
HAL Id: hal-02971772
https://hal.science/hal-02971772v1

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Algebra of Deterministic Propositional Acceptance
Automata (DPAA)

Aurélien Lamercerie, Benoît Caillaud

To cite this version:
Aurélien Lamercerie, Benoît Caillaud. An Algebra of Deterministic Propositional Acceptance Au-
tomata (DPAA). FDL 2020 - Forum on specification & Design Languages, Sep 2020, Kiel, Germany.
pp.1-8. �hal-02971772�

https://hal.science/hal-02971772v1
https://hal.archives-ouvertes.fr


An Algebra of Deterministic Propositional
Acceptance Automata (DPAA)
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Abstract—Deterministic Propositional Acceptance Automata
(DPAA) are proposed to capture system requirements expressing
mandatory and forbidden discrete-time behavior. The main
feature of this formalism is that it can express the expected
behavior when the system is in a particular state. DPAA are
therefore blending together state properties, expressed as propo-
sitional formulas, and simple discrete-time temporal properties,
expressed as mandatory and forbidden actions whenever a given
state property holds. They extend modal transition systems to
a propositonal setting, where models are Kripke structures,
rather than labelled transition systems. Composition operators
on DPAA are provided, making them an Interface Theory, with a
refinement relation, parallel composition, conjunction and quo-
tient operators. An implicit representation using characteristic
functions is also proposed to limit the time/space computational
complexity.

Index Terms—Automata for System Analysis, Interface Theory,
Discrete Time Reactive System, Requirements Engineering

I. INTRODUCTION

Contract-based reasoning [1], [2] is a powerful method
for software design. Several programming languages [3] of-
fer native support for contracts inspired by Hoare logic [4]
and extensions, such as Separation Logic [5]. While finding
programming errors early in software development saves con-
siderable time and money, detecting specification errors is even
more crucial. Formalizing requirements, analyzing them by
computer assisted methods, or monitoring them at runtime,
are keys to identify inconsistent, redundant or incomplete
requirements.

In the context of reactive system design, Contract Theo-
ries [6] offer a flexible formal framework as a generic theory
and can support a variety of formalisms and design processes.
All these approaches have in common a composition algebra
and a concept of refinement, reflecting the decomposition of
system-level requirements into several viewpoints and compo-
nents. We fit to the Contract Theory framework to propose a
specification formalism for discrete-time reactive systems, that
offers a good compromise in terms of expressiveness, algebraic
properties, algorithmic complexity, and ease of use by engi-
neers who are non-computer scientists with any knowledge of
temporal logics. The main feature of this theory is that both
event and state properties can be taken into account.

Interface Theories aim at providing a merged specification
of the expected behavior of a component under design and

of the possible environments in which it may run. Typical
instances of Interface Theories are Interface Automata [7]
and Modal Interfaces [6], [8], [9]. These automata-theoretic
formalisms, inspired by Lynch’s Input/Output Automata [10],
[11], are capable of capturing both the variability of the
possible designs and the uncertainties regarding the possible
environments of a component. Component compatibility is
also captured by characterizing the environments in which
arbitrary realizations of the interfaces may be correctly com-
posed. Interface Theories have also been branded to encom-
pass Moore Machines. These are the Moore or Synchronous
Interfaces, presented in the landmark paper [12].

However, they deal only with the Input/Output behavior of
reactive components, while, in many cases, it is desirable to
relate Input/Output behavior to the component’s state.

Our contribution, Deterministic Propositional Acceptance
Automata (DPAA), specifically addresses this issue. These
automata make it possible to specify discrete, mandatory or
forbidden behavior of discrete-time reactive systems. Main
characteristic of this formalism is that it allows to express
the expected behavior when the system is in a particular state.
DPAA combines state properties, expressed as propositional
formulas, and behavioral properties, expressed as mandatory
or forbidden events. They extend modal transition systems
using Kripke structures as models rather than labeled transition
systems. It is inspired by the work of Jean-Baptiste Raclet [13]
on the Acceptance Sets Specifications and Benveniste et al. [6]
on the Contract Theory. As such, it comes with a composi-
tion algebra which makes it possible to reason formally on
requirements consisting in many elementary specifications.

The explicit manipulation of acceptance sets involves build-
ing larger and larger sets with a significant computational
complexity. An implicit representation of acceptance sets using
characteristic functions is proposed to curb the computational
complexity associated with this algebra. Parameters are used
for enumerating sets of possibilities, while characteristic func-
tions specify the contents of these sets. This enables a concise
representation of acceptance sets.

The paper is organized as follows. Kripke Models (KM) are
defined in Section II. These allow to represent the behavior of
components and systems. Section III focuses on Acceptance
Sets (AS), used to capture with great flexibility the variability
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Fig. 1. Modeling of a system representing a shuttle bus

in the implementation of a specification. Implicit represen-
tation of AS is also characterized. Finally, as an Automata-
theoretic layer above AS, Deterministic Propositional Ac-
ceptance Automata (DPAA) and its composition algebra are
introduced in Section IV. Those form the main contribution
of this paper by exploiting AS through automata.

II. REALISATIONS AS KRIPKE MODELS (KM)

Systems behavior is defined as non-deterministic Kripke
models on a set of atomic propositions. This model allows to
express the expected behavior when the system checks state
properties, expressed as propositional formulas.

Definition 1: Kripke Model (KM)
A Kripke model on alphabet Π is a tuple M = (Π, Q,Q0,→
, υ) such that:
• Π is a set of atomic propositions;
• Q is a set of states;
• Q0 ⊆ Q is a set of initial states;
• → ⊆ Q×Q is the transition relation between states;
• υ : Q 7→ 2Π is the valuation function.
It is assumed that KMs are stuttering invariant [14], meaning

that a KM can loop indefinitely on the same state. Stuttering
invariance plays an important role in the parallel composition
of KMs. It allows components to evolve asynchronously. With-
out this assumption, parallel composition would force a strict
synchronism between components. Self-loops are implicit.

Example.: A shuttle bus is considered. The focus is
on the access doors to the vehicle. The alphabet of atomic
propositions is Π = {m, r, o}, where (o) denotes the opening
of the doors, (m) the shuttle is in motion, and (r) a stop
request is pending. Figure 1 shows a KM modeling for the
behaviour of a door. It is assumed the vehicle is initially
stopped (q0). It can move (q1), and in this case, a stop can
still be requested (q2). The shuttle bus must stop (q3) in order
to have the doors opened (q4). Only true propositions are noted
in states, and self-loops are not represented (they are implicitly
in all states).

A trace u = (u1, . . . , un) is a finite sequence of valuations
of the atomic propositions, with ui ⊆ Π. Denote u.v the
concatenation of traces. The empty trace is denoted ε. The
transition function extended to words on (2Π)∗ is the function
∆ : 2Q × (2Π)∗ → 2Q such that ∀P ⊆ Q, ∆(P, ε) = P
and ∀u ∈ (2Π)∗, a ∈ 2Π,∆(P, u.a) = {q′ | ∃q ∈ ∆(P, u)
such that q → q′ and υ(q′) = a}. This ultimately defines the
language of a KM reflecting all possible runs of a KM. The

language of a KMM is defined as L(M) = {u | ∆(Q0, u) 6=
∅}.

The parallel composition, also called product, is an impor-
tant operation to define the behavior of a system composed of
several components. The definition of parallel composition for
KMs uses a permutation operator, denoted ↔23, which gives
the tuple ((q1, q2), (q′1, q

′
2)) from a tuple ((q1, q

′
1), (q2, q

′
2)).

Definition 2: Parallel Composition
Let M1 = (Π1, Q1, Q0,1,→1, υ1) and M2 =
(Π2, Q2, Q0,2,→2, υ2) be two KMs. The product of M1 and
M2, denoted M1 × M2, is the KM M = (Π, Q,Q0,→, υ)
such that:
• Π = Π1 ∪Π2

• Q = {(q1, q2) ∈ Q1 × Q2 | (υ1(q1) ∩ Π2) = (υ2(q2) ∩
Π1)}

• Q0 = (Q0,1 ×Q0,2) ∩Q
• →=↔23 (→1 × →2) ∩Q2

• υ(q1, q2) = υ1(q1) ∪ υ2(q2)

Note that parallel composition of homogeneous models is
a synchronous product, that satisfies the following equalities,
modulo renaming: commutativity (M1 ×M2 = M2 ×M1),
associativity (M1 × (M2 × M3) = (M1 × M2) × M3)
and existence of a neutral element (Me = {Π = ∅, Q =
{q0}, Q0 = {q0},→, υ}, with →= {(q0, q0)} and υ(q0) = ∅.

III. ACCEPTANCE SETS (AS) TO CAPTURE VARIABILITY
OF REALISATIONS

Deterministic Propositional Acceptance Automata (DPAA)
defined in next section consists of automata whose states are
labelled with particular sets, named Acceptance Sets (AS). We
first study the algebraic properties of these sets. We will then
be able to extend these properties to DPAA.

Definition 3: Acceptance Sets (AS)
An acceptance set Acc on a set of atomic propositions Π is

a set of sets of labels on Π, ie Acc ∈ 22Σ

, with Σ = 2Π.
Labels are boolean valuations of a set of atomic propositions

Π, and are related to properties of a given system. Each
α ∈ 2Σ, called “ready set”, defines a set of properties that
a system must satisfy. An AS Acc is interpreted as a set of
possibilities, where a ready set (α ∈ Acc) can be chosen to
represent the properties that a system must meet. The vari-
ability of realization for a given specification can be captured
by an AS, since specifications admit several realizations in
general.

Figure 2, proposed further, shows some AS.

A. AS Algebra

An algebra with good properties is necessary for AS to
be usable as an interface theory [6]. The algebra consists
in a satisfaction relation |=, a refinement relation � and
composition operators ∧, ⊗ and /. We start by the definition of
an algebra of homogeneous AS, meaning that AS is considered
on a uniform alphabet of atomic propositions Π. Then this
algebra will be extended to heterogeneous AS, meaning that
AS can be considered on different alphabets.



Homogeneous AS Algebra.: The satisfaction relation is
the selection of one ready-set among the elements of the
AS. Refinement is the inclusion of AS. Conjunction is the
intersection of AS, and the product is the pointwise inter-
section of ready sets. The quotient is defined relatively to
the product: it is the right adjoint of the product operator:
X ⊗B � A⇔ X � A/B.

Definition 4: Algebra of homogeneous AS
The following operators compose an algebra for homogeneous
AS:
• satisfaction: α |= Acc iff α ∈ Acc;
• refinement: Acc1 � Acc2 iff Acc1 ⊆ Acc2;
• conjunction: Acc1 ∧ Acc2 = Acc1 ∩Acc2;
• product: Acc1 ⊗ Acc2 = {α1 ∩ α2 | α1 ∈ Acc1, α2 ∈
Acc2};

• quotient: Acc1/Acc2 = {α | ∀β ∈ Acc2, α ∩ β ∈ Acc1}.
These operators define a complete interface theory. We

will now define several operators on labels. Based on these,
operators on ready-sets are then defined. These finally make
it possible to extend the algebra of homogeneous AS to
heterogeneous AS.

Operators on Labels.: Let υ1 ⊆ Π1 and υ2 ⊆ Π2 be two
valuations on heterogeneous alphabets Π1 and Π2. We note
Π12 the intersection between these alphabets, ie Π12 = Π1 ∩
Π2. Operator ./ is a synchronization relation such that υ1 ./ υ2

if, and only if, υ1 ∩Π12 = υ2 ∩Π12. υ1 t υ2 ⊆ (Π1 ∪Π2) is
defined as υ1 tυ2 = υ1 ∪υ2 if υ1 ./ υ2, undefined otherwise.
υ1 v υ2 if, and only if Π1 ⊇ Π2 and υ1 ./ υ2.

Operators on Ready-sets.: We use ./, t and v on labels
to define ./, u, v and ↓ on ready sets: α1 ./ α2 if, and only if,
∀υ1 ∈ α1,∃υ2 ∈ α2, υ1 ./ υ2 and ∀υ2 ∈ α2,∃υ1 ∈ α1, υ2 ./
υ1; α1 u α2 = {υ1 t υ2 | υ1 ∈ α1, υ2 ∈ α2, υ1 ./ υ2};
α1 v α2 if, and only if, it exists a surjection f : α1 → α2

such that ∀υ1 ∈ α1, υ1 v f(υ1). Operator ↓ specifies
a projection of ready-sets on a set of atomic propositions,
namely α↓Π′ = {σ′ : Π′ | ∃σ ∈ α, σ ./ σ′}. It is used to
hide atomic propositions.

Heterogeneous AS Algebra.: AS algebras are adapted
with the operators on ready-sets. In the following definition,
we consider Acc on alphabet Π, Acc1 and Acc2 on alphabets
Π1 and Π2 such that Π2 ⊆ Π1, and a ready-set α ⊆ 2Πα , such
that Π ⊆ Πα.

Definition 5: Algebra of heterogeneous AS
The following operators compose an algebra for heteroge-

neous AS:
• satisfaction: α |= Acc iff α↓Π ∈ Acc;
• refinement: Acc1 � Acc2 iff ∀α1 ∈ Acc1, α1 |= Acc2;
• conjunction: Acc1 ∧ Acc2 = {α1uα2 | α1 ∈ Acc1, α2 ∈
Acc2, α1 ./ α2};

• product: Acc1 ⊗ Acc2 = {α1 u α2 | α1 ∈ Acc1, α2 ∈
Acc2};

• quotient: Acc1/Acc2 = {α ⊆ 2Π1∪Π2 | ∀β ∈ Acc2, (α u
β)↓Π1

∈ Acc1}.
Figure 2 illustrates the evaluation of conjunction by apply-

ing this method.

Note that we recover the algebra for homogeneous accep-
tance sets when these definitions are applied to homogeneous
alphabets, namely when Π1 = Π2.

B. Implicit Representation of AS

The explicit manipulation of AS involves to build larger
and larger sets with a crippling computational complexity. For
exemple, consider two disjoint alphabets Πa and Πb of 10
elements each, with a ∈ Πa and b ∈ Πb. The union of this two
alphabets contains 20 elements. Consider two AS A = {{a}}
and B = {{b}}. The quotient of these two sets results in a
very large acceptance set, whose ready sets correspond to all
possible behaviors according to the condition that it contains
σ = {ab} and not σ′ = {ab}, ie Acc1/Acc2 = {α ⊆ 2Π1∪Π2 |
(∃σ ⊆ Π1∪Π2 s.t. ab ./ σ and σ ∈ α) and (∀σ : Π1∪Π2, ab ./
σ ⇒ σ /∈ α)}. The size of this set is approximately 2218

.
Implicit Representation.: This justifies seeking an im-

plicit representation, using characteristic functions represent-
ing ready-sets. Since we also would like to avoid enumerating
the ready sets that belong to an AS, we use a set of parameters
for enumerating ready sets. Labels on the set of atomic
propositions Π are defined as boolean functions −→π : Π→ B.
In the same way, parameter values are encoded, using a set of
boolean variables P = {p1, ..., pm}. Thus, parameters values
are boolean functions −→p : P → B.

Definition 6: Implicit representation of AS
The implicit representation of an acceptance set Acc is a tuple
(Π,P, ψ, φ) such that:
• Π is an alphabet of atomic propositions,
• P is a set of parameter variables,
• ψ : (P → B) → B is the characteristic function for

parameter values,
• φ : (P → B) → (Π → B) → B is the characteristic

function for ready sets.
Intuitively, the function ψ is used to specify which param-

eter values are meaningful, while the function φ is used to
define the contents of a ready set given parameter values.
For example, acceptance set Acc = {{a}, {a, ab}, {a, ac}}
on alphabet Π = {a, b, c} can be implicitly defined with
two parameters (P = {p, q}), and the characteristic functions
ψ = ¬p ∨ ¬q and φ = σ1 ∨ (p ⇒ σ2) ∨ (q ⇒ σ3). Note
that these characteristic functions can be encoded as boolean
functions, and represented as a Binary Decision Diagram
(BDD) [15].

Algebraic Properties.: Recall that −→π : Π→ B denotes a
label on Π, and −→p : P → B denotes valuation of parameter
variables P . The following theorem defines the expected
algebraic operations, whose consistency with the definitions
presented in the introduction can be checked.

Theorem 1: Algebraic Properties of AS implicit representa-
tion
Let Acc1 and Acc2 be two acceptance sets such that Acci =

(Πi,Pi, ψi, φi). The following operations define an algebra for
AS implicit representation:
• satisfaction: α |= Acc if, and only if, ∃−→p , [ψ(−→p ) ∧
∀−→π , φ(−→p ,−→π )⇔ α(−→π )].
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Fig. 2. Example of conjunction (synchronization of labels on the left, synchronization of ready sets on the right, result down)

• refinement: Acc1 � Acc2 if, and only if
1) Π1 ⊇ Π2,
2) ∀−→p1, ψ1(−→p1) ⇒ [∃−→p2, (ψ2(−→p2) ∧ ∀−→π1, (φ1(−→p1,

−→π1) ⇒
φ2(−→p2,

−→π1 ↓P2)))].
• conjunction: Acc1 ∧Acc2 = (Π,P, ψ, φ) such that:

– Π = Π1 ∪Π2,
– P = P1 × P2 ×Q, with Q = 2Σ and Σ = 2Π,
– ψ(p1, p2, q) = ψ1(p1) ∧ ψ2(p2) ∧ ∆(p1, p2) ∧

Γp1,p2
(q), with:

∗ ∆(p1, p2) = ∀σ ∈ Σ, (φ1(p1, σ)⇔ φ2(p2, σ)),
∗ Γp1,p2

(q) = [∀σ ∈ q, φ1(p1, σ↓Σ1
) ∧

φ2(p2, σ↓Σ2
)] ∧

[∀σ1 ∈ Σ1, φ1(p1, σ1)⇒ ∃σ ∈ q, σ↓Σ1
= σ1] ∧

[∀σ2 ∈ Σ2, φ2(p2, σ2)⇒ ∃σ ∈ q, σ↓Σ2
= σ2],

– φ(p1, p2, q)(σ) = (σ ∈ q).
• product: Acc1 ⊗Acc2 = (Π,P, ψ, φ) such that:

– Π = Π1 ∪Π2,
– P = P1 × P2,
– ψ(p1, p2) = ψ1(p1) ∧ ψ2(p2),
– φ(p1, p2)(σ) = φ1(p1, σ↓Π1

) ∧ φ2(p2, σ↓Π2
).

• quotient: Acc1/Acc2 = (Π,P, ψ, φ) such that:
– Π = Π1 ∪Π2,
– P = P1 ×Q, with Q = 2Σ and Σ = 2Π,
– ψ(p1, p2) = ψ1(p1) ∧ ∀σ ∈ q,¬∆P2

(q), with:
∗ ∆P2

(q) = ∃p2 ∈ P2, (ψ2(p2) ∧ φ2(p2)(σ)),
– φ(p1, q)(σ) = φ1(p1)(σ↓Σ1

) ∧ Γ(q)(σ), with
Γ(q)(σ) = q ∈ σ.

Proof 1: We can check for each of these operations the
calculated sets are consistent with the definitions presented in
the introduction.

For conjunction and quotient, set Q is introduced in a lazy
way. The principle is to calculate the synchronization of labels
to construct the part graph for labels on the new alphabet. We
deduce the part graph for ready sets. In the worst case, the set
Q can indeed be very large (2P ). In practice, the size of this
set is much more reasonable.

This representation reduces the size of defined sets. Con-
sider the example presented at the beginning of the section,
with AS A = {{a}} and B = {{b}}. We have seen that the

classical representation of their quotient resulted in a set whose
dimension is very important. It can be implicitly defined with
only two parameters p and q, and the characteristic functions
ψ = p ∨ ¬q and φ = (p⇒ {ab}) ∧ (q ⇒ {ab}).

IV. SPECIFICATIONS AS DETERMINISTIC PROPOSITIONAL
ACCEPTANCE AUTOMATA (DPAA)

Deterministic Propositional Acceptance Automata (DPAA)
are used to capture state properties, expressed as propositional
formulas, and variety of implementations, expressed as ac-
ceptance sets. Starting from its initial state, an acceptance
automaton observes the runs of a KM, and approves it if, for
each KM state, its set of successor states matches with one of
the acceptance sets of the specification.

A. Syntax and Semantics of DPAA

An AS is interpreted as a set of valuations. Each state of
a given automaton can be associated with several AS. These
AS correspond intuitively to sets of possible successors of an
observed state of a KM.

Definition 7: Deterministic Propositional Acceptance Au-
tomaton (DPAA)
A Deterministic Propositional Acceptance Automaton on the

alphabet Π, abbreviated by DPAA, is a tupleA = (Π, R, r0,⇒
, ϕ,Acc) such that Π is a set of atomic propositions, R a set
of states, r0 the initial state, and:
• ⇒⊆ R∪{r0}×R is the transition relation between states;
• ϕ : R → Prop(Π) is a valuation function associating a

logical formula to each state;
• ∀r ∈ R,∀r1, r2 ∈ R, r ⇒ r1 and r ⇒ r2 and ϕ(r1) ∧
ϕ(r2) satisfiable implies r1 = r2;

• Acc : R→ 222Π

is a mapping associating an acceptance
set to each state.

A DPAA is said reduced if, and only if:
1) ∀r ∈ R,Acc(r) 6= ∅,
2) ∀r ∈ R,∀α ∈ Acc(r),∀σ ∈ α,∃r′ ∈ R, r ⇒ r′ and σ |=

ϕ(r′).
Note that it is not required that r0 ∈ R. In particular, when

r0 /∈ R, then the automaton need not be deterministic in its
initial state. Furthermore, the initial state may have the empty



set as acceptance set in a reduced DPAA. Likewise, stuttering
invariance is not required for DPAA.

Example.: Consider the shuttle bus on figure 1 with
atomic propositions Π = {m, r, o}, and the properties gov-
erning the opening of access doors to the shuttle. Figure 3
shows a DPAA representing the following requirement: “the
shuttle bus doors opens upon stop request of a passenger”.
The AS associated with each state are defined in a table.

T r0

rr1 ¬r r2

Acc(ri)

r0 222Π

r1 {α | ∀σ ∈ α, o ∈ σ}
r2 222Π

Fig. 3. DPAA for requirements R1 and R2.

Satisfaction.: The satisfaction relation between KMs and
DPAA formalizes whether a KM conforms to a DPAA. In other
words, a DPAA allowing to express some requirements to be
respected by the model, this relation allows us to know if the
KM respects these requirements, or on the contrary violates it.
To decide on the existence of a satisfaction relation between a
KM and a DPAA, we consider a simulation relation between
these two formalisms.

Definition 8: Simulation from a KM to a DPAA
The simulation relation between a KM M and a DPAA A,

denoted %(M,A), is the least relation % ⊆ Q×R such that:
1) ∀q0 ∈ Q0, (q0, r0) ∈ %;
2) ∀(q, r) ∈ %, ∀q′ ∈ Q,∀r′ ∈ R, q → q′ and r ⇒ r′ and

υ(q′) |= ϕ(r′) implies (q′, r′) ∈ %.
Note that conditions of definition 8 give an inductive

construction of %. Therefore, there exists a unique simulation
% from a model M to a DPAA A.

We note ΠM the alphabet for a KMM, ΠA the alphabet for
a DPAA A. We introduce the operator ↓Π′ , which denotes the
reduction of a valuation σ to the part relating to the alphabet
Π′, for a valuation based on an alphabet Π such that Π′ ⊆ Π.

Definition 9: Consistent Simulation %(M,A)
Consider ΠM and ΠA such that ΠA ⊆ ΠM. The sim-

ulation %(M,A) is consistent if, and only if, ∀(q, r) ∈
%(M,A),∃α ∈ Acc(r) such that:

1) ∀q′ ∈ Q, q → q′ implies (υ(q′) ↓ΠA) ∈ α,
2) ∀σ ∈ α,∃q′ ∈ Q such that q → q′ and σ = (υ(q′) ↓ΠA).
Definition 10 allows to have a procedure to decide whether

a KM satisfies, or not, a DPAA without having to calculate
the associated support languages. This procedure consists in
calculating the simulation relation, the complexity of which is
quadratic [16].

Definition 10: A KM M is a model of a DPAA A if, and
only if, the simulation relation %(M,A) is consistent.

B. DPAA Algebra

DPAA are proposed as a specification formalism capable
of capturing both Input/Output behavior and state properties
of a component. This formalism comes with a composition
algebra, completed by the following relation and operators:
Refinement relation �, such that A1 � A2 if, and only if,

for all M , M |= A1 implies M |= A2

Product operator, A1 ⊗ A2 =
min{A such that for allM1, M2, M1 |= A1 and
M2 |= A2 implies M1 ×M2 |= A}

Conjunction operator, A1 ∧ A2 = max{A such thatA �
A1 andA � A2}

Quotient operator, A1/A2 = max{A such thatA ⊗ A2 �
A1}.
Refinement.: The classical approach for the development

of complex systems involves the proposal of a global specifi-
cation divided into several more precise specifications relating
to the various points of the system. This approach is called
refinement. One of our goals is to ensure consistency between
these different points of view, i.e. to have a formalism that
contains a refinement operation.

Definition 11: A1 is a refinement of A2, noted A1 � A2, if,
and only if, for all models M, M |= A1 implies M |= A2.

A simulation relation is defined between two DPAA. This is
useful to determine if a given automaton A1 is a refinement of
an other automaton A2, without having to consider all possible
models. The important point of this relation implies to consider
the observation scope of each pair of states, r1 of A1 and r2

of A2. A state r1 of A1 is linked to a state r2 of A2 if the
observation scope of r1 intercepts the observation scope of
r2, in the sense that a run of model (or word) observed by r1

would also be observed by r2.
Definition 12: The simulation relation between two DPAA

A1 and A2, noted η(A1,A2), is the least relation η ⊆ R1×R2

such that:
1) (r1,0, r2,0) ∈ η
2) ∀(r1, r2) ∈ η, ∀r′1 ∈ R1,∀r′2 ∈ R2, (r1 ⇒1

r′1) and (r2 ⇒2 r
′
2)

and (∃α ∈ Acc1(r1),∃σ ∈ α, σ |= ϕ1(r′1) ∧ ϕ2(r′2))
implies (r′1, r

′
2) ∈ η

Definition 13 formalizes the notion of consistent simulation,
necessary to demonstrate refinement.

Definition 13: The simulation η(A1,A2) is said to be
consistent if, and only if, the following axiom holds:
• ∀(r1, r2) ∈ η,Acc(r1) ⊆ Acc(r2).
Figure 4 shows a representation of a simulation relation

(dashed) between two DPAA A1 (on the left) and A2 (on the
right), and a table giving the AS associated with the states for
each of these automata.

It is finally possible to propose a theorem usable to decide
the refinement between two DPAA, based on the simulation
relation which is directly computable.

Theorem 2: Theorem for Refinement
A1 � A2 if, and only if, the simulation η(A1,A2) is

consistent (definition 12).



a

r1,0

A1

a ∧
b

r2,0

A2

b r2,1

Acc(A1) Acc(A2)

r1,0 {ab}
r2,0 {ab, ab}, {ab}
r2,1 {ab}

Fig. 4. Simulation relation between A1 (on the left) and A2 (on the right)

Proof 2:
Let A1 and A2 be two DPAA. Let η(A1,A2) the

simulation of A1 to A2 satisfying the conditions of definition
12. Consider the simulation relations %(M,A1) and
%(M,A2) between any model M and A1, A2 respectively.

Implication 1: η(A1,A2) consistent implies A1 � A2

Let M be a model such that M |= A1. The simulation
relation %(M,A1) is consistent (Definition 9). Consider the
relation %2 = η(A1,A2) ◦ %(M,A1). We have %2 ⊆ Q ×
R2 by construction. We shall prove that %(M,A2) ⊆ %2 and
that %2 is consistent. This would prove that %(M,A2) is also
consistent, and therefore M |= A2.

M

A1 A2

η

%(M,A1)
%2 = η ◦ %(M,A1)

Consider the support sets Rn of A2 such that :
1) R0 = {r2,0},
2) Rn+1 = {r′ | r ⇒2 r

′ ∧ r ∈ Rn} ∪ Rn.
Remark that, by construction, ∀n,Rn ⊆ R2 and there exists

m such that Rm contains all reachable states of A2 (and there-
fore, ∀n > m,Rn = Rm). So, consider the following property
Pn: ∀r2 ∈ Rn, (q, r2) ∈ %(M,A2) implies (q, r2) ∈ %2. We
prove Pn is true for all n, and therefore %(M,A2) ⊆ %2:

1) According to definition 8, condition 1, ∀q0 ∈ Q0, we
have (q0, r1,0) ∈ %(M,A1) and (q0, r2,0) ∈ %(M,A2).
According to condition 1 of definition 12, we have
(r1, r2) ∈ η(A1,A2) by construction, and (q0, r2,0) ∈ %2

because (r1, r2) ◦ (q0, r1) = (q0, r2), which proves that
P0 holds.

2) Assume Pn holds: ∀r2 ∈ Rn, we have
(q, r2) ∈ %(M,A2) implies (q, r2) ∈ %2. According to
condition 2 of definition 8, ∀(q, r2) ∈ %(M,A2),

∀q′ ∈ Q, ∀r′2 ∈ R2 such that q → q′ and
r2 ⇒2 r′2, we have (q′, r′2) ∈ %(M,A2) if
υ(q′) |= ϕ(r′2). According to the assumption that
M is model of A1, %(M,A1) is consistent and
∃α ∈ Acc(r1),∃σ ∈ α, υ(q′) |= σ (for q′ ∈ Q, q → q′).
According to the assumption that A1 is consistent, there
is necessarily a state r′1 ∈ R1 such that r1 ⇒1 r′1
and ∃α ∈ Acc(r1),∃σ ∈ α, υ(q′) |= σ, therefore
υ(q′) |= ϕ(r′1). According to condition 2 of definition
12, we have (r′1, r

′
2) ∈ η(A1,A2) by construction, and

(q′, r′2) ∈ %2 because (r′1, r
′
2) ◦ (q′, r′1) = (q′, r′2). We

verify that ∀r′2 ∈ Rn+1, (q
′, r′2) ∈ %(M,A2) implies %2,

therefore proving that Pn+1 holds.

Hence we conclude that Pn holds for all n and that
%(M,A2) ⊆ %2.

We shall now prove that %2 is consistent:
• We have ∀(r1, r2) ∈ η,Acc(r1) ⊆ Acc(r2) (definition

13). ∀(q, r1) ∈ %, it exists α ∈ Acc(r1) verifying condi-
tions of definition 8. By construction, for all (q, r2) ∈ %2,
there exists r1 such that (r1, r2) ∈ η(A1,A2) and
(q, r1) ∈ %(M,A1). According to definition 13, this
ensures that it exists α ∈ Acc(r2) verifying conditions
of definition 8 for all (q, r2) ∈ %.

So, we conclude that %(M,A2) is also consistent, and
therefore M |= A2.

Implication 2: A1 � A2 implies η(A1,A2) consistent

Given M, consider η(M) = %(M,A2) ◦ %(M,A1)−1.
Recall that %(M,A2) ⊆ Q × R2, %(M,A1) ⊆ Q × R1.
Therefore, we have %(M,A1)−1 ⊆ R1 × Q and
η(M) ⊆ R1 × R2. Define η as the union of all η(M):
η =

⋃
M
η(M). We shall prove that η(A1,A2) ⊆ η and that

η is consistent. This would prove that η(A1,A2) is also
consistent.

M

A1 A2

η =
⋃
M

η(M)

%(M,A1)
%(M,A2)

Consider the support sets R1,n of A1 and R2,n of A2 such
that, for i = 1, 2:

1) Ri,0 = {ri,0},
2) Ri,n+1 = {r′ | r ⇒i r

′ ∧ r ∈ Ri,n} ∪ Ri,n.
We can remark that, by construction, ∀n,Ri,n ⊆ Ri and

it exists m such that Ri,m contains all accessible states of
Ai (and therefore, ∀n > m,Ri,n = Ri,m). Moreover, it is
possible to match any set Rn with a reference modelM such
that M |= A1: this model is built by extension starting from



the initial state, and by choosing an acceptance set α each
time, each σ ∈ α being associated with a new state of the
model.

So, consider the following property Pn: ∀r1 ∈ R1,n, r2 ∈
R2,n, (r1, r2) ∈ %(A1,A2) implies (r1, r2) ∈ η. We prove Pn
is true for all n, and therefore η(A1,A2) ⊆ η:

1) Consider any model, Q0 be the set of initial states for
these models. According to condition 1 of definition 8, we
have (q0, r1,0) ∈ %(M,A1) and (q0, r2,0) ∈ %(M,A2)
for all q0 ∈ Q0. Relation η being defined as the union
of the simulation relation for all models, we have
(r1,0, r2,0) ∈ η by construction.

2) Assume Pn holds: ∀r1 ∈ R1,n, r2 ∈ R2,n, (r1, r2) ∈
%(A1,A2) implies (r1, r2) ∈ η. Consider any (r1, r2) ∈
η(A1,A2) ∩ (R1,n × R2,n). According to condition 2
of definition 12, ∀r′1 ∈ R1, ∀r′2 ∈ R2 such that r1 ⇒1

r′1, r2 → r′2, (r′1, r
′
2) ∈ η(A1,A2) implies that it exists

a set α ∈ Acc1(r1) and a valuation σ ∈ α satisfying
(ϕ(r′1) ∧ (ϕ(r′2)). Starting from the reference model M
of Rn, it is possible to construct by extension a model
M′ such that ∃q ∈ Q, readysetM′(q) = α. In this case,
we have (r′1, r

′
2) ∈ η(M′). η is defined as the union of

the simulation relation for all models, which included this
model. According to condition 2 of definition 8, we have
(r′1, r

′
2) ∈ η by construction.

We now prove that η is consistent. Consider (r1, r2) ∈ η.
Suppose that Acc(r1) * Acc(r2). This would mean that there
exists σ such that σ ∈ Acc(r1) and σ /∈ Acc(r2). From r0,
construct by extension a modelM by choice for all state q of
these model an acceptance set as ReadyM(q), with a state q1

such that ReadyM(q1) = σ. Our initial hypothesis implies that
M |= A2, and therefore σ ∈ α(r2) (axiom 2.a of the definition
8). We deduce that σ ∈ α(r1) and σ ∈ α(r2), which implies
that α(r1) ⊆ α(r2).

Thus, we conclude the existence of a simulation satisfying
the conditions of the theorem.

Composition operators are an adaptation of operators de-
fined on models such as modal interfaces. Alphabet, automaton
structure and state formulas are obtained in a similar way to the
conjunction, product and quotient: the alphabet by union, the
structure by cartesian product and the formulas by conjunction.
The states of the models observed are the same for these
three operations. The difference are the acceptance sets. These
are obtained by applying the corresponding operations of AS
algebra, with a small additional adaptation for quotient. The
consistency of these theorems with the axioms of an Interface
Theory holds by construction. Some details are given below.

Conjunction: The requirements are to specify the ex-
pected properties of the system being designed. They are a way
by which original manufacturers interacts with suppliers. and
the interpretation of a requirements document is the conjunc-
tion of all these implications. This same concept should also
be valid for defining the combination of different viewpoints
of requirements such as function, safety or energy, based on
different modeling frameworks that interact.

Theorem 3: Conjunction A1 ∧ A2 is the DPAA A =
(Π, R, r0,⇒, ϕ,Acc) such that:
• Π = Π2 ∪Π1;
• R = R1 ×R2;
• r0 = (r1,0, r2,0);
• (r1, r2) ⇒ (r′1, r

′
2) if, and only if, r1 ⇒1 r

′
1 and r2 ⇒2

r′2;
• ϕ(r1, r2) = ϕ1(r1) ∧ ϕ2(r2);
• Acc(r1, r2) = Acc1(r1) ∧Acc2(r2).

Example.: Figure 6 shows the conjunction of DPAAs rep-
resenting two requirements about shuttle bus example (Fig. 5):
• (R1) ”the shuttle bus doors can not open when the shuttle

bus is in motion”,
• (R2) ”the shuttle bus doors opens on request of a pas-

senger wanting to get off or to get on the shuttle bus”.

T r0

Acc(ri)
r0 {α | ∀σ ∈ α,m ∈

σ ⇒ o /∈ σ}

T r0

rr1 ¬r r2

Acc(ri)

r0 222Π

r1 {α | ∀σ ∈ α, o ∈
σ}

r2 222Π

Fig. 5. DPAA for requirement R1 and R2.

Product: Each supplier may have to work on a specific
requirements document. For each of these subsystems, a
contract can be defined. Integration of different components
results in the composition of the subsystems defining the main
architecture, reflected by the parallel composition of contracts.

Theorem 4: Parallel composition A1 ⊗ A2 is the DPAA
A = (Π, R, r0,⇒, ϕ,Acc) such that:
• R = R1 ×R2;
• r0 = (r1,0, r2,0);
• (r1, r2) ⇒ (r′1, r

′
2) if, and only if, r1 ⇒1 r

′
1 and r2 ⇒2

r′2;
• ϕ(r1, r2) = ϕ1(r1) ∧ ϕ2(r2);
• Acc(r1, r2) = Acc1(r1)⊗Acc2(r2).

True

r0

rr1 ¬r r2

Acc(ri)
r0 {α | α |= �(m⇒ ¬o)}
r1 {α | α |= �o∧(m⇒ ¬o)} = {α | α |= �(o∧¬m)}
r2 {α | α |= �(m⇒ ¬o)}

Fig. 6. Conjunction of two DPAA



Example.: We illustrate this operator considering DPAA
A1 and A2 such that A1 expresses that b is possible only
after a, while A2 expresses that b is necessarily followed by
a (Fig. 7). Figure 8 corresponds to application of product on
DPAAs A1 and A2.

a r0

¬ar1

Acc(ri)
r0 {a}, {a, ab},

{a, ab, b}, {ab},
{ab, b}, {b}, ∅

r1 {a}, ∅

¬b r0

br1

Acc(ri)

r0 222Π

r1 {a}, {a, ab}, {ab}

Fig. 7. A1 expresses that b is possible only after a, while A2 expresses that
b is necessarily followed by a.

Quotient: The quotient operation is the right-adjoint of
the product operator. It is characterized by the following
equation:

A1/A2 = max{A | A2×A ≤ A}.

It can be used in a compositional reasoning approach, to
decompose a system-wide requirement into component-level
specifications (using the same method as in Chapter 10 of [6])
or whenever component reuse is sought: A1/A2 characterizes
the realizations M such that any realization of A2 composed
with M is a realization of A1. The quotient of two DPAA is
computed as follows:

Theorem 5: Quotient A1/A2 is the DPAA A =
(Π, R, r0,⇒, ϕ,Acc) such that:
• R = (R1 ×R2) ∪Rτ ;
• Rτ = {τr1,r2 | r1 ∈ R1, r2 ∈ R2} ∪ {τ};
• r0 = (r1,0, r2,0);
• (r1, r2) ⇒ (r′1, r

′
2) if, and only if, r1 ⇒1 r

′
1 and r2 ⇒2

r′2;
• ∀r1 ∈ R1, r2 ∈ R2, (r1, r2)⇒ τr1,r2 and τr1,r2 ⇒ τ ;
• ϕ(r1, r2) = ϕ1(r1) ∧ ϕ2(r2);
• ϕ(τr1,r2) =

∨
r1⇒1r′1

ϕ1(r′1) ∧
∨

∀α∈Acc(r1,r2),σ/∈α
σ;

• ϕ(τ) = True;
• Acc(r1, r2) = Acc1(r1)/Acc2(r2);
• Acc(τr1,r2) = Acc(τ) = 222Π

.

V. CONCLUSION

Interface Theory based on DPAA as specification, and
which realizations are Kripke Models, has been defined and
endowed with the composition operators of a complete inter-
face theory, answering some needs for requirements engineer-
ing. Implicit representation of acceptance sets are transposable
in the form of Boolean functions, defined by BDDs [15]. The
next step will be the implementation of this algebra and its
test on relevant case studies in system engineering.

a ∧
¬b

r0

a ∧
b

r1
¬a ∧
b

r2

¬a ∧
¬b

r3

Acc(ri)
r0 {a}, {a, ab}, {a, ab, b}, {ab}, {ab, b}, {b}, ∅
r1 {a}, {a, ab}, {ab}
r2 {a}
r3 {a}, ∅

Fig. 8. A3 = A1 ⊗A2 (parallel composition).
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[14] L. Lamport, “What good is temporal logic?” Information Processing, R.
E. A. Mason, ed., Elsevier Publishers, vol. 83, pp. 657–668, May 1983.

[15] Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, Aug
1986.

[16] F. Moller and S. Smolka, “On the computational complexity of bisim-
ulation,” ACM Comput. Surv., vol. 27, pp. 287–289, 06 1995.


