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1 Introduction

1.1 Context and goals

Nanofluidics is the study of the flow of materials at the nanoscale [2]. This is the scale of flow
in Carbon Nanotubes which are physical systems of great interest nowadays [16, 26]. At this
scale, flows present some striking features, such as the capacity for the material to slip much
more easily that one would expect [1, 24, 25]. The origin of this slip is the subject of current
debate in the physics community [13, 20].

In classical fluid mechanics, the interaction between the fluid and the walls of a bounded
domain is usually modeled via appropriate boundary conditions. Probably the three most used
boundary conditions are (let us note u the velocity field of the flow)

No-slip (or adherence): imposing that u vanishes at the wall.

Slip: imposing that the normal component of u vanishes and that the tangential part of the
normal stress is proportional to the tangential part of the velocity field. The inverse of
the proportionality factor has the dimension of a length called the slip length.

Perfect slip: imposing that the normal component of u vanishes and that the tangential part
of the normal stress also vanishes.

Let us point that, although one could expect the averaging procedure usually applied to ob-
tain macroscopic flow equations to fail at the nanoscale, Stokes equations remain surprisingly
efficient in nanofluidics [14, 19].

From a mathematical perspective, one successful strategy initiated in the early 2000’s [9, 17]
to explain the occurrence of adherence or partial slip on solid walls, consists in modeling micro-
asperities on the surface and analyzing their effect on the flow by an homogenisation process,
imposing only a mild non penetration boundary condition on the rugous wall, i.e. that the
normal component of the fluid velocity vanishes. This so-called "rugosity effect" has been
studied quite extensively in the last decades, which has led to a rather complete description of
the asymptotic effect of rough patterns on viscous flow [7, 8, 17].

In this paper, we consider a completely different interpretation of the apparent slip length
measured in nanoscopic devices, proposed in [21], where the author postulates that the source
of this slip arises from a “depletion layer with reduced viscosity near the wall”. This hypothesis
is supported by experimental evidence [22] and Molecular Dynamics simulations [18] bringing
out that the viscosity drops near the wall of the nanotube. In [21], the flow is modeled as a
Stokes flow in an infinite cylindrical pipe, with no-slip boundary condition, but two viscosities:
a “bulk” one at the center of the pipe and a “wall” one near the walls which is smaller than
the bulk one. In this model, the fluid is supposed to adhere at the wall. Yet, by solving the
equation in this simple geometry, the author was able to describe the resulting flow as if it
had an effective slip length and a constant viscosity equal to the one in the bulk, computing
this length in terms of the viscosity drop and the sizes of the depletion layer and tube radius.
From this result we started wondering: is there a general mathematical framework to study the
passing from a model with varying viscosity and no-slip to a model with constant viscosity and
slip?
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The question is to link two models with different equations in the same domain and different
boundary conditions. Many different problems of this type are (or have been) studied with the
help of asymptotic analysis in PDE: one expresses the parameters of one of the model as function
of small parameter ε and by studying the behaviour of the solution as ε goes to 0, one proves
that the solution converges to the second model. The now classical problem that might be the
most closely related to ours, and that we already mentioned, is the rugosity effect. In that
case, one attempts to link a model posed on a family of domains depending on a parameter
ε and “converging” in some sense with the perfect slip boundary condition on each domain,
and to explain how one obtains a positive slip length, or no-slip on the limit domain. In a
certain sense, the problem that we propose to address is the opposite: whereas rugosity aims
at explaining how a fluid can “slow down” because of the wall, our problem is to explain and
justify mathematically the “speeding up” of the fluid caused by a drop of viscosity near the
wall.

1.2 The model

The model we will study is as follows. Our spatial domain will be the square

Ω =]0, 1[×]0, 1[

and is loosely thought of as representing half of a longitudinal section of nanotube. In this
framework one can think of x1 to be the longitudinal coordinate along the tube while x2 is the
radial coordinate away from the axis. The axis of the tube would be at x2 = 0 and the carbon
layer is at x2 = 1. In this setting, what we call the lateral boundaries x1 = 0 and x1 = 1 do
not have much of an influence on the problem as the sequel will show. The depletion layer will
thus be located around x2 = 1 and we will model it to have a typical size of ε. More precisely,
let us introduce a function d ∈ C1([0, 1]) and the function γε defined on [0, 1] by

γε(x1) = 1− εd(x1) . (1)

We denote by Γε the graph of γε, defined by

Γε = {(x1, γε(x1)), x1 ∈ [0, 1]} . (2)

In out setting, the depletion layer in our setting is defined as

Bε = {(x1, x2) ∈ Ω, γε(x1) < x2 < 1} ⊂ Ω .

To simplify notation we will note
Ωε = Ω \Bε .

To the macroscopic variable x = (x1, x2) ∈ Bε, we associate the microscopic variable y =
(y1, y2) defined by

y1 = x1, y2 =
1− x2

ε
.

The depletion layer is then described in microscopic variable by

Bε = {(y1, 1− εy2), (y1, y2) ∈ ω} ,

where ω is defined by
ω =

{
(y1, y2) ∈ (0, 1)2, 0 < y2 < d(y1)

}
.

In this paper we will not study the fluid problem directly, but present a toy model that
we believe contains the main features of the full fluid problem. Basically, we will replace the
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vectorial Stokes operator with a 2d scalar elliptic operator to present the basic ideas and tools.
The extension to the full vectorial fluid problem is left for subsequent work.

Our equation is thus a stationary diffusion equation with a space varying coefficient to
account for the depletion layer. To stay close to [21], the diffusion will take two constant
values, 1 in Ωε and a smaller value in the depletion layer Bε. To parametrize the drop of
viscosity inside the depletion later we introduce the parameter 0 < α < 2, such that inside Bε

the viscosity is εα. In other words, our viscosity µε is defined by

µε(x1, x2) = 1Ωε(x1, x2) + εα1Bε(x1, x2) (3)

where 1Ωε and 1Bε stand for the indicator functions of Ωε and Bε respectively. We will work
with the PDE in Ω where the unknown is uε and f is a right-hand side defined on Ω:

−div(µε∇uε) = f . (4)

As usual this system is supplemented with boundary conditions. For the sake of simplicity
we have chosen to put an homogeneous Dirichlet boundary condition at the bottom x2 = 0
and on the lateral boundary condition x1 = 0 and x1 = 1. As mentioned before, our analysis
does not rely much on the fact that we know that uε vanishes at the lateral boundaries and
we think that other boundary conditions such as periodic ones for instance could be analysed
exactly as in our method. On the other hand, the Dirichlet boundary condition on x2 = 0 is
really important in our analysis and changing it to something else would need a careful look at
our study to see what stays and what must be changed. So in the sequel we will always have{

uε = 0 at x2 = 0 ,

uε = 0 at x1 = 0 and x1 = 1 .
(5)

Finally our main concern is with the boundary condition at x2 = 1. We will study the
system with an homogeneous Neumann boundary condition and an homogeneous Dirichlet
boundary condition in the sequel.

To conclude this part, let us stress that we make the following analogy with the fluid
problem: the no-slip property will be modeled by a Dirichlet boundary condition, the slip
condition property will be modeled by a Robin (also called Fourier) boundary condition while
the perfect slip boundary condition will be modeled by a Neumann boundary condition.

1.3 A 1d example

In this section we would like to give a foretaste of what is to come, by simplifying even more
the model to a 1d case, and taking the external force f to be constant (equal to 1). We will
not give full details of the computation but try and present the main features of our model. In
this 1d model the geometry simplifies and Bε just becomes ]1− ε, 1[ and the viscosity is defined
on the segment [0, 1] by

µε = 1]0,1−ε[ + εα1]1−ε,1[ . (6)

The problem reduces here to finding uε ∈ H1(0, 1) satisfying{
−(µεu

′
ε)
′ = 1 in ]0, 1[

uε(0) = 0

and either u′ε(1) = 0 for the Neumann case or uε(1) = 0 in the Dirichlet case.
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1.3.1 Neumann case

As in the paper, let us start with the Neumann case. It is easy to compute by hand the solution
of this problem:

uε(x) =

{
1
2

(1− (1− x)2) for 0 ≤ x ≤ 1− ε
1
2
(1− ε2) + 1

2εα
(ε2 − (1− x)2) for 1− ε ≤ x ≤ 1

What is to be noticed in this case are the following facts:

• Whatever the value of α, the sequence of functions uε converges to the function ū(x) =
1
2
(1 − (1 − x)2). Moreover ū is “determined” by what happens in the intervals ]0, 1 − ε[.

For instance ū is also the limit of the sequence of functions

ūε(x) =

{
uε(x) for 0 ≤ x ≤ 1− ε
uε(1− ε) for 1− ε ≤ x ≤ 1

This will be important in our analysis as the sequence (ūε) is obviously bounded in H1(0, 1)
whereas we have∫ 1

0

(u′ε(x))2dx =

∫ 1−ε

0

(u′ε(x))2dx+

∫ 1

1−ε
(u′ε(x))2dx =

1− ε3

3
+

ε3

ε2α

which means that (uε) is not necessarily bounded in H1(0, 1).

• The limit function ū is the solution to the system
−u′′ = 1 in ]0, 1[

u(0) = 0

u′(1) = 0

This means that the limit problem seems to keep the same boundary condition at x = 1.
This is coherent with our view: if the fluid is allowed to slip perfectly right from the start,
then it cannot be “sped up” by getting slip as it is already perfectly slipping.

• The energy of the system is defined by
∫ 1

0
µε(u

′
ε)

2 and thus is equal to∫ 1

0

µε(x)(u′ε(x))2dx =
1− ε3

3
+
ε3

εα

We conclude from this that the energy of the system is not necessarily bounded if α is
too large. This explains why we will put some restrictions on the values of α. In this
particular example, the right-hand side f is a very simple and regular function, and even
in this case we could not guarantee from qualitative properties alone on the data that the
energy would be bounded. But since our goal is to study a physically sensible system,
we will have to ensure that the energy remains bounded, and hence include this as an
hypothesis in our framework. In the one-dimensional Neumann case, this corresponds to
assuming that α < 3.

• Finally one can compute the difference uε − ū to be

uε(x)− ū(x) =

{
0 if 0 ≤ x ≤ 1− ε(

1
εα
− 1
)

1
2
(ε2 − (1− x)2) if 1− ε < x < 1
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From this expression, it is easy to compute
∫ 1

0
(u′ε− ū′)2 =

(
1
εα
− 1
)2 ε3

3
which means that

uε does not converge strongly to ū in H1(0, 1) if α is larger than 3/2. It is not surprising
that the sequence does not converge in the H1 norm to its limit as it is customary in
rugosity problems for instance [3, 6, 10]. So let us look at the limit in Lp norm instead.
In this case we have∫ 1

0

(uε − ū)p =

(
1

εα
− 1

)p
1

2p

∫ 1

1−ε
(ε2 − (1− x)2)pdx .

We change variable and introduce the microscopic variable y = (1− x)/ε, a variable that
we will also use later on. We the obtain:∫ 1

0

(uε − ū)p =

(
1

εα
− 1

)p
ε2p+1

2p

∫ 1

0

(1− y2)pdy .

From this we obtain the convergence of uε to ū in Lp as long as α < 2p+1
p

. On the one
hand, setting p = 1 in this inequality yields α < 3. This means that in the limit case
α = 3 where the energy is still bounded, there is not even a convergence in L1 even if
both uε and the limit ū are uniformly bounded in L2. On the other hand, the inequality
is satisfied for all p if α ≤ 2 and in particular for p = 2. Finally, if α > 2 we can write
p < 1

α−2
which means the strength of the convergence decreases as α increases.

This discussion on strong convergence in Lp shows that taking large values of α can make
the analysis more difficult, and gives another insight on the necessity to impose an upper
bound on the value of α in order to get useful information on the limit when ε goes to
zero.

1.3.2 Dirichlet case

To end this section we would like to give some elements of the same 1d model with a Dirichlet
boundary condition. This time we consider an arbitrary (continuous or integrable for instance)
f and try to solve: 

−(µεu
′
ε)
′ = f in ]0, 1[

uε(0) = 0

uε(1) = 0

(7)

We will not go into detail but there is a kernel Kε defined on [0, 1]2 such that the solution uε
can be written as

uε(x) =

∫ 1

0

Kε(x, s)f(s)ds , (8)

where for s > x,

Kε(x, s) =

∫ x
0
µ−1
ε

∫ 1

s
µ−1
ε∫ 1

0
µ−1
ε

, (9)

and for x > s, Kε(x, s) = Kε(s, x). Using definition (3), a straightforward computation gives
for s > x

Kε(x, s) =


x(1−ε−s+ε1−α)

1−ε+ε1−α on 0 ≤ x ≤ s ≤ 1− ε
x 1−s
εα

1−ε+ε1−α for s ∈ [1− ε, 1], x ∈ [0, 1− ε](
1− 1

1−ε+ε1−α
1−x
εα

)
1−s
εα

on 1− ε ≤ x ≤ s ≤ 1

.

Hence, we can study the limiting process of uε as ε goes to 0 by studying the limiting process
of Kε. Interestingly we have three possible regimes:
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subcritical α < 1: in this regime Kε converges (at least pointwise) to K0(x, s) = x(1− s) for
0 ≤ x ≤ s ≤ 1

critical α = 1: in this regime Kε converges (at least pointwise) to K1(x, s) = x
(
1− s

2

)
for

0 ≤ x ≤ s ≤ 1

overcritical α > 1: in this regime Kε converges (at least pointwise) to K2(x, s) = x for 0 ≤
x ≤ s ≤ 1

and again Ki(s, x) = Ki(x, s). Now define ui(x) =
∫ 1

0
Ki(x, s)f(s)ds. Interestingly enough,

these functions are solutions to diffusion problems with different boundary conditions namely:

α < 1: u0 solves a Dirichlet problem at x = 1:
−u′′0 = f

u0(0) = 0

u0(1) = 0

(10)

α = 1: u1 solves a Robin problem at x = 1:
−u′′1 = f

u1(0) = 0

u′1(1) + u1(1) = 0

(11)

α > 1: u2 solves a Neumann problem at x = 1:
−u′′2 = f

u2(0) = 0

u′2(1) = 0

(12)

Again these computations can be done by hand and the various convergence can be more or less
strengthened depending on the value of α just like in the Neumann case. What is promising is
that this 1d version of our toy model seems to lead exactly to the type of discussion we want
to obtain. The sequel of the article is dedicated to understanding these questions in 2d in a
framework general enough to avoid computing solutions exactly, which is rarely possible.

1.4 Outline of the paper

The rest of the paper is organized as follows. In Section 2, we state our main results on the
asymptotic behaviour of uε, solution to (4) and satisfying (5) as well as Neumann or Dirichlet
boundary conditions on x2 = 1, assuming a certain energy bound (Theorems 1 and 2). Relying
on explicit computations, we also establish in Theorem 3 that this bound is automatically
satisfied by uε in the case of a flat interface. Sections 3 and 4 are dedicated to the proof of
Theorems 1 and 2; Section 3 gathers compactness results on uε and Section 4 characterizes the
limit ū as the solution to the Poisson problem −∆ū = f in Ω, with zero boundary condition
on x2 = 0, x1 = 0, x1 = 1, completed with the appropriate boundary condition on x2 = 1, that
expresses the effect of the drop of viscosity. In Section 5, we prove Theorem 3, in the case of
Dirichlet boundary condition on x2 = 1; to lighten up the presentation, most of the explicit
computations are postponed to Appendix A. Finally, Section 6 discusses possible generalizations
of our results.
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2 Main results
Let α ∈]0, 2[ and for any ε > 0, let µε be defined by (3).

2.1 The Neumann case

First, from standard elliptic theory (see [12]) we have the following result for fixed ε > 0:

Proposition 1. Let VN be defined by

VN = {v ∈ H1(Ω), v|x1=0 = v|x1=1 = 0, v|x2=0 = 0}, (13)

which is a Hilbert space when endowed with the scalar product

(v, w) =

∫
Ω

∇v · ∇w for any v, w ∈ VN .

Let f be in L2(Ω). Then there exists a unique function uε in VN , solution of the following
problem 

−div(µε∇uε) = f in Ω

uε = 0 on x1 = 0, x1 = 1 and x2 = 0

∂2uε = 0 on x2 = 1

(14)

which means for all φ ∈ VN∫
Ω\Bε
∇uε · ∇φ+ εα

∫
Bε

∇uε · ∇φ =

∫
Ω

fφ . (15)

Before we can state our results let us give a definition.

Definition 1. We say that a family (uε)ε>0 of functions in H1(Ω) satisfy the energy bound if
there exists a real constant C > 0 independent of ε such that∫

Ω\Bε
|∇uε|2 + εα

∫
Bε

|∇uε|2 ≤ C . (16)

Now let us state our main results for the Neumann case. First the general result:

Theorem 1. Let (uε)ε be the family of solutions obtained from Proposition 1 and suppose that
this family satisfy the energy bound (16). Then uε converges weakly in L2(Ω) toward ū the
variational solution to the problem:

−∆ū = f in Ω

ū = 0 on x1 = 0, x1 = 1 and x2 = 0

∂2ū = 0 on x2 = 1

To us it is not standard elliptic theory that the family of solutions given by Proposition
1 satisfy automatically an energy bound (16) and we take it as an hypothesis in Theorem 1.
We suspect that the validity of this hypothesis might not be true in general but depends on f .
Nevertheless, this hypothesis is physically meaningful: it means that there is finite energy in
the system independently of the scale at which we look at it which is a reasonable assumption
for this procedure to make sense.
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2.2 The Dirichlet case

Again from standard elliptic theory we can rely on the following theorem:

Proposition 2. Let VD be defined as

VD = H1
0(Ω) (17)

Let f be in L2(Ω). Then there exists a unique function uε in VD solution of the following
problem 

−div(µε∇uε) = f in Ω

uε = 0 on x1 = 0, x1 = 1 and on x2 = 0

uε = 0 on x2 = 1

(18)

which means for all φ ∈ VD∫
Ω\Bε
∇uε · ∇φ+ εα

∫
Bε

∇uε · ∇φ =

∫
Ω

fφ .

Our main results are thus:

Theorem 2. Let (uε)ε be the family of solutions obtained from Proposition 2 and suppose that
this family satisfy the energy bound (16). Then uε converges weakly in L2(Ω) toward a function
ū such that

if 0 < α < 1, ū is the variational solution to the problem:
−∆ū = f in Ω

ū = 0 on x1 = 0, x1 = 1 and on x2 = 0

ū = 0 on x2 = 1

if α = 1, ū is the variational solution to the problem:
−∆ū = f in Ω

ū = 0 on x1 = 0, x1 = 1 and on x2 = 0

∂2ū+ 1
d(x1)

ū = 0 on x2 = 1

(19)

if 1 < α < 2, ū is the variational solution to the problem:
−∆ū = f in Ω

ū = 0 on x1 = 0, x1 = 1 and on x2 = 0

∂2ū = 0 on x2 = 1

(20)

2.3 The flat interface case

The previous results relied on the hypothesis that the family of solutions of (14) or (18) satisfy
the energy bound (16) and we have already explained the relevance of this hypothesis in our
physical context.

In the case of a flat interface (d(x1) = 1 and γε(x1) = 1 − ε), however, we can use the
simplified geometry to compute more finely the solutions of (14) and (18) using Fourier analysis
and the tensorial nature of the geometry to check that the energy bound (16) is satisfied. This
analysis is based on the following lemma:
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Lemma 1. From basic Fourier theory (see for instance Th. II.10 p.52 and Problem 12 p. 64
in [23]) we can state that

• For any g in L2(]0, 1[×]a, b[) there exists a unique sequence (gk)k≥1 of functions in L2(a, b)
such that

∑
k≥1 ‖gk‖2

L2(a,b) < +∞ and such that the series
∑

k≥1 gk(x2) sin(kπx1) converges
to g in L2(]0, 1[×]a, b[). Moreover ‖g‖2

L2(]0,1[×]a,b[) = 1
2

∑
k≥1 ‖gk‖2

L2(a,b)

• Moreover, g is in H1(]0, 1[×]a, b[) with zero lateral traces if, and only if gk ∈ H1(a, b) for
all k ≥ 1 and

∑
k≥1

∫ 1

0
(k2π2|gk(x2)|2 + |g′k(x2)|2)dx2 < +∞ and one has

‖∂1g‖2
L2(]0,1[×]a,b[) = 1

2

∑
k≥1 k

2π2‖gk‖2
L2(a,b) and ‖∂2g‖2

L2(]0,1[×]a,b[) = 1
2

∑
k≥1 ‖g′k‖2

L2(a,b)

Then we can state:

Theorem 3. Assume γε = 1 − ε and f is in L2(Ω). Then by Lemma 1 there exists a family
(fk)k≥1 of functions in L2(0, 1) such that

f(x1, x2) =
∑
k≥1

fk(x2) sin(kπx1)

with equality in the space L2(Ω).

1. For all k ≥ 1 and for all ε > 0, there exist c−k in H2(0, γε) and c+
k in H2(γε, 1) solutions

in the strong sense of 

−c−k
′′

+ k2π2c−k = fk on ]0, γε[

εα(−c+
k
′′

+ k2π2c+
k ) = fk on ]γε, 1]

c−k (0) = 0

c−k (γε) = c+
k (γε)

c−k
′
(γε) = εαc+

k
′
(γε)

c+
k (1) = 0

(21)

2. For all ε > 0, ∑
k≥1

∫ 1

0

(k2π2|c±k (x2)|2 + |c±k
′
(x2)|2)dx2 < +∞ (22)

so one can define u−ε in H1(Ωε) and u+
ε in H1(Bε) by

u±ε (x1, x2) =
∑
k≥1

c±k (x2) sin(kπx1).

3. u−ε does not belong to H2(Ωε) but it is in {v ∈ H1(Ωε), ∆v ∈ L2(Ωε)} and similarly u+
ε

belongs in {v ∈ H1(Bε),∆v ∈ L2(Bε)} and we have

−∆u−ε = f in Ωε

−εα∆u+
ε = f in Bε

u−ε |x2=0 = 0

u±ε |x1=0 = u±ε |x1=1 = 0

u−ε |x2=γε
= u+

ε |x2=γε

∂x2u
−
ε |x2=γε

= εα∂x2u
+
ε |x2=γε

u+
ε |x2=1 = 0

10



4. The function uε defined by

uε(x) =

{
u−ε (x) if x ∈ Ωε

u+
ε (x) if x ∈ Bε

is in H1(Ω) and is the variational solution to (18).

5. The family (uε)ε satisfies (16) as long as α ≤ 2.

3 Asymptotic analysis of a sequence (uε) satisfying the en-
ergy bound (16)

The aim of this section is to analyze the behaviour as ε goes to 0 of a family of function (uε)ε
in V which can be VN (recall that it is defined by (13)) or VD (defined by (17)) satisfying the
energy bound (16).

Thus in the rest of this section, (uε)ε will be a sequence of functions in V satisfying (16)
but not necessarily the solution of a problem for the moment.

3.1 Modifying uε in Bε

Since uε vanishes on x2 = 0, by Poincaré inequality, there exists a constant C > 0 such that∫
Ωε

|uε|2 ≤ C

∫
Ωε

|∇uε|2 . (23)

In this inequality, the constant C can be chosen independent of ε since the domains Ω \Bε are
uniformly bounded in the x2 direction. Combining (23) with the energy bound (16), we obtain
the existence of a constant C > 0 such that

∀ε > 0

∫
Ω\Bε
|uε|2 + |∇uε|2 ≤ C . (24)

Since the family of functions γε defined by (1) is uniformly Lipschitz, there exists a family of
linear extension operators

Eε : H1(Ωε)→ H1(Ω)

such that for any ε > 0,
∀w ∈ H1(Ωε) Eε(w)|Ωε = w

and a constant C > 0 such that

∀ε > 0 ‖Eε‖L(H1(Ωε),H1(Ω)) ≤ C

(see for instance [11]). Throughout the paper, we will note ūε the function defined in H1(Ω) by

ūε = Eε(uε) . (25)

Combining the previous bound with (24), we get that the sequence (ūε)ε is bounded in H1(Ω).
Since H1(Ω) is compactly embedded in L2(Ω), there exists a function ū in H1(Ω) such that, up to
extracting a subsequence, ūε converges to ū weakly in H1(Ω) and strongly in L2(Ω). Moreover,
by continuity of the trace operator H1(Ω)→ H1/2(∂Ω), the weak limit ū also belongs to V.
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3.2 Weak convergence of uε to ū in L2(Ω)

To prove that uε also converges to ū albeit only weakly in L2(Ω), we rely on a density argument.
First, we establish the existence of a constant C > 0 such that

∀ε > 0

∫
Ω

u2
ε ≤ C . (26)

Let ε > 0 be fixed. By density of regular functions in H1(Ω), it is not restrictive to assume
that uε is regular. Since uε vanishes on {x2 = 0}, integrating on vertical lines, there holds for
every (x1, x2) ∈ Bε

1

2
uε(x1, x2)2 =

∫ γε(x1)

0

∂2uε(x1, s)uε(x1, s) ds+

∫ x2

γε(x1)

∂2uε(x1, s)uε(x1, s) ds .

Integrating the previous relation on Bε gives

1

2

∫
Bε

u2
ε =

∫ 1

0

∫ 1

γε(x1)

∫ γε(x1)

0

∂2uε(x1, s)uε(x1, s) ds dx2 dx1

+

∫ 1

0

∫ 1

γε(x1)

∫ x2

γε(x1)

∂2uε(x1, s)uε(x1, s) ds dx2 dx1 =: I1 + I2 .

The first integral can be simplified as

I1 =

∫ 1

0

(1− γε(x1))

(∫ γε(x1)

0

∂2uε(x1, s)uε(x1, s) ds

)
dx1

so that by definition of γε, Cauchy-Schwarz inequality and the energy bound (16),

|I1| ≤ ε ‖d‖∞
∫

Ωε

|∂2uε| |uε|

≤ εC

(∫
Ωε

u2
ε

)1/2

.

By Poincaré Inequality, since γε(x1) ≤ 1 for any x1 ∈ (0, 1),∫
Ωε

u2
ε ≤

∫
Ωε

|∇uε|2 ≤ C . (27)

Hence,
|I1| ≤ εC .

Interverting the integration order between x2 and s variables in I2 yields

I2 =

∫ 1

0

∫ 1

γε(x1)

∫ 1

s

∂2uε(x1, s)uε(x1, s) dx2 ds dx1

=

∫ 1

0

∫ 1

γε(x1)

(1− s) ∂2uε(x1, s)uε(x1, s) ds dx1 .

As a result, we get the following bound:

|I2| ≤ ε ‖d‖∞
∫
Bε

|∂2uε| |uε|

≤ ε ‖d‖∞
(
εα
∫
Bε

|∇uε|2
)1/2 (

1

εα

∫
Bε

u2
ε

)1/2

≤ εC

(
1

εα

∫
Bε

u2
ε

)1/2

,

12



where we have once again used the energy bound on ∇uε.
Summing up the estimates on I1 and I2, we deduce that∫

Bε

u2
ε ≤ C ε

[
1 +

1

εα/2

(∫
Bε

u2
ε

)1/2
]
.

Setting Iε =
(∫

Bε
u2
ε

)1/2

, we see that Iε satisfies

I2
ε − Cε1−α

2 Iε − Cε ≤ 0 .

Hence, the nonnegative quantity Iε is bounded by the only positive root of the polynomial
X2 − Cε1−α

2X − Cε, that is

Iε ≤
1

2

(
Cε1−α

2 +
√
C2ε2−α + 4Cε

)
.

This proves that
∫
Bε
u2
ε goes to zero as ε goes to zero, which combined with (27), yields (26).

Let ψ ∈ L2(Ω) and fix δ > 0. Let C∞c (Ω) be the space of infinitely differentiable functions
with compact support in Ω. By density, there exists ψ̄ ∈ C∞c (Ω) such that

∫
Ω

(ψ − ψ̄)2 ≤ δ2.
Since ψ̄ has a compact support in Ω, there exists ε0 > 0 such that for any 0 < ε < ε0, ψ̄ ≡ 0
in Bε, so that ∫

Ω

uε ψ̄ =

∫
Ωε

uε ψ̄ =

∫
Ωε

ūε ψ̄ =

∫
Ω

ūε ψ̄ .

By strong convergence of ūε to ū in L2(Ω), we can pass to the limit in the last integral and
deduce that

lim
ε→0

∫
Ω

uε ψ̄ =

∫
Ω

ū ψ̄ . (28)

Now, consider the following decomposition:∫
Ω

(uε − ū)ψ =

∫
Ω

uε (ψ − ψ̄) +

∫
Ω

(uε − ū) ψ̄ +

∫
Ω

ū (ψ̄ − ψ) .

By Cauchy-Schwarz inequality and (26), there exists a constant C > 0 such that for any ε > 0,∣∣∫
Ω
uε (ψ − ψ̄)

∣∣ +
∣∣∫

Ω
ū (ψ̄ − ψ)

∣∣ ≤ C δ. Using (28), we can pass to the lim sup in the previous
equality to obtain

lim sup
ε→0

∣∣∣∣∫
Ω

(uε − ū)ψ

∣∣∣∣ ≤ C δ ,

which concludes the proof since δ is arbitrary.

4 Identification of the limit ū when uε is the solution of
(14) or (18)

In this section we will prove Theorem 1 and Theorem 2. Based on the hypothesis of these
theorems, and the results of Section 3 we already know that up to extraction, the family of
solutions to (14) and (18) converge in the weak L2(Ω) topology to some limit ū. This section
aims at characterizing this limit. We will prove that ū can be seen as the weak solution of an
identified elliptic problem. This problem having a unique solution, a standard argument shows
that the whole sequence (uε)ε also converges to ū. For this reason, we work in the sequel of
this section as if the family (uε)ε converges and discard any further reference to any extraction
of this sequence.
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4.1 The Neumann case

In this paragraph, we will characterize the weak limit ū ∈ VN as the unique solution to the
elliptic problem (20). Let φ ∈ VN be a given test function. Using the function ūε defined
by (25), the weak formulation (15) can be rewritten as∫

Ωε

∇ūε · ∇φ+ εα
∫
Bε

∇uε · ∇φ =

∫
Ω

fφ

or equivalently, as ∫
Ω

∇ūε · ∇φ−
∫
Bε

∇ūε · ∇φ+ εα
∫
Bε

∇uε · ∇φ =

∫
Ω

fφ .

Let us pass to the limit in every term of the left-hand side of the previous equality.
By weak convergence of (ūε)ε toward ū in H1(Ω), there holds immediately

lim
ε→0

∫
Ω

∇ūε · ∇φ =

∫
Ω

∇ū · ∇φ .

By Cauchy-Schwarz inequality,∣∣∣∣∫
Bε

∇ūε · ∇φ
∣∣∣∣ ≤ (∫

Bε

|∇ūε|2
)1/2(∫

Bε

|∇φ|2
)1/2

≤ C

(∫
Bε

|∇φ|2
)1/2

since Bε ⊂ Ω and ūε is uniformly bounded in H1(Ω). Writing
∫
Bε
|∇φ|2 =

∫
Ω
1Bε|∇φ|2 and

noticing that 1Bε converges to zero a.e. in Ω, we conclude by Lebesgue’s dominated convergence
theorem that limε→0

∫
Bε
|∇φ|2 = 0. Thus, by the previous inequality,

lim
ε→0

∫
Bε

∇ūε · ∇φ = 0 .

Lastly, using the energy bound (16) and Young inequality, we obtain the estimate∣∣∣∣εα ∫
Bε

∇uε · ∇φ
∣∣∣∣ ≤ εα

2

(
εα/2

∫
Bε

|∇uε|2 + ε−α/2
∫
Bε

|∇φ|2
)

≤ εα/2

2

(
εα
∫
Bε

|∇uε|2 +

∫
Ω

|∇φ|2
)

≤ C εα/2 ,

whence
lim
ε→0

εα
∫
Bε

∇uε · ∇φ = 0 .

Gathering the previous computations, we obtain that∫
Ω

∇ū · ∇φ =

∫
Ω

fφ ,

which proves that ū is the variational solution to problem (20), since we have already established
that ū ∈ VN .
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4.2 The Dirichlet case

One major difference between the Neumann and the Dirichlet cases is that, in the Dirichlet
case, the boundary condition uε = 0 on x2 = 1 may or may not pass to the limit as ε goes to
zero, depending on the exponent α.

Case α < 1. We claim that if 0 < α < 1, the limit ū actually satisfies the same boundary
condition

ū = 0 on x2 = 1 ,

in other words, ū ∈ VD. The distinction between the cases α < 1 and α ≥ 1 comes from the
following estimate of the L2-norm of the trace of uε on Γε (defined by (2)):∫

Γε

u2
ε ≤ C ε1−α . (29)

The previous inequality can be obtained using the energy bound, the boundary condition
uε(x1, 1) = 0 for a.e. x1 ∈ (0, 1) and integrating on vertical lines {x1} × (1 − εd(x1), 1), as
follows: ∫

Γε

u2
ε =

∫ 1

0

uε(x1, 1− εd(x1))2
√

1 + ε2d′(x1)2 dx1

≤
√

1 + ε2‖d′‖∞
∫ 1

0

uε(x1, 1− εd(x1))2 dx1

≤
√

1 + ε2‖d′‖∞
∫ 1

0

(∫ 1

1−εd(x1)

|∂2uε(x1, s)| ds

)2

dx1

≤
√

1 + ε2‖d′‖∞ ε ‖d‖∞
∫ 1

0

∫ 1

1−εd(x1)

|∂2uε(x1, s)|2 ds dx1

≤ C ε

∫
Bε

|∇uε|2 ≤ C ε1−α.

Applying a similar argument to the function ūε, which is not vanishing on x2 = 1, we obtain
the following trace inequality:∫

{x2=1}
ū2
ε ≤ C

(
ε

∫
Bε

|∇ūε|2 +

∫
Γε

ū2
ε

)
.

Since ūε is bounded in H1(Ω), and ūε and uε have the same trace on Γε, (29) implies that∫
{x2=1}

ū2
ε ≤ C

(
ε+ ε1−α) .

Hence, if 0 < α < 1, limε→0

∫
{x2=1} ū

2
ε = 0.

Denote by T : H1(Ω)→ H1/2({x2 = 1}) the trace operator. Since T is linear and continuous
and ūε converges weakly to ū in H1(Ω),

T ūε converges weakly to T ū in H1/2({x2 = 1}) (30)

(see, for instance, [5, Theorem III.9]). By compact embedding of H1/2({x2 = 1}) into L2({x2 =
1}), this convergence is strong in L2({x2 = 1}). But limε→0

∫
{x2=1} ū

2
ε = 0 so T ūε converges

strongly to zero in L2({x2 = 1}), whence T ū = 0. This proves that ū ∈ VD if 0 < α < 1.
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It remains to prove that for any φ ∈ VD,∫
Ω

∇ū · ∇φ =

∫
Ω

f φ.

This can be achieved following the same steps as in Section 4.1, starting from the equality∫
Ωε

∇ūε · ∇φ+ εα
∫
Bε

∇uε · ∇φ =

∫
Ω

f φ .

Case α ≥ 1. In this case we need to do a finer analysis of the behaviour of uε in Bε. To this
aim, we introduce a rescaled function vε, depending on the micro-variable y = (y1, y2) ∈ ω and
defined by

vε(y) = ε
α+1
2 uε(y1, 1− εy2) for a.e. y = (y1, y2) ∈ ω . (31)

Notice that vε vanishes on {y2 = 0}. Setting x = (x1, x2) and using the change of variables

y1 = x1, y2 =
1− x2

ε
, (32)

there holds ∫
ω

|∂1vε(y)|2 dy = εα
∫
Bε

|∂1uε(x)|2 dx ,∫
ω

|∂2vε(y)|2 dy = εα+2

∫
Bε

|∂2uε(x)|2 dx .

Hence, the energy bound (16) yields the existence of a constant C > 0 such that for any ε > 0,∫
ω

|∇vε|2 ≤ C,

∫
ω

|∂2vε|2 ≤ C ε2 .

What is mainly of interest to us is that up to extraction there exists w in L2(ω) such that

1

ε
∂2vε ⇀ w weakly in L2(ω) . (33)

Now we can end our proof of Theorem 2 by identifying the limit ū. Let φ ∈ VN and define
φ̂ ∈ H1(ω) by

φ̂(y1, y2) = −
(

1− y2

d(y1)

)
φ(y1, 1) for a.e. (y1, y2) ∈ ω . (34)

Then for every ε, the function φε defined by

φε(x) = φ(x) + 1Bε(x) φ̂

(
x1,

1− x2

ε

)
for a.e. x = (x1, x2) ∈ Ω

is in VD, so it is an admissible test function for problem (18). Testing against this function, we
obtain∫

Ω

fφ+

∫
Bε

f(x) φ̂

(
x1,

1− x2

ε

)
dx

=

∫
Ωε

∇uε · ∇φ+ εα
∫
Bε

∇uε · ∇φ

+ εα
[∫

Bε

∂1uε(x) ∂1φ̂

(
x1,

1− x2

ε

)
dx−

∫
Bε

1

ε
∂2uε(x) ∂2φ̂

(
x1,

1− x2

ε

)
dx

]
.
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Using the functions ūε introduced in Section 3 by (25) and vε defined by (31), and the change
of variables (32), this can be rewritten as∫

Ω

fφ+

∫
Bε

f(x) φ̂

(
x1,

1− x2

ε

)
dx

=

∫
Ω

∇ūε · ∇φ−
∫
Bε

∇ūε · ∇φ+ εα
∫
Bε

∇uε · ∇φ

+ ε
α−1
2

[∫
Bε

∂1vε

(
x1,

1− x2

ε

)
∂1φ̂

(
x1,

1− x2

ε

)
dx+

∫
Bε

1

ε2
∂2vε

(
x1,

1− x2

ε

)
∂2φ̂

(
x1,

1− x2

ε

)
dx

]
=

∫
Ω

∇ūε · ∇φ−
∫
Bε

∇ūε · ∇φ+ εα
∫
Bε

∇uε · ∇φ+ ε
α−1
2

[
ε

∫
ω

∂1vε ∂1φ̂+

∫
ω

1

ε
∂2vε ∂2φ̂

]
.

(35)

Let us examine the limit of each term of the previous equality as ε goes to zero.

• By Cauchy-Schwarz inequality and using once again the change of variables (32),∣∣∣∣∫
Bε

f(x) φ̂

(
x1,

1− x2

ε

)
dx

∣∣∣∣ ≤ (∫
Bε

f(x)2 dx

)1/2
(∫

Bε

φ̂

(
x1,

1− x2

ε

)2

dx

)1/2

≤
(∫

Ω

f(x)2 dx

)1/2(
ε

∫
ω

φ̂(y)2 dy

)1/2

≤ ε1/2 ‖f‖L2(Ω) ‖φ̂‖L2(ω) .

Hence, ∣∣∣∣ 1

ε
α−1
2

∫
Bε

f(x) φ̂

(
x1,

1− x2

ε

)
dx

∣∣∣∣ ≤ ε
2−α
2 ‖f‖L2(Ω) ‖φ̂‖L2(ω) ,

and since 0 < α < 2, we deduce that limε→0
1

ε
α−1
2

∫
Bε
f(x) φ̂(x1,

1−x2
ε

) dx = 0.

• By the same arguments as in Subsection 4.1, we get

lim
ε→0

∫
Ω

∇ūε · ∇φ =

∫
Ω

∇ū · ∇φ ,

lim
ε→0

∫
Bε

∇ūε · ∇φ = 0 ,

lim
ε→0

εα
∫
Bε

∇uε · ∇φ = 0.

• Since ∂1vε is uniformly bounded in L2(ω), applying Cauchy-Schwarz inequality we imme-
diately obtain that

lim
ε→0

ε

∫
ω

∂1vε ∂1φ̂ = 0.

• Let w ∈ L2(ω) be the function satisfying (33), then by definition of the weak convergence,

lim
ε→0

∫
ω

1

ε
∂2vε ∂2φ̂ =

∫
ω

w ∂2φ̂ .

In the case α > 1, it is enough to pass to the limit in (35) and obtain the relation∫
Ω

∇ū · ∇φ =

∫
Ω

f φ .
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This proves that ū is the solution to (20).
In the critical case α = 1, in order to establish that ū is the solution to (19), we need to

rewrite the limit
∫
ω
w ∂2φ̂ as a surface integral on {x2 = 1}. To this aim, we define for a.e.

y = (y1, y2) ∈ ω, the quantity W (y1, y2) by

W (y1, y2) =

∫ y2

0

w(y1, s) ds . (36)

For a.e. y1 ∈ (0, 1), the function W (y1, ·) is in H1(0, 1) as a function of y2 and vanishes at
y2 = 0. Coming back to the definition of φ̂ (34), we get∫

ω

w ∂2φ̂ =

∫ 1

0

1

d(y1)
φ(y1, 1)

(∫ d(y1)

0

w(y1, y2) dy2

)
dy1

=

∫ 1

0

1

d(y1)
φ(y1, 1)W (y1, d(y1)) dy1 .

We claim that
W (y1, d(y1)) = ū(y1, 1) for a.e. y1 ∈ (0, 1) , (37)

so that the previous inequality can be rephrased as∫
ω

w ∂2φ̂ =

∫ 1

0

1

d(x1)
ū(x1, 1)φ(x1, 1) dx1 .

Hence, passing to the limit in (35) in the case α = 1 yields∫
Ω

∇ū · ∇φ+

∫ 1

0

1

d(x1)
ū(x1, 1)φ(x1, 1) dx1 =

∫
Ω

f φ ,

which proves that ū is the weak solution to (19).
It remains to prove relation (37). Taking α = 1 and applying the definition of vε (31) at

y2 = d(y1), there holds

vε(y1, d(y1))

ε
= uε(y1, 1− ε d(y1)) for a.e. y1 ∈ (0, 1) .

We will prove that, as sequences of functions of y1:

(i)
vε(y1, d(y1))

ε
⇀ W (y1, d(y1)) weakly in L2(0, 1) ;

(ii) uε(y1, 1− ε d(y1))→ ū(y1, 1) strongly in L2(0, 1).

Then by uniqueness of the limit, the identity (37) follows.
To prove (i), we notice that since vε vanishes on y2 = 0,

vε(y1, d(y1))

ε
=

∫ d(y1)

0

∂2vε(y1, y2)

ε
dy2 for a.e. y1 ∈ (0, 1) .

For any ζ ∈ L2(0, 1), there holds∫ 1

0

vε(y1, d(y1))

ε
ζ(y1) dy1 =

∫ 1

0

∫ d(y1)

0

∂2vε(y1, y2)

ε
dy2 ζ(y1) dy1

=

∫
ω

∂2vε(y)

ε
ζ(y1) dy .
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Using property (33), we obtain

lim
ε→0

∫ 1

0

vε(y1, d(y1))

ε
ζ(y1) dy1 =

∫
ω

w(y) ζ(y1) dy .

By definition (36), W (y1, d(y1)) =
∫ d(y1)

0
w(y1, y2) dy2 for a.e. y1 ∈ (0, 1), so the previous limit

can be rewritten as∫
ω

w(y) ζ(y1) dy =

∫ 1

0

(∫ d(y1)

0

w(y1, y2) dy2

)
ζ(y1) dy1 =

∫ 1

0

W (y1, d(y1)) ζ(y1) dy1 .

This proves (i).
To prove (ii), we take advantage of the fact that by construction, uε and ūε have the same

trace on y2 = 1− εd(y1), and introduce for a.e. y1 ∈ (0, 1) the decomposition:

uε(y1, 1− εd(y1))− ū(y1, 1) = (ūε(y1, 1− εd(y1))− ūε(y1, 1)) + (ūε(y1, 1)− ū(y1, 1)) .

We estimate
∫ 1

0
|uε(y1, 1− εd(y1))− ū(y1, 1)|2 dy1 by∫ 1

0

|uε(y1, 1− εd(y1))− ū(y1, 1)|2 dy1

≤ 2

[∫ 1

0

|ūε(y1, 1− εd(y1))− ūε(y1, 1)|2 dy1 +

∫ 1

0

|ū(y1, 1)− ūε(y1, 1)|2 dy1

]
.

Integrating on vertical lines and using that ∇ūε is uniformly bounded in L2(Ω) and Cauchy-
Schwarz inequality, we obtain∫ 1

0

|ūε(y1, 1− ε d(y1))− ūε(y1, 1)|2 dy1 =

∫ 1

0

∣∣∣∣∫ 1

1−ε d(y1)

∂2ūε(y1, s) ds

∣∣∣∣2 dy1

≤ ε ‖d‖∞
∫ 1

0

∫ 1

1−ε d(y1)

|∂2ūε(y1, s)|2 ds dy1

≤ ε ‖d‖∞
∫

Ω

|∇ūε|2 ≤ C ε .

As a consequence of (30), up to a subsequence, ūε(y1, 1) converges strongly in L2
y1

(0, 1) to
ū(y1, 1), hence limε→0

∫ 1

0
|ū(y1, 1) − ūε(y1, 1)|2 dy1 = 0. Combining this property with the

previous upper bound, we deduce that

lim
ε→0

∫ 1

0

|uε(y1, 1− ε d(y1))− ū(y1, 1)|2 dy1 = 0 ,

which proves (ii).

5 The flat interface
This section is devoted to the proof of Theorem 3. This approach being fairly standard we will
concentrate on the points that matter in our specific case.
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5.1 Proof of Theorem 3.1

For each k the function fk is in L2(0, 1). Then we can use Duhamel’s Formula to solve the
differential equations of (21) under the form:

c−k (x) = A−k ch(kπx) +B−k sh(kπx)− ekπx

2kπ

∫ x

0

e−kπsfk(s)ds+
e−kπx

2kπ

∫ x

0

ekπsfk(s)ds

c+
k (x) = A+

k ch(kπx) +B+
k sh(kπx)− ekπx

2kπ

∫ x

γε

e−kπs
fk(s)

εα
ds+

e−kπx

2kπ

∫ x

γε

ekπs
fk(s)

εα
ds

where A±k , and B±k are 4 degrees of freedom which can be set uniquely to enforce the four
remaining equations of (21).

We will see subsequently more precise formulas for c±k but on this version we can clearly
see that c±k are H1 functions on their respective domains since the primitives are primitives
of L2 functions (see [4] for instance). But using the differential equations it is also clear that
their second derivative (in the distribution sense) is also L2 and thus c±k are in fact H2 in their
respective domain and solution in the strong sense of the differential equations which concludes
the proof of the first point of Theorem 3.

5.2 Proof of Theorem 3.3 and Theorem 3.4

We delay the proof of the second point of Theorem 3 as it is actually the main difficulty in the
proof of the theorem.

From Lemma 1 we already know that u−ε is in H1(Ωε) and u+
ε is in H1(Bε). Taking a

test function φ in H1(Ωε) and using again Lemma 1 to define the φk associated, we obtain by
Parseval formula that:∫

Ωε

∇u−ε · ∇φ =
1

2

∑
k≥1

∫ γε

0

(
c−k
′
(x2)φ′k(x2) + k2π2c−k (x2)φk(x2)

)
dx2

=
1

2

∑
k≥1

∫ γε

0

fk(x2)φk(x2)dx2

by construction of c−k and thus reversing the Parseval formula yields:∫
Ωε

∇u−ε · ∇φ =

∫
Ωε

fφ

This means that we have −∆u−ε = f at least in the distributional sense in Ωε, and justifies
that u−ε is in {v ∈ H1(Ωε), ∆v ∈ L2(Ωε)}. A similar argument shows that u+

ε is in {v ∈
H1(Bε), ∆v ∈ L2(Bε)}. To prove the trace equalities, we start by using Lemma 1 and the
estimation of Theorem 3.2 to confirm that u±ε have zero lateral trace. Now for the property
of traces on x2 = 0, x2 = γε and x2 = 1, one can see that since for all k, c±k are in H2

of their respective domains (from the previous paragraph), then c±k are in C1,1/2 and thus, u+
ε

actually belongs to C1
x2

([0, γε],H
1
0(0, 1)) and u+

ε in C1
x2

([γε, 1],H1
0(0, 1)). Thus the remaining trace

equalities can be checked directly on the Fourier coefficients and come from the construction of
the c±k .

Now we can end the proof of Theorem 3.4. First, considering that u±ε are in H1 and their
traces coincide on x2 = γε the reasoning behind Theorem 1.7.1 p75 in [15] applies and shows
that uε is at least H1(Ω) and

∇uε =

{
∇u−ε in Ωε

∇u+
ε in Bε

.
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Now let us take v in C∞c (Ω). Since Ωε and Bε are rectangles, they are rectilinear polygons.
Then from [15] Lemma 1.5.3.8 p. 61 and the remark following it, we can state that∫

Ωε

∇u−ε · ∇v = −
∫

Ωε

∆u−ε v +

∫
∂Ωε

∂νu
−
ε v∫

Bε

∇u+
ε · ∇v = −

∫
Bε

∆u+
ε v +

∫
∂Bε

∂νu
+
ε v

where ∂ν stand for the normal derivative in the sense of the trace. The boundary integral are in
general in the sense of the duality 〈H−1/2,H1/2〉 but here we have enough regularity and ∂νu±ε
are actually in L2 of the boundary.

Given that v is 0 on ∂Ω the previous formulas can be recast as∫
Ωε

∇u−ε · ∇v = −
∫

Ωε

∆u−ε v +

∫
x2=γε

∂x2u
−
ε v∫

Bε

∇u+
ε · ∇v = −

∫
Bε

∆u+
ε v −

∫
x2=γε

∂x2u
+
ε v

Consequently adding the first line to εα times the second and using the properties of u±ε yields:∫
Ωε

∇u−ε · ∇v + εα
∫
Bε

∇u+
ε · ∇v =

∫
Ωε

(−∆u−ε )v +

∫
Bε

(−εα∆u+
ε )v +

∫
x2=γε

(∂x2u
−
ε − εα∂x2u+

ε )v

=

∫
Ω

fv

and thus we have ∫
Ωε

∇uε · ∇v + εα
∫
Bε

∇uε · ∇v =

∫
Ω

fv .

In the Dirichlet case, by density of C∞c (Ω) in H1
0(Ω), we conclude that uε is the weak solution of

(18). In the Neumann case, the previous argument can be easily adapted to take into account
the boundary x2 = 1 and obtain that uε is also the solution to (14).

5.3 Proof of Theorem 3.2 and Theorem 3.5

Since our goal is to check (16) for uε, we use its construction as a Fourier series to see that
because of Parseval formula :∫

Ωε

|∇uε|2 + εα
∫
Bε

|∇uε|2 =
1

2

∑
k≥1

∫ γε

0

(|(c−k )′(x2)|2 + k2π2|c−k (x2)|2)dx2

+
εα

2

∑
k≥1

∫ 1

γε

(|(c+
k )′(x2)|2 + k2π2|c+

k (x2)|2)dx2

Consequently, we will prove Theorem 3.2 with enough detail to show simultaneously (22) and
(16) in this setting which will yield Theorem 3.

The main tool is to use Duhamel’s formula to represent the solutions of (21) which will
be slightly different between the Neumann case and the Dirichlet case. We will present in the
sequel the rationale in the case of a Dirichlet boundary condition and most technical details
will be found in the Appendix.

Firstly let us introduce K defined on [0, 1]× [0, 1]×R∗+ by

K(y, s, λ) =

{
sh(λ(1−s))sh(λy)

λsh(λ)
if y ≤ s

sh(λ(1−y))sh(λs)
λsh(λ)

if y ≥ s
(38)

This function is useful because of the following Lemma:
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Lemma 2. Let λ > 0. If β is in L2(0, 1) the function v(y) =
∫ 1

0
K(y, s, λ)β(s)ds is in H2(0, 1)

and a strong solution to {
−v′′ + λ2v = β

v(0) = v(1) = 0

Moreover, we have v′(y) =
∫ 1

0
∂yK(y, s, λ)β(s)ds where ∂yK is the almost everywhere derivative

of K with respect to y.

This lemma is proved using Duhamel’s formula in the Appendix. Thus we can rescale c±k
to be defined on [0, 1] and using the previous lemma, solve the equations up to solutions of
the homogeneous equation. Then setting the degrees of freedom with the various conditions at
x = 0, x = γε and x = 1 yields the unique solution of (21) via the formulas:

c−k (x) =

∫ γε

0

[
γεK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)sh(kπx)

kπDεαsh(kπγε)

]
fk(t)dt

+

∫ 1

γε

sh(kπ(1− t))sh(kπx)

kπDεα
fk(t)dt (39)

c+
k (x) =

∫ 1

γε

[
ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))sh(kπ(1− x))

kπDεαsh(kπε)

]
fk(t)dt

+

∫ γε

0

sh(kπt)sh(kπ(1− x))

kπDεα
fk(t)dt (40)

where D is a shorthand for

D = ch(kπγε)
sh(kπε)

εα
+ sh(kπγε)ch(kπε) (41)

With these formulas we obtain via Cauchy-Schwarz and Young inequalities:∫ γε

0

|c−k (x)|2dx ≤ 2

(∫ γε

0

∫ γε

0

[
γεK

(
x

γε
,
t

γε
, kπγε

)

+
sh(kπε)sh(kπt)sh(kπx)

kπDεαsh(kπγε)

]2

dtdx

)(∫ γε

0

|fk(t)|2dt

)

+ 2

(∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))sh(kπx)

kπDεα

]2

dtdx

)(∫ 1

γε

|fk(t)|2dt

)
(42)

∫ 1

γε

|c+
k (x)|2dx ≤ 2

(∫ 1

γε

∫ 1

γε

[
ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)

+
sh(kπγε)sh(kπ(1− t))sh(kπ(1− x))

kπDεαsh(kπε)

]2

dtdx

)(∫ 1

γε

|fk(t)|2dt

)

+ 2

(∫ 1

γε

∫ γε

0

[
sh(kπt)sh(kπ(1− x))

kπDεα

]2

dtdx

)(∫ γε

0

|fk(t)|2dt

)
(43)

It is then a matter of estimating the double integrals in the previous inequality and sort out
their dependence on ε and k. The details of the computations can again be found in appendix
but we find that (using a generic numerical constant C independent of ε and k that can change
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from line to line):∫ 1

γε

∫ γε

0

[
sh(kπt)sh(kπ(1− x))

kπDεα

]2

dtdx ≤ C
εγε
k2π2∫ 1

γε

∫ 1

γε

[
ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))sh(kπ(1− x))

kπDεαsh(kπε)

]2

dtdx ≤ C
ε2−2α

k2π2∫ γε

0

∫ γε

0

[
γεK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)sh(kπx)

kπDεαsh(kπγε)

]2

dtdx ≤ C
γε

2

k2π2

From these estimations and the fact that γε = O(1) we infer:

k2π2

∫ γε

0

|c−k (x)|2dx ≤ C(1 + ε)‖fk‖2
L2 (44)

εαk2π2

∫ 1

γε

|c+
k (x)|2dx ≤ C(ε2−α + εα+1)‖fk‖2

L2 (45)

Now we have to conduct a similar analysis for the first derivatives of c±k . It follows the same
pattern, we first differentiate equations (39) and (40):

(c−k )′(x) =

∫ γε

0

[
∂yK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)ch(kπx)

Dεαsh(kπγε)

]
fk(t)dt

+

∫ 1

γε

sh(kπ(1− t))ch(kπx)

Dεα
fk(t)dt (46)

(c+
k )′(x) =

∫ 1

γε

[
−ε−α∂yK

(
1− x
ε

,
1− t
ε

, kπε

)
− sh(kπγε)sh(kπ(1− t))ch(kπ(1− x))

Dεαsh(kπε)

]
fk(t)dt

−
∫ γε

0

sh(kπt)ch(kπ(1− x))

Dεα
fk(t)dt (47)

Then again using Cauchy-Schwarz and Young inequality we obtain:∫ γε

0

|(c−k )′(x)|2dx ≤ 2

(∫ γε

0

∫ γε

0

[
∂yK

(
x

γε
,
t

γε
, kπγε

)

+
sh(kπε)sh(kπt)ch(kπx)

Dεαsh(kπγε)

]2

dtdx

)(∫ γε

0

|fk(t)|2dt

)

+ 2

(∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))ch(kπx)

Dεα

]2

dtdx

)(∫ 1

γε

|fk(t)|2dt

)
(48)

∫ 1

γε

|(c+
k )′(x)|2dx ≤ 2

(∫ 1

γε

∫ 1

γε

[
ε−α∂yK

(
1− x
ε

,
1− t
ε

, kπε

)

+
sh(kπγε)sh(kπ(1− t))ch(kπ(1− x))

Dεαsh(kπε)

]2

dtdx

)(∫ 1

γε

|fk(t)|2dt

)

+ 2

(∫ 1

γε

∫ γε

0

[
sh(kπt)ch(kπ(1− x))

Dεα

]2

dtdx

)(∫ γε

0

|fk(t)|2dt

)
(49)
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and finally using the estimation from the appendix we obtain∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))ch(kπx)

Dεα

]2

dtdx ≤ Cεγε∫ γε

0

∫ γε

0

[
∂yK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)ch(kπx)

Dεαsh(kπγε)

]2

dtdx ≤ Cγε
2

∫ 1

γε

∫ γε

0

[
sh(kπt)ch(kπ(1− x))

Dεα

]2

dtdx ≤ C
γε
εαkπ∫ 1

γε

∫ 1

γε

[
ε−α∂yK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))ch(kπ(1− x))

Dεαsh(kπε)

]2

dtdx ≤ Cε2−2α

Injecting the previous estimations in (48) and (49) and adding respectively with (44) and (45)
yields

k2π2

∫ γε

0

|c−k (x)|2dx+

∫ γε

0

|(c−k )′(x)|2dx ≤ C(1 + ε)‖fk‖2
L2 (50)

εαk2π2

∫ 1

γε

|c+
k (x)|2dx+ εα

∫ 1

γε

|(c+
k )′(x)|2dx ≤ C(1 + ε2−α +

1

kπ
+ ε1+α)‖fk‖2

L2 (51)

For fixed ε > 0, this yields Theorem 3.2 because the right-hand sides are summable since f
is in L2(Ω).

Now we can end the proof of Theorem 3.5. From Theorem 3.4 we obtain that∫
Ωε

|∇uε|2 + εα
∫
Bε

|∇uε|2 =

∫
Ωε

|∇u+|2 + εα
∫
Bε

|∇u−|2

Then from Lemma 1 we can state that:∫
Ωε

|∇uε|2 + εα
∫
Bε

|∇uε|2 =
1

2

∑
k≥1

(∫ γε

0

k2π2|c−k |
2 +

∫ γε

0

|(c−k )′|2
)

+
εα

2

∑
k≥1

(∫ 1

γε

k2π2|c+
k |

2 +

∫ 1

γε

|(c+
k )′|2

)
≤ C(1 + ε)‖f‖2

L2(Ω) + C(1 + ε2−α + ε1+α)‖f‖2
L2

Thus, as long as α ≤ 2 the solution to (18) satisfy (16) and Theorem 3 is proved.

6 Further comments
In this section, we examine some possible extensions of our results, in two directions:

1. considering more general boundary conditions on lateral boundaries and at the bottom;

2. imposing a smooth transition between the bulk viscosity and the reduced viscosity near
the wall, rather than a jump of viscosity.

6.1 Adaptation to more general boundary conditions

For the sake of clarity, we have only considered homogeneous Dirichlet boundary conditions on
lateral boundaries x1 = 0, x1 = 1 and at the bottom x2 = 0, but our results apply to more
general boundary conditions.
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As regards lateral boundary conditions, our analysis can be directly adapted to more general
conditions, such as nonhomogeneous Dirichlet conditions, Neumann conditions or periodic ones.
As a matter of fact, the condition imposed on the lateral boundaries did not play a significant
role in the asymptotic analysis of the model.

Concerning the condition on the lower boundary, the requirement that uε vanishes on x2 = 0
is useful from a technical point of view, since it allows us to deduce from the energy bound a
uniform bound of uε in H1 (see Section 3.1), and gain compactness. More fundamentally, to
ensure that limit problems of Robin (19) or Neumann types (20) are well-posed, one should
typically impose a (not necessarily homogeneous) Dirichlet boundary condition uε = g on
x2 = 0, or at least on a given subset of positive measure. Introducing a suitable lift of this
boundary value g, one could reduce the problem to an homogeneous one and apply the same
analysis.

6.2 Smooth drop of viscosity near the boundary

In the model described in Section 1.2, we have considered the case of a jump of viscosity along
the interface Γε located at x2 = 1 − ε d(x1). Starting from Dirichlet boundary condition on
x2 = 1, in the critical case α = 1, we have obtained in the limit a friction coefficient 1/d(x1)
on x2 = 1 (see system (19)). In the case where d(x1) ≡ d is constant, this corresponds to a slip
length equal to d (the bulk viscosity being normalised to 1 in Ωε).

In this paragraph, we investigate the possible effect of a smooth drop of viscosity near the
boundary x2 = 1, on the value of the slip length obtained in the limit system. To illustrate this
effect, we consider the simplified one-dimensional setting of Subsection 1.3.2, introducing

• a sequence (δε)ε>0 such that 0 < δε < ε for any ε > 0,

• a continuous, nonnegative function τ : [0, 1]→ [0,+∞[ such that τ(0) = 0 and τ(1) = 1,

and replacing definition (6) of µε by

µε(x) =


1 if 0 ≤ x ≤ 1− ε(

(ε−α − 1) τ
(
x−(1−ε)

δε

)
+ 1
)−1

if 1− ε ≤ x ≤ 1− ε+ δε

εα if 1− ε+ δε ≤ x ≤ 1

. (52)

With this new definition of µε, the viscosity transitions smoothly between the bulk value 1
and the boundary value εα; the transition region is of length δε and the function τ gives the
viscosity profile in the transition area. The case of a jump of viscosity considered in the rest of
the paper corresponds to the limit case δε = 0.

The solution uε of problem (7) where µε is given by (52), can be represented by formula (8),
where the kernel Kε is defined by (9). In order to pass to the limit in uε, it is enough to derive
the expression of Kε(x, s) for 0 ≤ x ≤ s ≤ 1 − ε, since this expression converges to the kernel
of the limit u as ε goes to zero. We perform the following computations for 0 ≤ x ≤ s ≤ 1− ε :∫ x

0

µ−1
ε =

∫ x

0

1 = x
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∫ 1

s

µ−1
ε =

∫ 1−ε

s

1 +

∫ 1−ε+δε

1−ε

[
(ε−α − 1)ν

(
y − (1− ε)

δε

)
+ 1

]
dy +

∫ 1

1−ε+δε
ε−α

= 1− ε− s+ δε(ε
−α − 1)

∫ 1

0

ν(y)dy + δε + ε−α(ε− δε)

= 1− ε− s+ ε1−α + δε(ε
−α − 1)

(∫ 1

0

ν(y)dy − 1

)
= 1− ε− s+ ε1−α +

δε
ε

(ε1−α − ε)
(∫ 1

0

ν(y)dy − 1

)
and in particular, ∫ 1

0

µ−1
ε = 1− ε+ ε1−α +

δε
ε

(ε1−α − ε)
(∫ 1

0

ν(y)dy − 1

)
.

If 0 < α < 1, we see that Kε(x, s) → x(1 − s) so that uε converges to the solution u0 of
problem (10), as it was the case when the viscosity was given by (6).

If α = 1, up to a extracting a subsequence, we can assume the existence of λ ∈ [0, 1] such
that limε→0 δε/ε = λ, and define the parameter θ ∈]0, 1] by

θ =
1

2 + λ
(∫ 1

0
τ(y)dy − 1

) .
In that case, Kε(x, s) → Kθ(x, s) := x(1 − θs), and the function uθ(x) =

∫ 1

0
Kθ(x, s)f(s)ds

satisfies

uθ(x) =

∫ x

0

s(1− θx)f(s)ds+

∫ 1

x

x(1− θs)f(s)ds ,

u′θ(x) = −θ
∫ x

0

sf(s)ds+

∫ 1

x

(1− θs)f(s)ds ,

u′′θ(x) = −f(x) ,

hence uθ(1) = (1−θ)
∫ 1

0
sf(s)ds and u′θ(1) = −θ

∫ 1

0
sf(s)ds. Thus, uθ satisfies Robin boundary

condition
u′θ(1) +

θ

1− θ
uθ(1) = 0 .

The factor θ/(1− θ) in the previous boundary condition can be interpreted as a friction coeffi-
cient, which means that the slip length is multiplied by a factor (1− θ)/θ, taking into account
the transition between the bulk viscosity and the boundary viscosity through the limit λ and
the profile τ . Notice that in the case λ = 0, we retrieve the limit problem (11) since θ = 1/2.

Finally, if α > 1, Kε(x, s) → x so that uε converges again to the solution of problem (12),
with Neumann boundary conditions on x = 1.

This study of a simplified 1d model suggests that working with a smooth drop of viscosity
near the boundary may result in a large panel of slip lengths. This could be an interesting
lead to explore in order to interpret certain large values of slip length that are reported in the
experimental fluid mechanics literature.
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A Details of the computations in the Dirichlet case

A.1 Proof of Lemma 2

We can start with the proof of Lemma 2. Using the definition of K, the function v(y) =∫ 1

0
K(y, s, λ)β(s)ds can be written as

v(y) =

(∫ y

0

sh(λs)

λsh(λ)
β(s)ds

)
sh(λ(1− y)) +

(∫ 1

y

sh(λ(1− s))
λsh(λ)

β(s)ds

)
sh(λy)

From [4] we know that a function is in H1(]0, 1[) if it is the primitive of an L2(]0, 1[) function.
With this knowledge, it is clear from the previous formula that thusly defined, v is in H1(]0, 1[).
Moreover, setting in the formula y = 0 and 1 yields v(0) = v(1) = 0 so it is actually in H1

0(]0, 1[).
We now derive v to obtain:

v′(y) =
sh(λy)

λsh(λ)
β(y)sh(λ(1− y))− λ

(∫ y

0

sh(λs)

λsh(λ)
β(s)ds

)
ch(λ(1− y))

− sh(λ(1− y))

λsh(λ)
β(y)sh(λy) + λ

(∫ 1

y

sh(λ(1− s))
λsh(λ)

β(s)ds

)
ch(λy)

= −λ
(∫ y

0

sh(λs)

λsh(λ)
β(s)ds

)
ch(λ(1− y)) + λ

(∫ 1

y

sh(λ(1− s))
λsh(λ)

β(s)ds

)
ch(λy)
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Note that we thus have v′(y) =
∫ 1

0
∂yK(y, s, λ)β(s)ds where ∂yK is the almost everywhere

derivative of K with respect to y meaning that we are allowed to derive once under the integral
sign the formula for v. Moreover we have v′(1) = −

∫ 1

0
sh(λs)
sh(λ)

β(s)ds.
From this formula we check that v′ is in H1(]0, 1[) and thus v is in H2(]0, 1[) as announced.

Derivating a second time yields

v′′(y) = −λ sh(λy)

λsh(λ)
β(y)ch(λ(1− y)) + λ2

(∫ y

0

sh(λs)

λsh(λ)
β(s)ds

)
sh(λ(1− y))

− λsh(λ(1− y))

λsh(λ)
β(y)ch(λy) + λ2

(∫ 1

y

sh(λ(1− s))
λsh(λ)

β(s)ds

)
sh(λy)

= −sh(λ(1− y))ch(λy) + sh(λy)ch(λ(1− y))

sh(λ)
β(y) + λ2v(y)

= −β(y) + λ2v(y)

using hyberbolic trigonometry.

A.2 Proof of (39) and (40)
Let us start from expressions (39) and (40) which we recall here for convenience:

c−k (x) =

∫ γε

0

[
γεK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)sh(kπx)

kπDεαsh(kπγε)

]
fk(t)dt

+

∫ 1

γε

sh(kπ(1− t))sh(kπx)

kπDεα
fk(t)dt

c+
k (x) =

∫ 1

γε

[
ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))sh(kπ(1− x))

kπDεαsh(kπε)

]
fk(t)dt

+

∫ γε

0

sh(kπt)sh(kπ(1− x))

kπDεα
fk(t)dt

• Since K(0, ·, ·) = 0 we easily check that c−k (0) = c+
k (1) = 0.

• Since K(1, ·, ·) = 0 and 1− γε = ε we see that c−k (γε) = c+
k (γε).

• We can rewrite c−k = p−k + h−k and c+
k = p+

k + h+
k where

p−k (x) =

∫ γε

0

γεK

(
x

γε
,
t

γε
, kπγε

)
fk(t)dt

h−k (x) =

[∫ γε

0

sh(kπε)sh(kπt)

kπDεαsh(kπγε)
fk(t)dt+

∫ 1

γε

sh(kπ(1− t))
kπDεα

fk(t)dt

]
sh(kπx)

p+
k (x) =

∫ 1

γε

ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)
fk(t)dt

h+
k (x) =

[∫ 1

γε

sh(kπγε)sh(kπ(1− t))
kπDεαsh(kπε)

fk(t)dt+

∫ γε

0

sh(kπt)

kπDεα
fk(t)dt

]
sh(kπ(1− x))

• It is obvious from the expressions that −(h±k )′′ + k2π2h±k = 0. Now we write

p−k (γεy) = γε

∫ γε

0

K

(
y,

t

γε
, kπγε

)
fk(t)dt =

∫ 1

0

K(y, s, kπγε)γε
2fk(γεs)ds

p+
k (1− εy) = ε1−α

∫ 1

γε

K

(
y,

1− t
ε

, kπε

)
fk(t)dt =

∫ 1

0

K(y, s, kπε)ε2−αfk(1− εs)ds

29



Thus from Lemma 2 we obtain that

− d2

dy2
(p−k (γεy)) + (kπγε)

2p−k (γεy) = γε
2fk(γεy)

− d2

dy2
(p+
k (1− εy)) + (kπε)2p−k (1− εy) = ε2−αfk(1− εy)

which is equivalent to

−γε2(p−k )′′(γεy) + γε
2(kπ)2p−k (γεy) = γε

2fk(γεy)

−ε2(p+
k )′′(1− εy) + ε2(kπ)2p−k (1− εy) = ε2−αfk(1− εy)

Simplifying and setting x = γεy in the first equation and x = 1− εy in the second yields

− (p−k )′′ + (kπ)2p−k = fk on (0, γε) ,

− (p+
k )′′ + (kπ)2p+

k =
1

εα
fk on (γε, 1) .

Combining with the equation satisfied by h±k , we obtain

− (c−k )′′ + k2π2c−k = fk on (0, γε) ,

− (c+
k )′′ + k2π2c+

k =
fk
εα

on (γε, 1) .

• Finally derivating (recall that the proof of Lemma 2 showed that we are allowed to
differentiate p±k under the integral sign) and setting x = γε yields

(p−k )′(γε) =

∫ γε

0

∂yK

(
1,

t

γε
, kπγε

)
fk(t)dt = −

∫ γε

0

sh
(
kπγε

t
γε

)
sh(kπγε)

fk(t)dt

(h−k )′(γε) =

[∫ γε

0

sh(kπε)sh(kπt)

Dεαsh(kπγε)
fk(t)dt+

∫ 1

γε

sh(kπ(1− t))
Dεα

fk(t)dt

]
ch(kπγε)

(p+
k )′(γε) = − 1

εα

∫ 1

γε

∂yK

(
1,

1− t
ε

, kπε

)
fk(t)dt =

1

εα

∫ 1

γε

sh
(
kπε1−t

ε

)
sh(kπε)

fk(t)dt

(h+
k )′(γε) = −

[∫ 1

γε

sh(kπγε)sh(kπ(1− t))
Dεαsh(kπε)

fk(t)dt+

∫ γε

0

sh(kπt)

Dεα
fk(t)dt

]
ch(kπε)

We have using (41)

sh(kπε)ch(kπγε)

Dεα
− 1 =

sh(kπε)ch(kπγε)− ch(kπγε)sh(kπε)− εαsh(kπγε)ch(kπε)

Dεα

= −sh(kπγε)ch(kπε)

D

1− sh(kπγε)ch(kπε)

D
=

ch(kπγε)sh(kπε)

εαD
.

This yields

(c−k )′(γε) = −
∫ γε

0

ch(kπε)sh(kπt)

D
fk(t)dt+

∫ 1

γε

sh(kπ(1− t))ch(kπγε)

Dεα
fk(t)dt

(c+
k )′(γε) = −

∫ γε

0

sh(kπt)ch(kπε)

Dεα
fk(t)dt+

∫ 1

γε

ch(kπγε)sh(kπ(1− t))
D(εα)2

fk(t)dt

Thus we do have (c−k )′(γε) = εα(c+
k )′(γε).

This ends the proof that the formulas (39) and (40) define the solutions to (21) with the
Dirichlet boundary condition.
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A.3 Proof of the estimates needed for the L2 norm of c±k
As stated in Section 5.3 we now have to compute various estimates to obtain controls over the
L2 norms of c±k and (c±k )′.

We start with ∫ 1

γε

∫ γε

0

[
sh(kπt)sh(kπ(1− x))

kπDεα

]2

dtdx

By Fubini we can then deduce:∫ γε

0

∫ 1

γε

[
sh(kπ(1− x))sh(kπt)

kπDεα

]2

dxdt =
1

(kπ)2D2ε2α

(∫ 1

γε

sh(kπ(1− x))2dx

)(∫ γε

0

sh(kπt)2dt

)
=

1

(kπ)2D2ε2α

(
sh(2kπε)

4kπ
− ε

2

)(
sh(2kπγε)

4kπ
− γε

2

)
Now we use that sh(2θ) = 2sh(θ)ch(θ) so we can write:∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))sh(kπx)

kπD

]2

dxdt =
εγε

4(kπ)2

sh(kπε)2ch(kπγε)
2

D2ε2α
×(

coth(kπε)

kπε
− 1

sh(kπε)2

)(
th(kπγε)

kπγε
− 1

ch(kπγε)2

)
It is routine to check that the functions θ 7→ coth(θ)/θ − 1/sh(θ)2 and θ 7→ th(θ)/θ − 1/ch(θ)2

are bounded functions over R. Moreover from (41) we see that

sh(kπε)2ch(kπγε)
2

D2ε2α
≤ 1

Thus as announced, there is a numerical constant C > 0 (independent of k and ε) such that:∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))sh(kπx)

kπDεα

]2

dtdx ≤ C
εγε

(kπ)2
.

Now we turn to∫ γε

0

∫ γε

0

[
γεK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)sh(kπx)

kπDεαsh(kπγε)

]2

dtdx∫ 1

γε

∫ 1

γε

[
ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))sh(kπ(1− x))

kπDεαsh(kπε)

]2

dtdx

We set x = γεy and t = γεs in the first integral and x = 1 − εy and t = 1 − εs in the second
one which yields:∫ γε

0

∫ γε

0

[
γεK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)sh(kπx)

kπDεαsh(kπγε)

]2

dtdx

=
γε

2

(kπ)2

∫ 1

0

∫ 1

0

[
kπγεK(y, s, kπγε) +

sh(kπε)sh(kπγεs)sh(kπγεy)

Dεαsh(kπγε)

]2

dsdy∫ 1

γε

∫ 1

γε

[
ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))sh(kπ(1− x))

kπDεαsh(kπε)

]2

dtdx

=
ε2

(kπ)2ε2α

∫ 1

0

∫ 1

0

[
kπεK(y, s, kπε) +

sh(kπγε)sh(kπεs)sh(kπεy)

Dsh(kπε)

]2

dsdy
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We thus see that evaluating these integrals amounts to computing∫ 1

0

∫ 1

0

[
λK(y, s, λ) +M

sh(λs)sh(λy)

Dsh(λ)

]2

dsdy

in the case (λ,M) = (kπγε, sh(kπε)/εα) and (λ,M) = (kπε, sh(kπγε)) As we can check,
λK(y, s, λ) +M sh(λs)sh(λy)

Dsh(λ)
is invariant through exchange of y and s thus we have:∫ 1

0

∫ 1

0

[
λK(y, s, λ) +M

sh(λs)sh(λy)

Dsh(λ)

]2

dsdy

=2

∫∫
0≤s≤y≤1

[
λK(y, s, λ) +M

sh(λs)sh(λy)

Dsh(λ)

]2

dsdy

=2

∫∫
0≤s≤y≤1

[
sh(λ(1− y))sh(λs)

sh(λ)
+M

sh(λs)sh(λy)

Dsh(λ)

]2

dsdy

=
2

sh(λ)2

∫ 1

y=0

[
sh(λ(1− y)) +

M

D
sh(λy)

]2(∫ y

0

sh(λs)2ds

)
dy

=
1

sh(λ)2

∫ 1

y=0

[
sh(λ(1− y)) +

M

D
sh(λy)

]2(
sh(2λy)

2λ
− y
)

dy .

Expanding the square and performing the integrations yield now:∫ 1

0

∫ 1

0

[
λK(y, s, λ) +M

sh(λs)sh(λy)

Dsh(λ)

]2

dsdy =

(
Mch(λ)

D

)2(
1

2λ
− 1

sh(2λ)

)2

+
1

4sh(λ)2

(
2− th(λ)

λ
− sh(λ)2

λ2

)(
1− M

D
ch(λ)

)
+

1

2

(
1

th(λ)
− 1

λ

)(
1

2λ
− 1

sh(2λ)

)
First we remark that since sh(λ) ≥ λ for non negative λ by convexity, we have

2− th(λ)

λ
− sh(λ)2

λ2
≤ 1− th(λ)

λ
.

Then we claim that it is again routine to check that

λ 7→
(

1

2λ
− 1

sh(2λ)

)2

λ 7→ 1

sh(λ)2

(
1− th(λ)

λ

)
λ 7→

(
1

th(λ)
− 1

λ

)(
1

2λ
− 1

sh(2λ)

)
are bounded functions over R.

Finally, when (λ,M) = (kπγε, sh(kπε)/εα), we note that

M

D
ch(λ) =

sh(kπε)
εα

ch(kπγε)

ch(kπγε)
sh(kπε)
εα

+ ch(kπε)sh(kπγε)
∈ [0, 1]

and when (λ,M) = (kπε, sh(kπγε)) we have

M

D
ch(λ) =

sh(kπγε)ch(kπε)

ch(kπγε)
sh(kπε)
εα

+ ch(kπε)sh(kπγε)
∈ [0, 1]

Thus we obtain, as claimed in Section 5.3, a numerical constant C such that:∫ γε

0

∫ γε

0

[
γεK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)sh(kπx)

kπDεαsh(kπγε)

]2

dtdx ≤ C
γε

2

(kπ)2∫ 1

γε

∫ 1

γε

[
ε1−αK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))sh(kπ(1− x))

kπDεαsh(kπε)

]2

dtdx ≤ C
ε2

(kπ)2ε2α
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A.4 Proof of the estimates needed for the L2 norm of (c±k )′

Again we start with the estimation of∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))ch(kπx)

Dεα

]2

dtdx∫ 1

γε

∫ γε

0

[
sh(kπt)ch(kπ(1− x))

Dεα

]2

dtdx

Changing variables t′ = 1− t and x′ = 1− x in the first integral shows that∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))ch(kπx)

Dεα

]2

dtdx =

∫ 1

ε

∫ ε

0

[
sh(kπt′)ch(kπ(1− x′))

Dεα

]2

dt′dx′

so what we really want to compute is∫ 1

a

∫ a

0

[
sh(kπt)ch(kπ(1− x))

Dεα

]2

dtdx =
1

(Dεα)2

(∫ 1

a

ch(kπ(1− x))2dx

)(∫ a

0

sh(kπt)2dt

)
=

1

(Dεα)2

(
sh(2kπ(1− a))

4kπ
+

1− a
2

)(
sh(2kπa)

4kπ
− a

2

)
=
a(1− a)

4(Dεα)2

(
sh(2kπ(1− a))

2kπ(1− a)
+ 1

)(
sh(2kπa)

2kπa
− 1

)
Thus, setting a = ε yields∫ 1

ε

∫ ε

0

[
sh(kπt)ch(kπ(1− x))

Dεα

]2

dtdx =
εγε

4(Dεα)2

(
sh(2kπγε)

2kπγε
+ 1

)(
sh(2kπε)

2kπε
− 1

)
=
εγεsh(kπε)2ch(kπγε)

2

4(Dεα)2
×(

th(kπγε)

kπγε
+

1

ch(kπγε)2

)(
coth(kπε)

kπε
− 1

sh(kπε)2

)
One can check that θ 7→ th(θ)

θ
+ 1

ch(θ)2
and θ 7→ coth(θ)

θ
− 1

sh(θ)2
are bounded functions over R.

Moreover, as sh(kπε)ch(kπγε) ≤ εαD we obtain a numerical constant such that∫ γε

0

∫ 1

γε

[
sh(kπ(1− t))ch(kπx)

Dεα

]2

dtdx ≤ C
εγε
4
.

On the other hand, setting a = γε yields∫ 1

γε

∫ γε

0

[
sh(kπt)ch(kπ(1− x))

Dεα

]2

dtdx =
εγε

4(Dεα)2

(
sh(2kπε)

2kπε
+ 1

)(
sh(2kπγε)

2kπγε
− 1

)
=
γεsh(2kπε)sh(2kπγε)

8(Dεα)2(kπ)
×(

1

2kπγε
− 1

sh(2kπγε)

)(
1 +

2kπε

sh(2kπε)

)
Now we have

(Dεα)2 = (sh(kπε)ch(kπγε))
2 + 2εαsh(kπε)ch(kπε)sh(kπγε)ch(kπγε) + (εαsh(kπγε)ch(kπε))2

= (sh(kπε)ch(kπγε))
2 +

1

2
εαsh(2kπε)sh(2kπγε) + (εαsh(kπγε)ch(kπε))2

≥ 1

2
εαsh(2kπε)sh(2kπγε)
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Moreover, the functions θ 7→ 1
θ
− 1

sh(θ)
and θ 7→ 1 + θ

sh(θ)
are bounded functions over R so that

we have a numerical constant C such that∫ 1

γε

∫ γε

0

[
sh(kπt)ch(kπ(1− x))

Dεα

]2

dtdx ≤ C
γε

4εαkπ

as announced.
Finally we turn to the last to integrals to estimate:∫ γε

0

∫ γε

0

[
∂yK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)ch(kπx)

Dεαsh(kπγε)

]2

dtdx∫ 1

γε

∫ 1

γε

[
ε−α∂yK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))ch(kπ(1− x))

Dεαsh(kπε)

]2

Again, setting x = γεy and t = γεs in the first integral and x = 1 − εy and t = 1 − εs in the
second one yields∫ γε

0

∫ γε

0

[
∂yK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)ch(kπx)

Dεαsh(kπγε)

]2

dtdx

=γε
2

∫ 1

0

∫ 1

0

[
∂yK(y, s, kπγε) +

sh(kπε)

εα
sh(kπγεs)ch(kπγεy))

Dsh(kπγε)

]2

dsdy∫ 1

γε

∫ 1

γε

[
ε−α∂yK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))ch(kπ(1− x))

Dεαsh(kπε)

]2

dtdx

=
ε2

ε2α

∫ 1

0

∫ 1

0

[
∂yK(y, s, kπε) + sh(kπγε)

sh(kπεs)ch(kπεy)

Dsh(kπε)

]2

dsdy

and we have to compute∫ 1

0

∫ 1

0

[
∂yK(y, s, λ) +M

sh(λs)ch(λy)

Dsh(λ)

]2

dsdy

with again (λ,M) = (kπγε, sh(kπε)/εα) and (λ,M) = (kπε, sh(kπγε)). Here a difficulty comes
from the fact that we don’t have symmetry with respect to the exchange of y and s.

Using (38) we can state

∂yK(y, s, λ) =

{
sh(λ(1−s))ch(λy)

sh(λ)
if y ≤ s

− ch(λ(1−y))sh(λs)
sh(λ)

if y ≥ s
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so that ∫ 1

0

∫ 1

0

[
∂yK(y, s, λ) +M

sh(λs)ch(λy)

Dsh(λ)

]2

dsdy

=

∫∫
y≤s

[
sh(λ(1− s))ch(λy)

sh(λ)
+M

sh(λs)ch(λy)

Dsh(λ)

]2

dsdy

+

∫∫
y≥s

[
−ch(λ(1− y))sh(λs)

sh(λ)
+M

sh(λs)ch(λy)

Dsh(λ)

]2

dsdy

=
1

sh(λ)2

∫ 1

s=0

[
sh(λ(1− s)) +

M

D
sh(λs)

]2(∫ s

y=0

ch(λy)2dy

)
ds

+
1

sh(λ)2

∫ 1

y=0

[
−ch(λ(1− y)) +

M

D
ch(λy)

]2(∫ y

s=0

sh(λs)2ds

)
dy

=
1

sh(λ)2

∫ 1

s=0

[
sh(λ(1− s)) +

M

D
sh(λs)

]2(
sh(2λs)

4λ
+
s

2

)
ds

+
1

sh(λ)2

∫ 1

y=0

[
−ch(λ(1− y)) +

M

D
ch(λy)

]2(
sh(2λy)

4λ
− y

2

)
dy

Let us call u the integration variable in both integrals. Expanding the squares, regrouping
similar terms and using hyperbolic trigonometry yield:

sh(λ)2

∫ 1

0

∫ 1

0

[
∂yK(y, s, λ) +M

sh(λs)ch(λy)

Dsh(λ)

]2

dsdy

=

∫ 1

0

(
ch(2λ(1− u))− 2

M

D
ch(λ(1− 2u)) +

M2

D2
ch(2λu)

)
sh(2λu)

4λ
du

+

∫ 1

0

(
−1 + 2

M

D
ch(λ)− M2

D2

)
u

2
du

Now performing the integration finally leads to:∫ 1

0

∫ 1

0

[
∂yK (y, s, λ) +

Msh(λs)ch(λy)

Dsh(λ)

]2

dsdy =

(
Mch(λ)

D

)2(
1

(2λ)2
− 1

sh(2λ)2

)
+

1

4

(
coth(λ)

λ
− 1

sh(λ)2

)
+

1

4sh(λ)2

Mch(λ)

D

(
2− sh(λ)2

λ2
− th(λ)

λ

)
As in the previous section, for (λ,M) = (kπγε, sh(kπε)/εα) and (λ,M) = (kπε, sh(kπγε)) we
have Mch(λ)/D ∈]0, 1[ and moreover we know that λ 7→ 1

(2λ)2
− 1

sh(2λ)2
, λ 7→ coth(λ)

λ
− 1

sh(λ)2
and

λ 7→ 1
sh(λ)2

(
2− sh(λ)2

λ2
− th(λ)

λ

)
are bounded from above functions.

This allows us to conclude as claimed that there is a numerical constant such that

∫ γε

0

∫ γε

0

[
∂yK

(
x

γε
,
t

γε
, kπγε

)
+

sh(kπε)sh(kπt)ch(kπx)

Dεαsh(kπγε)

]2

dtdx ≤ Cγε
2

∫ 1

γε

∫ 1

γε

[
ε−α∂yK

(
1− x
ε

,
1− t
ε

, kπε

)
+

sh(kπγε)sh(kπ(1− t))ch(kπ(1− x))

Dεαsh(kπε)

]2

≤ Cε2−2α
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