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FINITE ELEMENT APPROXIMATION OF A SINGULAR

ELLIPTIC PROBLEM WITH DISCONTINUOUS COEFFICIENTS

NADA EL BERDAN1, AHMAD MAKKI2, AND MORGAN PIERRE2

Abstract. We propose a finite element discretization of a singular elliptic prob-
lem with discontinuous coefficients. We use a “regularize then discretize” ap-
proach. We show that our method converges in 1, 2 and 3 space dimensions. We
also perform numerical simulations in two space dimensions with FreeFem++,
using an adaptive mesh strategy to deal with the singularity. The simulations
confirm the validity of our approach.
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1. Introduction

We consider the following singular elliptic problem,
−div(A(x)∇u) =

c(x)

uγ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.1)

Here, Ω is a bounded domain of Rd, γ > 0, the function c satisfies

c ∈ L∞(Ω), c ≥ 0, c 6= 0, (1.2)

and A = (aij)1≤i,j≤d is a bounded elliptic matrix, i.e.

aij ∈ L∞(Ω), for all 1 ≤ i, j ≤ d, (1.3)

and there exists α > 0 such that

A(x)ξ · ξ ≥ α|ξ|2, (1.4)

for all ξ ∈ Rd, for almost every x ∈ Ω.
Problem (1.1) is a generalization of the singular elliptic problem

−∆u =
c(x)

uγ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.5)

which has been extensively studied, along with many of its variants such as (1.1)
(see, e.g., [2, 7, 8, 9, 13, 14] and references therein). Questions related to existence,
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2 FINITE ELEMENT APPROXIMATION OF A SINGULAR ELLIPTIC PROBLEM

uniqueness and regularity of solutions have been investigated. Such problems arise
in the modeling of boundary layers [4, 5, 11].

If A, c and ∂Ω are regular enough, it is well-known that (1.1) has a unique classical
solution u ∈ C2(Ω) ∩C0(Ω), which cannot generally belong to C2(Ω). For instance,
the function

u(x) =
√

1− x2 (1.6)

satisfies (1.5) on the interval (−1, 1) with c(x) = 1 and γ = 3, that is

−u′′(x) =
1

u3
in (−1, 1), u > 0 in (−1, 1) and u(−1) = u(1) = 0. (1.7)

We note that the function defined by (1.6) has the regularity C1/2([−1, 1]) and does
not belong to H1

0 (−1, 1). These two remarks have been generalized to problem (1.5).
In particular, if Ω is of class C2, if c is Hölder continuous and bounded from below
by a positive constant, a result of Gui and Lin [14] shows that

If 0 < γ < 1, then u ∈ C1,ν(Ω), where ν = 1− γ, (1.8)

If γ = 1, then u ∈ Cν(Ω), for all ν ∈ (0, 1), (1.9)

If γ > 1, then u ∈ Cν(Ω), where ν =
2

1 + γ
. (1.10)

Under the same assumptions, the solution u to (1.5) belongs to H1
0 (Ω) if and only if

γ < 3 (see [18] and [1, Lemma 2.1]).
In [1], Barrett and Schneider performed a very nice a priori estimate analysis

for a P 1 finite element approximation of (1.5) in 1, 2 and 3 space dimensions. In
particular, they obtained a priori estimates in H1 norm for γ < 3 and L∞ norm for
all γ > 0. They also provided extensive numerical simulations in space dimension 1.
They used uniform subdivisions for the computations, but they pointed out in their
conclusion that adaptive meshes would be more appropriate. This is illustrated by
the example (1.6) or by the result (1.10): since the Cν regularity occurs near the
boundary of Ω, it seems natural to use a mesh which is refined near the boundary.

Our purpose here is to propose a finite element approximation of problem (1.1).
This is done on a “regularize then discretize” basis. We show that our method
converges for d = 1, 2 and 3 and we also perform numerical simulations in two space
dimensions with FreeFem++. In order to deal with the singularity, we use an adaptive
mesh strategy.

Our paper is organized as follows. We first introduce in Section 2 a regularized
version of problem (1.1) by using a local regularization of the nonlinearity s 7→ 1/sγ ,
as in [1]. A monotonicity argument shows that the regularized problem has a unique
solution uε in H1

0 (Ω) (Proposition 2.2). By adapting the approach in [2, 9], we show
in Section 3 that uε converges to a solution u to problem (1.1) in appropriate sense
as ε goes to 0. In particular, when γ ≤ 1, uε → u weakly in H1

0 (Ω) (Theorem 3.4)
and when γ > 1, uε → u strongly in L2(Ω) (Theorem 3.7). Then, we propose in
Section 4 a discretization of the regularized problem. For a fixed ε, we prove that the
solution to the discretized problem converges strongly in H1

0 (Ω) to uε as the mesh
size goes to 0 (Theorem 4.5). The assumptions on the family of triangulations are
quite general. In Section 5, several numerical simulations show the validity of our
approach.
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2. The regularized problem

Throughout the paper, we assume that γ > 0, c satisfies (1.2) and A satisfies (1.3)-
(1.4). In Sections 2 and 3, we only assume that Ω is a bounded domain of Rd where
d is any positive integer. In Section 4, we make further assumptions on Ω and d.

For the regularized problem, we work in the Sobolev space H1
0 (Ω) equipped with

the Hilbertian norm

‖v‖1 =

(∫
Ω
|∇v|2dx

)1/2

,

which is equivalent to the standard H1 norm. The norm in L2(Ω) is denoted ‖ · ‖0.
The first eigenvalue of −∆ is

λ1 = inf
v∈H1

0 (Ω), v 6=0

‖v‖21
‖v‖20

> 0. (2.1)

The duality product between H1
0 (Ω) and its topological dual H−1(Ω) is denoted 〈·, ·〉.

Following [1], we define the following C1 regularization fε of f(s) = s−γ , for each
ε ∈ (0, 1]:

fε(s) =

{
f(s) if s > ε,

f(ε) + f ′(ε)(s− ε) if s ≤ ε.
(2.2)

We note that fε is decreasing and positive on R.

Remark 2.1. Another regularization of f(s) could be

f̃ε(s) = f(ε+ s). (2.3)

However, as pointed out in [1], fε performs numerically better. The reason is that

f̃ε is a global regularization which always effects the practical computation, whereas
fε is a local regularization which has a better computational effect, cf. Section 5.2.

The regularized version of problem (1.1) reads{
−div(A(x)∇uε) = c(x)fε(uε) in Ω,

uε = 0 on ∂Ω.
(2.4)

We have

Proposition 2.2. Problem (2.4) has a unique solution uε ∈ H1
0 (Ω). Moreover,

uε > 0 a.e. in Ω.

Proof. We use a monotonicity argument. We consider the nonlinear operator

Bεv = Lv − c(·)fε(v), where Lv = −div(A∇v). (2.5)

We will show that

i) Bε is a nonlinear continuous operator from H1
0 (Ω) into its dual H−1(Ω).

ii) Bε is strictly monotone.
iii) Bε is coercive, i.e.

lim
‖v‖1→+∞

〈Bεv, v〉
‖v‖1

→ +∞.
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It follows from the theory of maximal monotone operators (see, e.g. [23, Theorem
26.A]) that there exists a unique uε ∈ H1

0 (Ω) such that Bεuε = 0. The strong
maximum principle [12, Theorem 8.19] implies that uε > 0 on Ω.

We start with i). The linear operator L which is defined by duality through

〈Lv,w〉 =

∫
Ω
A(x)∇v · ∇wdx

is continuous from H1
0 (Ω) into H−1(Ω) since A ∈ L∞(Ω;Rd×d). By definition (2.2)

of fε, we see that fε is bounded on [ε,∞) and affine on (−∞, ε]. Thus, there exist
positive constants C1, C2 (which depend on ε) such that

|fε(s)| ≤ C1|s|+ C2 (s ∈ R). (2.6)

As a consequence, the operator v 7→ a(·)fε(v) is continuous from L2(Ω) into L2(Ω)
(see, e.g., [17, 16.1 Lemme]). This shows assertion i).

Next, we see that for all v, ṽ ∈ H1
0 (Ω) with v 6= ṽ, we have

〈Bεv −Bεṽ, v − ṽ〉 =

∫
Ω

(A(x)∇(v − ṽ)) · ∇(v − ṽ)

−
∫

Ω
a(x)[fε(v)− fε(ṽ)](v − ṽ)dx

≥ α‖v − ṽ‖21
> 0,

where in the second line, we used (1.4). This proves assertion ii).
For the coercivity of Bε, we note that

−sfε(s) =

{
γs2ε−(γ+1) − s(1 + γ)ε−γ if s ≤ ε,
−s1−γ if s > ε,

(2.7)

and we consider three cases, namely γ > 1, γ = 1 and γ < 1.
If γ > 1, then we have

−sfε(s) ≥ −C3, ∀s ∈ R, (2.8)

for some positive constant C3 which depends on ε. From (1.4), we deduce that

〈Bεv, v〉 =

∫
Ω
A(x)∇v · ∇vdx−

∫
Ω
c(x)fε(v(x))v(x)dx

≥ α‖v‖21 − ‖c‖L∞(Ω)|Ω|C3, (2.9)

for all v ∈ H1
0 (Ω).

If γ ≤ 1, the minimum value of −sfε(s) on (−∞, ε] is attained at sε = ε. Thus,

−sfε(s) ≥ −sεfε(sε) = −ε1−γ ≥ −1, ∀s ∈ (−∞, ε], (2.10)

since ε ∈ (0, 1]. If γ = 1, the estimate (2.10) holds for all s ∈ R (see (2.7)) and we
recover the estimate (2.9) but with a constant C3 = 1 independent of ε.

If γ < 1, we deduce from Young’s inequality when s > ε and from (2.10) when
s ≤ ε that for all β > 0, there exists Cβ > 0 independent of ε such that

−sfε(s) ≥ −βs2 − Cβ (s ∈ R). (2.11)
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Using (1.4) and (2.1), we obtain

〈Bεv, v〉 =

∫
Ω
A(x)∇v · ∇vdx−

∫
Ω
c(x)fε(v(x))v(x)dx

≥ α

2
‖v‖21 +

αλ1

2
‖v‖20 − ‖c‖L∞(Ω)|Ω|(β‖v‖20 + Cβ),

for all v ∈ H1
0 (Ω). Thus, for β > 0 small enough, we have

〈Bεv, v〉 ≥
α

2
‖v‖21 − C4, (2.12)

for some constant C4 independent of ε.
Summing up, we have proved that (2.12) holds for a constant C4 independent of

ε ∈ (0, 1] when γ ≤ 1, and for a constant which depends on ε when γ > 1. This
shows assertion iii) and the proof is complete. �

3. The limit ε→ 0

In order to understand the behaviour of (uε) as ε goes to 0, we adapt the approach
in [2, 9]. We first have:

Proposition 3.1. If 0 < ε ≤ δ ≤ 1, then

uε ≥ uδ a.e. in Ω. (3.1)

For all ω ⊂⊂ Ω, there exists cω independent of ε such that

uε(x) ≥ cω > 0 for a.e. x ∈ ω, for every ε ∈ (0, 1]. (3.2)

Proof. Let 0 < ε ≤ δ ≤ 1. We have, in the sense of distributions,

−div(A(x)∇uδ) = c(x)fδ(uδ),

−div(A(x)∇uε) = c(x)fε(uε), (3.3)

so that

−div(A(x)∇(uδ − uε)) = c(x)[fδ(uδ)− fε(uε)]. (3.4)

We choose (uδ−uε)+ (which belongs to H1
0 (Ω)) as a test function, and we note that

[fδ(uδ)− fε(uε)] (uδ − uε)+ ≤ 0. (3.5)

Indeed, fδ is nonincreasing so that

[fδ(uδ)− fδ(uε)] (uδ − uε)+ ≤ 0,

and δ 7→ fδ(s) is nonincreasing for all s, so that

[fδ(uε)− fε(uε)] (uδ − uε)+ ≤ 0.

On summing these two inequalities, we obtain (3.5). Thus, the choice (uδ − uε)+ as
a test function in (3.4) yields

α‖(uδ − uε)+‖21 ≤ 0,

thanks to assumption (1.4). We conclude that (uδ − uε)+ = 0, which shows (3.1).
Next, we note that for all ε > 0, uε belongs to L∞(Ω). This follows from [20,

Théorème 4.2] since the right-hand side of (3.3) belongs to L∞(Ω). In particular,
for ε = 1, there exists a constant C such that

‖u1‖L∞(Ω) ≤ C,
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and we have

−div(A(x)∇u1) = c(x)f1(u1) ≥ c(x)f1(‖u1‖L∞(Ω)) ≥ c(x)f1(C).

Since c(x)f1(C) is not identically zero, the strong maximum principle [12, Theorem
8.19] implies that u1 > 0 a.e. in Ω and that (3.2) holds for ε = 1. On choosing δ = 1
in (3.1), we obtain that (3.2) holds for all ε ∈ (0, 1]. �

In order to pass to the limit ε → 0, we need a priori estimates. We consider two
cases, namely γ ≤ 1, in which case uniqueness holds [9, Remark 3], and γ > 1.

3.1. The case γ ≤ 1. We have:

Lemma 3.2. If γ ≤ 1, the family (uε) is bounded in H1
0 (Ω).

Proof. We choose v = uε in (2.12). Since Bεuε = 0, this yields

0 ≥ α

2
‖uε‖21 − C4.

The constant C4 is independent of ε since γ ≤ 1. This proves the claim. �

We recall the following representation formula.

Lemma 3.3 (see [3]). Let v ∈ L1
loc(Ω) ∩H−1(Ω) such that v ≥ 0 a.e. in Ω. Then

for all ϕ ∈ H1
0 (Ω), we have vϕ ∈ L1(Ω) and

〈v, ϕ〉 =

∫
Ω
vϕdx. (3.6)

Proof. Let ϕ ∈ H1
0 (Ω). If ϕ ≥ 0 a.e. in Ω, the result is a consequence from [3]. In

the general case, we write ϕ = ϕ+−ϕ− where ϕ+ and ϕ− are nonnegative functions
in H1

0 (Ω). �

Our convergence result reads as follows.

Theorem 3.4. Assume that γ ≤ 1. Then there exists a unique solution u ∈ H1
0 (Ω)

to (1.1) in the sense that

∀ ω ⊂⊂ Ω, ∃cω > 0 such that u(x) ≥ cω > 0, for a.e. x ∈ ω, (3.7)

c

uγ
∈ L∞loc(Ω) ∩H−1(Ω), (3.8)∫

Ω
A(x)∇u · ∇ϕdx =

∫
Ω

c(x)

uγ
ϕdx, ∀ϕ ∈ H1

0 (Ω). (3.9)

Moreover, uε → u weakly in H1
0 (Ω) and strongly in L2(Ω), as ε→ 0.

We note that the right-hand side of (3.9) is well-defined because we may apply

Lemma 3.3 to the nonnegative function v =
c

uγ
.

Proof. We first prove uniqueness of u. If ũ ∈ H1
0 (Ω) is another solution of (1.1) in

the sense of (3.7)-(3.9), then u− ũ satisfies∫
Ω
A(x)∇(u− ũ) · ∇ϕdx =

∫
Ω
c(x)

(
1

uγ
−

1

ũγ

)
ϕdx,
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for all ϕ ∈ H1
0 (Ω). We choose ϕ = u− ũ as a test function, we use that f(s) = s−γ

is decreasing and assumption (1.4). This yields

α‖u− ũ‖21 ≤
∫

Ω
A(x)∇(u− ũ) · ∇(u− ũ)dx ≤ 0.

Thus, ũ = u as claimed.
Next, we consider the behaviour (uε) as ε tends to 0. By Lemma 3.2, (uε) is

bounded in H1
0 (Ω). Thus, up to a subsequence, (uε) converges weakly in H1

0 (Ω)
to a function u ∈ H1

0 (Ω). We know by Rellich’s theorem that L2(Ω) is compactly
imbedded into H1

0 (Ω), so that (up to a subsequence) uε → u strongly in L2(Ω) and
a.e. in Ω. Proposition 3.1 implies that (3.7) holds for u. In turn, this implies that

u > 0 a.e. in Ω and
c

uγ
∈ L∞loc(Ω).

Now, we use that Bεuε = 0, that is∫
Ω
A∇uε · ∇ϕdx =

∫
Ω
c(x)fε(uε)ϕdx, ∀ϕ ∈ H1

0 (Ω). (3.10)

Let ϕ ∈ C∞c (Ω) in (3.10). Thanks to (3.1), fε(uε) is bounded in L∞loc(Ω) and fε(uε)→
f(u) a.e. in Ω. Since ϕ has compact support in Ω, we may pass to the limit in (3.10).
We obtain that (3.9) holds for all ϕ ∈ C∞c (Ω). Equation (3.10) also shows that
c(x)fε(uε) belongs to a bounded set of H−1(Ω) since∣∣∣∣∫

Ω
c(x)fε(uε)ϕdx

∣∣∣∣ ≤ C‖uε‖1‖ϕ‖1 ≤ C ′‖ϕ‖1,
for all ϕ ∈ H1

0 (Ω), where the constants C and C ′ are independent of ε. This shows
that c(x)f(u) ∈ H−1(Ω). Finally, we use that C∞c (Ω) is dense in H1

0 (Ω) and the
representation formula of Brezis and Browder (Lemma 3.3), and we find that equa-
tion (3.9) holds for all ϕ ∈ H1

0 (Ω). The uniqueness of the limit u implies that the
whole family (uε) converges to u, weakly in H1

0 (Ω) and strongly in L2(Ω). This
concludes the proof. �

Remark 3.5. The results in [2, 9] show that u
1+γ
2 ∈ H1

0 (Ω) and u ∈ L∞(Ω), for all
γ ∈ (0, 1].

3.2. The case γ > 1. By arguing as in [2, Lemma 4.1], we have:

Lemma 3.6. Assume that γ > 1. Then (u
1+γ
2

ε ) is bounded in H1
0 (Ω) and (uε) is

bounded in H1
loc(Ω).

As a consequence, we can state the following convergence result:

Theorem 3.7. Assume that γ > 1 and let (εn) be a decreasing sequence of positive
real numbers which tends to 0. Then the pointwise limit u of (uεn) solves (1.1) in
the sense that

∀ ω ⊂⊂ Ω, ∃cω > 0 such that u(x) ≥ cω > 0, for a.e. x ∈ ω, (3.11)

u ∈ H1
loc(Ω), (3.12)∫

Ω
A(x)∇u · ∇ϕdx =

∫
Ω

c(x)

uγ
ϕdx, ∀ϕ ∈ C1

c (Ω), (3.13)

u
1+γ
2 ∈ H1

0 (Ω) (this is the meaning of u = 0 on ∂Ω). (3.14)
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Moreover, uεn → u weakly in H1(ω), for all ω ⊂⊂ Ω, u
1+γ
2

εn → u
1+γ
2 weakly in H1

0 (Ω)
and uεn → u strongly in L2(Ω).

Proof. We note that by (3.1), the sequence (uεn)n is nondecreasing so that its point-
wise limit u(x) = limn→+∞ uεn(x) is well defined a.e. in Ω. Property (3.11) is a
consequence of (3.2). Let ϕ ∈ C1

c (Ω) and let

ω = {x ∈ Ω : ϕ(x) 6= 0}.

We note that ω ⊂⊂ Ω. By Lemma 3.6, (uεn) is bounded in H1(ω), so that, up to
a subsequence, uεn → u weakly in H1(ω), strongly in L2(ω) and a.e. in Ω. The
uniqueness of the limit u implies that the whole sequence (uεn) converges.

By definition of uεn , we have∫
Ω
A(x)∇uεn · ∇ϕdx =

∫
Ω
c(x)fεn(uεn)ϕdx. (3.15)

Since ω ⊂⊂ Ω, we may pass to the limit in (3.15) and we obtain that u satisfies (3.13).

Finally, we know by Lemma 3.6 that (u
1+γ
2

εn ) is bounded in H1
0 (Ω). This shows that

u satisfies (3.14) and that (u
1+γ
2

εn ) converges weakly in H1
0 (Ω) to u

1+γ
2 .

Assume now that d ≥ 3 and let s < 2? = 2d
d−2 . Thanks to the Sobolev imbed-

dings [12], we know that H1
0 (Ω) is compactly imbedded in Ls(Ω), so (u

1+γ
2

εn )→ u
1+γ
2

strongly in Ls(Ω). There exists g ∈ Ls(Ω) such that, up to a subsequence, (u
1+γ
2

εn )→
u

1+γ
2 a.e. in Ω and 0 ≤ u

1+γ
2

εn ≤ g, for all n. Thus, 0 ≤ uεn ≤ g
2

1+γ for all n,

with g
2

1+γ ∈ L
s(1+γ)

2 (Ω). The dominated convergence theorem shows that uεn → u

in Lq(Ω), with q = s(1+γ)
2 < d(1+γ)

d−2 . Since d(1+γ)
d−2 > 2 and s < 2? is arbitrary, we

may choose q = 2. Note that by uniqueness of the limit a.e., the whole sequence
converges.

If d = 2, a similar argument holds for all s < +∞ and we conclude similarly.

If d = 1, then H1
0 (Ω) is compactly imbedded in C0(Ω), so (u

1+γ
2

εn )→ u
1+γ
2 strongly

in C0(Ω). In particular, there exists M > 0 such that 0 ≤ uεn(x) ≤M for all x ∈ Ω

and for all n. Since the function t 7→ t
2

1+γ is uniformly continuous on [0,M ], we
conclude that uεn → u strongly in C0(Ω), and therefore in L2(Ω). This concludes
the proof. �

4. The finite element approximation

Throughout Section 4, we assume that ε ∈ (0, 1] is fixed and d = 1, 2 or 3. For
the finite element approximation of the regularized problem (2.4), we assume that
Ω is a bounded convex d-polyhedron, that is a bounded interval if d = 1, a convex
polygon if d = 2 and a convex polyhedron if d = 3.

We consider a regular family {Th}h>0 of triangulations of Ω into d-simplices and
such that each triangulation covers Ω exactly. For each triangulation Th, the P 1

finite element space is

Vh = {vh ∈ C0(Ω), : vh is affine on every d-simplex of Th and vh = 0 on ∂Ω}.
(4.1)



FINITE ELEMENT APPROXIMATION OF A SINGULAR ELLIPTIC PROBLEM 9

The space Vh is a finite dimensional subspace of V = H1
0 (Ω). We denote Ih the

interpolation operateur at the vertices of the triangulation. It is well-known [10] that
for every v ∈ H2(Ω), we have

Ihv → v in V, as h→ 0. (4.2)

Since H2(Ω) is dense in V , this implies

inf
vh∈Vh

‖u− vh‖1 → 0, (4.3)

for all u ∈ V .

Remark 4.1. Similar properties hold if we assume that Ω is a bounded convex open
set with C2 boundary. In this case, the d-polyhedron Ωh defined by the triangulation
satisfies Ωh ⊂ Ω and the vertices of the boundary of Ωh lie on the boundary of Ω. We
use that Vh ⊂ H1

0 (Ωh) ⊂ H1
0 (Ω) by setting vh = 0 on Ω \ Ωh. Properties (4.2)-(4.3)

are still true (see, e.g., [19, Section 4.1]), so the results in this section are also valid
in such a case.

The finite element approximation of problem (2.4) reads: find uh ∈ Vh such that∫
Ω
A(x)∇uh · ∇vhdx =

∫
Ω
c(x)fε(uh)vhdx, ∀vh ∈ Vh. (4.4)

We have

Proposition 4.2. Problem (4.4) has a unique solution.

Remark 4.3. The function uh = uε,h defined in (4.4) depends also on ε. Since
ε ∈ (0, 1] is fixed throughout Section 4, we omit the subscript ε.

Proof. We use a monotonicity argument, as in the continuous case. Let Bh : Vh → Vh
be the nonlinear operator defined by∫

Ω
(Bhvh)whdx =

∫
Ω
A(x)∇vh · ∇wh −

∫
Ω
c(x)fε(vh)whdx. (4.5)

The same arguments as in the proof of Proposition 2.2 show that Bh is continuous,
strictly monotone and coercive. Thus, there exists a unique uh ∈ Vh such that
Bhuh = 0. �

Remark 4.4. We do not know if uh ≥ 0 in every case. If a discrete maximum princi-
ple holds then uh ≥ 0, but this requires additional assumptions on the triangulation
and the matrix A [6]. If Lv = −∆v and if the triangulation is weakly acute, then a
discrete maximum principle holds and we have uh ≥ 0, see [1, 16, 21]. If Lv = −∆v
and d = 1, the discrete maximum principle holds without any additional assumption
on the mesh [22].

We recall that the parameter ε > 0 is fixed throughout this section. The following
convergence holds:

Theorem 4.5. We have uh → uε strongly in V as h→ 0.

Proof. We notice that∫
Ω

(Bhvh)whdx = 〈Bεvh, wh〉, ∀vh, wh ∈ Vh, (4.6)
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where Bh and Bε are defined in (4.5) and (2.5), respectively. We apply this relation
with vh = wh = uh. Using Bhuh = 0 and (2.12), we obtain

0 ≥ α

2
‖uh‖21 − C4.

This shows that the sequence (uh) is bounded in V .
We may therefore assume that, up to a subsequence, uh converges weakly in V to

some function ũ. Let ϕ ∈ C∞c (Ω). We choose vh = uh and wh = Ihϕ in (4.6). We
find

0 = 〈Bεuh, Ihϕ〉 =

∫
Ω
A(x)∇uh · ∇(Ihϕ)dx−

∫
Ω
c(x)fε(uh)Ih(ϕ)dx. (4.7)

The quadratic term tends to
∫

ΩA(x)∇ũ·∇ϕdx thanks to (4.2). Since V is compactly

imbedded into L2(Ω), we know that uh → ũ strongly in L2(Ω). Using the continuity
of the nonlinear operator v 7→ c(·)fε(v) from L2(Ω) into L2(Ω) (cf. (2.6)), we may
pass to the limit in (4.7) and we find

0 = 〈Bεũ, ϕ〉.

This is true for all ϕ ∈ C∞c (Ω). Thus, ũ = uε and by uniqueness of the limit, the
whole sequence (uh) converges to ũ, weakly in V .

Next, we denote g(x) = c(x)fε(u(x)) and gh(x) = c(x)fε(uh(x)). We have already
seen that gh → g in L2(Ω). The definition of uh and uε reads∫

Ω
A(x)∇uh · ∇vhdx =

∫
Ω
ghvhdx, ∀vh ∈ Vh,∫

Ω
A(x)∇u · ∇vdx =

∫
Ω
gvdx, ∀v ∈ V.

We introduce the solution ũh ∈ Vh to the linear problem∫
Ω
A(x)∇ũh · ∇vhdx =

∫
Ω
gvh, ∀vh ∈ Vh.

The assumptions on A ensure that ũh exists and is unique. Cea’s lemma [10] and (4.3)
imply that ũh → u strongly in V . On the other hand, we have

α‖uh − ũh‖21 ≤
∫

Ω
A(x)∇(uh − ũh) · ∇(uh − ũh)dx

=

∫
Ω

(gh − g)(uh − ũh)dx

≤ ‖gh − g‖0‖uh − ũh‖0,

so

‖uh − ũh‖1 ≤
1

αλ
1/2
1

‖g − gh‖0,

which shows that ‖uh − ũh‖1 → 0. On writing uh = (uh − ũh) + ũh, we obtain that
uh → u strongly in V , as claimed. �
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5. Numerical simulations

We performed numerical simulations with the FreeFem++ software [15] in two
space dimension. We used a mesh adaptation algorithm available in FreeFem++ with
the keyword adaptmesh. Our algorithm reads as follows, for a bounded domain Ω
of R2 with smooth boundary and a given ε > 0.

Algorithm 5.1. Input: an initial mesh T 0
h which gives a triangulation of Ωh (a

polygonal approximation to Ω) and an initial guess ũ0
h of the solution u.

For k from 0 to kmax:

(1) build the space V k
h ⊂ H1

0 (Ωh) of continuous P 1 finite element associated to

T kh , cf. (4.1);

(2) Compute the solution ukh ∈ V k
h to the variational problem∫

Ω
A(x)∇ukh · ∇vkhdx =

∫
Ω
c(x)fε(u

k
h)vkhdx, ∀vkh ∈ V k

h ,

using a Newton algorithm with the initial value ũkh;

(3) Build a new triangulation T k+1
h of Ωh adapted to the solution ukh;

(4) Compute the P 1 interpolate ũk+1
h of ukh on T k+1

h .

Output: T kmaxh and ukmaxh .

We recall that fε is the regularization of f(s) = s−γ given by (2.2) (except in

Table 2 where we choose f̃ε defined by (2.3)). For a polygonal domain Ω, we have
Ωh = Ω but in the simulations below we have Ωh 6= Ω because the boundary ∂Ω is
of class C2.

5.1. A radial test case for A = Id. We first consider problem (1.5) on the ring

Ω = {(x, y) ∈ R2 : e−2 < x2 + y2 < e2},

with

c(x, y) =
1

x2 + y2
and γ = 3. (5.1)

Using polar coordinates, it is easy to check that the exact solution to this problem
is

u(x, y) =
(

1− log2(
√
x2 + y2)

)1/2
.

This solution belongs to C∞(Ω) ∩ C1/2(Ω) (cf. (1.10)), and it does not belong to
H1

0 (Ω) since γ > 3 [1, Lemma 2.1].
The exterior (interior, respectively) circle of Ω with radius e (1/e, resp.) is ap-

proximated by a regular polygon having 170 (46, resp.) vertices; its edges have a
length of approximately 0.1 (0.05, resp.). This yields a polygonal domain Ωh which
approximates the ring Ω. Since Ω is not convex, Ωh 6⊂ Ω and the approximation is
nonconforming, that is H1

0 (Ωh) 6⊂ H1
0 (Ω).

We performed Algorithm 5.1 with kmax = 5 mesh adaptations, starting with an
initial triangulation T 0

h of Ωh and the initial guess ũ0
h = 0. The FreeFem++ command

in step (3) was

Th=adaptmesh(Th,u,err=0.005,nbvx=9e4).
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Figure 1. Mesh for case (5.1) and ε = 0.1 (γ = 3)

This command means that T k+1
h is built using T kh and ukh with a P 1 interpolation

error level of 0.005 and a maximum number of vertices equal to 9e4.
The final mesh T 5

h obtained for ε = 0.1 is shown in Figure 1. It has 11084 vertices
and it has been obtained by successive mesh refinements by starting from an initial
mesh T 0

h with 4181 vertices. The mesh T kh at iteration k = 0, 1, 2, 3, 4 and 5 contains
4181, 9356, 11758, 11366, 11097 and 11084 vertices respectively.

ε 0.4 0.2 0.1 0.05 0.025 0.0125 0.00625
L2 error 0.18 0.053 0.014 0.0036 0.0026 0.0029 0.0031
L2 ratio · 3.4 3.8 3.9 1.4 0.9 0.9
L∞ error 0.090 0.045 0.023 0.012 0.0057 0.0035 0.0048
L∞ ratio · 2.0 2.0 1.9 2.1 1.6 0.7

Nb vertices 6790 8877 11084 13350 17370 21121 50717
hmin 2.7e-03 9.3e-04 3.3e-04 1.5e-04 6.7e-05 3.9e-05 2.7e-05
hmax 0.28 0.26 0.31 0.29 0.28 0.29 0.28

Table 1. L2 error, L∞ error and mesh characteristics for case (5.1)

In Table 1, we present the L2 error ‖u−uh‖L2(Ωh) and the L∞ error ‖u−uh‖L∞(Ωh)

obtained for different value of ε (with uh = u5
h). The discretization parameters are

the same as for the case ε = 0.1, which means that the initial triangulation T 0
h is

the same, the initial guess is ũ0
h = 0 and the parameters in the adaptmesh command

are the same. We checked numerically that the solution uh is nonnegative on Ωh,
up to computer accuracy. For each ε, Table 1 gives the number of vertices in the
final mesh T kmaxh , as well as the minimum and maximum length of the edges of this
triangulation.
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On writing

u− uh = (u− uε) + (uε − uε,h), (5.2)

the error ‖u−uε,h‖ can be interpreted as an error ‖u−uε‖ due to the regularization
and an error ‖uε − uε,h‖ due to the discretization (we write uh = uε,h to stress that
uh depends on ε, cf. Remark 4.3).

In line 5 of Table 1, we have computed for each ε the ratio of the error in the L∞

norm for 2ε and ε, namely

r∞,ε =
‖u− u2ε,h‖L∞(Ωh)

‖u− uε,h‖L∞(Ωh)
.

We see that for ε varying from 0.2 down to 0.025, the ratio r∞,ε is very close to
2. This means that the error is of order O(ε) and the error due to the regulariza-
tion is dominant in (5.2). For ε between 0.025 and 0.00625, the error due to the
discretization becomes dominant.

In comparison, the L2 error decreases more rapidly than the L∞ error for ε between
0.4 and 0.025 (cf. line 3 in Table 1, which represents the same ratio as r∞,ε, but in
L2 norm). This can be related to the choice of a local regularization fε for f : the
error u(x, y)− uh(x, y) is mostly located near the boundary ∂Ω (cf. Remark 2.1).

ε 0.1 0.05 0.025 0.0125 6.25e-3 3.125e-3 1.5625e-3
L2 error 0.44 0.23 0.11 0.057 0.027 0.012 0.0047
L2 ratio · 1.9 2.1 1.9 2.1 2.2 2.6
L∞ error 0.098 0.050 0.026 0.013 0.0071 0.0042 0.0057
L∞ ratio · 2.0 1.9 2.0 1.8 1.7 0.7
L2/L∞ 0.94 0.96 0.89 0.92 0.80 0.60 0.17

Table 2. L2 and L∞ error for the regularization f̃ε and case (5.1)

5.2. About the choice of the regularization. In Table 2, we have computed
the L2 and L∞ error with the regularization f̃ε defined by (2.3) instead of fε given
by (2.2). The test case is (5.1) and the algorithm and the discretization parameters
are exactly as previously. We have divided the values of ε by 4 in order to have
a L∞ error which is easily comparable to the values in Table 1. We see that for
ε from 0.1 down to 6.25e-3, the L∞ error and the L2 error are both dominated
by the regularization error which is of order O(ε). The L2 error is much larger
than for the regularization fε because we use a global regularization of f : the error
u(x, y)− uh(x, y) is located everywhere on Ω and not just near the boundary. This
is confirmed by the last line of Table 2, which shows for each ε the normalized ratio

‖u− uε,h‖L2(Ωh)

|Ω|1/2‖u− uε,h‖L∞(Ωh)

.

This ratio is close to 1 as long as the regularization error dominates.
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5.3. A radial test case with regular coefficients. We consider now problem (1.1)
on the ring

Ω = {(x, y) ∈ R2 : 1 < x2 + y2 < 22},
with

A(x, y) =
1√

x2 + y2

(
1 0
0 1

)
, c(x, y) =

1

4
√
x2 + y2

and γ = 3. (5.3)

The exact solution to this problem is

u(x, y) = v(
√
x2 + y2), (5.4)

where
v(r) = [(r − 1)(2− r)]1/2.

Indeed, it is straighforward to check that

−v′′(r) =
1

4v3(r)
for r ∈ (1, 2), and v(1) = v(2) = 0.

The ODE can be rewritten

−1

r

∂

∂r

(
ra(r)

∂v(r)

∂r

)
=

1

(4r)v3(r)
for r ∈ (1, 2), with a(r) =

1

r
. (5.5)

For a radial function u, this corresponds to the PDE (1.1) with the values (5.3).
Since the coefficients are regular, the solution u to (1.1) is unique in the class C2(Ω)∩
C0(Ω) [7]. It is therefore radial. It is easy to check that u given by (5.4) belongs to

C∞(Ω) ∩ C1/2(Ω) and that it does not belong to H1
0 (Ω).

ε 0.4 0.2 0.1 0.05 0.025 0.0125 0.00625
L2 error 0.17 0.049 0.020 0.016 0.016 0.016 0.016
L2 ratio · 3.5 2.5 1.3 1.0 1.0 1.0
L∞ error 0.098 0.046 0.023 0.012 0.0098 0.0099 0.0099
L∞ ratio · 2.1 2.0 1.9 1.2 1.0 1.0

Nb vertices 8652 12387 15633 19520 24442 36397 69629
hmin 1.0e-02 3.4e-03 1.2e-03 4.5e-4 1.8e-4 8.1e-05 4.7e-05
hmax 0.22 0.25 0.25 0.25 0.25 0.24 0.25

Table 3. L2 error, L∞ error and mesh characteristics for case (5.3)

For the numerical resolution of (5.3), we proceeded as previously. The interior
and exterior circle of radius 1 and 2 were both approximated by a regular polygon
with 251 vertices, yielding a polygonal approximation Ωh of Ω (with Ωh 6⊂ Ω since Ω
is not convex). The sides of the small polygon had a length of approximately 0.025,
whereas the sides of the large polygon had a length of approximately 0.05.

We performed Algorithm 5.1 with kmax = 5 iterations, starting with an initial
triangulation of Ωh and the initial guess ũ0

h = 0. The parameters in the adaptmesh

command were set as previously. Table 3 is the analogue of Table 1 for this test case.
Due to the regularity of the coefficients, the results are very similar to the first

test case. In particular, for ε from 0.4 down to 0.05, the L∞ error is O(ε) and the
error due to the regularization is dominant. Then, for smaller values of ε, the error
due to the discretization is dominant.
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5.4. A numerical simulation with a discontinuous matrix. In order to illus-
trate our method in the case of a discontinuous elliptic matrix, we computed the
numerical solution obtained on the unit disc Ω in R2 for the values

A(x, y) = a(x, y)

(
1 0
0 1

)
, c(x, y) = 1 and γ = 1.1, (5.6)

with

a(x, y) =

{
0.2 if x2 + y2 < 0.22,

a1(x, y) if x2 + y2 ≥ 0.22,
(5.7)

where

a1(x, y) =


1.05− y if x ≥ 0 and y ≥ 0,

2.10− 2x if x ≥ 0 and y < 0,

1.05 + x if x < 0 and y ≥ 0,

2.10 + 2y if x < 0 and y < 0.

(5.8)

We note that a is discontinuous accross the circle of radius 0.2 and along the x and
y axis when 0.2 < |x| < 1 or 0.2 < |y| < 1.

We use Algorithm 5.1 with ε = 0.05, kmax = 5 and ũ0
h = 0. The unit circle is

approximated by a regular polygon with 314 sides having a length of approximately
0.02. This yields a polygonal approximation Ωh of Ω and an initial triangulation of
Ωh. Since Ω is convex, we have Ωh ⊂ Ω and we are in the situation described in
Remark 4.1. The parameters in the adaptmesh command are the same as previously
except for err whose value is set to 0.0025.

The output mesh T kmaxh is shown in Figure 2. We observe that it is refined near
the unit circle, due to the singularity in the PDE, but also along the discontinuities
of the matrix A. The corresponding output solution ukmaxh is shown in Figure 3.

Figure 2. Output mesh for case (5.6) and ε = 0.05 (γ = 1.1)
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Figure 3. Output solution for case (5.6) and ε = 0.05 (γ = 1.1)
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[17] O. Kavian. Introduction à la théorie des points critiques et applications aux problèmes ellip-
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