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A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent

This article characterizes the exact asymptotics of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples n, their dimension p, and the dimension of feature space N are all large and comparable. In this regime, the random RFF Gram matrix no longer converges to the wellknown limiting Gaussian kernel matrix (as it does when N → ∞ alone), but it still has a tractable behavior that is captured by our analysis. This analysis also provides accurate estimates of training and test regression errors for large n, p, N . Based on these estimates, a precise characterization of two qualitatively different phases of learning, including the phase transition between them, is provided; and the corresponding double descent test error curve is derived from this phase transition behavior. These results do not depend on strong assumptions on the data distribution, and they perfectly match empirical results on real-world data sets.

Introduction

For a machine learning system having N parameters, trained on a data set of size n, asymptotic analysis as used in classical statistical learning theory typically either focuses on the (statistical) population n → ∞ limit, for N fixed, or the over-parameterized N → ∞ limit, for a given n. These two settings are technically more convenient to work with, yet less practical, as they essentially assume that one of the two dimensions is negligibly small compared to the other, and this is rarely the case in practice. Indeed, with a factor of 2 or 10 more data, one typically works with a more complex model. This has been highlighted perhaps most prominently in recent work on neural network models, in which the model complexity and data size increase together. For this reason, the double asymptotic regime where n, N → ∞, with N/n → c, a constant, is a particularly interesting (and likely more realistic) limit, despite being technically more challenging [START_REF] Hyunjune | Statistical mechanics of learning from examples[END_REF][START_REF] Timothy Lh Watkin | The statistical mechanics of learning a rule[END_REF][START_REF] Haussler | Rigorous learning curve bounds from statistical mechanics[END_REF][START_REF] Engel | Statistical mechanics of learning[END_REF][START_REF] Mezard | Information, physics, and computation[END_REF][START_REF] Charles | Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior[END_REF][START_REF] Bahri | Statistical mechanics of deep learning[END_REF]. In particular, working in this regime allows for a finer quantitative assessment of machine learning systems, as 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada. a function of their relative complexity N/n, as well as for a precise description of the under-to over-parameterized "phase transition" (that does not appear in the N → ∞ alone analysis). This transition is largely hidden in the usual style of statistical learning theory [START_REF] Vapnik | Statistical Learning Theory[END_REF], but it is well-known in the statistical mechanics approach to learning theory [START_REF] Hyunjune | Statistical mechanics of learning from examples[END_REF][START_REF] Timothy Lh Watkin | The statistical mechanics of learning a rule[END_REF][START_REF] Haussler | Rigorous learning curve bounds from statistical mechanics[END_REF][START_REF] Engel | Statistical mechanics of learning[END_REF], and empirical signatures of it have received attention recently under the name "double descent" phenomena [START_REF] Madhu S Advani | High-dimensional dynamics of generalization error in neural networks[END_REF][START_REF] Belkin | Reconciling modern machinelearning practice and the classical bias-variance trade-off[END_REF]. This article considers the asymptotics of random Fourier features [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF], and more generally random feature maps, which may be viewed also as a single-hidden-layer neural network model, in this limit. More precisely, let X = [x 1 , . . . , x n ] ∈ R p×n denote the data matrix of size n with data vectors x i ∈ R p as column vectors. The random feature matrix Σ X of X is generated by pre-multiplying some random matrix W ∈ R N ×p having i.i.d. entries and then passing through some entry-wise nonlinear function σ(•), i.e., Σ X ≡ σ(WX) ∈ R N ×n . Commonly used random feature techniques such as random Fourier features (RFFs) [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF] and homogeneous kernel maps [START_REF] Vedaldi | Efficient additive kernels via explicit feature maps[END_REF], however, rarely involve a single nonlinearity. The popular RFF maps are built with cosine and sine nonlinearities, so that Σ X ∈ R 2N ×n is obtained by cascading the random features of both, i.e., Σ T X ≡ [cos(WX) T , sin(WX) T ]. Note that, by combining both nonlinearities, RFFs generated from W ∈ R N ×p are of dimension 2N .

The large N asymptotics of random feature maps is closely related to their limiting kernel matrices K X . In the case of RFF, it was shown in [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF] that entry-wise the Gram matrix Σ T X Σ X /N converges to the Gaussian kernel matrix K X ≡ {exp(-

x i -x j 2 /2)} n i,j=1 , as N → ∞. This follows from 1 N [Σ T X Σ X ] ij = 1 N N t=1 cos(x T i w t ) cos(w T t x j ) + sin(x T i w t ) sin(w T t x j )
, for w t independent Gaussian random vectors, so that by the strong law of large numbers, for fixed n, p, [Σ T X Σ X /N ] ij goes to its expectation (with respect to w ∼ N (0,

I p )) almost surely as N → ∞, i.e., [Σ T X Σ X /N ] ij a.s. --→ E w cos(x T i w) cos(w T x j ) + sin(x T i w) sin(w T x j ) ≡ K cos + K sin , (1) with 
K cos + K sin ≡ e -1 2 ( xi 2 + xj 2 ) cosh(x T i x j ) + sinh(x T i x j ) = e -1 2 ( xi-xj 2 ) ≡ [K X ] ij . (2) 
While this result holds in the N → ∞ limit, recent advances in random matrix theory [START_REF] Louart | A random matrix approach to neural networks[END_REF][START_REF] Liao | On the spectrum of random features maps of high dimensional data[END_REF] suggest that, in the more practical setting where N is not much larger than n, p and n, p, N → ∞ at the same pace, the situation is more subtle. In particular, the above entry-wise convergence remains valid, but the convergence Σ T X Σ X /N -K X → 0 no longer holds in spectral norm, due to the factor n, now large, in the norm inequality

A ∞ ≤ A ≤ n A ∞ for A ∈ R n×n and A ∞ ≡ max ij |A ij |.
This implies that, in the large n, p, N regime, the assessment of the behavior of Σ T X Σ X /N via K X may result in a spectral norm error that blows up. As a consequence, for various machine learning algorithms [START_REF] Cortes | On the impact of kernel approximation on learning accuracy[END_REF], the performance guarantee offered by the limiting Gaussian kernel is less likely to agree with empirical observations in real-world large-scale problems, when n, p are large. 1

Our Main Contributions

We consider the RFF model in the more realistic large n, p, N limit. While, in this setting, the RFF empirical Gram matrix does not converge to the Gaussian kernel matrix, we can characterize its behavior as n, p, N → ∞ and provide asymptotic performance guarantees for RFF on largescale problems. We also identify a phase transition as a function of the ratio N/n, including the corresponding double descent phenomenon. In more detail, our contributions are the following.

1.We provide a precise characterization of the asymptotics of the RFF empirical Gram matrix, in the large n, p, N limit (Theorem 1). This is accomplished by constructing a deterministic equivalent for the resolvent of the RFF Gram matrix. Based on this, the behavior of the RFF model is (asymptotically) accessible through a fixed-point equation, that can be interpreted in terms of an angle-like correction induced by the non-trivial large n, p, N limit (relative to the N → ∞ alone limit).

2.We derive the asymptotic training and test mean squared errors (MSEs) of RFF ridge regression, as a function of the ratio N/n, regularization penalty λ, training as well as test sets (Theorem 2 and 3, respectively). We identify precisely the under-to over-parameterization phase transition, as a function of the relative model complexity N/n; we prove the existence of a "singular" peak of test error at the N/n = 1/2 boundary; and we characterize the corresponding double descent behavior. Importantly, our results are valid with almost no specific assumption on the data distribution. This is a significant improvement over existing double descent analyses, which fundamentally rely on the knowledge of the data distribution (often assumed to be multivariate Gaussian for simplicity) [START_REF] Hastie | Surprises in highdimensional ridgeless least squares interpolation[END_REF][START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF].

3.We provide a detailed empirical evaluation of our theoretical results, demonstrating that the theory closely matches empirical results on a range of real-world data sets (Section 3 and Section F in the supplementary material). This includes the correction due to the large n, p, N setting, sharp transitions (as a function of N/n) in angle-like quantities, and the corresponding double descent test curves. This also includes an evaluation of the impact of training-test similarity and the effect of different data sets, thus confirming, as stated in 2., that (unlike in prior work) the phase transition and double descent hold with almost no specific assumption on the data distribution.

Related Work

Here, we provide a brief review of related previous efforts.

Random features and limiting kernels. In most RFF work [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF][START_REF] Bach | On the equivalence between kernel quadrature rules and random feature expansions[END_REF][START_REF] Haim Avron | Random fourier features for kernel ridge regression: Approximation bounds and statistical guarantees[END_REF][START_REF] Rudi | Generalization properties of learning with random features[END_REF], non-asymptotic bounds are given, on the number of random features N needed for a predefined approximation error of a given kernel matrix with fixed n, p. A more recent line of work [START_REF] Allen-Zhu | A convergence theory for deep learning via over-parameterization[END_REF][START_REF] Du | Gradient descent finds global minima of deep neural networks[END_REF][START_REF] Jacot | Neural tangent kernel: Convergence and generalization in neural networks[END_REF][START_REF] Chizat | On lazy training in differentiable programming[END_REF] has focused on the over-parameterized N → ∞ limit of large neural networks by studying the corresponding neural tangent kernels. Here, we position ourselves in the more practical regime where n, p, N are all large and comparable, and provide asymptotic performance guarantees that better fit large-scale problems.

Random matrix theory. From a random matrix theory perspective, nonlinear Gram matrices of the type Σ T X Σ X have recently received an unprecedented research interests, due to their close connection to neural networks [START_REF] Pennington | Nonlinear random matrix theory for deep learning[END_REF][START_REF] Pennington | Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice[END_REF][START_REF] Benigni | Eigenvalue distribution of nonlinear models of random matrices[END_REF][START_REF] Pastur | On random matrices arising in deep neural networks[END_REF], with a particular focus on the associated eigenvalue distribution.

Here we propose a deterministic equivalent [START_REF] Couillet | Random matrix methods for wireless communications[END_REF][START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF] analysis for the resolvent matrix that provides access, not only to the eigenvalue distribution, but also to the regression error of central interest in this article. While most existing deterministic equivalent analyses are performed on linear models, here we focus on the nonlinear RFF model. From a technical perspective, the most relevant work is [START_REF] Louart | A random matrix approach to neural networks[END_REF][START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF]. We improve their results by considering generic data model on the popular RFF model.

Statistical mechanics of learning.

A long history of connections between statistical mechanics and machine learning models (such as neural networks) exists, including a range of techniques to establish generalization bounds [START_REF] Hyunjune | Statistical mechanics of learning from examples[END_REF][START_REF] Timothy Lh Watkin | The statistical mechanics of learning a rule[END_REF][START_REF] Haussler | Rigorous learning curve bounds from statistical mechanics[END_REF][START_REF] Engel | Statistical mechanics of learning[END_REF], and recently there has been renewed interest [START_REF] Charles | Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior[END_REF][START_REF] Charles | Traditional and heavy tailed self regularization in neural network models[END_REF][START_REF] Charles | Statistical mechanics methods for discovering knowledge from modern production quality neural networks[END_REF][START_REF] Charles | Heavy-tailed Universality predicts trends in test accuracies for very large pre-trained deep neural networks[END_REF][START_REF] Bahri | Statistical mechanics of deep learning[END_REF]. Their relevance to our results lies in the use of the thermodynamic limit (akin to the large n, p, N limit), rather than the classical limits more commonly used in statistical learning theory, where uniform convergence bounds and related techniques can be applied.

Double descent in large-scale learning systems. The large n, N asymptotics of statistical models has received considerable research interests in the machine learning community [START_REF] Pennington | The emergence of spectral universality in deep networks[END_REF][START_REF] Hastie | Surprises in highdimensional ridgeless least squares interpolation[END_REF], resulting in a (somehow) counterintuitive phenomenon referred to as the "double descent." Instead of focusing on different "phases of learning" [START_REF] Hyunjune | Statistical mechanics of learning from examples[END_REF][START_REF] Timothy Lh Watkin | The statistical mechanics of learning a rule[END_REF][START_REF] Haussler | Rigorous learning curve bounds from statistical mechanics[END_REF][START_REF] Engel | Statistical mechanics of learning[END_REF][START_REF] Charles | Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior[END_REF], the "double descent" phenomenon focuses on an empirical manifestation of the phase boundary and refers to the empirical observations of the test error curve as a function of the model complexity, which differs from the usual textbook description of the bias-variance tradeoff [START_REF] Madhu S Advani | High-dimensional dynamics of generalization error in neural networks[END_REF][START_REF] Liao | The dynamics of learning: A random matrix approach[END_REF][START_REF] Belkin | Reconciling modern machinelearning practice and the classical bias-variance trade-off[END_REF][START_REF] Friedman | The elements of statistical learning[END_REF]. Theoretical investigation into this phenomenon mainly focuses on various regression models [START_REF] Dobriban | High-dimensional asymptotics of prediction: Ridge regression and classification[END_REF][START_REF] Peter L Bartlett | Benign overfitting in linear regression[END_REF][START_REF] Deng | A model of double descent for high-dimensional binary linear classification[END_REF][START_REF] Liang | Just interpolate: Kernel "ridgeless" regression can generalize[END_REF][START_REF] Hastie | Surprises in highdimensional ridgeless least squares interpolation[END_REF][START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF]. In most cases, quite specific (and rather strong) assumptions are imposed on the input data distribution. In this respect, our work extends the analysis in [START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF] to handle the RFF model and its phase structure on real-world data sets.

Notations and Organization of the Paper

Throughout this article, we follow the convention of denoting scalars by lowercase, vectors by lowercase boldface, and matrices by uppercase boldface letters. In addition, the notation (•) T denotes the transpose operator; the norm • is the Euclidean norm for vectors and the spectral or operator norm for matrices; and a.s.

--→ stands for almost sure convergence of random variables.

Our main results on the asymptotic training and test MSEs of RFF ridge regression are presented in Section 2, with proofs deferred to the Appendix. In Section 3, we provide detailed empirical evaluations of our main results, as well as discussions on the corresponding phase transition behavior and the double descent test curve. Concluding remarks are placed in Section 4. For more detailed discussions and empirical evaluations, we refer the readers to an extended version of this article [START_REF] Liao | A random matrix analysis of random fourier features: beyond the gaussian kernel, a precise phase transition, and the corresponding double descent[END_REF].

Main Technical Results

In this section, we present our main theoretical results. To investigate the large n, p, N asymptotics of the RFF model, we shall technically position ourselves under the following assumption. Assumption 1. As n → ∞, we have

1. 0 < lim inf n min{ p n , N n } ≤ lim sup n max{ p n , N n } < ∞;
or, practically speaking, the ratios p/n and N/n are only moderately large or moderately small. 2. lim sup n X < ∞ and lim sup n y ∞ < ∞, i.e., they are normalized with respect to n.

Under Assumption 1, we consider the RFF regression model. For training data X ∈ R p×n of size n, the associated random Fourier features, Σ X ∈ R 2N ×n , are obtained by computing WX ∈ R N ×n , for standard Gaussian random matrix W ∈ R N ×p , and then applying entry-wise cosine and sine nonlinearities on WX, i.e., Σ T X = [cos(WX) T , sin(WX) T ] with W ij ∼ N (0, 1). Given this setup, the RFF ridge regressor β ∈ R 2N is given by, for λ ≥ 0,

β ≡ 1 n Σ X 1 n Σ T X Σ X + λI n -1 y • 1 2N >n + 1 n Σ X Σ T X + λI 2N -1 1 n Σ X y • 1 2N <n . (3) 
The two forms of β in (3) are equivalent for any λ > 0 and minimize the (ridge-regularized) squared loss 1 n y -Σ T X β 2 + λ β 2 on the training set (X, y). Our objective is to characterize the large n, p, N asymptotics of both the training MSE, E train , and the test MSE, E test , defined as

E train = 1 n y -Σ T X β 2 , E test = 1 n ŷ -Σ T Xβ 2 , (4) 
with Σ T X ≡ [cos(W X) T , sin(W X) T ] ∈ R n×2N on a test set ( X, ŷ) of size n.

Asymptotic Deterministic Equivalent

To start, we observe that the training MSE, E train , in (4), can be written as

E train = λ 2 n Q(λ)y 2 = -λ 2
n y T ∂Q(λ)y/∂λ, which depends on the quadratic form y T Q(λ)y of

Q(λ) ≡ 1 n Σ T X Σ X + λI n -1 ∈ R n×n , (5) 
the so-called resolvent of 1 n Σ T X Σ X (also denoted Q when there is no ambiguity) with λ > 0. In order to assess the asymptotic training MSE, it thus suffices to find a deterministic equivalent for Q(λ) (i.e., a deterministic matrix that captures the asymptotic behavior of the latter). One possibility is the expectation

E W [Q(λ)]. Informally, if the training MSE E train (that is random due to random W)
is "close to" some deterministic quantity Ētrain , in the large n, p, N limit, then Ētrain must have the same limit as

E W [E train ] = -λ 2 n ∂y T E W [Q(λ)]y/∂λ for n, p, N → ∞.
However, E W [Q] involves integration (with no closed-form due to the matrix inverse), and it is not a convenient quantity with which to work. Our objective is to find an asymptotic "alternative" for

E W [Q] that is (i) close to E W [Q]
in the large n, p, N → ∞ limit and (ii) numerically more accessible.

In the following theorem (proved in Appendix B), we introduce an asymptotic equivalent for

E W [Q].
Instead of being directly related to the Gaussian kernel K X = K cos + K sin as suggested by [START_REF] Allen-Zhu | A convergence theory for deep learning via over-parameterization[END_REF] in the large-N -only limit, it depends on the two components K cos , K sin in a more involved manner. Theorem 1 (Asymptotic equivalent for E W [Q]). Under Assumption 1, for Q defined in (5) and λ > 0, we have, as

n → ∞ E W [Q] -Q → 0 for Q ≡ N n ( Kcos 1+δcos + Ksin 1+δsin ) + λI n -1 , K cos ≡ K cos (X, X), K sin ≡ K sin (X, X) ∈ R n×n and K cos (X, X ) ij = e - x i 2 + x j 2 2 cosh(x T i x j ), K sin (X, X ) ij = e - x i 2 + x j 2 2 sinh(x T i x j ), (6) 
where (δ cos , δ sin ) is the unique positive solution to

δ cos = 1 n tr(K cos Q), δ sin = 1 n tr(K sin Q). (7) 
Remark 1 (Correction to large-N behavior). Taking N/n → ∞, one has δ cos → 0, δ sin → 0 so that

Kcos 1+δcos + Ksin 1+δsin → K cos + K sin = K X and Q n N K -1
X , for λ > 0, in accordance with the classical large-N -only prediction. In this sense, the pair (δ cos , δ sin ) introduced in Theorem 1 accounts for the "correction" due to the non-trivial n/N , as opposed to the N → ∞ alone analysis. Also, when the number of features N is large (i.e., as N/n → ∞), the regularization effect of λ flattens out and Q behaves like (a scaled version of) the inverse Gaussian kernel matrix K -1 X (that is well-defined if x 1 . . . , x n are all distinct, see [START_REF] Scholkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF]Theorem 2.18]).

Remark 2 (Geometric interpretation). Since Q shares the same eigenspace with Kcos 1+δcos + Ksin 1+δsin , one can geometrically interpret (δ cos , δ sin ) as a sort of "angle" between the eigenspaces of K cos , K sin and that of Kcos 1+δcos + Ksin 1+δsin . For fixed n, as N → ∞, one has

1 N N t=1 cos(X T w t ) cos(w T t X) → K cos , 1 N N t=1
sin(X T w t ) sin(w T t X) → K sin , the eigenspaces of which are "orthogonal" to each other, so that δ cos , δ sin → 0. On the other hand, as N, n → ∞, the eigenspaces of K cos and K sin "intersect" with each other, captured by the non-trivial (δ cos , δ sin ).

Asymptotic Training Performance

Theorem 1 provides an asymptotically more tractable approximation of E W [Q]. Together with some additional concentration arguments (e.g., from [START_REF] Louart | A random matrix approach to neural networks[END_REF]Theorem 2]), this permits us to provide a complete description of the limiting behavior of the random bilinear form a T Qb, for a, b ∈ R n of bounded Euclidean norms, in such a way that a T Qba T Qb a.s.

--→ 0, as n, p, N → ∞. This, together with the fact that E train = λ 2 n y T Q(λ) 2 y = -λ 2 n y T ∂Q(λ)y/∂λ, leads to the following result on the asymptotic training error, the proof of which is given in Appendix C. --→ 0, Ētrain =

λ 2 n Qy 2 + N n λ 2 n 2 tr( QKcos Q) (1+δcos) 2 tr( QKsin Q) (1+δsin) 2 Ω y T QK cos Qy y T QK sin Qy
for Q defined in Theorem 1 and

Ω -1 ≡ I 2 - N n 1 n tr( QKcos QKcos) (1+δcos) 2 1 n tr( QKcos QKsin) (1+δsin) 2 1 n tr( QKcos QKsin) (1+δcos) 2 1 n tr( QKsin QKsin) (1+δsin) 2 . ( 8 
)
One can show that (i) for a given n and λ > 0, Ētrain decreases as the model size N increases; and

(ii) for a given ratio N/n, Ētrain increases as the regularization penalty λ grows large, as expected.

Asymptotic Test Performance

Theorem 2 holds without any restriction on the training set, (X, y), except for Assumption 1, since only the randomness of W is involved, and thus one can simply treat (X, y) as known in this result. This is no longer the case for the test error. Intuitively, the test data X cannot be chosen arbitrarily, and one must ensure that the test data "behave" statistically like the training data, in a "well-controlled" manner, so that the test MSE is asymptotically deterministic and bounded as n, n, p, N → ∞. Following this intuition, we work under the following assumption.

Assumption 2 (Data as concentrated random vectors [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF]). The training data x i ∈ R p , i ∈ {1, . . . , n}, are independently drawn (non-necessarily uniformly) from one of K > 0 distribution classes2 µ 1 , . . . , µ K . There exist constants C, η, q > 0 such that for any x i ∼ µ k , k ∈ {1, . . . , K} and any 1-Lipschitz function f : R p → R, we have

P (|f (x i ) -E[f (x i )]| ≥ t) ≤ Ce -(t/η) q , t ≥ 0. (9) 
The test data xi ∼ µ k , i ∈ {1, . . . , n} are mutually independent, but may depend on training data X and

E[σ(WX) -σ(W X)] = O( √ n) for σ ∈ {cos, sin}.
To facilitate the discussion of the phase transition and the double descent, we do not assume independence between training data and test data (but we do assume independence between different columns within X and X). In this respect, Assumption 2 is weaker than the classical i.i.d. assumption, and it permits us to illustrate the impact of training-test similarity on the model performance (Section 3.3).

A first example of concentrated random vectors satisfying ( 9) is the random Gaussian vector N (0, I p ) [START_REF] Ledoux | The concentration of measure phenomenon[END_REF]. Moreover, since the concentration property in ( 9) is stable over Lipschitz transformations [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF], it holds, for any 1-Lipschitz mapping g : R d → R p and z ∼ N (0, I d ), that g(z) also satisfies [START_REF] Chizat | On lazy training in differentiable programming[END_REF]. In this respect, Assumption 2, although seemingly quite restrictive, represents a large family of "generative models", including notably the "fake images" generated by modern generative adversarial networks (GANs) that are, by construction, Lipschitz transformations of large random Gaussian vectors [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Seddik | Random matrix theory proves that deep learning representations of GAN-data behave as gaussian mixtures[END_REF]. As such, from a practical consideration, Assumption 2 provides a more realistic and flexible statistical model for real-world data.

With Assumption 2, we have the following result on the asymptotic test error, proved in Section D. Theorem 3 (Asymptotic test performance). Under Assumptions 1 and 2, we have, for test MSE E test defined in (4) and test data ( X, ŷ)

satisfying lim sup n X < ∞, lim sup n ŷ ∞ < ∞ with n/n ∈ (0, ∞) that, as n → ∞ E test -Ētest a.s. --→ 0, Ētest = 1 n ŷ - N n Φ Qy 2 + N 2 n 2 n Θcos (1+δcos) 2 Θsin (1+δsin) 2 Ω y T QK cos Qy y T QK sin Qy
for Ω defined in [START_REF] Benigni | Eigenvalue distribution of nonlinear models of random matrices[END_REF],

Θ σ = 1 N tr K σ ( X, X) + N n 1 n tr Q ΦT Φ QK σ - 2 n tr Q ΦT K σ ( X, X), σ ∈ {cos, sin}, (10) 
and Φ ≡ Kcos 1+δcos + Ksin 1+δsin , Φ ≡ Kcos( X,X) 1+δcos + Ksin( X,X) 1+δsin , with K cos ( X, X), K sin ( X, X) ∈ R n×n and K cos ( X, X), K sin ( X, X) ∈ R n×n defined as in [START_REF] Peter L Bartlett | Benign overfitting in linear regression[END_REF].

Taking ( X, ŷ) = (X, y), one gets Ētest = Ētrain , as expected. From this perspective, Theorem 3 can be seen as an extension of Theorem 2, with the "interaction" between training and test data (i.e., training-versus-test K σ ( X, X) and test-versus-test K σ ( X, X) interaction matrices) summarized in the scalar parameter Θ σ defined in [START_REF] Cortes | On the impact of kernel approximation on learning accuracy[END_REF], for σ ∈ {cos, sin}.

Empirical Evaluations and Practical Implications

In this section, we provide a detailed empirical evaluation, including a discussion of the behavior of the fixed-point equation in Theorem 1, and its consequences in Theorem 2 and Theorem 3. In particular, we describe the behavior of the pair (δ cos , δ sin ) that characterizes the necessary correction in the large n, p, N regime, as a function of the regularization λ and the ratio N/n. This explains: (i) the mismatch between empirical regression errors from the Gaussian kernel prediction (Figure 1); and (ii) the behavior of (δ cos , δ sin ) as a function of N/n, which clearly indicates two phases of learning (Figure 3) and the corresponding double descent test error curves (Figure 4).

Correction due to the Large n, p, N Regime

The RFF Gram matrix Σ T X Σ X /N is not close to the classical Gaussian kernel matrix K X in the large n, p, N regime; and, as a consequence, its resolvent Q, as well the training and test MSE, E train and E test (that are functions of Q), behave quite differently from the Gaussian kernel predictions. As already discussed in Remark 1 after Theorem 1, for λ > 0, the pair (δ cos , δ sin ) characterizes the correction when considering n, p, N all large, compared to the large-N -only asymptotic behavior:

δ cos = 1 n tr K cos Q, δ sin = 1 n tr K sin Q, Q = N n K cos 1 + δ cos + K sin 1 + δ sin + λI n -1 . (11) 
To start, Figure 1 compares the training MSEs of RFF ridge regression to the predictions from Gaussian kernel regression and to the predictions from our Theorem 2, on the popular MNIST data set [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. Observe that there is a huge gap between empirical training errors and the Gaussian kernel predictions, especially when N/n < 1, while our theory consistently fits empirical observations almost perfectly.

Next, from [START_REF] Couillet | Random matrix methods for wireless communications[END_REF] we know that both δ cos and δ sin are decreasing functions of λ. (See Lemma 7 in Appendix E for a proof of this fact.) Figure 2 shows that: (i) over a range of different N/n, both δ cos and δ sin decrease monotonically as λ increases; (ii) the behavior for N/n < 1, which is decreasing from an initial value of δ 1, is very different from the behavior for N/n 1, where an initially flat region is observed for small values of λ and we have δ < 1 for all values of λ; and (iii) the impact of regularization λ becomes less significant as the ratio N/n becomes large. This is in accordance with the limiting behavior of

Q n N K -1
X in Remark 1 that is independent of λ as N/n → ∞. Note also that, while δ cos and δ sin can be geometrically interpreted as a sort of weighted "angle" between different kernel matrices (as in Remark 2), and therefore one might expect to have δ ∈ [0, 1], this is not the case for the leftmost plot of Figure 1 with N/n = 1/4. There, for small values of λ (say λ 0.1), both δ cos and δ sin scale like λ -1 , while they are observed to saturate to a fixed O(1) value for N/n = 1, 4, 16. This corresponds to two different phases of learning in the ridgeless λ → 0 limit, as discussed in the following section.

Phase Transition and Corresponding Double Descent

Both δ cos and δ sin in [START_REF] Couillet | Random matrix methods for wireless communications[END_REF] are decreasing functions of N , as depicted in Figure 3. (See Lemma 6 in Appendix E for a proof.) More importantly, Figure 3 also illustrates that δ cos and δ sin exhibit qualitatively different behavior, depending on the ratio N/n. For λ not too small (λ = 1 or 10), both δ cos and δ sin decrease smoothly, as N/n grows large. However, for λ relatively small (λ = 10 -3 and 10 -7 ), we observe a "phase transition" on two sides of the interpolation threshold 2N = n. (Note that the scale of the y-axis is different in different subfigures.) More precisely, in the leftmost plot with λ = 10 -7 , δ cos and δ sin "jump" from order O(1) (when 2N > n) to much higher values of the same order of λ -1 (when 2N < n). A similar behavior is also observed for λ = 10 -3 .

This phase transition can be theoretically justified by considering the ridgeless λ → 0 limit in Theorem 1. First note that, for λ = 0 and 2N < n, the (random) resolvent Q(λ = 0) in ( 5) is simply undefined, as it involves inverting a singular matrix Σ T X Σ X ∈ R n×n that is of rank at most 2N < n. As a consequence, we expect to see both Q and Q scale like λ -1 as λ → 0 for 2N < n, while for 2N > n this is no longer the case. As a consequence, we have the following two phases:

1.Under-parameterized with 2N < n. Here, Q is not well-defined (indeed Q scales like λ -1 ) and one must consider instead the properly scaled λδ cos , λδ sin and λ Q as λ → 0.

2.Over-parameterized with 2N > n, where one can take λ → 0 in [START_REF] Couillet | Random matrix methods for wireless communications[END_REF] to get δ cos , δ sin and Q. Remark 3 (Double descent test error curves). On account of the above two phases, it is not surprising to observe a "singular" behavior at 2N = n , when no regularization is applied. Here, we consider the (asymptotic) test MSE in Theorem 3 in the ridgeless λ → 0 limit and focus on the situation where the test data X is sufficiently different from the training data X (see more discussions on this point in Section 3.3 below). Then, the two-by-two matrix Ω defined in [START_REF] Benigni | Eigenvalue distribution of nonlinear models of random matrices[END_REF] diverges to infinity at 2N = n as λ → 0. (Indeed, the determinant det(Ω -1 ) scales as λ, per Lemma 5 in Appendix E.) As a consequence, we have Ētest → ∞ as N/n → 1/2, resulting in a sharp deterioration in the test performance around the interpolation threshold 2N = n. It is also interesting to note that, while Ω also appears in Ētrain , we still obtain (asymptotically) zero training MSE at 2N = n, despite the divergence of Ω as λ → 0, essentially due to the prefactor λ 2 in Ētrain .

Figure 4 depicts the empirical and theoretical test MSEs with different λ. In particular, for λ = 10 -7 and λ = 10 -3 , a double-descent-type behavior is observed, with a singularity at 2N = n, while for larger values of λ (λ = 1 and 10), a smoother and monotonically decreasing test error curve is observed, as a function of N/n, in accordance with the observations in [START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF] on Gaussian data.

Remark 4 (Double descent as a consequence of phase transition). While the double descent phenomenon has received considerable attention recently, our analysis makes it clear that in this model (and presumably many others) it is a natural consequence of the phase transition between two qualitatively different phases of learning [START_REF] Charles | Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior[END_REF].

Impact of Training-test Similarity

We see that the (asymptotic) test error behaves entirely differently, depending on whether the test data X is "close to" the training data X or not. For X = X, one has Ētest = Ētrain that decreases monotonically as N grows large; while for X sufficiently different from X (in the associated kernel space in the sense that K σ (X, X) is sufficiently different from K σ ( X, X) for σ ∈ {cos, sin}), Ētest diverges at 2N = n and establishes a double descent behavior. To have a more quantitative assessment of the impact of training-test similarity on the RFF model performance, we consider here the special case ŷ = y. Since in the ridgeless λ → 0 limit, Ω scales as λ -1 at 2N = n (Remark 3), one must then have Θ σ ∝ λ to "compensate" so that Ētest does not diverge at 2N = n as λ → 0. A first example is the case where the test data is a small perturbation of the training data. In Figure 5, the test data are generated by adding Gaussian white noise of variance σ 2 to the training data, i.e., xi = x i + σε i [START_REF] Deng | A model of double descent for high-dimensional binary linear classification[END_REF] for independent ε i ∼ N (0, I p /p). In Figure 5, we observe that (i) below the threshold σ 2 = λ, the test error coincides with the training error and both are relatively small for 2N = n; and (ii) as soon as σ 2 > λ, the test error diverges from the training error and grows large (but linearly in σ 2 ) as the noise level increases. Note also from the two rightmost plots of Figure 5 that the training-to-test "transition" at σ 2 λ is sharp only for relatively small values of λ, as predicted by our theory. 

Conclusion

We have established a precise description of the resolvent of RFF Gram matrices, and provided asymptotic training and test performance guarantees for RFF ridge regression, in the n, p, N → ∞ limit. We have also discussed the under-and over-parameterized regimes, where the resolvent behaves dramatically differently. These observations involve only mild regularity assumptions on the data, yielding phase transition behavior and double descent test error curves for RFF regression that closely match experiments on real-world data. Extended to a (technically more involved) multi-layer setting in the more realistic large n, p, N regime as in [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF], our analysis may shed new light on the theoretical understanding of modern deep neural nets, beyond the large-N alone neural tangent kernel limit.

Broader Impact

In this article, we provide theoretical assessment of the popular random Fourier features (RFFs), in the practical setting where n, p, N are all large and comparable. Asymptotic performance guarantees are provided for RFF ridge regression in this n, p, N → ∞ limit, as an important positive impact of this work on the development of more reliable large-scale machine learning systems. The theoretical framework developed in this article presents fair and non-offensive societal consequence.
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 2 Asymptotic training performance). Under Assumption 1, for a given training set (X, y) and training MSE, E train defined in (4), as n → ∞ E train -Ētrain a.s.
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 21162 Figure 1: Training MSEs of RFF ridge regression on MNIST data (class 3 versus 7), as a function of regression penalty λ, for p = 784, n = 1 000, N = 250, 500, 1 000, 2 000. Empirical results displayed in blue circles; Gaussian kernel predictions (assuming N → ∞ alone) in black dashed lines; and Theorems 2 in red solid lines. Results obtained by averaging over 30 runs.

Figure 3 :

 3 Figure 3: Behavior of (δ cos , δ sin ) on MNIST data (class 3 versus 7), as a function of N/n, p = 784, n = 1 000, λ = 10 -7 , 10 -3 , 1, 10. The black dashed line is the interpolation threshold 2N = n.

Figure 4 :

 4 Figure 4: Empirical (blue crosses) and theoretical (red dashed lines) test errors of RFF regression as a function of the ratio N/n, on MNIST data set (class 3 versus 7), for p = 784, n = 500, λ = 10 -7 , 10 -3 , 1, 10. The black dashed line is the interpolation threshold 2N = n.
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Figure 5 :

 5 Figure 5: Empirical training (red crosses) and test (blue circles) errors of RFF ridge regression on MNIST data (class 3 versus 7), as a function of the noise level σ 2 , for N = 512, p = 784, n = n = 1 024 = 2N , λ = 10 -7 , 10 -3 , 1, 10. Results obtained by averaging over 30 runs.

For readers not familiar with the impact of spectral norm error in learning, or with the random matrix theory techniques that we will use in our analysis, such as resolvent analysis and the use of deterministic equivalents, see Appendix A for a warm-up discussion.

K ≥ 2 is included to cover multi-class classification problems; and K should remain fixed as n, p → ∞.
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