. In our case, where we are optimizing for attributed sales, this is241

even more likely to be true. For example, in the case of a “last click” attribution, the attribution will be zero if there is242

no click. While it might still be possible that a non-clicked display would cause the sale and that then another clicked243

display would make the sale to be attributed to the bidder, we believe it is reasonable to assume that attributed sales244

are caused only by clicked displays.245
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• Note that in this model, the effect on displays 𝐷𝑡 to the next state 𝑋𝑡+1 is fully mediated by the click𝐶𝑡 . For example,246

this implies that the number of past displays cannot be part of the state. Since this is a feature often used by bidders,247

we recognize that it indicates a potential statistical relevance not taken into account in our framework.248

• Finally Assumption 1 is stronger this new setting than in 3.2, because we include the clicks in the graph. Hence, there249

should be no unobserved variable causing both the click and the sale.250

4.2 The incremental bidder251

Since the click 𝐶 is binary, we can always decompose the probability of having a sale after a display P
(
𝑆 |𝐷,𝑋=𝑥

)
into

P
(
𝑆 |𝐷,𝑋=𝑥

)
= P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
· P(𝐶 |𝐷,𝑋=𝑥) + P(𝑆 |𝐶, 𝐷,𝑋=𝑥) · P(𝐶 |𝐷,𝑋=𝑥)

= P(𝐶 |𝐷,𝑋=𝑥) ·
(
P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
− P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

) )
+ P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
.

This leads to

Δ𝑆 (𝑥) = P(𝐶 |𝐷,𝑋=𝑥) ·
(
P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
− P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

) )
+
(
P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
− P

(
𝑆 |𝐷,𝑋=𝑥

) )
.

Following our previous assumptions, the last term P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
− P

(
𝑆 |𝐷,𝑋=𝑥

)
, which we may interpret as the “pure252

post display effect of 𝐷 on the sale”, is assumed to be 0. Hence253

Δ𝑆 (𝑥) = P(𝐶 |𝐷,𝑋=𝑥) ·
(
P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
− P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

) )
. (5)

All the terms in this formula may be estimated directly from the data, using standard supervised learning methods such254

as logistic regression. With a simple rewriting, Equation (5) becomes255

Δ𝑆 (𝑥) = P(𝐶 |𝐷,𝑋=𝑥) · P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
·
(
1 −
P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

) ), (6)

where we call the last term the incrementality factor. It is usually between 0 and 1 and we might think about it as “the256

probability that the click caused the sale”. It equals 1 if the sale is fully incremental, namely, it could not have occurred257

without the click: P
(
𝑆 |𝐶, 𝐷,𝑋

)
= 0. On the contrary it is valued 0 if there is no incrementality, namely if the click did not258

increase the sales probability: P
(
𝑆 |𝐶, 𝐷,𝑋

)
= P

(
𝑆 |𝐶, 𝐷,𝑋

)
. While it could in theory be negative (if the click caused the259

user not to buy) it remains rare and in such a case we may simply submit a bid of 0, which is enough to ensure we loose260

the display. We clarify that the bidder is incremental in the sense that it bids the lift of attributed sales – or whatever is261

measured by the variable 𝑆 : if 𝑆 stands for the total number of sales, the bidder optimizes for the incremental sales.262

Remark 5. With a greedy bidder, a display is typically valued 𝐶𝑃𝐴 · P(𝐶𝑡 |𝐷𝑡 , 𝑋=𝑥) · P
(
𝑆𝑡 |𝐶𝑡 , 𝐷𝑡 , 𝑋=𝑥

)
The proposed263

model makes two changes compared to this greedy bidder:264

(1) We multiply by the incrementally factor from Equation (6).265

(2) We replace 𝑆𝑡 , the sale attributed to display 𝐷𝑡 by 𝑆 (sales attributed to the whole sequence), in the P(𝑆 |𝐶, 𝐷,𝑋=𝑥)266

part of the model. We pinpoint that our model does not depend on the method used to attribute sales to displays267

(typically last click) as long as it is attributed to the sequence.268
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Table 1. Our generative model assumes that, given the display type (𝑇 = 𝑎, 𝑛 or 𝑦) and whether it is clicked 𝐶 or not 𝐶 , we can
determine if it leads to a sale 𝑆 or not 𝑆 .

∩ 𝑇 = 𝑎 𝑇 = 𝑛 𝑇 = 𝑦

𝐶 𝑆 𝑆 𝑆

𝐶 𝑆 𝑆 𝑆

5 AN INCREMENTALITY METRIC269

We are interested in valuing more the displays that could lead a user to a sale in the future while he would have not270

bought without. Namely, we would like to evaluate how good our model is at predicting Δ𝑆 (𝑥). Given Equation (5),271

Δ𝑆 (𝑥) can be split into two parts, first P(𝐶 |𝐷,𝑋=𝑥) that is a quite mature model in the industry and a second model272

P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
− P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
that we have introduced in Section 4.2. Since we cannot observe both the clicked273

display and its counterfactual, assessing the quality of such a model offline is a complex task. In this Section, we build a274

random variable 𝑌 such that275

P
(
𝑌 |𝐶, 𝐷,𝑋=𝑥

)
= P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
− P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
that we cannot observe. However, we introduce a metric that is able to evaluate the capacity of our model to predict276

this variable 𝑌 while observing only the click 𝐶 and sales 𝑆 outcomes.277

5.1 The generative model278

As in Section 4.2 we consider only won displays, that are described by a context 𝑋 , and have two observable effects:279

they can be clicked 𝐶 or not 𝐶 and they can be followed by a sales 𝑆 or not 𝑆 . Intuitively, we would like to divide those280

displays in four classes, which we call their display type 𝑇 ∈ {𝑎, 𝑛,𝑦, 𝑑}:281

(1) The displays that always lead to a sale whether they are clicked or not : 𝑇 = 𝑎.282

(2) The displays that never lead to a sale whether they are clicked or not : 𝑇 = 𝑛.283

(3) The incremental displays that lead to a sale if they are clicked but do not if they are not clicked: 𝑇 = 𝑦.284

(4) The decremental displays that do not lead to a sale if they are clicked but do if they are not clicked: 𝑇 = 𝑑 .285

Assumptions 6 (No decremental displays). We assume for all 𝑥 , P(𝑆 |𝐶,𝑋 = 𝑥) ≥ P(𝑆 |𝐶,𝑋 = 𝑥).286

This mean that there are no decremental displays (or equivalently, the incremental factor is positive). This assumption287

is quite natural in practice since we do not expect a clicked ad to discourage a user to buy a product. Of course, this288

display type is never observed directly, but for any given context 𝑥 , we can always assume that the variable 𝑆 is a289

function of 𝐶 and an independent unobserved variable 𝑇 ∈ {𝑎, 𝑛,𝑦} as defined in Table 1
4
. The corresponding causal290

graph is depicted in Figure 4.291

Since we are looking for incrementality, 𝑇 = 𝑦 is our variable of interest, even if it cannot be observed from the data.292

Indeed, the displays that have been clicked and then have led to a sale (𝐶 ∩ 𝑆) and the display that were not clicked and293

have not led to a sale (𝐶 ∩ 𝑆) might either be incremental or not. To determine if they are incremental one should have294

observed the counterfactual. Similarly to 𝐶 and 𝐷 we denote by 𝑌 the random variable associated to the event 𝑇 = 𝑦295

and 𝑌 to 𝑇 ≠ 𝑦.296

4
For example, we could define P(𝑇 = 𝑎 |𝑋 = 𝑥) := P(𝑆 |𝑋 = 𝑥,𝐶) and P(𝑇 = 𝑛 |𝑋 = 𝑥) := P(𝑆 |𝑋 = 𝑥,𝐶) .
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𝑋

𝐶

𝑇

𝑆 := (𝑇 = 𝑎) + (𝐶 = 1) · (𝑇 = 𝑦)

Fig. 4. Causal graph of the generative model. The display context 𝑋 influences the display type𝑇 ∈ {𝑎,𝑛, 𝑦,𝑑 } (specifically if it is
incremental 𝑌 ) and whether the display is clicked𝐶 . Then,𝑇 and𝐶 determine if this display will leads to a sale 𝑆 following Table 1.
Note that there is no causation from𝐶 to 𝑌 to illustrate the independence assumption of Proposition 5.1.

5.2 Reverted incremental likelihood297

𝑌 is a Bernoulli variable, hence if we have a estimator 𝑓 that predicts 𝑌 given 𝑋 its log-likelihood is

LLHB (𝑌, 𝑓 (𝑋 )) = 𝑌 log 𝑓 (𝑋 ) + 𝑌 log(1 − 𝑓 (𝑋 )) .

Since we cannot observe 𝑌 we cannot compute this likelihood directly from the data but Proposition 5.1 gives us an298

unbiased estimate of this likelihood based only on the observed values 𝐶 and 𝑆 . This unbiased estimate reverts the label299

as in [Jaskowski and Jaroszewicz, 2012] while taking into account the partial randomness of the clicks.300

Proposition 5.1. For any predictor 𝑓 , the reverted incremental likelihood

RLLHB (𝐶, 𝑆, 𝑓 (𝑋 )) = 𝐶

P(𝐶 |𝑋 ) LLHB (𝑆, 𝑓 (𝑋 )) + 𝐶 ∩ 𝑆

P(𝐶 |𝑋 )
log

1 − 𝑓 (𝑋 )
𝑓 (𝑋 )

is an unbiased estimator of the direct incremental likelihood LLHB (𝑌, 𝑓 (𝑋 )).301

Provided we have a correct P(𝐶 |𝑋 ) model, we can thus estimate the incremental likelihood from observable data.302

We defer the proof of Proposition 5.1 to Appendix A. The reverted incremental likelihood only relies on Assumption 6.303

This is interesting in practice since it allows to us to evaluate offline the incremental performance of our models to304

perform model selection. In the case of the incremental bidder, it is useful to assess the quality of the incremental305

factor as a whole instead of evaluating P
(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
on one hand and P

(
𝑆 |𝐶, 𝐷,𝑋=𝑥

)
on the other while having no306

guarantee on the quality of their ratio. Note that this still requires a click prediction model to estimate P(𝐶 |𝑋 ). Relying307

on a model to assess the performances of another is not ideal but since the click prediction models are mature in the308

industry and trained on much more data, we can safely use them to evaluate sales prediction models. In Appendix B,309

we illustrate Proposition 5.1 on a data set that we simulate such that we can observe the hidden variable 𝑇 . That allows310

us to compute the direct incremental likelihood and to compare it the reverted one to assess the performance of the311

incremental bidder.312

6 IMPLEMENTATION AND RESULTS313

6.1 Offline analysis314

In order to evaluate our methodology, we run experiments on the Criteo Attribution Modeling for Bidding public data315

set [Diemert et al., 2017]. This data set consists in 16 million displays sent by Criteo on 6 million users over a period of316

30 days. To each display is associated a set of context features (that we have denoted by 𝑋𝑡 so far), if the display was317

clicked (denoted by𝐶𝑡 so far), and if it has led to a sale that was attributed to Criteo (denoted by 𝑆𝑡 so far). For simplicity,318
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0 200 400 600
Hours since last click
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Fig. 5. Value of the incremental factor given the number of hours elapsed since the latest click. As our intuition would suggest, the
most recent the click is, the less incremental the display is expected to be. Similarly, if a user has already clicked on several displays
then the following clicked displays are less likely to be incremental.

we assume the value of an attributed sale (denoted by 𝐶𝑃𝐴) to equal 1. As a baseline, we train the greedy bidder that319

values a display with context features 𝑥 by P(𝐶𝑡 |𝑋=𝑥) · P
(
𝑆𝑡 |𝐶𝑡 , 𝑋𝑡=𝑥

)
(see Remark 5). Note that the context features320

are hashed [Weinberger et al., 2009], and each context 𝑥 ends up being represented by sparse vector of dimension 2
16
.321

Then, since we have access to the user identifier, we can reconstruct the user timelines. Specifically, we can determine322

if the sequence of displays has led to an attributed sales (denoted by 𝑆 so far). With this label, we train the incremental323

bidder derived in Section 4.2 and compute the incremental factor from Equation (6)
5
.324

In Figure 5, we report the average value of this factor over the displays that we have grouped in two manners, first325

given the time elapsed since the latest user’s click, and second, given the number of clicks already made by the user in326

the timeline. In both cases, we observe that the incremental factor illustrates what we could have foreseen: the more327

recent the click is, the less incremental the display is expected to be and, similarly, if a user has already clicked on328

several displays then the following clicked displays are less likely to be incremental. Note that the first relationship329

–between the incrementality and the time elapsed since the latest click– is at the heart of the work in [Diemert et al.330

2017, Figure 5] where they model it with one minus a decreasing exponential parameterized with a decay factor 𝜆. It is331

interesting to see that the shape is similar to what we observe with the incremental factor but also that our approach332

learns a clean monotonic relationship with a non parametric model (namely we do not specify that we look for a333

decaying effect parameterized with a factor 𝜆 to learn). Also, our incremental bidder is not limited to the time elapsed334

since the latest click but can learn from all the available features (such as number of clicks before display for example).335

On the same data set, we compare the performances of the greedy and the incremental bidders evaluated with336

the incremental likelihood computed thanks to Proposition 5.1. In both cases, we consider that the click prediction is337

evaluated separately and we isolate the part of the formula that gets multiplied by𝐶𝑃𝐴 · P(𝐶𝑡 |𝐷𝑡 , 𝑋=𝑥). That is, for the338

greedy bidder we use P
(
𝑆𝑡 |𝐶𝑡 , 𝐷𝑡 , 𝑋=𝑥

)
as predictor of 𝑌 and P

(
𝑆 |𝐶𝑡 , 𝐷𝑡 , 𝑋𝑡=𝑥

)
− P

(
𝑆 |𝐶𝑡 , 𝐷𝑡 , 𝑋𝑡=𝑥

)
for the incremental339

bidder. We train the models on 80% of the users and keep the remaining 20% for a test set. We report the results in340

Figure 6 where we varied the size of the hashing space from 2
10

to 2
16
. We observe that both models obtain better341

performances when their predictive capacities (induced by the feature space’s size) are increased. Also, we observe that342

the incremental bidder obtains better results than the greedy bidder. It reaches better performances than the greedy343

bidder with 1,000 features instead of 60,000.344

5
Note that all the experiments conducted on this data set are hosted on Google colab (url removed for anonymity reasons).
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Fig. 6. Value of the incremental likelihood for our bidding formula compared to the baseline, i.e. last click model. We plot it in regards
to the size of the features space that quantifies the capacity of the model.

One could wonder if we could train a model 𝑓 to directly maximize the reverted incremental likelihood. Indeed, it345

sounds reasonable especially since, if 𝑓 : 𝑥 ↦→ 𝜎 (𝑤𝑇 𝑥) where 𝜎 is the sigmoid function as in a logistic regression, then346

it becomes a convex optimization problem. However, the Goodhart law stands that “when a measure becomes a target,347

it ceases to be a good measure”, and it might be true in our case since the variance induced by the ratio
1

P(𝐶 |𝑋 ) could348

lead to high overfitting. We thus leave it for future work.349

6.2 Live experiment350

Finally, we explain how we modify a production bidding algorithm to test our model online. The baseline is made of

(1) a module that predicts the probability that an opportunity, if won, will be attributed a sale with the last click rule

(the greedy bidder), and (2) a module that shades this prediction to account for the first-price auction rule. Our change

simply consists in (a) learning P
(
𝑆 |𝐶, 𝐷,𝑋

)
and P

(
𝑆 |𝐶, 𝐷,𝑋

)
with a logistic regression, (b) form the factor

𝛼 (𝑋 ) =
(
1 −
P
(
𝑆 |𝐶, 𝐷,𝑋

)
P
(
𝑆 |𝐶, 𝐷,𝑋

) ),
(c) multiply the production module of (1) by this incremental factor. Many feature engineering decision where taken in351

step (2b), among other, we decided to learn 𝛼 (𝑋 ) with a logistic regression.352

We tested the change on and obtained a 7.8% decrease of spend for the same campaign performance in attribution on353

a volume worth 7,000,000 euros on the test period, which is something remarkable in the industry.354

7 DISCUSSION355

We introduce a reinforcement learning formulation of the bidding problem in display advertising. We derived a strategy356

thanks to a causal reasoning approach. The main assumption is to suppose that only clicked displays bring additional357

reward. We also provide an offline metrics to sanitize the approach. While the framework could be used for incremental358

sales, we tested it on attributed sales for the reasons given in the introduction (it is the main metric in the industry and359

it is methodologically easier to test and develop on attribution).360
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On the experimental and implementation aspects, further work could be done, in particular to take into account the361

evolution of the expected future cost. We believe our framework is quite general and could be adapted to other contexts362

with clicks, displays and actions, in particular marketplace and recommender systems.363

From a methodological perspective, we think that attribution can be useful to understand, test and improve causal364

models (which can later be adapted for incremental sales). From an industry wise perspective, our approach could be365

combined with incremental attribution framework such as [Singal et al., 2019]. Such a decomposition offers several366

advantage as the role of the different agents are clearly defined.367
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Appendices435

A PROOF OF PROPOSITION 5.1436

With Assumption 6, 𝑌 is the disjoint union of 𝑇 = 𝑎 and 𝑇 = 𝑛, hence

P[𝑌 |𝑋 ] = P[𝑇 = 𝑎 |𝑋 ] + P[𝑇 = 𝑛 |𝑋 ] .

As the display types 𝑇 are built independently of 𝐶 given X, the previous equality can be written as

P[𝑌 |𝑋 ] = P[𝐶 ∩𝑇 = 𝑎 |𝑋 ]
P(𝐶 |𝑋 )

+ P[𝐶 ∩𝑇 = 𝑛 |𝑋 ]
P(𝐶 |𝑋 ) .

Finally, since we can identify event 𝐶 ∩ (𝑇 = 𝑎) to 𝐶 ∩ 𝑆 and 𝐶 ∩ (𝑇 = 𝑛) to 𝐶 ∩ 𝑆 (see Table 1), it writes

P[𝑌 |𝑋 ] = P[𝐶 ∩ 𝑆 |𝑋 ]
P(𝐶 |𝑋 )

+ P[𝐶 ∩ 𝑆 |𝑋 ]
P(𝐶 |𝑋 ) ,

and437

P[𝑌 |𝑋 ] = P[𝐶 ∩ 𝑆 |𝑋 ]
P(𝐶 |𝑋 ) − P[𝐶 ∩ 𝑆 |𝑋 ]

P(𝐶 |𝑋 )
. (7)
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Using this identity we compute the expectation of the incremental likelihood

E𝑋,𝑌 [LLHB (𝑌, 𝑓 (𝑋 ))]

= E𝑋
[
E𝑌 [𝑌 log 𝑓 (𝑋 ) + 𝑌 log(1 − 𝑓 (𝑋 )) |𝑋 ]

]
= E𝑋

[
P(𝑌 |𝑋 ) log 𝑓 (𝑋 ) + P(𝑌 |𝑋 ) log(1 − 𝑓 (𝑋 ))

]
= E𝑋

[(
P[𝐶 ∩ 𝑆 |𝑋 ]
P(𝐶 |𝑋 ) − P[𝐶 ∩ 𝑆 |𝑋 ]

P(𝐶 |𝑋 )

)
log 𝑓 (𝑋 )

+
(
P(𝐶 ∩ 𝑆 |𝑋 )
P(𝐶 |𝑋 )

+ P[𝐶 ∩ 𝑆 |𝑋 ]
P(𝐶 |𝑋 )

)
log(1 − 𝑓 (𝑋 ))

]
Since all is conditioned on 𝑋 and 𝐶 and 𝑆 are Bernouilli variables,

E𝑋,𝑌 [LLHB (𝑌, 𝑓 (𝑋 ))]

= E𝑋,𝐶,𝑆

[(
𝐶 ∩ 𝑆

P(𝐶 |𝑋 ) −
𝐶 ∩ 𝑆

P(𝐶 |𝑋 )

)
log 𝑓 (𝑋 )

+
(
𝐶 ∩ 𝑆

P(𝐶 |𝑋 )
+ 𝐶 ∩ 𝑆

P(𝐶 |𝑋 )

)
log(1 − 𝑓 (𝑋 ))

]
= E𝑋,𝑆,𝐶

[
𝐶

P(𝐶 |𝑋 ) LLHB (𝑆, 𝑓 (𝑋 ))

+ 𝐶 ∩ 𝑆

P(𝐶 |𝑋 )
log

1 − 𝑓 (𝑋 )
𝑓 (𝑋 )

]
.

B COMPARISON OF DIRECT AND REVERTED INCREMENTAL LIKELIHOOD ON A SIMULATED DATA438

SET439

In order to manifest the consistency of the incremental metric introduced in Proposition 5.1 and link it to the incremental440

factor, we generate a toy data set where the displays are described by a 2-dimensional feature vector 𝑥 , allowing us to441

represent them on a 2d graph. Then, following our generative model, we assume that each display 𝑖 , gets clicked with a442

probability𝜓 (𝑥𝑖 ) ∈ (0, 1) and is of type 𝑡𝑖 = 𝑎, 𝑦 or 𝑐 with a probability that also depends on 𝑥𝑖 . Figure 7 shows 𝑛 = 60443

displays represented by their feature vector 𝑥𝑖 ∈ R2 and their click 𝑐𝑖 , type 𝑡𝑖 and sales 𝑠𝑖 characteristics for 𝑖 = 1, . . . 𝑛444

6
.445

Since the data is generated, we have access to the true value of the display type 𝑡𝑖 and more specifically to the

binary variable 𝑦𝑖 (that we identify to the event 𝑡𝑖 = 𝑦) that characterizes an incremental display. Hence, for a model

𝑓 : R2 → (0, 1) supposed to predict 𝑦𝑖 , we can compute the averaged direct incremental likelihood over 𝑛 displays

1

𝑛

∑𝑛
𝑖=1 LLH𝐵 (𝑦𝑖 , 𝑓 (𝑥𝑖 )). We provide in Table 2, the results for two models. First, one that directly predicts the probability

P(𝑌 |𝑋 = 𝑥𝑖 ). Similarly to the metric, this model is trainable only if the label 𝑦𝑖 is observed, i.e. only on a simulated data

set. The second one actually predicts the incremental part of the bidding formula (5), with two models, one trained to

predict P[𝑆 |𝐶,𝑋 = 𝑥𝑖 ] and a second one to predict P[𝑆 |𝐶,𝑋 = 𝑥𝑖 ]. This term is actually directly linked to P(𝑌 |𝑋 = 𝑥𝑖 )
since from Equation (7), we derive

P(𝑌 |𝑋 ] = P[𝑆 |𝐶,𝑋 = 𝑥𝑖 ) − P(𝑆 |𝐶,𝑋 = 𝑥𝑖 ).

6
Note that all the experiments conducted on this simulated data set are hosted on Google colab (url removed for anonymity reasons).
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Fig. 7. Illustration of the generative model described in Table 1 where each display is depicted by its feature vectors 𝑥 ∈ R2. On a
real data set we observe only if a display is clicked (a) and if it leads to a sale (c), but our variable of interest is the unobservable
display type (b). Though, the metric we have introduced in Proposition 5.1 allows us to evaluate the capacity of a model to predict the
unobservable event𝑇 = 𝑦.

Table 2. Value of the direct incremental likelihood obtained thanks to the variable 𝑌 that we can observe on a simulated data set.
We observe that without observing 𝑌 , the incremental factor achieves nearly as good performances as the theoretical maximizer
P(𝑌 |𝑋 = 𝑥) .

𝑛 = 100 𝑛 = 1000 𝑛 = 10000

P(𝑌 |𝑋 = 𝑥) -0.289 +/- 0.016 -0.274 +/- 0.005 -0.275 +/- 0.002

Inc. bidder -0.293 +/- 0.017 -0.280 +/- 0.006 -0.282 +/- 0.003

Table 3. Value of the reverted incremental likelihood obtained thanks to Proposition 5.1. At the expense of a wider 95% confidence
interval, it converges as expected to the same value as the direct likelihood (see Table 2) without observing 𝑌 .

𝑛 = 100 𝑛 = 1000 𝑛 = 10000

P(𝑌 |𝑋 = 𝑥) -0.296 +/- 0.090 -0.274 +/- 0.025 -0.277 +/- 0.007

Inc. bidder -0.355 +/- 0.147 -0.294 +/- 0.034 -0.280 +/- 0.010

This observation makes our bidding formula a natural candidate to optimize for this incrementality metric and we indeed446

observe in Table 2 that its performances are really close to the one obtained with the theoretical model P(𝑌 |𝑋 = 𝑥𝑖 ).447

Finally, we present in Table 3 the value we obtain by using the reverted incremental likelihood from Proposition 5.1:448

1

𝑛

∑𝑛
𝑖=1 RLLHB (𝑐𝑖 , 𝑠𝑖 , 𝑓 (𝑥𝑖 )) given the predictions P(𝐶 |𝑋 = 𝑥𝑖 ) for all 𝑖 = 1, . . . , 𝑛 obtained from another model trained449

separately. We numerically illustrate the unbiasedness of the reverted incremental likelihood since we observe that it450

converges to the same values as the direct one. While it has more variance (leading to wider 95% confidence intervals),451

it is interesting to emphasize that this metric does not need to observe the hidden variable 𝑌 to correctly converge.452
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