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We propose a finite element discretization of a singular elliptic problem with discontinuous coefficients. We use a "regularize then discretize" approach. We show that our method converges in 1, 2 and 3 space dimensions. We also perform numerical simulations in two space dimensions with FreeFem++, using an adaptive mesh strategy to deal with the singularity. The simulations confirm the validity of our approach.

Introduction

We consider the following singular elliptic problem,

       -div(A(x)∇u) = c(x) u γ in Ω, u > 0 in Ω, u = 0 on ∂Ω. (1.1) 
Here, Ω is a bounded domain of R d , γ > 0, the function c satisfies c ∈ L ∞ (Ω), c ≥ 0, c = 0, (

and A = (a ij ) 1≤i,j≤d is a bounded elliptic matrix, i.e.

a ij ∈ L ∞ (Ω), for all 1 ≤ i, j ≤ d, (1.3) 
and there exists α > 0 such that

A(x)ξ • ξ ≥ α|ξ| 2 , (1.4) 
for all ξ ∈ R d , for almost every x ∈ Ω. Problem (1.1) is a generalization of the singular elliptic problem

       -∆u = c(x) u γ in Ω, u > 0 in Ω, u = 0 on ∂Ω, (1.5) 
which has been extensively studied, along with many of its variants such as (1.1) (see, e.g., [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF][START_REF] Díaz | Elliptic problems on the space of weighted with the distance to the boundary integrable functions revisited[END_REF][START_REF] Berdan | The uniform Hopf inequality for discontinuous coefficients and optimal regularity in BMO for singular problems[END_REF][START_REF] Godoy | Elliptic problems with singular nonlinearities of indefinite sign[END_REF][START_REF] Gui | Regularity of an elliptic problem with a singular nonlinearity[END_REF] and references therein). Questions related to existence, uniqueness and regularity of solutions have been investigated. Such problems arise in the modeling of boundary layers [START_REF] Callegari | Some singular, nonlinear differential equations arising in boundary layer theory[END_REF][START_REF] Charkaoui | Weak periodic solution for semilinear parabolic problem with singular nonlinearities and L1 data[END_REF][START_REF] Gie | Singular perturbations and boundary layers[END_REF].

If A, c and ∂Ω are regular enough, it is well-known that (1.1) has a unique classical solution u ∈ C 2 (Ω) ∩ C 0 (Ω), which cannot generally belong to C 2 (Ω). For instance, the function u(x) = 1 -x 2 (1.6) satisfies (1.5) on the interval (-1, 1) with c(x) = 1 and γ = 3, that is -u (x) = 1 u 3 in (-1, 1), u > 0 in (-1, 1) and u(-1) = u(1) = 0.

(1.7)

We note that the function defined by (1.6) has the regularity C 1/2 ([-1, 1]) and does not belong to H 1 0 (-1, 1). These two remarks have been generalized to problem (1.5). In particular, if Ω is of class C 2 , if c is Hölder continuous and bounded from below by a positive constant, a result of Gui and Lin [START_REF] Gui | Regularity of an elliptic problem with a singular nonlinearity[END_REF] shows that If 0 < γ < 1, then u ∈ C 1,ν (Ω), where ν = 1 -γ,

If γ = 1, then u ∈ C ν (Ω), for all ν ∈ (0, 1), (1.9)

If γ > 1, then u ∈ C ν (Ω), where ν = 2 1 + γ .

(1.10)

Under the same assumptions, the solution u to (1.5) belongs to H 1 0 (Ω) if and only if γ < 3 (see [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] and [1, Lemma 2.1]).

In [START_REF] Barrett | Finite element approximation of a semilinear elliptic problem with a singular nonlinearity[END_REF], Barrett and Schneider performed a very nice a priori estimate analysis for a P 1 finite element approximation of (1.5) in 1, 2 and 3 space dimensions. In particular, they obtained a priori estimates in H 1 norm for γ < 3 and L ∞ norm for all γ > 0. They also provided extensive numerical simulations in space dimension 1. They used uniform subdivisions for the computations, but they pointed out in their conclusion that adaptive meshes would be more appropriate. This is illustrated by the example (1.6) or by the result (1.10): since the C ν regularity occurs near the boundary of Ω, it seems natural to use a mesh which is refined near the boundary.

Our purpose here is to propose a finite element approximation of problem (1.1). This is done on a "regularize then discretize" basis. We show that our method converges for d = 1, 2 and 3 and we also perform numerical simulations in two space dimensions with FreeFem++. In order to deal with the singularity, we use an adaptive mesh strategy.

Our paper is organized as follows. We first introduce in Section 2 a regularized version of problem (1.1) by using a local regularization of the nonlinearity s → 1/s γ , as in [START_REF] Barrett | Finite element approximation of a semilinear elliptic problem with a singular nonlinearity[END_REF]. A monotonicity argument shows that the regularized problem has a unique solution u ε in H 1 0 (Ω) (Proposition 2.2). By adapting the approach in [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Berdan | The uniform Hopf inequality for discontinuous coefficients and optimal regularity in BMO for singular problems[END_REF], we show in Section 3 that u ε converges to a solution u to problem (1.1) in appropriate sense as ε goes to 0. In particular, when γ ≤ 1, u ε → u weakly in H 1 0 (Ω) (Theorem 3.4) and when γ > 1, u ε → u strongly in L 2 (Ω) (Theorem 3.7). Then, we propose in Section 4 a discretization of the regularized problem. For a fixed ε, we prove that the solution to the discretized problem converges strongly in H 1 0 (Ω) to u ε as the mesh size goes to 0 (Theorem 4.5). The assumptions on the family of triangulations are quite general. In Section 5, several numerical simulations show the validity of our approach.

The regularized problem

Throughout the paper, we assume that γ > 0, c satisfies (1.2) and A satisfies (1.3)- (1.4). In Sections 2 and 3, we only assume that Ω is a bounded domain of R d where d is any positive integer. In Section 4, we make further assumptions on Ω and d.

For the regularized problem, we work in the Sobolev space H 1 0 (Ω) equipped with the Hilbertian norm

v 1 = Ω |∇v| 2 dx 1/2 , which is equivalent to the standard H 1 norm. The norm in L 2 (Ω) is denoted • 0 . The first eigenvalue of -∆ is λ 1 = inf v∈H 1 0 (Ω), v =0 v 2 1 v 2 0 > 0. (2.1)
The duality product between H 1 0 (Ω) and its topological dual

H -1 (Ω) is denoted •, • . Following [1], we define the following C 1 regularization f ε of f (s) = s -γ , for each ε ∈ (0, 1]: f ε (s) = f (s) if s > ε, f (ε) + f (ε)(s -ε) if s ≤ ε. (2.2) 
We note that f ε is decreasing and positive on R.

Remark 2.1. Another regularization of f (s) could be fε (s) = f (ε + s). (2.3) 
However, as pointed out in [START_REF] Barrett | Finite element approximation of a semilinear elliptic problem with a singular nonlinearity[END_REF], f ε performs numerically better. The reason is that fε is a global regularization which always effects the practical computation, whereas f ε is a local regularization which has a better computational effect, cf. Section 5.2.

The regularized version of problem (1.1) reads

-div(A(x)∇u ε ) = c(x)f ε (u ε ) in Ω, u ε = 0 on ∂Ω. (2.4) 
We have Proposition 2.2. Problem (2.4) has a unique solution u ε ∈ H 1 0 (Ω). Moreover, u ε > 0 a.e. in Ω.

Proof. We use a monotonicity argument. We consider the nonlinear operator

B ε v = Lv -c(•)f ε (v)
, where Lv = -div(A∇v).

(2.5)

We will show that i) B ε is a nonlinear continuous operator from

H 1 0 (Ω) into its dual H -1 (Ω). ii) B ε is strictly monotone. iii) B ε is coercive, i.e. lim v 1 →+∞ B ε v, v v 1 → +∞.
It follows from the theory of maximal monotone operators (see, e.g. [START_REF] Zeidler | Nonlinear functional analysis and its applications[END_REF]Theorem 26.A]) that there exists a unique u ε ∈ H 1 0 (Ω) such that B ε u ε = 0. The strong maximum principle [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.19] implies that u ε > 0 on Ω.

We start with i). The linear operator L which is defined by duality through

Lv, w = Ω A(x)∇v • ∇wdx is continuous from H 1 0 (Ω) into H -1 (Ω) since A ∈ L ∞ (Ω; R d×d ). By definition (2.2) of f ε , we see that f ε is bounded on [ε, ∞) and affine on (-∞, ε]. Thus, there exist positive constants C 1 , C 2 (which depend on ε) such that |f ε (s)| ≤ C 1 |s| + C 2 (s ∈ R).
(2.6)

As a consequence, the operator v → a(•)f ε (v) is continuous from L 2 (Ω) into L 2 (Ω)
(see, e.g., [17, 16.1 Lemme]). This shows assertion i).

Next, we see that for all v, ṽ ∈ H 1 0 (Ω) with v = ṽ, we have

B ε v -B ε ṽ, v -ṽ = Ω (A(x)∇(v -ṽ)) • ∇(v -ṽ) - Ω a(x)[f ε (v) -f ε (ṽ)](v -ṽ)dx ≥ α v -ṽ 2 1 > 0,
where in the second line, we used (1.4). This proves assertion ii).

For the coercivity of B ε , we note that

-sf ε (s) = γs 2 ε -(γ+1) -s(1 + γ)ε -γ if s ≤ ε, -s 1-γ if s > ε, (2.7) 
and we consider three cases, namely γ > 1, γ = 1 and γ < 1.

If γ > 1, then we have

-sf ε (s) ≥ -C 3 , ∀s ∈ R, (2.8) 
for some positive constant C 3 which depends on ε. From (1.4), we deduce that

B ε v, v = Ω A(x)∇v • ∇vdx - Ω c(x)f ε (v(x))v(x)dx ≥ α v 2 1 -c L ∞ (Ω) |Ω|C 3 , (2.9 
)

for all v ∈ H 1 0 (Ω). If γ ≤ 1, the minimum value of -sf ε (s) on (-∞, ε] is attained at s ε = ε. Thus, -sf ε (s) ≥ -s ε f ε (s ε ) = -ε 1-γ ≥ -1, ∀s ∈ (-∞, ε],
(2.10) since ε ∈ (0, 1]. If γ = 1, the estimate (2.10) holds for all s ∈ R (see (2.7)) and we recover the estimate (2.9) but with a constant C 3 = 1 independent of ε.

If γ < 1, we deduce from Young's inequality when s > ε and from (2.10) when s ≤ ε that for all β > 0, there exists C β > 0 independent of ε such that

-sf ε (s) ≥ -βs 2 -C β (s ∈ R).
(2.11)

Using (1.4) and (2.1), we obtain

B ε v, v = Ω A(x)∇v • ∇vdx - Ω c(x)f ε (v(x))v(x)dx ≥ α 2 v 2 1 + αλ 1 2 v 2 0 -c L ∞ (Ω) |Ω|(β v 2 0 + C β ),
for all v ∈ H 1 0 (Ω). Thus, for β > 0 small enough, we have

B ε v, v ≥ α 2 v 2 1 -C 4 , (2.12) 
for some constant C 4 independent of ε.

Summing up, we have proved that (2.12) holds for a constant C 4 independent of ε ∈ (0, 1] when γ ≤ 1, and for a constant which depends on ε when γ > 1. This shows assertion iii) and the proof is complete.

The limit ε → 0

In order to understand the behaviour of (u ε ) as ε goes to 0, we adapt the approach in [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Berdan | The uniform Hopf inequality for discontinuous coefficients and optimal regularity in BMO for singular problems[END_REF]. We first have:

Proposition 3.1. If 0 < ε ≤ δ ≤ 1, then u ε ≥ u δ a.e. in Ω. ( 3.1) 
For all ω ⊂⊂ Ω, there exists c ω independent of ε such that

u ε (x) ≥ c ω > 0 for a.e. x ∈ ω, for every ε ∈ (0, 1]. (3.2) 
Proof. Let 0 < ε ≤ δ ≤ 1. We have, in the sense of distributions,

-div(A(x)∇u δ ) = c(x)f δ (u δ ), -div(A(x)∇u ε ) = c(x)f ε (u ε ), (3.3) so that -div(A(x)∇(u δ -u ε )) = c(x)[f δ (u δ ) -f ε (u ε )]. (3.4) We choose (u δ -u ε ) + (which belongs to H 1 0 (Ω)
) as a test function, and we note that

[f δ (u δ ) -f ε (u ε )] (u δ -u ε ) + ≤ 0. (3.5) Indeed, f δ is nonincreasing so that [f δ (u δ ) -f δ (u ε )] (u δ -u ε ) + ≤ 0, and δ → f δ (s) is nonincreasing for all s, so that [f δ (u ε ) -f ε (u ε )] (u δ -u ε ) + ≤ 0.
On summing these two inequalities, we obtain (3.5). Thus, the choice (u δ -u ε ) + as a test function in (3.4) yields

α (u δ -u ε ) + 2 
1 ≤ 0, thanks to assumption (1.4). We conclude that (u δ -u ε ) + = 0, which shows (3.1).

Next, we note that for all ε > 0, u ε belongs to L ∞ (Ω). This follows from [20, Théorème 4.2] since the right-hand side of (3.3) belongs to L ∞ (Ω). In particular, for ε = 1, there exists a constant C such that

u 1 L ∞ (Ω) ≤ C,
and we have

-div(A(x)∇u 1 ) = c(x)f 1 (u 1 ) ≥ c(x)f 1 ( u 1 L ∞ (Ω) ) ≥ c(x)f 1 (C).
Since c(x)f 1 (C) is not identically zero, the strong maximum principle [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.19] implies that u 1 > 0 a.e. in Ω and that (3.2) holds for ε = 1. On choosing δ = 1 in (3.1), we obtain that (3.2) holds for all ε ∈ (0, 1].

In order to pass to the limit ε → 0, we need a priori estimates. We consider two cases, namely γ ≤ 1, in which case uniqueness holds [9, Remark 3], and γ > 1.

3.1. The case γ ≤ 1. We have:

Lemma 3.2. If γ ≤ 1, the family (u ε ) is bounded in H 1 0 (Ω). Proof. We choose v = u ε in (2.12). Since B ε u ε = 0, this yields 0 ≥ α 2 u ε 2 1 -C 4 .
The constant C 4 is independent of ε since γ ≤ 1. This proves the claim.

We recall the following representation formula.

Lemma 3.3 (see [3]). Let v ∈ L 1 loc (Ω) ∩ H -1 (Ω) such that v ≥ 0 a.e. in Ω. Then for all ϕ ∈ H 1 0 (Ω), we have vϕ ∈ L 1 (Ω) and v, ϕ = Ω vϕdx. (3.6) 
Proof. Let ϕ ∈ H 1 0 (Ω). If ϕ ≥ 0 a.e. in Ω, the result is a consequence from [START_REF] Brézis | A property of Sobolev spaces[END_REF]. In the general case, we write ϕ = ϕ + -ϕ -where ϕ + and ϕ -are nonnegative functions in H 1 0 (Ω).

Our convergence result reads as follows.

Theorem 3.4. Assume that γ ≤ 1. Then there exists a unique solution u ∈ H 1 0 (Ω) to (1.1) in the sense that

∀ ω ⊂⊂ Ω, ∃c ω > 0 such that u(x) ≥ c ω > 0, for a.e. x ∈ ω, (3.7) c u γ ∈ L ∞ loc (Ω) ∩ H -1 (Ω), (3.8 
)

Ω A(x)∇u • ∇ϕdx = Ω c(x) u γ ϕdx, ∀ϕ ∈ H 1 0 (Ω). (3.9)
Moreover, u ε → u weakly in H 1 0 (Ω) and strongly in L 2 (Ω), as ε → 0. We note that the right-hand side of (3.9) is well-defined because we may apply Proof. We first prove uniqueness of u. If ũ ∈ H 1 0 (Ω) is another solution of (1.1) in the sense of (3.7)-(3.9), then u -ũ satisfies

Ω A(x)∇(u -ũ) • ∇ϕdx = Ω c(x) 1 u γ - 1 ũγ ϕdx,
for all ϕ ∈ H 1 0 (Ω). We choose ϕ = u -ũ as a test function, we use that f (s) = s -γ is decreasing and assumption (1.4). This yields

α u -ũ 2 1 ≤ Ω A(x)∇(u -ũ) • ∇(u -ũ)dx ≤ 0.
Thus, ũ = u as claimed.

Next, we consider the behaviour (u ε ) as ε tends to 0. By Lemma 3.2, (u ε ) is bounded in H 1 0 (Ω). Thus, up to a subsequence, (u ε ) converges weakly in H 1 0 (Ω) to a function u ∈ H 1 0 (Ω). We know by Rellich's theorem that L 2 (Ω) is compactly imbedded into H 1 0 (Ω), so that (up to a subsequence) u ε → u strongly in L 2 (Ω) and a.e. in Ω. Proposition 3.1 implies that (3.7) holds for u. In turn, this implies that u > 0 a.e. in Ω and

c u γ ∈ L ∞ loc (Ω). Now, we use that B ε u ε = 0, that is Ω A∇u ε • ∇ϕdx = Ω c(x)f ε (u ε )ϕdx, ∀ϕ ∈ H 1 0 (Ω). (3.10) Let ϕ ∈ C ∞ c (Ω) in (3.10). Thanks to (3.1), f ε (u ε ) is bounded in L ∞ loc (Ω) and f ε (u ε ) → f (u) a.e.
in Ω. Since ϕ has compact support in Ω, we may pass to the limit in (3.10). We obtain that (3.9) holds for all ϕ ∈ C ∞ c (Ω). Equation (3.10) also shows that

c(x)f ε (u ε ) belongs to a bounded set of H -1 (Ω) since Ω c(x)f ε (u ε )ϕdx ≤ C u ε 1 ϕ 1 ≤ C ϕ 1 , for all ϕ ∈ H 1 0 (Ω)
, where the constants C and C are independent of ε. This shows that c(x)f (u) ∈ H -1 (Ω). Finally, we use that C ∞ c (Ω) is dense in H 1 0 (Ω) and the representation formula of Brezis and Browder (Lemma 3.3), and we find that equation (3.9) holds for all ϕ ∈ H 1 0 (Ω). The uniqueness of the limit u implies that the whole family (u ε ) converges to u, weakly in H 1 0 (Ω) and strongly in L 2 (Ω). This concludes the proof.

Remark 3.5. The results in [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Berdan | The uniform Hopf inequality for discontinuous coefficients and optimal regularity in BMO for singular problems[END_REF] show that u ) is bounded in

H 1 0 (Ω) and (u ε ) is bounded in H 1 loc (Ω).
As a consequence, we can state the following convergence result: Theorem 3.7. Assume that γ > 1 and let (ε n ) be a decreasing sequence of positive real numbers which tends to 0. Then the pointwise limit u of (u εn ) solves (1.1) in the sense that

∀ ω ⊂⊂ Ω, ∃c ω > 0 such that u(x) ≥ c ω > 0, for a.e. x ∈ ω, (3.11) 
u ∈ H 1 loc (Ω), (3.12)

Ω A(x)∇u • ∇ϕdx = Ω c(x) u γ ϕdx, ∀ϕ ∈ C 1 c (Ω), (3.13) 
u 1+γ 2
∈ H 1 0 (Ω) (this is the meaning of u = 0 on ∂Ω).

(3.14)

Moreover, u εn → u weakly in H 1 (ω), for all ω ⊂⊂ Ω, u 1+γ 2 εn → u 1+γ 2
weakly in H 1 0 (Ω) and u εn → u strongly in L 2 (Ω).

Proof. We note that by (3.1), the sequence (u εn ) n is nondecreasing so that its pointwise limit u(x) = lim n→+∞ u εn (x) is well defined a.e. in Ω. Property (3.11) is a consequence of (3.2). Let ϕ ∈ C 1 c (Ω) and let ω = {x ∈ Ω : ϕ(x) = 0}.

We note that ω ⊂⊂ Ω. By Lemma 3.6, (u εn ) is bounded in H 1 (ω), so that, up to a subsequence, u εn → u weakly in H 1 (ω), strongly in L 2 (ω) and a.e. in Ω. The uniqueness of the limit u implies that the whole sequence (u εn ) converges.

By definition of u εn , we have

Ω A(x)∇u εn • ∇ϕdx = Ω c(x)f εn (u εn )ϕdx. (3.15)
Since ω ⊂⊂ Ω, we may pass to the limit in (3.15) and we obtain that u satisfies (3.13).

Finally, we know by Lemma 3.6 that (u

1+γ 2
εn ) is bounded in H 1 0 (Ω). This shows that u satisfies (3.14) and that (u

1+γ 2
εn ) converges weakly in H 1 0 (Ω) to u 1+γ 2 . Assume now that d ≥ 3 and let s < 2 = 2d d-2 . Thanks to the Sobolev imbeddings [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], we know that

H 1 0 (Ω) is compactly imbedded in L s (Ω), so (u 1+γ 2 εn ) → u 1+γ 2
strongly in L s (Ω). There exists g ∈ L s (Ω) such that, up to a subsequence, (u

1+γ 2 εn ) → u 1+γ 2
a.e. in Ω and 0 ≤ u (Ω). The dominated convergence theorem shows that u εn → u in L q (Ω), with q = s(1+γ) 2 < d(1+γ) d-2 . Since d(1+γ) d-2 > 2 and s < 2 is arbitrary, we may choose q = 2. Note that by uniqueness of the limit a.e., the whole sequence converges.

If d = 2, a similar argument holds for all s < +∞ and we conclude similarly.

If d = 1, then H 1 0 (Ω) is compactly imbedded in C 0 (Ω), so (u 1+γ 2 εn ) → u 1+γ 2
strongly in C 0 (Ω). In particular, there exists M > 0 such that 0 ≤ u εn (x) ≤ M for all x ∈ Ω and for all n. Since the function t → t 2 1+γ is uniformly continuous on [0, M ], we conclude that u εn → u strongly in C 0 (Ω), and therefore in L 2 (Ω). This concludes the proof.

The finite element approximation

Throughout Section 4, we assume that ε ∈ (0, 1] is fixed and d = 1, 2 or 3. For the finite element approximation of the regularized problem (2.4), we assume that Ω is a bounded convex d-polyhedron, that is a bounded interval if d = 1, a convex polygon if d = 2 and a convex polyhedron if d = 3.

We consider a regular family {T h } h>0 of triangulations of Ω into d-simplices and such that each triangulation covers Ω exactly. For each triangulation T h , the P 1 finite element space is

V h = {v h ∈ C 0 (Ω), : v h is affine on every d-simplex of T h and v h = 0 on ∂Ω}. (4.1)
The space V h is a finite dimensional subspace of V = H 1 0 (Ω). We denote I h the interpolation operateur at the vertices of the triangulation. It is well-known [START_REF] Ern | Éléments finis: théorie, applications, mise en oeuvre[END_REF] that for every v ∈ H 2 (Ω), we have

I h v → v in V, as h → 0. (4.2) Since H 2 (Ω) is dense in V , this implies inf v h ∈V h u -v h 1 → 0, (4.3) 
for all u ∈ V .

Remark 

h ∈ V h such that Ω A(x)∇u h • ∇v h dx = Ω c(x)f ε (u h )v h dx, ∀v h ∈ V h . (4.4) 
We have Proposition 4.2. Problem (4.4) has a unique solution.

Remark 4.3. The function u h = u ε,h defined in (4.4) depends also on ε. Since ε ∈ (0, 1] is fixed throughout Section 4, we omit the subscript ε.

Proof. We use a monotonicity argument, as in the continuous case. Let B h : V h → V h be the nonlinear operator defined by

Ω (B h v h )w h dx = Ω A(x)∇v h • ∇w h - Ω c(x)f ε (v h )w h dx. (4.5) 
The same arguments as in the proof of Proposition 2.2 show that B h is continuous, strictly monotone and coercive. Thus, there exists a unique u h ∈ V h such that B h u h = 0.

Remark 4.4. We do not know if u h ≥ 0 in every case. If a discrete maximum principle holds then u h ≥ 0, but this requires additional assumptions on the triangulation and the matrix A [START_REF] Ciarlet | Maximum principle and uniform convergence for the finite element method[END_REF]. If Lv = -∆v and if the triangulation is weakly acute, then a discrete maximum principle holds and we have u h ≥ 0, see [START_REF] Barrett | Finite element approximation of a semilinear elliptic problem with a singular nonlinearity[END_REF][START_REF] Jiang | Effect of numerical integration for elliptic obstacle problems[END_REF][START_REF] Vanselow | About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation[END_REF]. If Lv = -∆v and d = 1, the discrete maximum principle holds without any additional assumption on the mesh [START_REF] Vejchodský | Discrete maximum principle for higher-order finite elements in 1[END_REF].

We recall that the parameter ε > 0 is fixed throughout this section. The following convergence holds: Theorem 4.5. We have u h → u ε strongly in V as h → 0.

Proof. We notice that

Ω (B h v h )w h dx = B ε v h , w h , ∀v h , w h ∈ V h , (4.6) 
where B h and B ε are defined in (4.5) and (2.5), respectively. We apply this relation with v h = w h = u h . Using B h u h = 0 and (2.12), we obtain

0 ≥ α 2 u h 2 1 -C 4 .
This shows that the sequence (u h ) is bounded in V .

We may therefore assume that, up to a subsequence, u h converges weakly in V to some function ũ. Let ϕ ∈ C ∞ c (Ω). We choose v h = u h and w h = I h ϕ in (4.6). We find

0 = B ε u h , I h ϕ = Ω A(x)∇u h • ∇(I h ϕ)dx - Ω c(x)f ε (u h )I h (ϕ)dx. (4.7)
The quadratic term tends to Ω A(x)∇ũ•∇ϕdx thanks to (4.2). Since V is compactly imbedded into L 2 (Ω), we know that u h → ũ strongly in L 2 (Ω). Using the continuity of the nonlinear operator

v → c(•)f ε (v) from L 2 (Ω) into L 2 (Ω) (cf. (2.6
)), we may pass to the limit in (4.7) and we find

0 = B ε ũ, ϕ .
This is true for all ϕ ∈ C ∞ c (Ω). Thus, ũ = u ε and by uniqueness of the limit, the whole sequence (u h ) converges to ũ, weakly in V .

Next, we denote g(x) = c(x)f ε (u(x)) and g h (x) = c(x)f ε (u h (x)). We have already seen that g h → g in L 2 (Ω). The definition of u h and u ε reads

Ω A(x)∇u h • ∇v h dx = Ω g h v h dx, ∀v h ∈ V h , Ω A(x)∇u • ∇vdx = Ω gvdx, ∀v ∈ V.
We introduce the solution ũh ∈ V h to the linear problem

Ω A(x)∇ũ h • ∇v h dx = Ω gv h , ∀v h ∈ V h .
The assumptions on A ensure that ũh exists and is unique. Cea's lemma [START_REF] Ern | Éléments finis: théorie, applications, mise en oeuvre[END_REF] and (4.3) imply that ũh → u strongly in V . On the other hand, we have

α u h -ũh 2 1 ≤ Ω A(x)∇(u h -ũh ) • ∇(u h -ũh )dx = Ω (g h -g)(u h -ũh )dx ≤ g h -g 0 u h -ũh 0 , so u h -ũh 1 ≤ 1 αλ 1/2 1 g -g h 0 ,
which shows that u h -ũh 1 → 0. On writing u h = (u h -ũh ) + ũh , we obtain that u h → u strongly in V , as claimed.

Numerical simulations

We performed numerical simulations with the FreeFem++ software [START_REF] Hecht | New development in FreeFem++[END_REF] in two space dimension. We used a mesh adaptation algorithm available in FreeFem++ with the keyword adaptmesh. Our algorithm reads as follows, for a bounded domain Ω of R 2 with smooth boundary and a given ε > 0.

Algorithm 5.1. Input: an initial mesh T 0 h which gives a triangulation of Ω h (a polygonal approximation to Ω) and an initial guess ũ0 h of the solution u. For k from 0 to k max :

(1) build the space

V k h ⊂ H 1 0 (Ω h ) of continuous P 1 finite element associated to T k h , cf. (4.1); (2) Compute the solution u k h ∈ V k h to the variational problem Ω A(x)∇u k h • ∇v k h dx = Ω c(x)f ε (u k h )v k h dx, ∀v k h ∈ V k h ,
using a Newton algorithm with the initial value ũk

h ; (3) Build a new triangulation T k+1 h of Ω h adapted to the solution u k h ; (4) Compute the P 1 interpolate ũk+1 h of u k h on T k+1 h . Output: T kmax h and u kmax h .
We recall that f ε is the regularization of f (s) = s -γ given by (2.2) (except in Table 2 where we choose fε defined by (2.3)). For a polygonal domain Ω, we have Ω h = Ω but in the simulations below we have Ω h = Ω because the boundary ∂Ω is of class C 2 .

5.1.

A radial test case for A = Id. We first consider problem (1.5) on the ring Ω = {(x, y) ∈ R 2 : e -2 < x 2 + y 2 < e 2 }, with c(x, y) = 1 x 2 + y 2 and γ = 3.

(

Using polar coordinates, it is easy to check that the exact solution to this problem is

u(x, y) = 1 -log 2 ( x 2 + y 2 ) 1/2 . This solution belongs to C ∞ (Ω) ∩ C 1/2 (Ω) (cf. (1. 10 
)), and it does not belong to

H 1 0 (Ω) since γ > 3 [1, Lemma 2.1].
The exterior (interior, respectively) circle of Ω with radius e (1/e, resp.) is approximated by a regular polygon having 170 (46, resp.) vertices; its edges have a length of approximately 0.1 (0.05, resp.). This yields a polygonal domain Ω h which approximates the ring Ω. Since Ω is not convex, Ω h ⊂ Ω and the approximation is nonconforming, that is H 1 0 (Ω h ) ⊂ H 1 0 (Ω). We performed Algorithm 5.1 with k max = 5 mesh adaptations, starting with an initial triangulation T 0 h of Ω h and the initial guess ũ0 h = 0. The FreeFem++ command in step (3) was Th=adaptmesh(Th,u,err=0.005,nbvx=9e4). This command means that T k+1 h is built using T k h and u k h with a P 1 interpolation error level of 0.005 and a maximum number of vertices equal to 9e4.

The final mesh T 5 h obtained for ε = 0.1 is shown in Figure 1. It has 11084 vertices and it has been obtained by successive mesh refinements by starting from an initial mesh T 0 h with 4181 vertices. The mesh T k h at iteration k = 0, In Table 1, we present the L 2 error u-u h L 2 (Ω h ) and the L ∞ error u-u h L ∞ (Ω h ) obtained for different value of ε (with u h = u 5 h ). The discretization parameters are the same as for the case ε = 0.1, which means that the initial triangulation T 0 h is the same, the initial guess is ũ0 h = 0 and the parameters in the adaptmesh command are the same. We checked numerically that the solution u h is nonnegative on Ω h , up to computer accuracy. For each ε, Table 1 gives the number of vertices in the final mesh T kmax h , as well as the minimum and maximum length of the edges of this triangulation.

On writing

u -u h = (u -u ε ) + (u ε -u ε,h ), (5.2) 
the error u -u ε,h can be interpreted as an error u -u ε due to the regularization and an error u ε -u ε,h due to the discretization (we write u h = u ε,h to stress that u h depends on ε, cf. Remark 4.3).

In line 5 of Table 1, we have computed for each ε the ratio of the error in the L ∞ norm for 2ε and ε, namely

r ∞,ε = u -u 2ε,h L ∞ (Ω h ) u -u ε,h L ∞ (Ω h ) .
We see that for ε varying from 0.2 down to 0.025, the ratio r ∞,ε is very close to 2. This means that the error is of order O(ε) and the error due to the regularization is dominant in (5.2). For ε between 0.025 and 0.00625, the error due to the discretization becomes dominant.

In comparison, the L 2 error decreases more rapidly than the L ∞ error for ε between 0.4 and 0.025 (cf. line 3 in Table 1, which represents the same ratio as r ∞,ε , but in L 2 norm). This can be related to the choice of a local regularization f ε for f : the error u(x, y) -u h (x, y) is mostly located near the boundary ∂Ω (cf. Remark 2.1). ε 0.1 0.05 0.025 0.0125 6.25e-3 3.125e-3 1. We see that for ε from 0.1 down to 6.25e-3, the L ∞ error and the L 2 error are both dominated by the regularization error which is of order O(ε). The L 2 error is much larger than for the regularization f ε because we use a global regularization of f : the error u(x, y) -u h (x, y) is located everywhere on Ω and not just near the boundary. This is confirmed by the last line of Table 2, which shows for each ε the normalized ratio

u -u ε,h L 2 (Ω h ) |Ω| 1/2 u -u ε,h L ∞ (Ω h ) .
This ratio is close to 1 as long as the regularization error dominates.

5.3.

A radial test case with regular coefficients. We consider now problem (1.1) on the ring Ω = {(x, y) ∈ R 2 : 1 < x 2 + y 2 < 2 2 }, with A(x, y) = 1

x 2 + y 2 1 0 0 1 , c(x, y) = 1 4 x 2 + y 2 and γ = 3.

(5.

3)

The exact solution to this problem is

u(x, y) = v( x 2 + y 2 ), (5.4) 
where

v(r) = [(r -1)(2 -r)] 1/2 . Indeed, it is straighforward to check that -v (r) = 1 4v 3 (r) for r ∈ (1, 2), and v(1) = v(2) = 0.
The ODE can be rewritten

- 1 r ∂ ∂r ra(r) ∂v(r) ∂r = 1 (4r)v 3 (r) for r ∈ (1, 2), with a(r) = 1 r . (5.5) 
For a radial function u, this corresponds to the PDE (1.1) with the values (5.3). Since the coefficients are regular, the solution u to (1.1) is unique in the class C 2 (Ω)∩ C 0 (Ω) [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF]. It is therefore radial. It is easy to check that u given by (5.4) belongs to For the numerical resolution of (5.3), we proceeded as previously. The interior and exterior circle of radius 1 and 2 were both approximated by a regular polygon with 251 vertices, yielding a polygonal approximation Ω h of Ω (with Ω h ⊂ Ω since Ω is not convex). The sides of the small polygon had a length of approximately 0.025, whereas the sides of the large polygon had a length of approximately 0.05.

C ∞ (Ω) ∩ C 1/2 (
We performed Algorithm 5.1 with k max = 5 iterations, starting with an initial triangulation of Ω h and the initial guess ũ0 h = 0. The parameters in the adaptmesh command were set as previously. Table 3 is the analogue of Table 1 for this test case.

Due to the regularity of the coefficients, the results are very similar to the first test case. In particular, for ε from 0.4 down to 0.05, the L ∞ error is O(ε) and the error due to the regularization is dominant. Then, for smaller values of ε, the error due to the discretization is dominant.

5.4.

A numerical simulation with a discontinuous matrix. In order to illustrate our method in the case of a discontinuous elliptic matrix, we computed the numerical solution obtained on the unit disc Ω in R 2 for the values A(x, y) = a(x, y) 1 0 0 1 , c(x, y) = 1 and γ = 1.1, (5.6) with a(x, y) = 0.2 if x 2 + y 2 < 0.2 2 , a 1 (x, y) if x 2 + y 2 ≥ 0.2 2 , (

where

a 1 (x, y) =         
1.05 -y if x ≥ 0 and y ≥ 0, 2.10 -2x if x ≥ 0 and y < 0, 1.05 + x if x < 0 and y ≥ 0, 2.10 + 2y if x < 0 and y < 0.

(5.8)

We note that a is discontinuous accross the circle of radius 0.2 and along the x and y axis when 0.2 < |x| < 1 or 0.2 < |y| < 1.

We use Algorithm 5.1 with ε = 0.05, k max = 5 and ũ0 h = 0. The unit circle is approximated by a regular polygon with 314 sides having a length of approximately 0.02. This yields a polygonal approximation Ω h of Ω and an initial triangulation of Ω h . Since Ω is convex, we have Ω h ⊂ Ω and we are in the situation described in Remark 4.1. The parameters in the adaptmesh command are the same as previously except for err whose value is set to 0.0025.

The output mesh T kmax h is shown in Figure 2. We observe that it is refined near the unit circle, due to the singularity in the PDE, but also along the discontinuities of the matrix A. The corresponding output solution u kmax h is shown in Figure 3. 

Lemma 3 .

 3 3 to the nonnegative function v = c u γ .

1+γ 2 ∈

 2 H 1 0 (Ω) and u ∈ L ∞ (Ω), for all γ ∈ (0, 1]. 3.2. The case γ > 1. By arguing as in [2, Lemma 4.1], we have: Lemma 3.6. Assume that γ > 1. Then (u 1+γ 2 ε

1+γ 2 εn≤ 2 1+γ

 22 g, for all n. Thus, 0 ≤ u εn ≤ g

Figure 1 .

 1 Figure 1. Mesh for case (5.1) and ε = 0.1 (γ = 3)

Figure 2 .

 2 Figure 2. Output mesh for case (5.6) and ε = 0.05 (γ = 1.1)

Figure 3 .

 3 Figure 3. Output solution for case (5.6) and ε = 0.05 (γ = 1.1)

  4.1. Similar properties hold if we assume that Ω is a bounded convex open set with C 2 boundary. In this case, the d-polyhedron Ω h defined by the triangulation satisfies Ω h ⊂ Ω and the vertices of the boundary of Ω h lie on the boundary of Ω. We use thatV h ⊂ H 1 0 (Ω h ) ⊂ H 1 0 (Ω) by setting v h = 0 on Ω \ Ω h . Properties (4.2)-(4.3) are still true (see, e.g.,[START_REF] Pierre | Convergence of exponential attractors for a finite element approximation of the Allen-Cahn equation[END_REF] Section 4.1]), so the results in this section are also valid in such a case.

	The finite element approximation of problem (2.4) reads: find u

Table 1 .

 1 1, 2, 3, 4 and 5 contains 4181, 9356, 11758, 11366, 11097 and 11084 vertices respectively. L 2 error, L ∞ error and mesh characteristics for case(5.1) 

	ε	0.4	0.2	0.1	0.05	0.025 0.0125 0.00625
	L 2 error	0.18	0.053	0.014 0.0036 0.0026 0.0029 0.0031
	L 2 ratio	•	3.4	3.8	3.9	1.4	0.9	0.9
	L ∞ error	0.090	0.045	0.023	0.012 0.0057 0.0035 0.0048
	L ∞ ratio	•	2.0	2.0	1.9	2.1	1.6	0.7
	Nb vertices	6790	8877	11084 13350 17370 21121	50717
	h min	2.7e-03 9.3e-04 3.3e-04 1.5e-04 6.7e-05 3.9e-05 2.7e-05
	h max	0.28	0.26	0.31	0.29	0.28	0.29	0.28

Table 2 .

 2 L 2 and L ∞ error for the regularization fε and case (5.1) 5.2. About the choice of the regularization. In Table2, we have computed the L 2 and L ∞ error with the regularization fε defined by (2.3) instead of f ε given by (2.2). The test case is (5.1) and the algorithm and the discretization parameters are exactly as previously. We have divided the values of ε by 4 in order to have a L ∞ error which is easily comparable to the values in Table

	1.5625e-3

Table 3 .

 3 L 2 error, L ∞ error and mesh characteristics for case(5.3) 

	ε	0.4	0.2	0.1	0.05	0.025 0.0125 0.00625
	L 2 error	0.17	0.049	0.020 0.016 0.016	0.016	0.016
	L 2 ratio	•	3.5	2.5	1.3	1.0	1.0	1.0
	L ∞ error	0.098	0.046	0.023 0.012 0.0098 0.0099 0.0099
	L ∞ ratio	•	2.1	2.0	1.9	1.2	1.0	1.0
	Nb vertices	8652	12387 15633 19520 24442 36397	69629
	h min	1.0e-02 3.4e-03 1.2e-03 4.5e-4 1.8e-4 8.1e-05 4.7e-05
	h max	0.22	0.25	0.25	0.25	0.25	0.24	0.25

Ω) and that it does not belong to H 1 0 (Ω).
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