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Abstract: In the Prediction Error identification framework, it is crucial that the collected data
are informative with respect to the chosen model structure to get a consistent estimate. In this
work, we focus on the data informativity property for the identification of multi-inputs single-
output ARX systems in closed-loop and we derive a necessary and sufficient condition to verify
if a given multisine external excitation combined with the feedback introduced by the controller
yields informative data with respect to the chosen model structure.
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1. INTRODUCTION

In order to get an accurate identified model within
the Prediction Error framework, it is crucial to ensure
the consistency of the estimate. For this purpose, the
data collected on the to-be-identified system must be
informative with respect to (w.r.t.) the considered model
structure. In this paper, we consider the fundamental
problem of data informativity for the direct closed-loop
identification of MISO ARX systems.

Data informativity is ensured when the input excitation
is sufficiently rich to guarantee that the prediction error
is different for different models in the considered model
structure. Data informativity has been studied extensively
in the Single-Input Single-Output (SISO) case where nec-
essary and sufficient conditions have been derived for both
the open-loop and direct closed-loop case [Ljung 1999,
Gevers et al. 2008; 2009, Bazanella et al. 2012]. When con-
sidering Multiple-Inputs Multiple-Outputs (MIMO) sys-
tems, the work [Colin et al. 2020b] tackles the analy-
sis of data informativity for the open-loop identification
of MIMO systems. For the direct closed-loop identifica-
tion of MIMO systems, there has been attention towards
determining the complexity of the MIMO controller to
guarantee that a costless identification (without external
excitation) in closed-loop will be informative [Bazanella
et al. 2010, Ng et al. 1977]. When considering the costless
identification of Multiple-Inputs single-Outputs (MISO)
ARMAX systems, the paper [Yan and Zhu 2018] gives a
condition for the data informativity under some restric-
tions on the controller and the model structure.

When the controller is not enough complex to yield
informative data in the costless framework, an external
excitation must be added. In [Bazanella et al. 2010], it
is said that an external excitation signal with a strictly
positive definite power spectrum matrix at all the frequen-

cies always yields informative data for the direct closed-
loop identification. This condition is of course only suf-
ficient and is moreover very restrictive. As an example,
a multisine excitation will never respect this condition.
In [Colin et al. 2020a], we developed a condition that
is less restrictive and that allows to verify whether data
generated with multisine or filtered white noise excitation
are informative with respect to MIMO model structures
(Finite Impulse Reponse, ARX, ARMAX, Box-Jenkins,...)
with diagonal noise matrices. Even if this condition is less
conservative than the one in [Bazanella et al. 2010], we
have only been able to prove the sufficiency of the proposed
condition in [Colin et al. 2020a].

In this paper, we show that this condition is in fact also
necessary in the case of MIMO ARX model structures with
diagonal noise matrices. Since the approach [Colin et al.
2020a] pertains to a channel-by-channel verification, we
will here restrict attention to the MISO ARX case for the
sake of brevity. For the same reason, we will here only
consider multisine excitations.

Notations. For any matrix A, AT denotes its transpose.
The notation 0n×m refers to the matrix of size n×m full
of zeros. The set of natural numbers and the set of real-
valued scalars will be denoted by N and R respectively.
For two integers n and p such that n ≤ p, the set Jn, pK is
the set of consecutive integers between n and p, i.e., the
set {n, n + 1, · · · , p − 1, p}. We will denote the Cartesian
product by ×. For discrete-time systems, z denotes the
forward-shift operator. For discrete-time quasi-stationary
signals x(t), we define by Ē the following operator [Ljung
1999]

Ē[x(t)] = lim
N→+∞

1

N

N∑
t=1

E[x(t)] (1)

where E is the expectation operator. The degree of a
polynomial P (x) is denoted deg(P ). When x = z−1, we say



that ρ is the delay of the polynomial P (z−1) when the first
nonzero coefficient is linked to z−ρ, i.e., P (z−1) = pρz

−ρ+

pρ+1z
−(ρ+1) + · · ·+ pnz

−n with pρ 6= 0.

2. PREDICTION ERROR FRAMEWORK

2.1 True system and closed-loop configuration

Consider a MISO system S with an input vector u ∈ Rp
and an output y ∈ R, described by

S : y(t) = G0(z)u(t) +H0(z)e(t) (2)
where G0(z) is a row vector of p stable transfer functions,
H0(z) is a stable, inversely stable and monic 1 transfer
function and e is a zero-mean white noise.

As shown in Figure 1, the system S is put under
feedback control with a stabilizing linear controller K(z)
which is a column vector of p transfer functions. The
reference signal is set to 0. For identification purpose, a
quasi-stationary external excitation r ∈ Rp can be added
to the control effort such that the input u is given by

u(t) = −K(z)y(t) + r(t) (3)

Figure 1. Closed-loop configuration.

We will assume that the excitation vector r is uncorre-
lated with the white noise e and that there is no algebraic
loop (i.e., there is at least a delay in the scalar transfer
function G0(z)K(z)). In this work, we focus on developing
conditions to get a consistent estimate of (G0(z), H0(z))
when considering the direct closed-loop identification ap-
proach, i.e., by using the data x(t) = (yT (t),uT (t))T .

2.2 External excitation considered in this study

We will consider multisine external excitations r where
each entry rk of r (k = 1, · · · , p) is a multisine made up of
sinusoids at s different frequencies ωl (l = 1, · · · , s), i.e.,

rk(t) =

s∑
l=1

Λkl cos(ωlt+ Ψkl) k = 1, · · · , p (4)

where Λkl and Ψkl are respectively the amplitude and the
phase shift of the sinusoid at the frequency ωl. Note that
Λkl and Ψkl can be zero for some k (k = 1, · · · , p) but, for
each l = 1, · · · , s, there exists (at least) a value of k for
which Λkl 6= 0.

1 This means that H0 and H−1
0 are stable and H0(z =∞) = 1.

2.3 Model struture considered in this study

The system S is identified within a full-order model
structureM = {(G(z,θ), H(z,θ)) | θ ∈ Dθ} where θ is a
parameter vector. Since we know that G0(z) is stable and
H0(z) is stable, inversely stable and monic, it is natural
to consider the set Dθ of parameters θ that restricts the
parameter vector θ to those values for which G(z,θ) is
stable and H(z,θ) is monic, stable and inversely stable.
The model structure is said to be full-order if ∃θ0 ∈ Dθ
such that (G(z,θ0), H(z,θ0)) = (G0(z), H0(z)).

In this paper, we will consider MISO ARX model
structures. In order to define this type of model structures,
let us decompose the parameter vector θ as follows θ =
(αT ,βT )T where β is a vector of dimension nβ made up by
the parameters uniquely found in G(z,θ) and α is a vector
of dimension nα containing the rest of the parameters.
Then, in a MISO ARX model structure, we have that

G(z,θ) = B(z,β)/A(z,α) (5)
H(z,θ) = 1/A(z,α) (6)

where B(z,β) is a row vector of p FIR filters Bk(z,β)
and where A(z,α) is a monic FIR filter. Moreover, we
will assume that each FIR filter Bk(z,β) of B(z,β) is
independently parametrized by a parameter vector βk,
i.e., Bk(z,β) = Bk(z,βk). Finally, we will respectively
denote by ρk and deg(Bk) the delay and the degree of
Bk(z,βk) (k = 1, · · · , p) and by deg(A) = nα the degree
of A(z,α). Hence, the dimension nβ of β is equal to
nβ = p+

∑p
k=1(deg(Bk)− ρk).

Recall that the set Dθ contains the parameter vectors
θ such that G(z,θ) is stable and H(z,θ) is monic, stable
and inversely stable. For MISO ARX model structures as
defined above, the set Dθ is made up of all θ = (αT ,βT )T

such that 1/A(z,α) is stable. Therefore, the set Dθ is equal
to the Cartesian product of Rnβ (since the row vector
B(z,β) of FIR filters is always stable for any β ∈ Rnβ )
and the subset of Rnα over which 1/A(z,α) is stable. We
will denote by Dα this particular subset. Hence, we have
that Dθ = Dα × Rnβ .

In the next paragraph, we define the estimator for the
estimation of θ0 and its consistency.

2.4 Estimator, consistency and data informativity

Assume that we have collected a set ZN of N input-
output data defined by:

ZN =
{
x(t) =

(
y(t), uT (t)

)T | t = 1, · · · , N
}

For each (G(z,θ), H(z,θ)) ∈ M, we can define the one-
step ahead predictor ŷ(t,θ) for the output y(t) using ZN :

ŷ(t,θ) = Wy(z,θ)y(t) + Wu(z,θ)u(t) = W(z,θ)x(t)

Wu(z,θ) = H−1(z,θ)G(z,θ) = B(z,β) (7)
Wy(z,θ) = 1−H−1(z,θ) = 1−A(z,α) (8)

where W(z,θ) = (Wy(z,θ),Wu(z,θ)).

Then, we define the following estimator θ̂N for θ0:

θ̂N = arg min
θ∈Dθ

1

N

N∑
t=1

ε2(t,θ) (9)



where ε(t,θ) = y(t) − ŷ(t,θ). In order to guarantee an
accurate estimate θ̂N for θ0, θ̂N must be consistent,
i.e., it must converges to θ0 with probability equal to
1 when N → +∞. To ensure the consistency, the data
x(t) = (y(t),uT (t))T must be informative with respect to
M [Ljung 1999, Bazanella et al. 2012].
Definition 1. (Data Informativity [Bazanella et al. 2010]).
Consider the framework defined above with the data x(t) =(
y(t), uT (t)

)T collected on the true system S in (2) op-
erated in closed-loop with a stabilizing controller K(z)
and a quasi-stationary external excitation r (see (3)).
Consider also a model structure M yielding the predictor
ŷ(t,θ) = W(z,θ)x(t). Define the set

∆W =
{

∆W(z) = W(z,θ′)−W(z,θ′′) | (θ′,θ′′) ∈ D2
θ

}
(10)

The data x(t) are said to be informative w.r.t. the model
structureM if, for all ∆W(z) ∈∆W, we have

Ē
[
||∆W(z)x(t)||2

]
= 0 =⇒ ∆W(z) ≡ 01×(p+1) (11)

where the notation ∆W(z) ≡ 01×(p+1) means that
∆W(ejω) = 01×(p+1) at almost all ω ∈]− π, π] and where
the operator Ē is defined in (1). �

Since MISO ARX model structures are globally identi-
fiable at any θ ∈ Dθ and that there is at least a delay in
G0(z)K(z), then the data informativity implies the con-
sistency of θ̂N [Ljung 1999, Bazanella et al. 2012]. Hence,
in this paper, our main objective is to develop a necessary
and sufficient condition to verify whether closed-loop data
generated with a given excitation r of the type (4) are
informative (and thus yield a consistent estimate (9)).
For this purpose, we will show that the condition that
we have developed in [Colin et al. 2020a] and of which
we have proven the sufficiency for data informativity in
the same paper is also a necessary condition for the data
informativity in the case considered in this paper, i.e., the
case of MISO ARX structures. In addition, we will also
derive new conditions that must satisfy the controller K(z)
and the external excitation r in order to ensure the data
informativity.

3. PREVIOUS RESULT ON THE DATA
INFORMATIVITY

3.1 Preliminary notations

In order to recall the data informativity condition
developed in [Colin et al. 2020a], let us introduce some
notations. For the controller K(z), we will put all its
entries on the least common factor of the denominators
denoted Y (z) such that it can be rewritten as follows

K(z) = X(z)/Y (z) (12)
where X(z) is a column vector of p FIR filters Xk(z)
(k = 1, · · · , p) and we will denote by deg(Xk) and ρXk
the degree and delay of Xk(z) respectively. For the monic
polynomial Y (z), we will denote by deg(Y ) its degree.
For the MISO ARX model structures, we introduce the
following notations

Bk(z,βk) = βTk ZBk(z) (13)
A(z,α) = 1 +αTZA(z) (14)

where ZBk(z) = (z−ρk , z−(ρk+1), · · · , z−deg(Bk))T and
ZA(z) = (z−1, z−2, · · · , z−nα)T .

Consider now the following vector of polynomials

Γ(z) =


Y (z)ZA(z)
X1(z)ZB1

(z)
...

Xp(z)ZBp(z)


Let us denote by γmin and γmax the minimum of the delays
and the maximum of the degrees of the entries of Γ(z).
From the expression of Γ(z), the scalars γmin and γmax
are given by

γmin = min(1, ρ1 + ρX1 , ρ2 + ρX2 , · · · , ρp + ρXp ) (15)

γmax = max(deg(A) + deg(Y ), deg(B1) + deg(X1), (16)
deg(B2) + deg(X2), · · · , deg(Bp) + deg(Xp))

Therefore, we can rewrite Γ(z) as follows

Γ(z) =

(
A
B

)
z−γmin

z−(γmin+1)

...
z−γmax

 (17)

where the entries of the matrices A and B depend on the
entries of Y (z) and X(z) respectively. The matrix A is of
dimension nα × (γmax − γmin + 1) and the matrix B is
of dimension nβ × (γmax − γmin + 1). An example of the
construction of Γ(z), A and B will be given in Section 6.

When r is a multisine of the type (4), we define C as
the column block matrix C = (CT1 , · · · , CTp )T where

CTk =


Λk1e

−jρkω1 · · · Λk1e
−jdeg(Bk)ω1

Λ
∗
k1e

jρkω1 · · · Λk1e
jdeg(Bk)ω1

... · · ·
...

Λkse
−jρkωs · · · Λkse

−jdeg(Bk)ωs

Λ
∗
kse

jρkωs · · · Λ
∗
kse

jdeg(Bk)ωs

 (k = 1, · · · , p)

with Λkl = Λkle
jΨkl (k = 1, · · · , p, l = 1, · · · , s). The

matrix C has a dimension of nβ × 2s.

3.2 Result for data informativity

Theorem 1. ([Colin et al. 2020a]). Consider Definition 1
and a MISO ARX model structure M defined in Sec-
tion 2.3. Assume that the true system S is operated in
closed-loop with a stabilizing linear controller K(z) with a
nonzero external excitation r of the type (4) and that we
collect data x(t) on S. Let us also define the sets

∆β = {δβ = β′ − β′′ | (β′,β′′) ∈ Rnβ × Rnβ} (18)
∆α = {δα = α′ −α′′ | (α′,α′′) ∈ Dα ×Dα} (19)

where Dα is the set of all parameter vectors α such that
1/A(z,α) is stable. The data x(t) are informative w.r.t.M
if, and only if, at least one of the properties (20) and (21)
holds for all (δαT δβT )T ∈∆α ×∆β

(a)
(
δαT , δβT

)(A 0
B C

)
= 0 =⇒

(
δαT δβT

)
= 01×nθ (20)

(b)
(
δαT , δβT

)(A
B

)
= 0 =⇒

(
δαT δβT

)
= 01×nθ (21)

where A, B and C are the matrices defined in Section 3.1.
When r = 0 (costless identification), the corresponding



data collected on S are informative if and only if (21)
holds for all (δαT δβT )T ∈∆α ×∆β. �

Let us introduce the following matrices

P(a) =

(
A 0
B C

)
and P(b) =

(
A
B

)
(22)

which are the block-matrices involved in Theorem 1.
It is clear that a sufficient condition to guarantee (20)
(resp. (21)) for all (δαT δβT )T ∈ ∆α ×∆β is that P(a)

(resp. P(b)) is full row rank.

This rank condition on P(a) (resp. P(b)) would be a
necessary and sufficient condition for (20) (resp. (21))
to hold for all (δαT δβT )T ∈ ∆α × ∆β if the set
∆α ×∆β contains an Euclidean ball of Rnθ centered at
0nθ×1. Indeed, the property (20) (resp. (21)) holds for all
(δαT δβT )T ∈ ∆α × ∆β if and only if the intersection
between the left nullspace of P(a) (resp. P(b)) and the set
∆α×∆β is equal to the singleton {0nθ×1}. Moreover, the
left nullspace of P(a) (resp. P(b)) reduces to {0nθ×1} when
P(a) (resp. P(b)) is full row rank and it is an hyperplane
which contains 0nθ×1 when P(a) (resp. P(b)) is not full row
rank. Consequently, when ∆α×∆β contains an Euclidean
ball centered at 0nθ×1, a necessary and sufficient condition
for the interesection between the left nullspace of P(a)

(resp. P(b)) and ∆α × ∆β to reduce to the singleton
{0nθ×1} is that P(a) (resp. P(b)) is full row rank.

In this paper, we will show that ∆α × ∆β contains
such an Euclidean ball in the case of MISO ARX model
structures. Consequently, for these model structures, a
necessary and sufficient condition for data informativity
is that at least one of the two matrices P(a) and P(b) is
full row rank.

Because of the construction of ∆β given in (18), we have
that ∆β = Rnβ . Moreover, the sets ∆β and ∆α are defined
independently. Consequently, the set ∆α × ∆β contains
an Euclidean ball of Rnθ centered at 0nθ×1 with a nonzero
radius if and only if the set ∆α contains an Euclidean ball
of Rnα centered at 0nα×1 with a nonzero radius. Because
of the construction of the set ∆α defined in (19) and
of the fact that 0nα×1 ∈ Dα, we have that Dα ⊂ ∆α.
Consequently, if the set Dα contains an Euclidean ball of
Rnα centered at 0nα×1 with a nonzero radius, so does ∆α.

To summarize, if Dα contains an Euclidean ball of Rnα
centered at 0nα×1 with a nonzero radius, so does ∆α which
in turn implies that ∆α ×∆β contains an Euclidean ball
of Rnθ centered at 0nθ×1 with a nonzero radius. Let us
therefore perform a geometrical study of the set Dα.
Remark 1. For MISO ARX model structures, we can
choose Dθ equal to Rnθ since the predictor filter matrix
W(z,θ) is always stable (matrix of FIR filters). For that
Dθ, the rank condition on P(a) and P(b) dicussed above is a
necessary and sufficient condition for the data informativ-
ity. However, in this paper, we choose Dθ corresponding
to the priors that we have on the system, that is G0(z)
is stable and H0(z) is stable, inversely stable and monic.
For this choice of Dθ, the geometrical study of Dα is thus
necessary.

4. GEOMETRICAL STUDY OF THE SET Dα

The set Dα contains the parameter vectors α ∈ Rnα
such that 1/A(z,α) is stable. Let us write this transfer
function as follows

1

A(z,α)
=

znα

znα + α1znα−1 + α2znα−2 + · · ·+ αnα
where αl (l = 1, · · · , nα) are the coefficients contained
in the parameter vector α = (α1, α2, · · · , αnα)T . In the
discrete-time domain, 1/A(z,α) is stable if the nα roots z1,
z2, · · · , znα of its denominator znα +α1z

nα−1 +α2z
nα−2 +

· · ·+ αnα have an absolute value strictly less than 1. The
following lemma ensures that each root of a polynomial has
a modulus smaller than 1 if the polynomial coefficients are
taken to be sufficiently small in magnitude
Lemma 1. Consider a polynomial P (x) of degree m of the
form

P (x) = xm + p1x
m−1 + p2x

m−2 + · · ·+ pm
such that |ph| < 1/m ∀h ∈ J1,mK. Then, the m roots x1,
x2, · · · , xm of P (x) are such that |xh| < 1 ∀h ∈ J1,mK.�

Proof. See Appendix A. �

As shown below, we can prove the main result of this
paper based on Lemma 1.
Lemma 2. For any nα ∈ N\{0} (i.e., for any nonzero
degree of A(z,α)), the set Dα of parameters α such that
1/A(z,α) is stable contains an Euclidean ball centered at
0nα×1 with a nonzero radius. �

Proof. By applying Lemma 1 to our case with x = z,
P = znα + α1z

nα−1 + α2z
nα−2 + · · · + αnα , m = nα

and ph = αh, we can conclude that all the transfer
functions 1/A(z,α) with a parameter vector α such that
|αh| < 1/nα ∀h ∈ J1, nαK are stable since the roots of
the denominator have an absolute value strictly less than
1. Hence, all parameter vectors α satisfying this property
belong to Dα. Moreover, the set of parameter vectors α
satisfying |αh| < 1/nα ∀h ∈ J1, nαK is the interior of an
hypercube centered at 0nα×1 and where each line segment
has a length of 2/nα. The interior of this hypercube (which
is a subset of Dα) contains entirely, e.g., the Euclidean
ball centered at 0nα×1 with a radius equal to 0.9/nα.
Therefore, there exists an Euclidean ball centered at 0nα×1

with a nonzero radius (e.g., a radius equal to 0.9/nα)
subset of Dα, which concludes the proof. �

Consequently, we obtain this important result
Theorem 2. Consider Theorem 1 and a MISO ARX
model structureM defined in Section 2.3. Assume that the
true system S is operated in closed-loop with a controller
K(z) with a multisine excitation r of the type (4) and
that we collect data x(t) on S. Then, the data x(t) are
informative w.r.t.M if and only if at least one of the two
matrices P(a) and P(b) (see (22)) is full row rank. When
r = 0, we have data informativity if and only if the matrix
P(b) is full row rank. �

In the next section, we give some hints/results on the
combined complexity that the controller K(z) and the
multisine external excitation r should have in order to
guarantee the data informativity.



5. ADDITIONAL CONDITIONS FOR THE DATA
INFORMATIVITY

As aforementioned, the necessary an sufficient condition
for the data informativity presented in this paper relies
on the fact that a particular matrix is full row rank
(Theorem 2). For a matrix to be full row rank, it is
necessary that its number of columns is greater than or
equal to its number of rows. With this last statement,
we will see in the next theorem that there is a necessary
combined complexity that the controller K(z) and the
multisine external excitation r should have in order to
guarantee the data informativity.
Theorem 3. Consider Theorem 1 and a MISO ARX
model structure M as defined in Section 2.3. Assume
that the true system S is operated in closed-loop with a
stabilizing linear controller K(z) with a nonzero multisine
external excitation r of the type (4). Then, the data x(t)
collected on S are informative w.r.t.M only if at least one
of the following properties is satisfied

• the following condition is guaranteed

γmax − γmin + 1 ≥ deg(A) + p+

p∑
k=1

(deg(Bk)− ρk) (23)

where γmin and γmax are defined in (15) and (16).
• the total number s of sinusoids in r guarantees that

s ≥
deg(A) + p+

∑p

k=1
(deg(Bk)− ρk)− rank(P(b))

2
(24)

When r = 0, the condition (23) must be guaranteed in
order to ensure the data informativity. �

Proof. When r = 0, the data x(t) are informative w.r.t.
M if and only if P(b) defined in (22) is full row rank. For
this matrix to be full row rank, its number of columns
(equal to γmax − γmin + 1) must be greater than or equal
to its number of rows (equal to nα + nβ = deg(A) + p +∑p
k=1(deg(Bk)− ρk)), which implies (23).

When r 6= 0, then the data x(t) are informative w.r.t.
M if and only if at least one of the two matrices P(a) and
P(b) (see (22)) is full row rank. For the matrix P(b) to be
full row rank, (23) must hold as proved earlier. If P(b) is
not full row rank, then the multisine excitation r must
be designed such that P(a) is full row rank. We observe
that P(b) and P(a) have the same number of rows (equal
to nα + nβ = deg(A) + p+

∑p
k=1(deg(Bk)− ρk)), but the

number of columns of P(a) is larger than the one of P(b)

(due to the matrix C linked to the external excitation).
Consequently, when P(b) is not full row rank, the addition
of the 2s extra columns from C must compensate the rank
deficiency of P(b) in order to make P(a) full row rank. This
gives us the necessary condition in (24). �

With Theorem 3, we obtain a similar result for the
data informativity as in the SISO case [Gevers et al.
2008]. Indeed, when the controller is not enough complex
to provide the data informativity alone (P(b) not full
row rank), the multisine external excitation r must be
enough rich (i.e., must contain enough sinusoids) in order
to compensate the lack of complexity of the controller

K(z). Nonetheless, contrary to the SISO case, the richness
conditions (23) and (24) are only necessary and not
sufficient. Indeed, due to some unlucky choices of controller
and multisine external excitation, the inequalities (23)
and (24) may be satisfied but the matrices P(a) and P(b)

may not be full row rank. Consequently, it is always
important to verify the rank after having checked that
one of both inequalities (24)-(23) is satisfied. In the next
section, we provide an example of an unlucky choice of
controller K(z) to illustrate this important point.

6. NUMERICAL EXAMPLE

6.1 True system to be identified

Consider the following MISO ARX system S with p = 2
inputs by

y(t) =

(
0.48z−2

1 + 0.25z−1

z−1

1 + 0.25z−1

)
︸ ︷︷ ︸

G0(z)

u(t) +
1

1 + 0.25z−1︸ ︷︷ ︸
H0(z)

e(t)

The system S is operated under feedback control with a
stabilizing controller K(z) given by

K(z) =

(
1− 0.5z−1

0.0625− 0.725z−1 + 0.3625z−2

)
︸ ︷︷ ︸

X(z)

(25)

In this case, the common factor of the denominators is
Y (z) = 1. We will identify S within a MISO ARX model
structure M such that ρ1 = 2, ρ2 = 1, deg(B1) = 2,
deg(B2) = 1 and deg(A) = 1. The model structure is then
full-order and the true parameter vector θ0 is equal to
θ0 = (0.25, 0.48, 1)T .

6.2 Costless identification (r = 0)

Let us study if we can get informative data with a
costless experiment, i.e., without external excitation (r =
0). For this purpose, we have to construct and verify the
rank of P(b). To do so, let us construct the polynomial
column vector Γ(z) given in (17). For the chosen model
structure M, we have that ZA(z) = z−1, ZB1(z) = z−2

and ZB2(z) = z−1. Therefore,

Γ(z) =

 z−1

z−2 − 0.5z−3

0.0625z−1 +−0.725z−2 + 0.3625z−3


Hence, γmin = 1, γmax = 3 and so P(b) is given by

P(b) =

(
A
B

)
=

 1 0 0
0 1 −0.5

0.0625 −0.725 0.3625


The matrix P(b) has 3 columns for 3 rows. Therefore,
the controller is enough complex to satisfy the condi-
tion (23). However, we do not have data informativity since
rank(P(b)) = 2 and so P(b) is not full row rank. Here,
we illustrate that the complexity condition (23) on the
controller is only necessary and not sufficient for the data
informativity, while for the SISO case it was necessary and
sufficient [Gevers et al. 2008]. To confirm that we indeed
do not have data informativity in this case, let us observe
that the controller K(z) makes that ŷ(t,θ′) = ŷ(t,θ′′) ∀t
for θ′ = (0.3,−0.1, 0.2)T and θ′′ = θ0.



6.3 Identification with an external excitation (r 6= 0)

Since the costless identification cannot yield informative
data, we need to add a multisine external excitation r.
In order to make P(a) full row rank, we have to choose
the number s of sinusoids for the excitation such that
it satisfies (24). In this case, s ≥ 1. Let us therefore
choose a signal r(t) = (r1(t), r2(t))T with s = 1 sinusoid
at ω1 = 0.1rad/s and with the following phasors Λkl
(k = 1, 2, l = 1)

Λ11 = 0 Λ21 = −1.7ej0.5

i.e., r1(t) = 0 and r2(t) = −1.7 cos(0.1t + 0.5) ∀t. Here,
the matrix C is given by

C =

(
Λ11e

−2jω1 Λ
∗
11e

2jω1

Λ21e
−jω1 Λ

∗
21e

jω1

)
=

(
0 0

−1.7ej0.4 −1.7e−j0.4

)
Let us calculate the rank of the corresponding matrix

P(a). With this excitation, the matrix P(a) has a rank of
3: it is full row rank. Therefore, from Theorem 2, the data
x(t) generated with this excitation r are thus informative
w.r.t. M. It is interesting to observe that we can yield
informative data by only exciting one signal in r, as was
observed in [Mišković et al. 2008].

6.4 Monte-Carlo simulations

In order to verify that we have the data informativity
with the multisine external excitation, we have applied
it to the true system in 1000 identification experiments
(with different realizations of the white noise e, assumed
to be zero-mean Gaussian with a variance of 1) and we
have identified θ̂N (see (9)) for each experiment with
N = 10000 input-output data. For each input vector, we
have computed the mean of these 1000 estimates. The
mean of these 1000 estimates is (0.2496, 0.4802, 0.9999)T

which is very close to θ0 = (0.25, 0.48, 1)T , suggesting the
consistency and so the data informativity w.r.t.M.

7. CONCLUSION

In this paper, we have studied the data informativity for
the direct closed-loop identification of MISO ARX systems
with multisine external excitation. We have seen that the
condition in [Colin et al. 2020a] is a necessary and sufficient
one in this case. Based on this result, we have developed
additional conditions to help the user in her/his choice of
the external excitation to ensure the data informativity.
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Appendix A. PROOF OF LEMMA 1

To prove Lemma 1, we will need the following result
Lemma 3. Let m ∈ N\{0}. Define the function fm by

fm : R+ −→ R

x −→ fm(x) = xm − 1

m

m∑
i=1

xm−i
(A.1)

Then, fm(x) < 0 if and only if 0 ≤ x < 1. �

Proof. Let m ∈ N\{0}. First, we have that fm(1) = 0
and fm(0) = −1/m < 0. Secondly, when 0 < x < 1,
we have that xm < xm−i ∀i ∈ J1,mK. By summing
these m inequalities, we obtain mxm <

∑m
i=1 x

m−i and so
fm(x) < 0. Finally, when x > 1, we have that xm > xm−i

∀i ∈ J1,mK. By summing these m inequalities, we obtain
mxm >

∑m
i=1 x

m−i and so fm(x) > 0. We conclude that
fm(x) < 0 if and only if 0 ≤ x < 1. �

Let us now prove Lemma 1. Consider the following poly-
nomial Q(x) = P (x) − xm where P (x) is the polynomial
defined in the lemma statement. By recalling that the roots
of P (x) are denoted by x1, x2, · · · , xm, then we have that,
for all h ∈ J1,mK,

|Q(x = xh)| = |P (x = xh)︸ ︷︷ ︸
0

−xmh | =

∣∣∣∣∣
m∑
i=1

pix
m−i
h

∣∣∣∣∣ ≤
m∑
i=1

|pi||xh|m−i

Since |pi| < 1/m for all i ∈ J1,mK, then we have that,
for all h ∈ J1,mK, |xh|m < 1/m

∑m
i=1 |xh|m−i which is

equivalent to fm(|xh|) < 0 where fm is the function defined
in Lemma 3. By applying Lemma 3, we conclude that
|xh| < 1. Since the latter holds for all h ∈ J1,mK, then
the proof follows. �


