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This paper deals with the design of a static output feedback (SOF) H∞ controller for a polynomial Takagi-Sugeno (T-S) system in the continuous-time setting. The sought SOF controller must guarantee asymptotic stability and an H∞ performance level of the closed-loop system. Sufficient conditions for the existence of such SOF controller are derived, in the form of sum-of-squares (SOS) by dint of a polynomial Lyapunov function (PLF). These conditions do not include neither an iterative algorithm nor an equality constraint which leads to a more tractable solution. The proposed gain is obtained by means of less conservative conditions than existing ones. This is illustrated through some numerical examples which demonstrate, at the same time, the applicability of the suggested design approach.

I. INTRODUCTION

Takagi-Sugeno (T-S) fuzzy models [START_REF] Tagaki | Fuzzy identification of systems and its application to modeling and control[END_REF] are used for modeling systems with nonlinearities since they have the capability to encapsulate their dynamics by a set of linear models interpolated by some membership functions. Various strategies for T-S fuzzy systems control design have been explored in the literature in both continuous and discrete-time settings [START_REF] Li | New approaches on H∞ control of T-S fuzzy systems with interval time-varying delay[END_REF]- [START_REF] Errachid | Observer-based H∞ control with finite frequency specifications for discrete-time T-S fuzzy systems[END_REF].

On another note, the static output feedback (SOF) control strategy for T-S fuzzy systems is still a challenging issue in control theory due to its practical simplicity when compared to dynamic output feedback control [START_REF] Fang | A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems[END_REF]- [START_REF] Chaibi | Static output feedback control problem for polynomial fuzzy systems via a sum of squares (SOS) approach[END_REF]. Particularly, a numerical procedure based on an equality constraint was established in [START_REF] Fang | A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems[END_REF]. Recently, in [START_REF] Chaibi | Static output feedback controller for continous-time fuzzy systems[END_REF], sufficient conditions for the existence of a SOF controller have been obtained using the concept of the decay rate in the quadratic Lyapunov function.

Alternatively, polynomial systems can be used to deal with a wider class of non-linear systems. In addition, methods based on the sum-of-squares (SOS) make it possible to investigate the stability of polynomial systems for a larger range of problems than LMI-based approaches [START_REF] Chaibi | Stability conditions for polynomial TS fuzzy systems using a sum of squares approach[END_REF]- [START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF]. Based on the polynomial fuzzy model, the stability analysis of the polynomial system is invetigated through a polynomial Lyapunov method. Moreover, including an equality constraint, the problem of SOF controllers was solved by means of some bilinear matrix inequalities (BMIs) [START_REF] Chaibi | Static output feedback control problem for polynomial fuzzy systems via a sum of squares (SOS) approach[END_REF]. An iterative approach based on SOS decomposition was introduced in [START_REF] Krug | Robust H∞ static output feedback controller design for parameter dependent polynomial systems: an iterative sums of squares approach[END_REF], [START_REF] Saat | Nonlinear H∞ static output feedback controller design for polynomial systems: an iterative sums of squares approach[END_REF] to solve H ∞ SOF controller design problem for polynomial systems. Unfortunately, the conservativeness of the underlying conditions increases with regards to the complexity of the nonlinear system considered. The main objective of the current paper is to re-investigate the SOF control design for polynomial T-S fuzzy systems without constraints on the system state-space matrices which results in reducing the conservatism of some existing results.

Hence, the present paper proposes new sufficient conditions for the SOF H ∞ control design of continuous-time polynomial systems. These conditions ensure that the L 2 gain from the disturbance input to the controlled output is less than a prescribed value. The major benefit of the proposed method is that it avoids the optimization under BMI constraints while minimizing the conservatism of existing methods.

The remainder of this paper is organized as follows: Section II presents a system description and some preliminaries. The main results are presented in the Section III, whereas the Section IV provides some examples to show the validity and benefits of the suggested methods. The conclusion takes place in Section V.

II. PROBLEM STATEMENT

We consider the continuous polynomial T-S fuzzy mode which is described by the following fuzzy model Plant Rule i:

IF σ 1 (t) is µ i1 AND . . . AND σ s (t) is µ is THEN          ẋ(t) = A i (x(t))x(x(t)) + B 1i (x(t))ω(t) + B 2i (x(t))u(t) z(t) = C 1i (x(t))x(x(t)) + D 11i (x(t))ω(t) + D 12i (x(t))u(t) y(t) = C 2i (x(t))x(x(t)) + D 21i (x(t))ω(t)
(1) where σ(t) = [σ 1 (t) σ 2 (t) . . . σ s (t)] are known premise variables, µ ij (i = 1, 2, ..., r; j = 1, 2, ..., s) are fuzzy sets, r is the number of If-Then rules, A i (x(t)), B 1i (x(t)), B 2i (x(t)), C 1i (x(t)), D 1i (x(t)), D 12i (x(t)), C 2i (x(t)) and D 21i (x(t)) are polynomial matrices in x(t) with appropriate dimensions. x(t) ∈ R nx is the state vector; y(t) ∈ R ny denotes the measurement output, u(t) ∈ R nu is the control input,

z(t) ∈ R nz is the controlled output, ω(t) ∈ R nw denotes the disturbance, that belongs to L 2 [0, ∞).
The defuzzification process of model ( 1) can be represented as

                               ẋ(t) = r i=1 η i (σ(t))[A i (x(t))x(x(t)) + B 1i (x(t))ω(t) + B 2i (x(t))u(t)] z(t) = r i=1 η i (σ(t))[C 1i (x(t))x(x(t)) + D 11i (x(t))ω(t) + D 12i (x(t))u(t)] y(t) = r i=1 η i (σ(t))[C 2i (x(t))x(x(t)) + D 21i (x(t))ω(t)]
(2) where

η i (σ(t)) = w i (σ(t)) r i=1 w i (σ(t)) , w i (σ(t)) = s j=1 µ ij (σ j (t))
µ ij (σ j (t)) denotes the grade of membership of σ j (t) in µ ij and w i (σ(t)) represents the weight of the i th rule.

It is clear that fuzzy weighting functions η i (σ(t)) satisfy

     r i=1 η i (σ(t)) = 1 0 ≤ η i (σ(t)) ≤ 1 (3) 
According to the concept of parallel distributed compensation (PDC) [START_REF] Tanaka | Stabilization of polynomial fuzzy systems via a sum of squares approach[END_REF], the polynomial SOF controller is described as follows:

Controller Rule i : IF σ 1 (t) is µ i1 AND . . . AND σ s (t) is µ is THEN u(t) = F i (x(t))y(t) (4) 
with i = 1, 2, ...r, and F i (x(t)) is the polynomial matrices of appropriate dimensions to be determined. The overall controller can be represented by

u(t) = r i=1 η i (σ(t))F i (x(t))y(t) = r i=1 r j=1 η i η j F i (x(t))[C 2j (x(t))x(x(t)) + D 21j (x(t))ω(t)] (5) 
Combining ( 5) and ( 2), the closed-loop system is given by

                     ẋ(t) = r i=1 r j=1 r l=1 η i η j η l [ Āijl (x(t))x(x(t)) + Bijl (x(t))ω(t)] z(t) = r i=1 r j=1 r l=1 η i η j η l [ Cijl (x(t)))x(x(t)) + Dijl (x(t))ω(t))] (6) 
where

η i = η i (σ(t)), η j = η j (σ(t)), η l = η l (σ(t)). and Āijl (x(t)) = A i (x(t)) + B 2i (x(t))F j (x(t))C 2l (x(t)) Bijl (x(t)) = B 1i (x(t)) + B 2i (x(t))F j (x(t))D 21l (x(t)) Cijl (x(t)) = C 1i (x(t)) + D 12i (x(t))F j (x(t))C 2l (x(t)) Dijl (x(t)) = D 11i (x(t)) + D 12i (x(t))F j (x(t))D 21l (x(t))
The objective of SOF H ∞ polynomial control is then to find polynomial gains F i (x(t)) i = 1, . . . , r such that the system (6) is asymptotically stable, and the output z(t) satisfies the following condition (under zero initial conditions):

∞ 0 z T (t)z(t)dt ≤ γ 2 ∞ 0 ω T (t)ω(t)dt (7) 
Remark 1: In [START_REF] Tanaka | Stabilization of polynomial fuzzy systems via a sum of squares approach[END_REF], [START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF], the stabilization conditions were investigated by the SOS approach, for the polynomial T-S fuzzy system. These results have focused on state feedback control problems. Whereas, in this paper, we consider the SOF H ∞ controller case.

The following lemmas will be used in the sequel.

Lemma 1: [START_REF] Chang | Robust static output feedback H∞ control for uncertain fuzzy systems[END_REF] For matrices T, Λ, L, and Ξ with appropriate dimensions and a scalar β, the inequality

T + Ξ T Λ T + ΛΞ < 0 (8) 
is fulfilled if the following condition holds:

T • βΛ T + LΞ -βL -βL T < 0
with • abbreviates the off-diagonal block of the symmetric matrix represented block-wise.

Proposition 1: [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF] Let g(x) be a polynomial in x ∈ R n of degree 2d. Let W (x) be a column vector whose entries are all monomials in x with degree no greater than d. Then, g(x) is said to be SOS if and only if there exists a positive semi-definite matrix Q such that

g(x) = W (x) T QW (x) (9) 
Definition 1: [21] A multivariate polynomial g(x), for x ∈ R N is a SOS if there exist polynomials g i (x), i = 1, . . . , n such that g(x) = n i=1 g 2 i (x) (10) 
This implies g(x) ≥ 0 for any x ∈ R n . Remark 2: In [START_REF] Krug | Robust H∞ static output feedback controller design for parameter dependent polynomial systems: an iterative sums of squares approach[END_REF] and [START_REF] Saat | Nonlinear H∞ static output feedback controller design for polynomial systems: an iterative sums of squares approach[END_REF], iterative approaches based on SOS decomposition have been presented to determine the SOF controller. Authors in [START_REF] Chaibi | Static Output Feedback Control of Polynomial Takagi-Sugeno Systems using a Sum Of Squares Approach[END_REF] consider only the stability of the autonomous polynomial systems by SOS approach. In [START_REF] Chaibi | Static Output Feedback Control of Polynomial Takagi-Sugeno Systems using a Sum Of Squares Approach[END_REF], the SOS method is used to design the SOF controller for polynomial systems. The stabilization of polynomial systems based on SOS is investigated in [START_REF] Tanaka | Stabilization of polynomial fuzzy systems via a sum of squares approach[END_REF], [START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF]. We emphasize in the current paper, that none of the above references have dealt with, the H ∞ norm performance.

III. MAIN RESULT

In this section, the objective is to design a SOF H ∞ controller, that stabilizes the polynomial T-S fuzzy system (6). To simplify the notations, function arguments may be omitted when their meaning is straightforward. Hence, in the sequel x is used instead of x(t) and x(x) instead of x(x(t)). In addition, A k i (x) indicates the k th row of A i , K = {k 1 , k 2 , ..., k m } indicates the row indices of B i (x) whose corresponding row is zero, and x = (x k1 , x k2 , .., x km ).

Theorem 1: Let β, λ > 0 be some given scalars. System (6) is asymptotically stable with H ∞ performance γ, if there exist symmetric polynomial matrices P (x), and polynomial matrices N i (x), G(x) and L(x), such that ( 11)-( 14) hold where ε i (x), ε ij (x), and ε ijl (x), are non-negative polynomials such that ε i (x) > 0, for x = 0, ε ij (x) ≥ 0, ε ijl (x) ≥ 0, for all x, i, j, l = 1, 2, . . . , r.

υ T 1 (P (x) -ε 1 (x)I)υ 1 is SOS (11) -υ T 2 φ iii (x)+ε i (x)I υ 2 is SOS i = 1, 2, . . . , r (12) 
-υ T 2 φ iij (x) + φ iji (x) + φ jii (x) + ε ij (x)I υ 2 is SOS 1 ≤ i = j ≤ r ( 13 
) -υ T 2 φ ijl (x) + φ ilj (x) + φ jil (x) + φ jli (x) + φ lij (x) + φ lji (x) + ε ijl (x)I υ 2 is SOS 1 ≤ i = j = l ≤ r (14) 
where

φ ijl (x) = Υ ijl • Γ ijl R Υ ijl =   Ψ ijl • • Υ 21ijl -γ 2 I • Υ 31ijl Υ 32ijl I -G(x) -G T (x)   (15) 
Ψ ijl = A T i (x)T T (x)P (x) + P (x)T (x)A i (x) + k∈K ∂ P (x) ∂x k A k i (x)x(x) + T (x)B 2i (x)N j (x)C 2l (x) + C T 2l (x)N T j (x)B T 2i (x)T T (x) Υ 21ijl = B T 1i (x)T T (x)P (x) + D T 21l (x)N T j (x)B T 2i (x)T T (x) Υ 31ijl = G(x)C 1i (x) + λD 12i (x)N j (x)C 2l (x) Υ 32ijl = G(x)D 11i (x) + λD 12i (x)N j (x)D 21l (x) Γ ijl = Γ 11ijl Γ 12jl Γ 13i Γ 11ijl = β(B T 2i (x)T T (x)P (x) -L T (x)B T 2i (x)T T (x)) + N j (x)C 2l (x) Γ 12jl = N j (x)D 21l (x) Γ 13i = β(D T 12i (x)G T (x) -λL T (x)D T 12i (x)) R = -βL(x) -βL T (x)
Proof 1: Since the conditions in ( 12)-( 14) hold, we can write

r i=1 η 3 i φ iii (x) + r i=1 r j=1,i =j η 2 i η j (φ iij (x) + φ iji (x) + φ jii (x)) + r-2 i=1 r-1 j=i+1 r l=j+1 η i η j η l (φ ijl (x) + φ ilj (x) + φ jil (x)+ φ jli (x) + φ lij (x) + φ lji (x)) = r i=1 r j=1 r l=1 η i η j η l φ ijl (x) < 0 which is satisfied if φ ijl (x) = Υ ijl • Γ ijl R < 0 (16) 
Lemma 1 along with

Λ i (x) =   P (x)T (x)B 2i (x) -T (x)B 2i (x)L(x) 0 G(x)D 12i (x) -λD 12i (x)L(x)   Ξ jl (x) = L -1 (x) N j (x)C 2l (x) N j (x)D 21l (x) 0
induce that the inequality ( 16) leads to

ϕ ijl (x) = Υ ijl + Λ i (x)Ξ jl (x) + Ξ T jl (x)Λ T i (x) < 0 (17)
The latter inequality ( 17) can be rewritten as:

ϕ ijl (x) = Υ ijl +   φ11ijl • • Υ 21ijl 0 • Υ 31ijl Υ 32ijl 0   < 0 (18) 
where φ11ijl = [P (x)T (x)B 2i (x) -T (x)B 2i (x)L(x)]L -1 (x)

× N j (x)C 2l (x) + C T 2l (x)N T j (x)L -T (x)[B T 2i (x)T T (x) × P (x) -L T (x)B T 2i (x)T T (x)] Υ 21ijl = D T 2l (x)N T j (x)L -T (x)[B T 2i (x)T T (x)P (x) -L T (x)B T 2i (x)T T (x)] Υ 31ijl = [G(x)D 12i (x) -λD 12i (x)L(x)] L -1 (x)N j (x)C 2l (x) Υ 32ijl = [G(x)D 12i (x) -λD 12i (x)L(x)] L -1 (x)N j (x)D 21l (x)
Using the change of variable F j (x) = L -1 (x)N j (x) and substituting ( 15) into ( 18) we obtain:

ϕ ijl (x) =   φ 11ijl • • BT ijl (x)T T (x)P (x) -γ 2 I • G(x) Cijl (x) G(x) Dijl (x) φ 33   < 0 (19) 
where 19) by diag{I, I, G -1 (x)} on the left and its transpose on the right leads to

φ 11ijl = ĀT ijl (x)T T (x)P (x) + P (x)T (x) Āijl (x) + k∈K ∂ P (x) ∂x k A k i (x)x(x) φ 33 = I -G(x) -G(x) T Since -(V -Q)Q -1 (V -Q) T ≤ 0, Q > 0 implies that -V Q -1 V T ≤ -V -V T + Q, multiplying (
φijl (x) =   φ 11ijl • • BT ijl (x)T T (x)P (x) -γ 2 I • Cijl (x) Dijl (x) -I   < 0 (20)
We introduce the polynomial Lyapunov function, as in [START_REF] Tanaka | Stabilization of polynomial fuzzy systems via a sum of squares approach[END_REF], represented by

V (x) = xT (x)P (x)x(x) (21) 
Taking the time derivative of V (x) yields

V (x) = ẋT (x)P (x)x(x) + xT (x)P (x) ẋ(x) + xT (x) Ṗ (x)x(x) < 0 (22) 
Computing Ṗ (x) as in [START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF], and using ( 6), we obtain,

V (x) + z T (x)z(x) -γ 2 ω T (x)ω(x) = ζ T (t)M (x)ζ(t) (23) 
where

ζ(t) = x(t) ω(t) , M (x) = φ 11ijl • BT ijl (x)T T (x)P (x) -γ 2 I × Cijl (x) T Dijl (x) T Cijl (x) Dijl (x) (24) 
Since [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF] holds, by schur complement we obtain that M (x) < 0 which implies that,

V (x) + z T (x)z(x) -γ 2 ω T (x)ω(x) < 0 (25)
Integrating both sides of the inequality (23) from 0 to ∞ yields

V (x(∞)) -V (x(0))+ ∞ 0 (z T (t)z(t) -γ 2 ω T (t)ω(t))dt < 0 Thus, the zero initial condition leads to ∞ 0 (z T (t)z(t))dt < γ 2 ∞ 0 (ω T (t)ω(t))dt
This ends the proof.

IV. COMPUTER SIMULATIONS

Example 1: This example presents the design of a SOF H ∞ controller for a system borrowed from [START_REF] Tognetti | LMI Relaxations for H∞ and H 2 Static Output Feedback of TakagiSugeno Continuous-Time Fuzzy Systems[END_REF]. This example was solved using the homogeneous polynomial matrices of arbitrary and independent degrees. Consider the two-rules T-S fuzzy system of the form (2), with the same data as in [START_REF] Tognetti | LMI Relaxations for H∞ and H 2 Static Output Feedback of TakagiSugeno Continuous-Time Fuzzy Systems[END_REF]:

A 1 = -5 -4 -1 -2 , A 2 = -2 -4 20 -2 , B 21 = 0 10 , B 22 = 0 3 , B 11 = 0 -0.25 , B 12 = B 11 , C 11 = 2 -10 5 -1 , C 12 = -3 20 -7 -2 , D 121 = 3 - 1 
D 122 = -1 0.5 , D 111 = -0.5 0.5 , D 112 = 0.35 0.5 , C 21 = 1 0 , C 22 = C 21 , D 211 = 0.1, D 212 = D 211
The fuzzy membership functions considered are

η 1 (σ(t)) = (1 + sin(x 1 (t)))/2 η 2 (σ(t)) = 1 -η 1 (σ(t))
Based on the SOS conditions in Theorem 1, we obtain an H ∞ attenuation level of γ min = 1.59 for (2d = 0) with the following gains F 1 = 0.5873, F 2 = -0.8347. For (2d = 2), we obtain γ min = 0.70 and F 1 = -0.12713x 1 (t) 2 + 5.7446 × 10 -4 x 2 (t) 2 , F 2 = 0.18319x 1 (t) 2 + 9.9959 × 10 -4 x 2 (t) 2 . Table I lists the values of γ min obtained from [START_REF] Tognetti | LMI Relaxations for H∞ and H 2 Static Output Feedback of TakagiSugeno Continuous-Time Fuzzy Systems[END_REF], [START_REF] Guelton | Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi Sugeno systems -A descriptor redundancy approach[END_REF] and Theorem 1 in this paper for different degrees. It can be easily seen that the results obtained with Theorem 1 with (2d = 2) outperform those based on C1-T2 in [START_REF] Tognetti | LMI Relaxations for H∞ and H 2 Static Output Feedback of TakagiSugeno Continuous-Time Fuzzy Systems[END_REF] with (g = 1, g = 2, g = 6, g = 10). It can also be seen that increasing the degree of the polynomial Lyapunov function from 2d = 0 to 2d = 2 reduces significantly the norm bound γ min and hence improves the obtained performances.

In comparison with the results in [START_REF] Tognetti | LMI Relaxations for H∞ and H 2 Static Output Feedback of TakagiSugeno Continuous-Time Fuzzy Systems[END_REF], Theorem 1 advantages are twofold: the SOF H ∞ controller is obtained without any iterative procedure. It achieves better results (with (2d=2), γ = 0.7 is obtained), while the approach proposed in [START_REF] Tognetti | LMI Relaxations for H∞ and H 2 Static Output Feedback of TakagiSugeno Continuous-Time Fuzzy Systems[END_REF] achieves a norm bound of γ = 0.71 for a degree g ≥ 10.

Simulation results are presented in Fig. 1. The state trajectories x 1 (t) and x 2 (t) are obtained for the initial condition x(0) = [1 1.4] T and ω(t) = 0. It can be seen in Fig. 1 that when no disturbance affects the system (i.e., ω(t) = 0) the closed-loop is asymptotically stable.

Example 2: Let us consider a nonlinear mass-spring-damper mechanical system borrowed for instance from [START_REF] Wu | Reliable mixed L 2 /H∞ fuzzy static output feedback control for nonlinear systems with sensor faults[END_REF] with the following dynamic equation where M , u(t) and ω(t) are the mass, the force, and the disturbance respectively. The parameters of the mechanical system are set to M = 1, c 1 = 1, c 2 = 1.155, c 3 = 0.13. Following the lines in [START_REF] Wu | Reliable mixed L 2 /H∞ fuzzy static output feedback control for nonlinear systems with sensor faults[END_REF], the states chosen are the velocity and the position that is x 1 (t) = ẋ(t) and x 2 (t) = x(t). We define also z(t) and y(t) as follows

M ẍ(t) + c 1 ẋ(t) + c 2 x(t) = (1 + c 3 ẋ3 (t))u(t) + ω(t) (26)
z(t) = 2x 2 (t) 2u(t) , y(t) = y 1 (t) y 2 (t) = x 1 (t) 2x 1 (t) + x 2 (t) . (27) 
If x 1 (t) ∈ [-1.5 1.5], then the nonlinear mass-spring-damper (26) can be described by the following T-S model

ẋ(t) = 2 i=1 η 1 (x 1 )(t){A i x(t) + B 1i ω(t) + B 2i u(t)} z(t) = 2 i=1 η 1 (x 1 )(t){C 1i x(t) + D 11i ω(t) + D 12i u(t)} y(t) = 2 i=1 η 1 (x 1 )(t){C 2i x(t) + D 21i ω(t)}
where

A 1 = -1 -1.155 1 0 , A 2 = -1 -1.155 1 0 , B 11 = B 12 1 0 , B 21 = 1.4387 0 , B 22 = 0.5613 0 , C 11 = C 12 = 0 2 0 0 , D 121 = D 122 = 0 2 , C 21 = C 22 1 0 2 1 , D 111 = D 112 = D 211 = D 212 = 0 0
where the membership functions are

η 1 (x 1 (t)) = 0.5 + x 3 1 (t) 6.75 , η 2 (x 1 (t)) = 1 -η 1 (x 1 (t))
The obtained H ∞ norm bounds and the associated SOF gains are summarized in Table II. The H ∞ norm bound obtained with the proposed approach is smaller than the one obtained with the LMI based conditions in [START_REF] Wu | Reliable mixed L 2 /H∞ fuzzy static output feedback control for nonlinear systems with sensor faults[END_REF]. It can also be noted that a simpler controller of degree 2d = 0 can be used for practical implementation without a significant loss of performance.

Figures 2 and3 show the evolutions of the state response and the control input of the closed-loop system respectively, from an initial condition x(0) = [-1 -1.4] T and ω(t) = 0 when the gains obtained by means of the proposed result are used. The plot of the ratio ρ(t) = t 0 z s (s)z(s)ds t 0 ω T (s)ω(s)ds is shown in Fig. 4, from the initial condition x(0) = [0; 0] T when

ω(t) = 2 0 ≤ t ≤ 1 (2sin(2πt))/t t > 1
It is clear that this attenuation estimation is smaller than the guaranteed value of γ min = 2.0838. In summary from the results in Figs. 234, it is possible to conclude that the closedloop system is asymptotically stable and provides the required level of disturbance attenuation. This shows that the proposed method is effective to real control problems. V. CONCLUSION This paper has presented a static output feedback controller that achieves asymptotic stability and optimizes the L 2gain for a class of polynomial T-S systems. Using polynomial Lyapunov functions, the SOF H ∞ controller is constructed by means of some less conservative conditions than existing ones. It must be emphasized that these conditions include neither equality constraints nor iterative algorithms which leads to a tractable solution. Some numerical examples have been given to demonstrate the advantages and the applicability of the proposed approach.

Fig. 1 .

 1 Fig. 1. Evolution of the closed-loop states in Example (1)

Fig. 2 .

 2 Fig. 2. Evolution of the closed loop states for Example (2)

Fig. 3 .Fig. 4 .

 34 Fig. 3. Evolution of the control inputs for Example (2)

TABLE II VALUES

 II OF THE NORM BOUND γ AND THE OBTAINED GAINS F i FOREXAMPLE 2, 

	Methods	γ	F i
	Theorem 1 in [9]	3	F 1 = [0.093 -0.095] F 2 = [0.2309 -0.2479]
	Theorem 1	2.0838	F 1 = [-0.07515 -0.01693] F 2 = [-0.06447 -0.01077]
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