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Abstract: Today, buildings consume more than 40% of primary energy in and produce more than 36%
of CO2. So, an intelligent controller applied to the buildings for energy and comfort management
could achieve significant reduction in energy consumption while improving occupant’s comfort.
Conventional on/off controllers were only able to automate the tasks in building and were not
well suited for energy optimization tasks. Therefore, building energy management has become a
focal point in recent years, promising the development of various technologies for various scenarios.
This paper deals with a state of the art review on recent developments in building energy management
system (BEMS) and occupants comfort, focusing on three model types: white box, black box, and gray
box models. Through a comparative study, this paper presents pros and cons of each model.

Keywords: intelligent buildings; building energy management systems; comfort management;
energy optimisation; white box models; black box models; gray box models

1. Introduction

Currently, buildings are responsible for preeminent amount of world’s energy consumption
and CO2 emission. According to the European Energy Efficiency Commission (EEEC), buildings in
the EU represent 40% of total primary energy consumption [1] and nearly 36% of CO2 emission [2].
The energy generated from fossil fuels contributes considerable CO2 emission and causes global
warming. Consequently, the government authorities, regulators and policy makers have been
influencing people in the direction of sustainable buildings by introducing energy efficiency policies.
The International Energy Agency (IEA) specifies: “Globally, the wide deployment of best available
technologies and energy efficiency policies could yield annual savings in buildings final energy use of
roughly 53 exajoules (EJ) by 2050” [3]. This amount is equivalent to cumulative energy consumption
by buildings in China, France, Germany, Russia, the United Kingdom and the United States in 2012 [4].
Therefore, optimization of energy consumption is crucial for healthy environment and sustainable
development. Integration of renewable energies [5] and intelligent systems [6] to the buildings could
achieve the estimated savings in energy consumption. However, efficient building energy consumption
optimization is still a challenging task because of various parameters that affecting building energy
consumption. These influential factors can be divided into major five types:
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1. Building physical and thermal properties (thermal conductivity, specific heat, thickness,
density, etc.) [7].

2. Occupancy behaviour (occupancy activities, interaction with the building, etc.) [8].
3. Building sector type and building energy policies (type of building, location, respective regional

policies, etc.) [9].
4. Population size (number of occupants presence, indoor activities) [10].
5. Climatic conditions (outdoor dry bulb temperature, wind speed, outdoor relative humidity,

solar radiation, etc.) [3].

Among these five influential factors, building physical properties, climatic conditions and
occupancy behaviour have a direct impact on energy consumption. At the same time other parameters
represents slightly minimal effect on the energy consumption. A study conducted on university
buildings to evaluate the relationship between energy consumption and population size, user activities,
and demand profiles reveals population size have a minimal impact on electrical energy consumption
as compared to other parameters [10]. Generally, people spend 90% of their life in buildings [11],
hence the maintenance of comfortable environment is important to assure occupants’ health and
productivity. The quality of occupants’ living is determined by three comfort parameters: thermal
comfort, indoor air quality and visual comfort. These three comforts are achievable by exploiting
Heating, Ventilation and Air-Conditioning (HVAC) controller and lighting systems with natural
resources (day lighting, outside temperature, etc.).

A Building Energy Management System (BEMS) is required to improve energy performance
meanwhile ensuring improved occupants’ comfort. Conversely, realisation of indoor comfort
environments draws more energy to achieve and maintain the optimal comfort. Therefore a proper
trade-off is required between energy and indoor comfort [12]. In this context, recent developments in
the BEMS are focusing on smart technologies to address the gap between energy consumption and
occupants’ comfort.

1.1. Building Modelling Approach

Three main approaches have been used for building energy management systems: white box
models, black box models and gray box models. White box models [13,14] are a physical modelling
approach relying on thermodynamic and/or mathematical equations and engineering methods for
energy modelling, analysis and control. White box-based modelling approach examples are the
building energy analysis simulation software such as: EnergyPlus [15], Transient System Simulation
Tool (TRNSYS) [16], eQuest [17], etc. These software tools basically are used during building
planning and designing phases, prior to the building construction. They calculate overall energy
consumption [18], HVAC design [19], operation scheduling, lighting information [20], etc., based on
the detailed building physical properties [21], occupancy schedule, geographical conditions, and type
of building and climatic parameters. However, availability of such precise data for the simulation
is troublesome and in some cases impossible to obtain. Also, due to the non-linear behaviour of
building parameters, white box models are suitable for simple models and as when applied to complex
buildings, the model tends to be thermodynamically complex.

Black box models are data driven building energy models, which are built on data basis [22–26]
often considered as easy to model over physics-based white box models. Generally, black box models
are applied for prediction of energy consumption [25], HVAC operation scheduling [27], and adaptive
control systems [28]. Black box models methods examples are Artificial Neural Networks (ANNs),
Support Vector Machine (SVM), Genetic Algorithms (GAs), Reinforcement Learning (RL), deep machine
learning [29], etc. Aside from the ease to apply, black box models require large input data to train the
model [30]. This data may not be available in buildings in which sensors are not installed, thereby
limiting their application to the few buildings with installed sensors.
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To overcome white box and black box models drawbacks, hybrid models were introduced [31].
Hybrid models (gray box models) are combination of physics-based models (white box models) and
statistical methods (black box models). Gray box modelling is found out as robust and accurate for
building systems modelling and in building performance improvement [31].

1.2. Indoor Comfort Parameters

People spend most of their time in buildings. Maintenance of indoor comfort parameters is
therefore significant to improve occupants productivity, health, and comfort feeling [32]. Thermal
comfort in indoor environment is the principal component for ensuring indoor environment quality.
Thermal comfort is generally expressed as the satisfaction of thermal environment, usually referred as
psychological sensation of thermal environment [33]. Visual comfort is another parameter affecting
the indoor environment quality. Basically, proper illumination level is essential for commercial,
institutional, and industrial buildings to preserve inhabitants working efficiency.

1.3. Objectives and Motivation

Several literature reviews have been previously published in building energy and comfort
management context. Dounis and Caraiscos [34], reviewed advanced control systems for energy and
comfort optimization covering various control strategies, whereas Lombard et al. [35] detailed building
energy consumption by building types and HVAC systems. Zhao and Magoulès [36] summarized
various building energy consumption prediction methods based on classification; engineering model,
statistical model, neural networks, support vector machines, and gray models. Amasyali and
El-Gohary [37] elaborated data driven prediction methods and in addition, Wei et al. [38] discussed
classification of building energy consumption. Previous literature studies have discussed various
building energy management systems, prediction of energy consumption, and occupancy relation with
buildings. However, a clear gap is observed for the consideration of recent developments in control
strategies for optimal energy and comfort management in buildings. In this state of the art paper,
the recent developments in BEMS methods along with indoor comfort conditions were discussed in
detail and critically reviewed. Besides, the review papers are selected from the year 2013 onwards
(around 80% papers) for clearly focus on recent developments. An elementary related research was
conducted by using search engine and scientific websites: Google scholar, Science Direct and IEE
explore digital library. The keywords ‘building energy management’, ‘building comfort management’,
‘intelligent systems for buildings’, and ‘building control’ were used for filtering papers to perform the
review process. Papers were only selected from top international journals and indexed conference
proceedings. Based on the selection criteria, 90 papers were further considered for this state of the
art review.

The content of the paper is organised as follows: Section 2 reviews studies of recent developments
in building energy management systems based on their model type, Section 3 details and discusses the
literature review observations. Main conclusions and future investigations are described in Section 4.

2. Building Energy Management Systems—BEMS

BEMS are generally installed in buildings to monitor and control indoor comfort conditions
and energy consumption [18]. These systems are mainly based on sensors, actuators, software,
and hardware networks [6,39]. Normally, buildings with few occupants (residential, and office
buildings) may permit to interact with BEMS technologies via a human machine interface (HMI) [40]
to control electrical appliances and HVAC system operation. These interactions could be restricted
in institutional, commercial, and industrial buildings because of the large number of occupants,
where each may posses a unique set point, resulting in higher energy consumption. Hence,
HVAC system operating values are set to a standard range to maintain indoor comfort in such
buildings. However, heterogeneous parameters affecting building energy and comfort hinder the
performance of BEMS models.
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2.1. White Box Models

White box models are thermal dynamics modelling, which are based on fundamental laws of
physics, thermodynamics, and heat transfer. Generally this approach can be roughly classified into two
types: physics-based models using simulation tools such as: TRNSYS, EnergyPlus, etc., and physics
governing laws-based thermal dynamics state-space equation or lumped capacitance model [41].

Due to the diversified and heterogeneous behaviour of building parameters, complexity of
hardware network (sensors, and actuators), and occupants interaction with buildings, it is difficult
to carry out full scale experiments. Hence, software tools are affordable and ease-to-use platforms
that can be used for building dynamics evaluation and analysis. Numerous software tools have been
developed over the last few decades for the analysis of energy consumption, HVAC design, operation
scheduling, lighting information, renewable energies, etc., Regular up-gradation is performed on these
simulation tools to improve the performance efficiency and decreasing computational cost. The list of
US Department of Energy (DOE) organisation approved building simulation tools is available in [42].

EnergyPlus is a building energy performance analysis simulation software and console-based
program that reads inputs and writes outputs in text files, developed based on DOE-2 [43] and the
Building Loads Analysis and System Thermodynamics (BLAST) by National Renewable Energy
Laboratory(NREL) and U.S. DOE Building Technologies Office (BTO) [15]. Zhao et al. [44] used
EnergyPlus to procure raw data for commercial building to perform overall energy performance and
dynamic pricing by using Cyber Physical Systems (CPS)—enabled BEMS [45]. Furthermore, a fuzzy
logic controller (FLC) is initially designed based on the data probation from EnergyPlus and a GA
method applied to FLC for evolution of improved member functions population for improved comfort
control energy optimization of a food service center. The results were compared with stand-alone
EnergyPlus output and investigated that the GA-FLC-based method resulted notable decrease in
energy consumption during both cooling and heating [46]. This shows that EnergyPlus lacks
interactive control optimization techniques and would be coupled with other dynamic computational
software (Matlab, Modelica [47]) via co-simulation software building controls virtual test bed (BCVTB).
Kim et al. [19] used EnergyPlus for training ANNs and coupled GA for optimization of integrated
daylighting and HVAC systems. This was performed to ensure large database available for training
ANNs in less time, otherwise 3 months would have been needed to procure data from sensors.
A multi-objective optimization strategy is validated using non-dominated sorting genetic algorithm
(NSGA), implemented in the GenOpt [48] optimization engine through the Java genetic algorithms
package, to instruct the EnergyPlus simulation tool [12]. Meanwhile, Huh et al. [49] developed a
system to generate predicted real-time weather data for 24 h duration using EnergyPlus coupled with
GenOpt through BCVTB [50]. This approach improves the building energy control optimization based
on real time prediction control.

TRNSYS (Transient systems simulation program) is a dynamic computational software for
building energy performance analysis [16]. It is incorporated with Matlab for database generation to
train 2 ANNs used for predictive and adaptive approach applied to hotel building. The developed
model efficiently improved thermal comfort and building energy optimization during summer season
resulting in 18–38% energy savings over the simulation period [28]. TRNSYS was used for determining
building cooling load needed from the chiller plant, Later, these data were fed to Matlab for performing
optimization analysis [51].

BCVTB is used for coupling various simulation tools for co-simulation and co-simulation to
hardware. Refs. [13,46,52] used BCVTB to ease the simulation process by coupling EnergyPlus,
Matlab in their model for building energy performance analysis. Meanwhile, BCVTB was coupled
with EnergyPlus to generate real-time weather data file for energy consumption prediction in one
day [49]. Figure 1 shows the process of generating a weather data file based on the forecasted
weather using BCVTB as a coupling platform between EnergyPlus and other tools. The weather
elements from weather forecast by national weather station, calculated weather parameters, measured
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weather elements, and default parameters are coupled together in BCVTB platform for generating
weather forecast.

Figure 1. Process of generating a weather data file based on the forecasted weather [49].

Although simulation tools are the first choice for building energy performance analysis because
of accuracy and effectiveness, they require proper data of building, weather parameters, and physical
properties. However, collecting appropriate data is always difficult and in some cases these data are
not available. This is the major challenge in retrofitting existing buildings. In addition, these tools lack
controller development flexibility and absence of high performance controller systems in their libraries
yields difficulty to develop and integrate in practical application/implementation [53].

2.2. Black Box Models

These are also known as data-driven models and are developed based on statistical models by
quantifying historical data parameters and correlating between building performance and data to
find optimal pattern. Data-driven model approach is often considered as less complex with high
accuracy and low computational cost. However, the inner process is mostly unknown, leading to
reduced control flexibility of the overall process. The primary requirement of black box models are
pre-collected data. These can be obtained from following sources:

• Real data collected from existing building through sensors, smart meters, and other smart
systems [54].

• Simulated data collected from the simulation tools such as EnergyPlus, BCVTB, etc., [30].
• Standard data available in public benchmark datasets such as ASHRAE’s data [23].

Black box models are known for prediction techniques and gained huge consideration over last
decade. Commonly, these models are used in prediction of building energy consumption [23,25,55],
indoor temperature [54,56], heating/cooling load demand [24], HVAC parameters, occupancy [57,58],
and energy generation from RES. Some major algorithms of these models are ANNs [59], SVM [60],
GAs [61], decision trees [62], and other statistical machine learning methods.

Indoor comforts are influenced by various parameters, especially weather conditions
(e.g., wind speed, air temperature, and humidity) that are volatile in nature. In such conditions,
indoor thermal comfort can be rapidly affected and could cause excessive energy consumption to
maintain temperature range. To maintain indoor thermal comfort under a given range despite of rapid
changes in influential parameters, a prediction model and temperature controller is introduced by



Energies 2018, 11, 2604 6 of 26

Marvuglia et al. [54]. In this framework, outdoor temperature, air relative humidity, wind speed, and
indoor temperature data are used to train artificial neural network with external inputs (NNARX)
model and predicted values fed to fuzzy logic controller to maintain indoor temperature in a given
range. Results show good efficiency of predictions and temperature controller. Mararulla et al. [27]
implemented ANN-based predictive controller to a commercial building energy management system
for operation of boilers in buildings, shown in Figure 2. This method resulted in around 20% reduction
in energy required to heat the building. The ANN implementation is illustrated in Figure 2, where
data obtained from the simulation tool are fed to the ANN with 10 neurons in each hidden layer and
predicted results are given to BEMS for optimal operation.

Figure 2. Artificial neural network implementation [27].

In 2016, Ascione et al. [22] used feed-forward multilayer perceptron (MLP) ANN structure to
predict building energy and thermal behaviour in retrofit scenarios, which produced significant
prediction values. Furthermore, the authors indicated that the number of hidden layers highly
influences the ANN performance. Additionally, the importance of training data size is discussed
in [30,63], both concluded that larger the training data sample is, the better the performance of
ANN model.

Normally, residential buildings have non-constant occupancy and maintenance of thermal comfort
for whole day leads energy wastage. Hence prediction of unoccupied hours was performed by [28] by
using ANN algorithm and prediction of time required for restoration of indoor temperature to set-point
temperature using another ANN model. Multi-Objective Genetic Algorithm (MOGA) controller have
been efficient technologies in attaining balance between energy consumption and thermal comfort [64]
and with hybrid MOGA author achieved around 31.6% energy management efficiency and 71.8%
comfort index efficiency. Triple objective controller using particle swarm optimization (PSO) has been
developed by [21], which achieved 19.8–33.3% decrease in annual cooling energy, while increasing
in annual heating and lighting: 1.7–4.8% and 0.5–2.6% respectively. Final optimization resulted
1.6–11.3% reduction in annual electricity consumption for four climate regions in Iran. Whereas,
O’Neill et al. [65] developed Bayesian networks (BNs) [66] model to predict hourly building energy
performance with associated uncertainties. The BNs-based building energy performance prediction
system can be applied in various scenarios: (1) Retrofitting buildings; (2) Model-based optimization
systems; and (3) Energy diagnostics.

Occupancy’s thermal comfort sensation of hot or cold mainly depends on subjective parameters
(metabolic rate and clothing insulation) and physical ones (mean radiant temperature, air temperature,
air velocity, and relative humidity) as described by Fanger’s predicted mean vote (PMV) and predicted
percentage of dissatisfied (PPD) model-ISO 7730. This method was developed in 1960–1970 and is
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still used as a baseline model for comfort measurement. Fanger’s base model advancements over the
last 40 years are critically reviewed in [67]. An existing HVAC system can optimize PMV index with
conventional controller, however, a fuzzy logic-based system is integrated to existing HVAC system
to maintain PMV, CO2, and energy consumption for efficient building performance [68]. This fuzzy
logic’s member function together with rule selection were then tuned by multi-objective evolutionary
algorithms (MOEA-GA) to minimize number of rules and thus maximizing system performance.
This proved to be the best combination for FLC’s with reduced number of rules to maintain PMV and
optimizing energy consumption. Table 1 gives the standard values for thermal sensation scale of PMV
in which +3 being very hot and −3 being very cold. It is always suggested that the PMV value should
be maintained within −0.5 to +0.5 to achieve better thermal comfort. The comfort classification based
on relationship between PMV and PPD is shown in Table 2 [69]. Chen et al. [70] developed data-driven
state-space Weiner model to evaluate the dynamic relation between dry bulb temperature variation
and occupant thermal sensation. Later they compared developed model to dynamic thermal sensation
(DTS). The DTS model is a reactive thermal comfort system with constantly changing its values based
on the dynamic variation of weather conditions and occupant preferred thermal sensation votes
delivered by an extended Kalman filer (EKF) with feedback system. Furthermore, predicted mean
vote and dynamic thermal sensation models were compared by developing MPC-DTS and MPC-PMV.
Results indicated that the MPC-DTS achieved better thermal comfort and energy optimisation than the
MPC-PMV model, but both efficiently maintained thermal comfort compared to the baseline model
using proportional integral (PI) controller. However, they assumed that there is a feedback system
in BEMS, which actually is not the case. Later, Chen et al. [71] conducted the same experiment to
investigate the performance difference between MPC-DTS and MPC-PMV with real time actual mean
vote feedback values, in addition authors detailed the probable reasons for performance difference.

The above mentioned researches mainly focus on optimization techniques used to achieve comfort
measurement. However, the accuracy of subjective and physical parameters measurement taken from
sensors has a significant impact ion the PMV index evaluation. These measurement uncertainties can
be evaluated using efficient tools such as: monte carlo analysis (MCA) [72], guide to the expression of
uncertainty in measurement (GUM) [73], and sensitivity analysis (SA) [69]. These studies show that
the proper handling of measurement uncertainties is essential in PMV index model.

Table 1. Thermal sensation scale of PMV.

PMV Sensation

+3 Hot
+2 Warm
+1 Slightly warm
0 Neutral
−1 Slightly cool
−2 cool
−3 cold

Table 2. Comfort classification based on ISO-7730.

Class Percentage of Dissatisfied (%) Predicted Mean Vote

A <6 −0.20 < PMV < 0.20
B <10 −0.50 < PMV < 0.50
C <15 −0.70 < PMV < 0.70
- >15 PMV < −0.70 or PMV > 0.70

Black box models are less complex, does not need complete data of building physical parameters,
efficient performance, and easy to build. Nevertheless, they require huge building operational and
environmental parameter data for training in order to have efficient prediction values. These data
are however difficult to obtain, while low quality data can cause huge prediction error. Even though,
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these models are accurate and less complex, the lack of knowledge/explanation of the inner processes
from the point of view of physics, there is some reluctance towards black box model implementation
over physics-based model.

2.3. Gray Box Models

The third category of BEMS is known as gray box models. These are hybrid ones combining
simplified physics-based models and data-driven ones. In a gray box model, the process is expressed
in mathematical expression that may be based on the physics and/or thermodynamics laws. They
consist expressions that have physical explanation (e.g., resistor capacitance network) and a part of the
model may be obtained through regression from the available data.

A gray box model is a balanced model between the white box model and black box model.
This combination ensures that the non-linearities in white box model can be handled using black box
models and lack of laws of physics reasoning in black model can be represented through white box
models, but extra effort is required to design and develop these models. However, selection of suitable
gray box model structure for developing a good performance system is still a difficult task. Bacher
and Madsen, ref. [7] proposed an approach to find appropriate heat dynamics of a building. Indeed,
a set of different RC network models have been configured and compared using likelihood ratio tests.
The study concludes that significant improvements can be obtained as the model order increases,
while no further notable improvements can be expected beyond a model order of 3. Široký et al. [74]
proposed an experimental analysis of a heating system using lumped capacitance network in a
university building and analysis was carried out for two months. Through this approach they were
able to achieve around 15% and 28% energy savings. The experimental analysis not only investigated
the performance of MPC but also detailed the issues that can be encountered in its application.

Figure 3 illustrates the basic principle of MPC model structure [74], the inputs of the systems are
time varying parameters: energy price can be taken from energy market, comfort conditions set by the
occupants, occupancy prediction, and environmental parameters. The MPC system formulates the
optimization of an objective function by using building dynamic model, a cost-function and constraints.
After each time sample formulation, feedback from occupants and weather conditions are fed back to
MPC for the formulation of next time sample, which ensures that unanticipated disturbances are taken
in consideration through feedback loop.

Figure 3. Basic principle of model predictive control for buildings [74].

A simplified low order gray box modelling has been introduced in [75]. The study considered a
whole building as single zone building (Figure 4) neglecting the inter-zone heat exchange. Most of
the studies in literature did not take account of inter-zone thermal interactions as it increases the
complexity of the model and includes numerous uncertainties. In addition, the model perform-ability
declines with the increase of the number of zone. However, Cai and Braun [76] proposed a resistance
capacitance thermal network model for multi-zone buildings (Figure 5) with a unique three-step
estimation approach to reduce the complexity of the model and thus improving the performance of
BEMS system, through:

• De-grouping weakly linked zones and grouping strongly linked zones.
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• Sensitivity analysis to identify and eliminate non-influential variables.
• Correlation analysis to eliminate Non-correlated variables.

Figure 4. RC thermal network for single zone building [75].

Performance of BEMS system is significantly increased because of the above-considered three
steps, which have simplified the estimation problem by eliminating non-influential parameters.

Figure 5. Resistor capacitance thermal network for multi-zone building [76].

In general, gray box models can be used for predictions of energy consumption, thermal comfort
conditions, occupancy, and heating/cooling load of buildings. These applications leads to use gray
box modelling to building in smart Grid context for dynamic load management and energy storage.
The reduced order gray box model for buildings connected to smart Grid was investigated in [31],
where it is applied on two buildings types (insulated and uninsulated). Furthermore, Sharma et al. [77]
presented a study of MPC controller implementation for buildings in centralized energy management
system framework (CEMS). In addition, The insulated buildings opens the possibilities of enabling
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demand-side management (DSM) by exploiting heat capacity flexibility in building thermal wall mass.
Harb et al. [78] developed gray-box models for forecasting the building thermal response. The analysis
was conducted on four gray box models and data from three building. Building areas varied from 3000
to 30,000 m2 and data duration from 39 to 110 days. To determine thermal behaviour of the building,
three forcing functions were used in this paper:

• Radiative building environment is expressed as the solar irradiation.
• Building thermal environment is represented by the outdoor air dry temperature.
• Various heat sources consists of heating elements.

From the above a three-function input vector is constructed:

U = [TaQirradφh]
T (1)

where Ta—outdoor dry bulb temperature, Qirrad—global solar radiation on horizontal surface,
and φh—Building thermal consumption.

Four gray box model structures were developed in this paper: (1) 1R1C—the simplest structure
characterizes the whole building into a single parameter (Figure 6); (2) 3R2C—consists of three
resistors and two capacitors. Three resistors indicate convective and radiative heat exchange, and heat
exchange between interior to environment, two capacitor indicates interior and exterior thermal
mass (Figure 6); (3) 4R2C—extension of the 3R2C structure with additional indoor node (Figure 7);
and (4) 8R3C-extension of the 4R2C considering all type of heat exchanges between interior, exterior,
heating elements, and indoor air (Figure 7).

Figure 6. Building thermal structures—1R1C and 3R2C [78].

Figure 7. Building thermal structures—4R2C and 8R3C [78].
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The achieved results show that the 1R1C model produced more harmonics in the prediction
values due to its simple structure, the 3R2C have produced similar disturbances in indoor air
temperature prediction, due to the lack of consideration of heat exchange between indoor and outdoor
air temperature. The 4R2C produced accurate prediction in daily indoor temperature prediction,
due to the consideration of heat exchange between various parameters. The 8R3C produced similar
accurate prediction values with no significant improvements in the results despite the detailed model.
The 4R2C model can thus be considered as the suitable structure for implementation because of its
accuracy and low complexity. From the achieved results it can be concluded that the addition of indoor
air temperature node (4R2C and 8R3C) provides stable prediction values compared to model without
indoor air temperature node (1R1C and 3R2C).

Meanwhile, application of MPC systems for building energy and comfort management has gained
larger attention, Sturzenegger et al. [79] applied MPC strategy on commercial building of 6000 m2

area for energy and comfort control. The results are later compared with existing rule-based control
systems. The analysis of MPC implementation proved that energy savings were around 17% with an
improved comfort level.

The above-described studies have shown that gray box models are robust, accurate, and applicable
to complex buildings. However, these models posses high computational cost making them only
profitable in applications for commercial buildings. Further investigations are needed to ensure
adaptability and application for small buildings.

3. Observations and Discussion

This paper mainly focused on review of recent development in intelligent controller systems
applied to building energy and comfort management. Several papers have been reviewed in this paper
and around 80% of the papers are from the year 2013 onwards. The reviewed papers are arranged in
descending chronological order in Table 3, which highlights the carried out review. The listed papers
does not consider the total number of reviewed papers. Indeed, these ones have different control
strategies, methods, objective parameters, and applications. Some assumptions are made for this
literature review’s observations:

• Buildings in the context of smart-grid are considered as residential ones.
• Apartments with large commercial space are considered as non-residential buildings.
• Grid is considered to be a supply source for papers without specific indication on the supply source.
• Demand side management and load shifting are considered as dynamic pricing.

Based on the above-given assumptions, the following observations have been made. The carried
out review shows that research majority is conducted on non-residential buildings, around 66%,
and residential ones, being 34% (Figure 8). Non-residential buildings include: institutional, public,
office, swimming pool, hospital, and hotel buildings. This lack of research may be due to the
unavailability of data or controller systems. Figure 9 illustrates control strategies applied for both
building types, where black box models are dominating with 74% and 67% of the overall applied
controllers for residential and non-residential buildings, respectively. Significant researches have
therefore been conducted on black box models due to their ease of application. Around 21% and 27%
gray box models were applied to residential and non-residential building, respectively, while gray box
models were less used in residential cases compared to non-residential ones mainly because of their
high computational and design costs. Simulation tools combined with other control strategies are used
for building energy performance analysis but the standalone use is low because of their complexity
and high data acquisition cost.
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Table 3. Literature review survey.

Ref. Year Techniques Used Building Type
Comfort Conditions

Energy
Dynamic

Supply Source Simulation Tool Data Duration Result
Th Lt AQ RH Pricing

[80] 2007 Decision support model Office building Yes Yes Yes Yes Yes No Grid CLIPS with visual
basics language 1 year 10% annual energy reduction

[33] 2011 PID and FLC Residential Yes No No No Yes No Grid and RES - 30 days
Developed strategy can be
implemented on already in
use PID controller

[8] 2011 Cluster analysis Residential n/a n/a n/a n/a n/a n/a n/a WEKA [81] 1 year
Investigated the relation
between occupancy behaviour
and energy consumption

[82] 2012 CPS based PID controller Residential Yes No No No Yes No Grid Matlab 8 h

Designed a system which
connects PID controller to
CPS for real time
weather forecasting to enhance
performance of
installed temperature controller

[56] 2012 MBPC, ANN, and GA Institutional Yes No No Yes Yes No - - Training: 15, 8 days,
and testing 1 day

Estimation of 50% and
above energy savings

[83] 2012 Stochastic
Markov models

Commercial
and Dwellings No Yes No No Yes No - - -

Prediction of energy consumption
through learning from occupancy
behaviour and also indicates
the unnecessary energy
consumption areas

[68] 2012 FLC and GA Office building Yes No Yes No Yes No - - -

Comparison of various evolutionary
algorithms and conventional controller.
Result shows multi-objective evolutionary
algorithm can achieve 30.4% and
50.3% higher efficiency in energy and
stability optimization, respectively

[44] 2013 CEBEMS Commercial Building
(Food Service Center) Yes Yes No No Yes Yes PV, CHP and Grid EnergyPlus 1 day

Developed MAS for CEBEMS
have shown better electrical and
thermal energy consumption optimization
in comparison with BCHP model

[54] 2013 ANN and FLC Office building Yes No No No Yes No - Matlab 7 months Prediction and control
of indoor temperature

[84] 2013 MPC Commercial building Yes No No No Yes No Grid Matlab and GenOpt 6 days
Reduction in energy consumption for the
simulation period 75.7% without
and 85.5% with shading is achieved

[85] 2013 PSO Commercial building Yes No No No Yes Yes RES - 1 day
Applied PSO shows high
comfort level achievement during
shortage in energy supply

[86] 2013 MPC and Gray box model Institutional building Yes No No No Yes Yes Grid Matlab and CPLEX 50 days

Energy cost saving
considering customers
preferences using
developed MPC-based
appliance scheduling technique

[39] 2013 GMBA-BEMS Institutional building Yes No No No Yes Yes Grid and RES Matlab/Simbad 1 day Cost saving 1.2 $ per day

[87] 2014 FLC, GA, and ANN Hospital building Yes No No - Yes No Grid Matlab and TRNSYS Training : 2 months
and testing : 1 day

36% annual energy
consumption reduction
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Table 3. Cont.

Ref. Year Techniques Used Building Type
Comfort Conditions

Energy
Dynamic

Supply Source Simulation Tool Data Duration Result
Th Lt AQ RH Pricing

[46] 2014 GA and FLC Commercial
building Yes No No No Yes No - Matlab, BCVTB

and EnergyPlus 1 month
16.8% and 18.1% decrease in cooling
and heating load, respectively over
the simulation period

[88] 2014 ANN and FLC Commercial building Yes No No No Yes Yes (gas) Grid and gas - 111 days

Developed model is applied to the
complex building to control and
optimize gas consumption using
real time data from the gas market

[55] 2014 ANN-BPA and MLP Swimming pool - - - - - - Co-generation plants and
solar thermal panels Matlab 1 year

Prediction of thermal energy consumption,
electrical energy
consumption, and PMV

[53] 2014 Gray box model Residential houses - - - - - - - LabView and
Matlab/Simulink 60 days

Prediction of indoor temperature
and GSHP in/out temperature
for optimization process

[89] 2014 MPC and PAB Office room - - - - - - - Matlab 14 days
Prediction of indoor temperature
and energy consumption
considering model uncertainties

[57] 2014 Decision support model Office buildings - - - - - - - Rapidminer and
EnergyPlus 2 years 90.3% accuracy rate in

prediction of occupancy

[14] 2014 MPC Commercial building Yes No No No Yes Yes Grid - 1 day
Management of uncertainties in
prediction of indoor temperature
and energy consumption

[58] 2014 Probabilistic and
non-probabilistic methods Institutional building - - - - - - - - Training: 9 months

and testing: 28 days Occupancy pattern prediction

[31] 2014 Gray box model Single zone building Yes No No No Yes - Grid Modelica and
CTSM in R 7 days to 100 days Model reduction method for buildings

in a smart grid context

[9] 2014 Smart BEMS 2 Institutional
buildings Yes No No No Yes Yes Grid and RES Matlab 1 day Different outputs

for different variables

[10] 2014 - University building - - - - - - - - 5 months

Energy consumption and occupancy
pattern analysis shows that
occupancy has least significance
on building energy consumption

[76] 2014 MPC and Gray
box model Commercial building Yes No No No Yes No Grid - Training: 7 days

and testing: 30 days
Model reduction method
for multi-zone models

[90] 2015 Online BEMS University building No Yes No No Yes No Grid - 2 years Reduction in energy
consumption of 1% per annum

[91] 2015 FLC Residential building Yes No No No Yes No Grid LabView 30 days

The developed fuzzy-based
advanced hydronic radiant floor
heating controller produced better
control characteristics over
conventional controller

[23] 2015 iPSO-ANN Library building - - - - - - - - 6 months Hourly prediction of
electrical energy consumption

[63] 2015 ANN Office building Yes Yes Yes Yes Yes No - - 23 months ————

[24] 2015 FFNN, RBFN,
and ANFIS University building - - - - - - - Matlab Traning: 3 years and

testing: 1 year Hourly prediction of heating energy
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Table 3. Cont.

Ref. Year Techniques Used Building Type
Comfort Conditions

Energy
Dynamic

Supply Source Simulation Tool Data Duration Result
Th Lt AQ RH Pricing

[25] 2015 CBR and ANN University building - - - - - - - - 15 months Hourly prediction of
electricity consumption

[19] 2015 ANN and GA Office room Yes Yes Yes Yes Yes No - Matlab and EnergyPlus Training: 3 months
and testing: 8 days

13.7% energy savings over
the simulation period

[30] 2015 ANN Office building - - - - - - - Matlab 612 days —————

[92] 2015 ANN Airport building Yes No No No Yes No - 10% energy saving per month

[93] 2015 GPM, GMM, and ANN Office building - - - - - - - - Training: 50, 340 days
and test: 23, 180 days

Prediction of daily
and hourly hot
water energy rate

[65] 2015 BNs Office building - - - - - - - GeNie Training: 55 days and
testing: 23 days

Prediction of HVAC hot
water consumption with uncertainties

[51] 2015 GA nZEB buildings - - - - - - Grid and RES TRNSYS and Matlab - —————

[94] 2015 MPC and Gray
box model Office building Yes No No No Yes Yes Grid Modelica 2 months 30% energy savings with

better thermal comfort

[52] 2015 ABM Office building Yes No No No Yes No - HABIT, Matlab,
EnergyPlus, and BCVTB 2 months 28% reduction in HVAC

energy per month

[70] 2015 Weinar model Single zone building - - - - - - - Matlab 48 h Prediction of occupancy comfort
based on real time feedback data

[95] 2015 MPC Single zone Yes No No Yes Yes No - Matlab 6 days Prediction of indoor
temperature and PMV

[13] 2015 MPC Commercial building Yes No No No Yes No Grid Matlab, EnergyPlus,
and BCVTB 1 day 0.5% energy savings per day

[96] 2015 MLP Institutional building Yes - Yes - - Yes - - 1 h
Prediction of thermal
comfort parameters and
faults (unplanned events)

[64] 2015 MOGA and HMOGA - Yes - - - Yes DR RES - -
31.6% energy and
8.1% comfort improvement
over the simulation period

[71] 2015 Weinar model Single zone Yes No No No Yes No Grid EnergyPlus and Matlab 36 h —————

[97] 2015 RBM Residential, commercial,
and industrial buildings Yes No No Yes Yes Yes Grid and RES EnergyPlus 51 days 12–22% improvements in

building performance

[12] 2015 NSGA-II and GA Residential building Yes No No No Yes No - GenOpt and EnergyPlus 25 days —————

[98] 2015 White box model nZEB buildings Yes No No No Yes No Grid and RES Modelica and EnergyPlus -
Developed model can produce
solution 2200 times faster than the
conventional method

[99] 2015 RBM Dwellings Yes No No No Yes Yes Grid CPLEX -
Developed RTP model can
lead to better optimization
compared to existing models

[64] 2016 MOGA - Yes Yes Yes Yes Yes No DRES Matlab 1 day
multi-objective controller presented
better trade-off between
comfort and energy management

[100] 2016 AFLC Residence building Yes No No No Yes Yes Grid Matlab 90 days 21.3% reduction in
energy consumption
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Table 3. Cont.

Ref. Year Techniques Used Building Type
Comfort Conditions

Energy
Dynamic

Supply Source Simulation Tool Data Duration Result
Th Lt AQ RH Pricing

[20] 2016 FLC Office room No Yes No No Yes No Grid DIALux 1 day
11.22% to 56.56% energy savings
based on illumination
level 350 lx to 200 lx

[28] 2016 ANN Hotel building Yes No No No Yes No - Matlab and TRNSYS Training: 4 months and
testing: 13 days

18–38% energy savings over
the simulation period with
the developed algorithms

[21] 2016 PSO Single zone Yes Yes No No Yes No - Matlab, EnergyPlus,
and JEPlus - 23.8–42.2% reduction in

annual energy consumption

[101] 2016 MPC, PSO, and
Gray box model Institutional building Yes No No No Yes No - Matlab/Simulink Training: 5 days and

testing: 10 days
11.3% Energy savings over
the 10 days period

[79] 2016 MPC Commercial building Yes - - - Yes No Grid Matlab/BRCM - 17% energy savings per year
compare to the conventional model

[77] 2016 MPC and CEMS Residential building Yes No No No Yes Yes DER and Grid CPLEX 1 day 17% energy cost and 8% energy
consumption savings per day

[102] 2016 NSGA Single zone Yes Yes No No Yes No Grid JEPlus, EnergyPlus,
and Matlab -

55.8–76.4% reduction in
cooling demand compared
to baseline scenario

[41] 2016 MPC Residential buildings Yes No No Yes Yes No - Matlab and EnergyPlus 2 days
Nearly 43% energy consumption
reduction compared to
the conventional control method

[103] 2016 BRL Laboratory
demonstrator Yes No No No Yes Yes - - Training: 20 days and

testing: 2, 8, 12 and 16 days ———————-

[49] 2016 MPC Public building Yes No No Yes Yes LS Grid and PV BCVTB, EnergyPlus,
and GenOpt

Training: 1 day and
testing: 1 day 1.7% energy saving per day

[5] 2016 ICA Residential building No No No No Yes Yes Grid and RES Matlab/Simulink 2 months Reduction of 87.2% in
the annual energy bill

[104] 2016 MAC Residential buildings Yes No No No Yes No Grid Matlab - 92% of the maximum energy savings
compared to the baseline strategy

[21] 2016 ABC Single room Yes No No No Yes No Grid EnergyPlus and Matlab - 49.1–56.8% decrease in PPD compared
to the traditional method

[29] 2016 EML Residential building Yes No No No Yes No - EnergyPlus and Matlab 1 year
Prediction of energy and thermal
comfort based on material thickness
and insulation values

[105] 2017 FIS and ANN Data center Yes No No No Yes No - Matlab - ————-

[106] 2017 FIS and ANN Airport building Yes No No No Yes No Grid - 1 day 60% perfomance increase compare to
conventional on/off controller

[107] 2017 CBR, k-NNA, and PSO Residence building Yes Yes No No Yes No Grid - - ————-

[40] 2017 SVM Dwellings Yes No No No Yes Yes Grid and RES CPLEX 2 days
82.97% performance improvement
with respect to baseline
strategy on weekend

[108] 2017 MAS and GA Residential building No No No No Yes No Grid and RES JAVA -

The developed model appears as an
effective, smart and energy efficient
solution to the problem
of instantaneous power
management in self-sufficient buildings

[109] 2017 Simulation Hostel building Yes Yes No No Yes No - The Energy Guide II 1 year ————-



Energies 2018, 11, 2604 16 of 26

Table 3. Cont.

Ref. Year Techniques Used Building Type
Comfort Conditions

Energy
Dynamic

Supply Source Simulation Tool Data Duration Result
Th Lt AQ RH Pricing

[27] 2017 ANN and LMA Commercial building Yes No No No Yes No Gas for boiler Matlab 6 months 20% reduction in gas consumption
for given data duration

[110] 2017 MPC and LQT Model house (Wooden) Yes No No No - No - Matlab and LabView 12 h
48% of energy savings compared
to the constant temperature
set-point control

[111] 2017 FRSC Smart city Yes No No No Yes No RES - 12 months ———–

[18] 2017 - Residence building No No No No - Yes Grid GAMS 1 day 22.40% energy cost savings
over the simulation period

[112] 2017 MBPETM Office room Yes No No - Yes Yes - Matlab 2 days PMV model is developed
for indoor comfort management

[6] 2017 IoT Commercial building Yes Yes No Yes Yes - - - - Investigation of IoT-based
building energy management

[113] 2017 GRNN Commercial building - - - - - - - Matlab 1 year CO2 emission analysis to predict
future CO2 emission in China

Th—Thermal, Lt—Lighting, AQ—Air Quality and RH—Relative Humidity.
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Figure 8. Research conducted on type of building.
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Figure 9. Controller application on both type of buildings.

In the context of comfort parameters, thermal comfort acquired more importance in both
non-residential and residential buildings, whereas, other parameters are taken into consideration
in few papers (Figure 10). This indicates the significance of thermal comfort in overall indoor comfort
sensation and optimization of thermal energy leads great amount of overall energy consumption
reduction in comparison to other comfort variables energy consumption optimization. There is a major
lack in consideration of indoor air quality and lighting control. However, regulations and standards
urge maintenance of CO2 and luminance level in order to keep occupants good health and productivity,
hence more research on this topic is necessary. Only 5% of the papers have developed controller for all
four comfort parameters control. This shows the difficulties in implementation of controller for overall
indoor comfort management.

Towards sustainable development, installation of renewable energies are important. This factor
has also been considered in the literature review. The literature review highlights 16% and 23%
renewable energies integration into non-residential and residential buildings, respectively (Figure 11).
Most of RES integration is observed in smart grid and in big buildings context. The dynamic response
in energy consumption by loads is an effective way of maintaining grid balance, grid durability,
and cost optimization. Around 22% of non-residential and 25% of residential buildings have adopted
DR. In Figure 12, it can be noticed the controller types used for DR application in both building
types. Gray box modelling has higher implementation percentage because of the high flexibility for
multi-objective optimization. Controllers used for RES integration are shown in Figure 13, where it
should be noticed that black box models have higher percentage of implementation in residential
buildings and gray box modelling in non-residential ones. This difference can be justified as follows:
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(1) Gray box models are characterized by high accuracy and higher computational cost that limit their
usage only for large buildings; while (2) black box models are characterized by high accuracy and
lower flexibility of MIMO that limit their application to multi-objective optimization purpose. In the
literature review, it had been found that black box models includes controllers such as fuzzy logic,
artificial neural networks, genetic algorithms, decision trees, particle swarm optimization, reinforced
learning, etc., while gray box models includes lumped capacitance model, model predictive controller,
hybrid systems, etc.

Thermal Lighting Air qualityRelative humidity
Comfort parameters

0%

20%

40%

60%

80%

100%

84%

11%
5%

0%

64%

17%
8% 10%

Residential
Non-residential

Figure 10. Controller application on comfort parameters.

Residential Non-residential
Type of building
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10%

15%

20%
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Figure 11. Renewable energy sources integration in both type of buildings.
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Figure 12. Controller used for demand response application in non-residential and residential buildings.
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Figure 13. Controller used for renewable energy sources integration in non-residential and residential
buildings.

4. Conclusions

This paper has dealt with a state of the art review of recent developments on building energy and
comfort management, and the related control. The carried out investigations includes explanation
of conventional controllers and their up-gradation to the current challenging applications and new
methods viz., black and gray box modelling. These models have been compared and critically reviewed
on the basis of comfort conditions, RES integration, DR application, and building type. The proposed
critical review will be useful for engineers and researchers in selection of suitable controller methods
for BEMS model based on various conditions. In addition, the following observations, comments,
and recommendations should be helpful.

• All the comfort parameters (thermal, visual, air quality, and relative humidity) need to be
controlled in the building to ensure occupants’ health and productivity. However, thermal
comfort control remains dominant as the other parameters have a minimal impact on energy
consumption. In addition, these parameters inclusion may introduce complexity in the controller
model and leads to poor performance.

• White box models have been investigated as preliminary models for building energy performance
analysis and were found to be used for low scale application. However, the white box application
is restricted only for initial analysis and is not efficient to implementation due to its limitations.

• Black box models have high accuracy, low computational cost, and higher flexibility for building
non-linearities. These models have gained significant attention in recent years. Constant
developments of new algorithms ensures the improved efficiency and suitable for multi-objective
applications. Nevertheless, these applications have restricted implementation due to lack of
physics-laws explanation and huge amount of data is required for model training.

• Gray box models are found out to be more feasible for multi-objective optimization,
predictive/adaptive, and cost-optimization applications, where design and computational time
are high. This makes them not suitable for low scale applications.

Significant improvements can be noticed in intelligent controller for BEMS applications.
The developments of new algorithms, and combination of various intelligent methods have ensured
development of buildings towards sustainable environment. However, there is still lack of proper
trade-off between energy and comfort parameters, thus further investigations in this area are still
needed. The following are few future perspective points:

• Further research required on air quality and lighting parameters.
• Research efforts towards gray box models for residential buildings.
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• Integration of RES into buildings still requires research efforts with feasible and uninterrupted
energy supply.

• Dynamic response (dynamic pricing) for energy consumption is yet to be implemented in large
scale applications.

• Development of new methods with IoT technologies will push towards more intelligent
building models.

• Research efforts towards adaptive building controller models.

Author Contributions: All the authors contributed equally for elementary related research, papers selection,
literature survey, discussions, and state of the art review of the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ABM Agent-Based Modelling
AFLC Adaptable Fuzzy Logic Model
ANFIS Adaptive Neuro-Fuzzy Interference System
ANNs Artificial Neural Networks
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
BCHPs Building Heating Cooling Power Systems
BCVTB Building Controls Virtual Test Bed
BEMS Building Energy Management System
BMS Building Management System
BNs Bayesian Networks
BPA Back Propagation Algorithm
BRL Batch Reinforcement Learning Model
BTO Building TechNologies Office
CEBEMS Cyber Physical System Enabled BEMS
CEMS Centralised Energy Management System Framework
CEMS Centralized Energy Management System
CPS Cyber Physical Systems
DER Distributed Energy Resources
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MOEA-GA Multi-Objective Evolutionary Algorithms
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MPC Model Predictive Controller
NNARX Artificial Neural Network with External Output
NREL National Renewable Energy Laboratory
NSGA Non-dominated Sorting Genetic Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm
PAB Parameter Adaptive Building
PI Proportional Controller
PID Proportional Integral Derivative
PMV Predictive Mean Vote
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