
HAL Id: hal-02971554
https://hal.science/hal-02971554

Submitted on 21 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The challenge of controlling microgrids in the presence
of rare events with Deep Reinforcement Learning

Tanguy Levent, Philippe Preux, Gonzague Henri, Réda Alami, Philippe
Cordier, Yvan Bonnassieux

To cite this version:
Tanguy Levent, Philippe Preux, Gonzague Henri, Réda Alami, Philippe Cordier, et al.. The challenge
of controlling microgrids in the presence of rare events with Deep Reinforcement Learning. IET Smart
Grid, In press, �10.1049/stg2.12003�. �hal-02971554�

https://hal.science/hal-02971554
https://hal.archives-ouvertes.fr


Received: 20 July 2020 - Revised: 16 September 2020 - Accepted: 25 September 2020 - IET Smart Grid
DOI: 10.1049/stg2.12003

OR I G INAL RE SEARCH PA PER

The challenge of controlling microgrids in the presence of rare
events with deep reinforcement learning

Tanguy Levent1 | Philippe Preux2 | Gonzague Henri3 | Réda Alami4 |
Philippe Cordier4 | Yvan Bonnassieux1

1Ecole Polytechnique, CNRS, IP Paris, Palaiseau,
France

2Université de Lille, CRNS, Lille, France

3Total EP R&T, Houston, USA

4Total, Palaiseau, France

Correspondence

T. Levent, Ecole Polytechnique, CNRS, IP Paris,
Palaiseau, France.
Email: tanguy.levent@polytechnique.edu

Abstract
The increased penetration of renewable energies and the need to decarbonise the grid come
with a lot of challenges. Microgrids, power grids that can operate independently from the
main system, are seen as a promising solution. They range from a small building to a
neighbourhood or a village. As they co‐locate generation, storage and consumption,
microgrids are often built with renewable energies. At the same time, because they can be
disconnected from the main grid, they can be more resilient and less dependent on central
generation.Due to their diversity and distributed nature, advancedmetering and control will
be necessary to maximise their potential. This paper presents a reinforcement learning al-
gorithm to tackle the energymanagement of an off‐gridmicrogrid, represented as aMarkov
Decision Process. Themain objective function of the proposed algorithm is tominimise the
global operating cost. By nature, rare events occur in physical systems. One of the main
contribution of this paper is to demonstrate how to train agents in the presence of rare
events. Merging the combined experience replay method with novel methods called
‘Memory Counter’ unstucks the agent during its learning phase. Compared to baselines, an
extended version of double deepQ‐network with a priority list of actions into the decision
making strategy process lowers significantly the operating cost. Experiments are conducted
using 2 years of real‐world data from Ecole Polytechnique in France.

NOMENCLATURE
at Action taken by the agent at t
aa Action taken by the DDQN‐EMSa
ap Action taken by the DDQN‐EMS
A Action Space of a MDP
Aa Action Space of the DDQN‐EMSa
Ap Action Space of the DDQN‐EMSp
c Load curtailment cost
C Memory Counter
D Replay memory
EBcap(t) Batteries SoC at t
EBmin Batteries SoC minimum limit
EBmax Batteries SoC maximum limit
expt Experience store in the replay memory at t
gz Activation Function of the neuron z
G Discounted Return
G Memory Counter Capacity

Jobj Cost/Objective function
k Episode number
m Batteries operational cost
PB(t) Batteries power delivered at t
PG(t) Diesel generator power delivered at t
PC(t) Load curtailment power at t
PPV(t) PV power at t
PL(t) Load power at t
PNet(t) Net demand at t
PBmin Minimum power delivered by the batteries
PBmax Maximum power delivered by the batteries
PGmin Minimum power delivered by the diesel

generator
PGmax Maximum power delivered by the diesel

generator
q Diesel generator operational cost
Q(st, at) State Action value function at t
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Q⋆(st, at) Optimal State Action value function at t
rt Immediate reward at t
R Transition function of a MDP
R Replay Memory Capacity
st State of the environment at t received by the

agent
S State Space of a MDP
T Reward function of a MDP
t Time step of an episode
T Length of a training episode
w Weights of the policy Q network
w� Weights of the target Q network
W Weights Space
x Input of a function
X Input Space of a function
y Desired output value of a neural network
ŷ Estimated output value of a neural network
γ Discounted factor
π Policy
π⋆ Optimal Policy
α Learning rate
ϵ Exploitation rate
δ Frequency of time step t in C
ρ Threshold of the memory counter for δ
ϕ New exploration rate value for MemC strategy
τ Frequency of updating the Q target
Δt Time interval between two time steps
Δw Weights update
∇w Weights derivative

1 | INTRODUCTION

One of the main challenges of the twenty‐first century is to
reduce greenhouse gases emissions to comply with the 2015
Paris Agreement [1]. To tackle this challenge, there has been a
global increase in investments for renewable energy projects [2]
and for distributed energy resources (DER), as demonstrated
in Referenes [3,4]. As a result, utilities must adapt the grid
infrastructure to handle stochastic resources such as solar or
wind energy in order to maintain grid reliability and stability. A
microgrid is a small scale power system that consists of
renewable energy sources (wind turbine or photovoltaic
panels), traditional generators (diesel generators), batteries,
loads, and an energy management system (EMS). The principal
definitions and foundations of a microgrid have been devel-
oped and explained in References [5–7]. A microgrid may
operate either connected to the main grid, or disconnected
from it, in the islanded mode. A microgrid may also be
completely disconnected from the main grid (off‐grid).
Furthermore, developing renewable energy sources (RES) ca-
pacity will impact electricity markets with non‐dispatchable
resources. Microgrids are considered as an important tech-
nology for the energy transition and integrating more renew-
able while increasing resiliency. In Reference [8], the author

proposes that the grid could evolve from a monolithic system
centrally operated to a system of microgrids.

In this paper, we focus on the EMS; more specifically, we
are interested in designing an algorithm that is able to manage
the operations of a microgrid. Often, when making decisions,
the EMS needs to consider uncertain future states: the demand
and production depend on both the human activity and the
weather. In such a setting, we find the reinforcement learning
(RL) framework to be a strong candidate to tackle this problem
[9]. In this paper, we present a Deep Reinforcement Learning
(DRL) approach for the EMS of a hybrid off‐grid microgrid
based on PV panels. An EMS has to deal with rare events,
which are situations that are less likely to occur which signif-
icantly affect the performance, as explained in References
[10,11]. In our study, rare events have a probability of occur-
rence smaller than 5%, which are considered as significant rare
events (SRE). According to Reference [12], conventional RL
methods are not robust when SRE occur. Indeed, they fail
when there are rare events that affect significantly the expected
performance. There is no published research to date regarding
SRE in the case of controlling a microgrid with RL methods.

One of the main considerations made in this paper is the
absence of forecasters; this makes our work significantly
different from the state of the art onmanagingmicrogrids. In the
literature, a forecaster provides a prediction of the next 24 h of
the PV power output and the load consumption; an optimisation
method is used to manage the different units of the system using
this forecast (planning). Developing a forecaster for every
microgridwould be difficult, as this requires aweather forecaster,
load measurement infrastructures, and eventually a sufficient
amount of historical data [13]. Therefore, we focus on the design
of a controller without any forecasting capability, reacting to
changing and unplanned conditions. The purpose of this study is
to propose a novel approach using a DRL algorithm that mini-
mises the operational cost of an off‐grid microgrid. This algo-
rithm is reactive; it does not use any forecaster; and it deals with
SRE.We analyse the efficiency and robustness of this method by
experimenting over a large variety of daily conditions, covering
almost 2 years of solar and load conditions. We created a dataset
with 2 years of activity of our experimental microgrid. A part of
this dataset (training dataset) is used to train a DRL agent; then,
its performance is assessed on the remaining part of the dataset
(testing dataset). As EMS agent, we propose two versions of
DRLagents that stem from the family of double deepQ‐network
(DDQN) algorithms. These two DRL agents are benchmarked
against other methods: a RL decision tree [14] (RL‐DT), a
rule‐based algorithm and dynamic programming (DP).

1.1 | Reinforcement learning applications for
power system

RL has been proposed for several power system applications. In
Reference [15], the authors use Q‐Learning and an ensemble
neural network for operation andmaintenance in power systems
with degrading elements and equipped with prognostics and
health management capabilities. Deep Q‐network (DQN) and
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deep policy gradient have been studied for the scheduling of
electricity consuming devices in residential buildings [16]. The
authors in Reference [17] have used Q‐learning to propose a
dynamic pricing for demand response in a electricity market over
two days of simulations. Authors in Reference [18] propose an
EMS integrated by a fittedQ‐Iteration algorithm to sell/buy the
surplus/deficit electricity power output of smart homes.
Regarding recent works relative to the energy management of
microgrids using RL algorithms, a 2‐step ahead Q‐Learning al-
gorithm was proposed in Reference [19] to manage the energy
storage device of a microgrid to optimise its utilisation rate. A
battery energy management in a microgrid of a two‐month
period has used a batch RL algorithm in Ref. [20]. The study in
Reference [21] proposes an adaptive DP and RL framework to
learn a control policy in order to optimise the critical load
operation into amicrogrid. ADRL algorithm has been studied in
Reference [22] for operating a hydrogen storage device into an
islanded microgrid. Finally, a deep review of RL algorithms
applied into the electric power system domain was published in
Reference [23], focusing on the past considerations and the new
perspectives.

1.2 | Contributions and outline

The main contributions of this paper are:

� Designing a novel approach accelerates the learning phase of
the agents and deal appropriately with significant rare events.

� Proposal of two RL agents solving the economic dispatch
problem of the microgrid. This involves an approach based
on a novel priority list of actions.

� Development of an off‐grid hybrid microgrid simulator
(MGSimulator) specifically tailored for RL.

This paper is organised as follows: Section 2 introduces
briefly Markov Decision Processes (MDPs) and then the RL
framework which provides a family of algorithms to solve
MDPs. The microgrid management problem we are tackling is
presented in Section 3. Section 4 introduces its modeling as an
MDP. In Section 5, we present the algorithms we have
designed to manage the problem of rare events. Section 6
serves two purposes: first to demonstrate by experiments the
robustness of the new capability added to the learning agent to
tackle rare events and then to demonstrate the performance of
the DRL agent over a wide range of data (PV power and
consumption). Then, we compare the results with other
methods. Finally, we conclude in Section 7 by an overview of
the current work and by suggesting future directions.

2 | REINFORCEMENT LEARNING
BACKGROUND

The problem of managing operations can be seen as a
sequential decision‐making problem in a stochastic environ-
ment. RL is a sub‐domain of machine learning, where an agent
learns to complete a task by interacting with its environment.

To reach this goal, the agent learns to optimise a certain
objective function that is defined by the consequences of its
decisions. The most common way to model a RL problem is as
a MDP. We briefly introduce this notion in the next section.

2.1 | Markov decision processes

A MDP is a discrete time framework for modeling sequential
decision making problems. To apply an RL algorithm, the
problem must be expressed in this formalism. In our case, the
MDPof interest is defined as a 5‐tuple S;A;T;R; γð Þ such that:

� S denotes the finite set of the states,
� A denotes the finite set of the possible actions,
� T : S � A� S→ 0; 1½ � denotes the transition function:
� T stþ1; atstð Þ ¼ P½stþ1|st; at� is the probability that the

emission of action at ∈A in state st ∈ S at time t will lead to
state stþ1 ∈ S at time t þ one

� R : S � A→ R denotes the reward function and models
the consequence of actions. rt ¼ R statð Þ is the immediate
reward received by the agent after performing action at in
state st. A reward value can be positive or negative to ac-
count for good and bad consequences.

� It is essential to distinguish the immediate reward from the
optimisation of the objective function. The goal is to opti-
mise rewards over a span of time, not immediate rewards: to
optimise the objective function, one may have to perform
actions that have bad immediate rewards but are necessary
to reach the best long term behaviour.

In this paper, the objective function is the sum of discounted
rewards: GðstÞ ¼∑T

k¼0γ
krtþk with γ ∈ [0, 1). γ controls how far

we consider the consequences of actions in the future: γ close to
0 makes the agent focus on short‐term (immediate or so) re-
wards, whereas γ close to 1 leads to long term optimisation.

2.2 | Reinforcement learning

RL aims at optimising the agent’s behaviour while facing an
unknown environment, that is an MDP where T and R are
unknown. The behaviour of the agent is known as its ‘policy’ π
which is a mapping π : S �A→ 0; 1½ � where π at|stð Þ denotes
the probability of taking action at ∈A in state st ∈ S.

The RL agent learns by trial‐and‐error, continuously
interacting with its environment: at each time step t, the agent
observes the current state of its environment st ∈ S and then
chooses an action at ∈A to perform. The agent performs at
which leads the environment to stþ1 ∈ S; the agent receives a
reward rt ¼ R statð Þ ∈ R. It is important to note that the
environment satisfies the Markov property as the next state
stþ1 depends only on the current state st and the current action
at: T stþ1atstð Þ.

Since in early days of 1980s, RL has been successfully used
in a variety of problems, such as playing Backgammon [24], in
health [25], video games [26] and board games where DRL has
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been able to learn to play beyond human performance in
games such as Chess and then Go, Reversi and others using
only the rules of the game [27]. It should be noted that the
recent achievements on board games concern environments
that are deterministic: this point simplifies the problem.
Moreover, these environments are stationary, that is the terms
of the MDP do not change along the time. In our case, the
environment is stochastic: the next state cannot be predicted
exactly, and the stationarity of the environment is also not
assumed.

2.3 | Q‐learning

The state‐action valueQ(st, at) quantifies how good it is to emit
an action a ∈A in a given state s ∈ S at time t. It is defined by
Qðst; atÞ ¼ E½Gðst; atÞ�. TheQ function of the optimal policy is
learned by repeated interaction between the agent and its envi-
ronment and update according to Bellman equation:

Qðst; atÞ←Qðst; atÞ þ αðrt þ γmax
a
Qðstþ1; aÞ � Qðst; atÞÞ

ð1Þ

where α ∈ 0; 1ð Þ denotes the learning rate.

The Equation (1) converges towards the optimal value
function Q⋆(st, at) ¼ maxπQπ(st, at) reached for the optimal
policy: π⋆¼ arg maxπQπ(st, at) [28]. This update equation is the
essence of theQ‐Learning algorithm [9]. Another basic element
of an RL algorithm concerns the exploration‐exploitation
dilemma. At each time step t, the agent needs to perform an
action. Then, the agent has two possibilities: either the agent
chooses the action, it has yet observed to be the best one in the
current state (exploitation), or the agent chooses an action that
seem sub‐optimal to gain more information about it (explora-
tion). Exploitation turns out to choose action
argmaxa∈AQðst; aÞ. To learn, the agent has to explore; to
perform optimally while optimising the objective function, the
agent has to exploit. Exploitation is the obvious choice once the
agent has learned the optimal policy. However, in a stochastic
environment, and worse, in a non‐stationary environment, the
agent can never be certain it has found the optimal policy, so it
has to keep on exploring, at least some times to times. As a result,
the agent needs a strategy to balance exploration–exploitation.
In an environment that does not change too fast (in which case it
is difficult to learn anything at all), the agent has to explore with
high probability at the beginning of its interactions with its
environment; then, progressively, the balance has to shift to-
wards exploitation. The study of the exploration–exploitation
dilemma is the field of research known as themulti‐armed bandit
problem. This is a very active field of research, and many algo-
rithms have been proposed to cope with various settings.
Despite all these efforts, in the case of the RL problem, one of
the most effective strategy remains a very simple one; it is called
ϵ‐decreasing greedy, and it is used in this paper. In this strategy, ϵ
is the probability that the agent explores at step t; then, with
probability 1 � ϵ, it exploits and performs the action currently

estimated the best: this is a greedy choice, hence the name. In ϵ‐
decreasing greedy, ϵ is slowly decreasing along time, leading the
RL agent to explore less and less, and then, to exploit more and
more, hence to stick to its goal of optimising the objective
function. So, we should subscript ϵ with a t but we drop it for the
sake of simplicity of notations. With such a scheme, the agent
may also increase ϵ if it detects that it needs to acquire more
information; this is typically the case when the environment is
non stationary and its dynamics changes along time. A pseudo‐
code of the Q‐Learning algorithm is described in Algorithm.1.

Algorithm 1 Q‐Learning

Set hyperparameters: α ∈ [0, 1], ϵ > 0.
Initialise Q(s, a), ∀ðs; aÞ ∈ S � A
for each episode do.

Initialise the agent (s0); t ← 0.
While Terminal state not reached do.

Choose at for st using Q.
Emit action at, observe rt, stþ1
Update Q using (1)

end while.
Decrease the value of ϵ

end for.

A key element of the Q‐Learning algorithm (or any RL
algorithm) is the structure representing the Q function. Q may
be seen as a table of real numbers with two indices; one for the
state, one for the action. When the cardinal of state space and
the cardinal of action space are small, Q is implemented in this
way in basic Q‐Learning implementations (so‐called tabular Q‐
Learning). In real applications, it is common that the number
of states is large, and even infinite (uncountable). In this case,
we need a structure that can represent an infinite number of
real values. This structure is called a ‘function approximator’.
Over the years, various function approximators have been used
(decision trees, random forests, support‐vector machines and
also k nearest neighbor techniques) among which neural net-
works are important. Due to this fact, we dedicate the next
section to a brief recap about neural networks, a field today
better known as Deep Learning (DL).

2.4 | Deep learning

DL is a branch of Machine Learning. It is the modern name for
‘artificial neural networks’. In the last 10 years, DL has revolu-
tionised 50 years old research fields such as computer vision,
signal processing, and natural language processing [29]. A neural
network is made of a sequence of layers of neurons/units
connected together by edges, in a feed forward way*, from the
input to the output. Each edge is characterised by a weight, that
is a real number. A data is input into the network, and a pre-
diction is output. Traditionally, a neuron inputs a d‐dimensional

*
we do not consider recurrent neural networks here because they remain out of the scope
of our work.
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real vector xj ∈ X ⊂ Rd ; each element xj is weighted bywj ∈ Rd ;
the neuron z outputs ŷz ¼ gzðxj;wjÞ where gz usually denotes a
non‐linear function, that is sigmoid, hyperbolic tangent, rectified
linear unit…The data are integrated as the inputs of the
network, its attributes being processed in each layer to finally
calculate the output ŷ. This process is called the forward prop-
agation. The output of the network ŷðxiÞ for data xi is compared
to the desired output yi. Then, the weights of the network are
modified in order to reduce the difference between the output
value and the expected value. This process is repeated again and
again over the whole set of training data, until convergence. A
rather recent and comprehensive description of DL is available
in Reference [30].

2.5 | Reinforcement learning decision tree
⇝ deep Q‐network: the deep Q network
algorithm

As presented above, Q‐Learning is tabular: the Q values are
stored in an array. In practice, this approach is not viable because
Q‐Learning would be restricted to small size state space, and,
evenworse, it does not generalise. To get around this problem, in
a previous study [14], we use a decision tree algorithm after the
RL learning phase using a tabular Q‐Learning, in order to
approximate a function between the states and the best associ-
ated action. Though generalising, this method remains limited to
small discretised state spaces. Tabular RL has soon been
extended to handle these problems by substituting the tabular
representation ofQ by a function approximation to learn, store,
and estimate the state‐action value. In DRL, the state vector
feeds a neural network and an estimate of theQ‐values is output
for each action. Weights are updated following the Q‐Learning
update rule in Equation (1). Because of the combination of the
updates of the weights of the neural netowrk and the updates of
Q estimates, Equation (1) can be simplified: the learning rate α
can be removed as it is already used during the backward
propagation phase resulting in:

Qðst; at;wÞ ¼ rt þ γmax
a
Qðstþ1; a;wÞ ð2Þ

Supervised learning methods such as neural networks
require a dataset of examples, that is a set of input‐output pairs.
In Deep Q Network, we create an experience replay memory
D. An experience at each time step is defined by the tuple: expt
¼ (st, at, rt, stþ1) and is stored in D. Nevertheless, as each
transition expt is recorded, we have a problem of correlation
between close experiences, which is inconvenient for training
the neural network. To avoid that, we select randomly a batch
of experiences of N transitions from the pool of stored in D to
stabilise the input dataset. The learning algorithm is called
Deep Q Network or DQN [31]. Equation (2) is treated as the
Q target, and we update the weights iteratively using w ← w
� Δw such that:

Δw¼ α rt þ γmax
a
Qðstþ1; a;wÞ � Qðst; at;wÞ

� �

∇wQðst; at;wÞ
ð3Þ

2.6 | Double deep Q‐network

In Equation (3), we need to compute the difference between
the Q target and the current estimated Q‐values. Both values
use the same neural network of weights w. As a result, the
target Q‐values change when the weights w ∈W are updated
during the backward propagation phase, which leads to big
oscillations during training the agent. In order to stabilise the
algorithm, we use the trick proposed in Reference [31]. This
trick consists in separating the network between the target and
the current Q‐values. Every τ updates, we copy the current Q
network weights to the periodically fixed target Q network
ones. We note w� the weights corresponding to the target Q
network, and we keep the w notation for the current Q
network. A second improvement called Double DQN
(DDQN) and introduced in Reference [32] concerns the
problem of overestimations of Q‐values because we use the
max operator to choose the estimated Q‐value of the next state
in Equation (3). The solution consists in using the Q network
to select the best action of the next step and then use the target
network to evaluate Q:

Qðst; atÞ ¼ rt þ γQðstþ1; arg max
a

Qðtþ1; a;wÞ;w
� Þ ð4Þ

3 | MODEL

We have designed a hybrid off‐grid microgrid consisting
of solar PV panels, a diesel generator (genset), batteries, a
building and an EMS. Hybrid refers to the fact that the
microgrid generates energy with both renewable and fossil
resources. These different components are illustrated in
Figure 1.

3.1 | Problem formulation

In this paper, we aim at minimising the operational cost of the
proposed microgrid while respecting the system constraints
over a period of time T. The marginal cost of the PV pro-
duction is considered to be zero, thus it is not taken into ac-
count in the cost function. We assume a fixed marginal cost for
the genset and the batteries. As a result, our objective function
is the cumulative cost to operate the genset and the set of
batteries over T, where the time step Δt is 1 h. Power losses on
the feeders are not considered in the operational cost function.
Finally, for the sake of simplicity, we assume that the electricity
power (kW) at time t will consist of the production (kWh)
during [t, t þ Δt]. The EMS cost function is thus formulated
as:
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Jobj ¼ ∑
T

t¼0
|PBðtÞ|mþ PGðtÞqþ PCðtÞc ð5Þ

The variables m, q and c represent respectively the oper-
ational cost of the set of batteries, genset and load curtailment,
respectively, and PB, PG and PC are the charge or discharge
power of the batteries, the genset power output and the power
curtailment, respectively.

3.2 | Constraints and hypothesis

The difference between the PV power produced PPV and
the load consumption PL is equal to the amount of elec-
tricity to be managed properly. The value can be positive or
negative regarding the two components and is defined as a
net demand PNet. We formulate this difference of power at
time t as:

PNetðtÞ ¼ PPV ðtÞ � PLðtÞ ð6Þ

The principal constraint concerns the power balance of the
microgrid as the generation needs to match the load. This
constraint must be satisfied at any time t:

PBðtÞ þ PGðtÞ þ PCðtÞ ¼ PPV ðtÞ � PLðtÞ ð7Þ

The second constraint is related to the battery energy
capacity EBcap bounds at each time t. If the EMS does not
respect the energy storage limits, it will automatically assume a
crash:

EBmin ≤ EBcapðtÞ ≤ EBmax ð8Þ

The charging and discharging power limits of the batteries
must satisfy:

PBmin ≤ PBðtÞ ≤ PBmax ð9Þ

Furthermore, the dynamical set of batteries is modeled
regarding the operation and the capacity as:

EBcapðtÞ ¼ EBcapðt � 1Þ � PBðtÞΔt ð10Þ

We consider a simple battery model with perfect efficiency.
In future work, we will investigate more complex battery
models. Finally, the diesel generator is also constrained by its
own limits in terms of delivered power range:

0 ≤ PGmin ≤ PGðtÞ ≤ PGmax; ð11Þ

where PG(t) is equal to zero when it is turned off mode.

3.3 | MGSimulator

We have created a microgrid simulator called MGSimulator
and implemented it in Python. The simulator calls a pre-
processing module which returns a training and testing net
demand dataset. To make MGSimulator useful and easily used
by the RL community, MGSimulator follows OpenAI Gym
[33] design and API. This is part of a larger effort to create a
generic, easy to use, simulator of microgrids that is available to
the communities studying microgrids and RL. The main
function of the simulator is named step(a), which takes the
agent action a ∈A as input and it returns three elements to the
agent: the next state stþ1, the reward rt, and a Boolean value
determining if the terminal state is reached or not (variable
name: done). A function called reset( ) resets the environment
to its initial state. Figure 2 illustrates the different blocks used
in the MGSimulator.

4 | MICROGRID ENERGY
MANAGEMENT SYSTEM AS AN MARKOV
DECISION PROCESSES

This section discusses how to transform a microgrid model
into an MDP.

F I GURE 1 The off‐grid hybrid microgrid
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4.1 | States

The RL agent uses states to perceive its environment at any
given moment. The state space is made of relevant information
that the agent can use to take decisions. In our study, two
observations compose the state: st ¼ ðPNetðtÞ;EBcapðtÞÞ ∈ S.
The net demand PNet(t) defined in Equation (6) is deduced
from our PV power output and load time series data.
PNetðtÞ ∈ R may have a negative, null, or positive value. The
batteries energy EBcap(t) describes the state of charge (SOC) of
the home batteries and follows Equation (10). The constrained
values of EBcap(t) are represented by Equation (8). During an
episode, a terminal state is reached when t ¼ T or when the
agent takes a bad decision, meaning that constraints are not
respected (game over).

4.2 | Actions

To control the microgrid, a set of actionsA is designed. At each
time step, the RL agent chooses an action at based on st. In this
study, we propose two sets of actionsAa andAp. Two agents are
designed, one called DDQN‐EMSa that implements the first
action setAa, while the second agentDDQN‐EMSp implements
the priority list set of actionsAp. The purpose of having two sets
of actions is to understand the relationship between the action
space and the overall performance.

The first set of actions aa ∈Aa can only dispatch one
generator per time step. In the second case, an action ap ∈Ap
can be a priority list, that is a ranked list of actions, each
concerning one generator. Priority lists are a popular algorithm
to dispatch generators. It refers to dispatching generators in
the order of the list. Once the first generator reaches its
maximum power output, the second generator turns on.

Two actions are related to the batteries unit: discharging
(aa ¼ 0) or charging (aa ¼ 1 and ap ¼ 1) at full rate of PNet(t).
The priority list allows the agent to discharge the battery with
the highest priority and then to produce electricity with the
genset with the lowest priority (ap ¼ 0). The diesel generator
produces electricity (aa ¼ 2 and ap ¼ 2) at full rate of PNet(t).
Finally, if the solar energy produced by the PV panels is
equivalent to the load consumption in the Equation (6), then
the EMS will be in an ‘Idle’ mode (aa ¼ 3 and ap ¼ 3).

4.3 | Reward function

The main purpose for the DDQN‐EMS agents is to optimise
the economic cost function Jobj of the microgrid system
defined in Equation (5). The immediate reward R s; að Þ at time
t is associated to the cost of the generators used to meet the
net demand PNet(t). In addition, the constraints of the micro-
grids need to be respected, otherwise either an outage happens,
or the load is unwillingly curtailed in Equation (7). As a result,
a cost is defined for a constraint‐violating decision taken by the
agents. This value is not a realistic cost but it is used to penalise
such decisions. The reward function is defined as:

Rðs; aÞ

¼

8
>><

>>:

� m PNet; if charge batteries
� q PNet; if power produced by the genset
� c PNet; if the constraints are not respected
0; if do nothing

ð12Þ

As the reward function is indexed on the action taken, it is
necessary to distinguish two different rewards calculation for
DDQN‐EMSa and DDQN‐EMSp when the action discharge
(aa ¼ 0 or ap ¼ 0) is chosen:

� If DDQN‐EMSa is used, we add another element in
Equation (12): the cost for discharged batteries at full rate of
PNet, defined as:

R s; að Þ ¼ � m PNet ð13Þ

� If DDQN‐EMSp is used, the previous reward R s; að Þ of
Equation (13) is modified and results in the sum be-
tween a cost of discharging batteries denoted by PNetBat
and a cost of producing power with the diesel generator
to supply the load PNetGen. The reward R s; að Þ is defined
as:

R s; að Þ ¼ � ðmPNetBat þ qPNetGenÞ ð14Þ

F I GURE 2 The MGSimulator architecture. The
two main function: step in green and reset in orange
are illustrated. Arrows return the results of the
functions
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where

PNet ¼ PNetBat þ PNetGen ð15Þ

4.4 | Transition function

The transition function T stþ1;at;st
� �

is not available, hence
unknown to the agents.

5 | METHODS PROPOSED TO HANDLE
RARE EVENTS WITH DOUBLE DEEP
Q‐NETWORK

The two agents described in Section 4 are proposed to tackle
the energy management problem of the microgrid, based on
the Double Deep Q Network algorithm described in Section 2.

During the learning phase, SRE occurs, which lead the
agents to take bad decisions. As a result, the agent must restart
the episode at the beginning without the possibility to explore
further the episode. We consider the agent ‘stuck’ in such a
case, where the agent will always fail at the same time step and
thus never learn.

5.1 | Rare events

Rare events are low probability events which significantly
affect the expected performance. In our case, they are char-
acterised by a combination of a rare state and a rare action.
Figure 3 exhibits rare events (in red) present in our dataset,
representing the discrete net demand observed at each time
step. We can observe that the two points with a net demand
below � 20 are not considered as rare events. The reason is that
the agent takes the right decision during these two situations
and the expected performance is therefore not affected. In our
case study, we define rare events when the net demand PNet is

equal to zero, that is when the power produced by the PV
panels is equal to the power consumption. In Section 4, we
have defined action Idle (a ¼ 3) to effectively manage these
situations. The other actions result as bad decisions which
cause an outage into the off‐grid hybrid microgrid because the
power balance constraints in Equation (7) is not respected. The
rare events represents 2.66% of our dataset and are classified as
SRE.

5.2 | Double deep Q‐network‐energy
management system improvements

In this subsection, we describe the two solutions proposed to
unstuck the learning agents during SRE. The first method
called memory counter (MemC) noted MemC is the key to
unstuck the DDQN‐EMS agent when a rare event occurs. The
second method called combined experience replay noted
combined experience replay technique (CER) improves
the performanceMemC. Identifying a rare event is challenging
for the agent, and a standard DDQN performs poorly during
the learning phase for several reasons:

� training a neural network is a slow process,
� the more time passes, the lesser the opportunity to explore

during an episode with the ϵ‐decreasing greedy strategy,
� at each episode, the experience replay process requires to

sample a small batch of the replay memory D randomly to
train the neural network,

� the size of an episode is long (more than 2000 steps),
� if a bad decision is taken by the agent, it restarts the episode

at the beginning.

Altogether, these points raise the necessity of better
managing SRE in DDQN. Rare events are under‐represented
in the replay memory D because there only represent 2.66% of
the dataset. This means that a rare event is less likely to be
picked in the batch memory to train the neural network if it has
been stored in the replay memory. A solution to unstuck an
agent would be to increase its exploration rate, however as
epochs pass, the probability to explore decrease. Therefore, as
time passes, the agent capability to unstuck itself at a late stage
of training becomes null.

To address these problems, we propose two mechanisms
that are embedded in the DDQN.

5.2.1 | Double deep Q‐network‐energy
management system with the memory counter
capability

We propose to equip DDQN with a new memory called
MemC of capacity G and denoted by C (MemC). The purpose
of C is to keep track of the maximum step reached during an
episode before restarting at the beginning. The capacity of C is
equal to G, meaning that C consists of the last step numbers of

F I GURE 3 Rare events are highlighted by red dots in the dataset.
(Blue dots are non rare events.)
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the last G episodes. For instance, if the agent fails in step
t ¼ 88, then 88 is added to C. At each time step t of an episode,
a new ratio noted δt is calculated. δt corresponds to the fre-
quency of the time step ‘t’ in C. As a result, if δt is above a
certain threshold ρ, the exploration rate ϵ is raised to a higher
value ϕ > ϵ. ϕ is manually defined by the user. By this way, if
the agent is blocked at a certain moment of an episode without
the possibility to explore because of a too small ϵ, then this
mechanism forces the agent to explore more.

5.2.2 | Double deep Q‐network‐energy
management system with memory counter and
combined experience replay technique capabilities

The size of the replay memory D plays an important role in the
performance of the RL agent. We have used the CER pro-
posed in Reference [34] by forcing the last element of D in the
batch experience replay to be sure that if a rare event occurs;
then, this experience will be selected to train the neural
network. This mechanism always forces the agent to train with
the last experience stored in C. It is a simple but effective trick.
We summarise the two capabilities in Algorithm 2.

Algorithm 2 DDQN‐EMS with MemC and CER
capabilities

Initialise empty replay memory D to sise capacity R.
Initialise empty counter step memory C to size capacity G.
Initialise current Q network with random weights w.
Initialise target Q network with weights w� ← w.
for each episode do.

Initialise t ← 0.
Initialise MGSimulator.

while Terminal State not reached do.
if δt > ρ then.

Force ϵ ← ϕ
end if

Choose action at using ϵ‐greedy strategy.
Emit action at in MGSimulator, observe rt, stþ1
Store transition expt ¼ (st, at, rt, stþ1) in. D
t ← t þ 1.

end while.
Sample random batch of N � 1 transitions from. D
Add the latest transition stored in D to the batch.
if episode ends at stþ1 then.

Q(st, at) ← rt
Else.

Set Q(st, at) according to Equation (4)
end if.
Perform gradient descent step using Equation (3)
Every τ steps, update weights w� ← w weights.
Store the time step t in. C

end for.

6 | EXPERIMENTS

6.1 | Experimental settings

The dataset used in this study comes from different sources:
the load measurements from an office building, the Drahi X
Novation Center, and the PV generation measurements from
the SIRTA atmospheric laboratory [35]. Figure 4 illustrates the
PV power and load consumption profiles in the data. The
sensors are located at the same place on the campus of the
École Polytechnique in Palaiseau, France. The agent uses his-
torical data and interacts with the simulator MGSimulator (cf.
Section 3). The code of our study is available in open source:

F I GURE 4 The dataset of load consumption, PV power production and net demand
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https://bit.ly/3jmaasD. First the agent is trained. This period
is called the training phase or the learning phase. When this
phase is over, we test the learned agent on new conditions of
the microgrid. This is called the testing phase. The training
phase is conducted on simulating 43 active days of the
microgrid, which are randomly selected over 43 successive
weeks along the year. A time step of 30 min is taken during the
training phase which represents 2 � 24 � 43 ¼ 2064 steps for
one episode. We have chosen to set the time step to half an
hour to increase the amount of training data, which is enough
to have good performance without increasing too much the
computing time. The more data we have in an episode, the
more time is needed to train our agent. The testing phase is
performed on a new series of 52 days, over 52 successive weeks
along the year, with a time step of 1 h. Note that the testing
dataset represents a large variety of days, including seasonal
variations, holidays, etc.

The parameters of the objective function Jobj (which are
also used in the reward function) are set to m ¼ 0.5 €, q ¼ 1.5
€, and c ¼ 10 €. Table 1 provides the parameters of the
simulated microgrid.

The hyperparameters used for the two agents: DDQN‐
EMSa and DDQN‐EMSp, are given in Table 2. The selection of
these hyperparameters is sensitive because they affect directly
the learning performance. DDQN‐EMSp (with a priority list of
actions) needs more episodes to converge because the estima-
tion of Q is more difficult to learn. We have noticed that to
obtain better performances with DDQN‐EMSp, the size of the

replay memoryD has to be made larger. The minimum value of
ϵ is fixed at 0.001 in order to give the agents the possibility to
reach the successful terminal state sT. Indeed, as the agent re-
starts at s0 when a bad decision is made, having a minimum ϵ at
0.1 is too high to consider reaching the 2064th step. The neural
networks for the target andQ networks consist of three hidden
layers of 100 neurons each, each with a Rectified Linear Unit
(ReLU) activation function. We tested different architectures
and this one gives the best performance. We train the neural
network with Adam, an adaptive learning rate optimisation al-
gorithm [36] widely used in the DRL domain.

Abbreviations: DDQN, double deep Q‐network; EMS,
energy management system.

6.2 | Memory counter and combined
experience replay capabilities experiments

To validate the improvements made in the DDQN‐EMS al-
gorithm, we have tested four agents (based on the DDQN‐
EMSa settings) with different capabilities, on the same
microgrid environment with rare events: a basic DDQN agent
(without any improvement), an agent with only the combined
experience replay (CER), an agent with only the MemC and
finally an agent with the both capabilities. The purpose is to
compare their ability to learn how to control an off‐grid hybrid
microgrid effectively when SRE occur. Each agent is tested
over 1400 episodes, corresponding to a learning phase. Each
episode consists of 2064 steps maximum. Each agent runs 10
learning phases in order to understand the variation in its
performances. Figure 5 displays the performance of each agent
along training. The y‐axis is the average of steps reached over
the last 100 episodes and is on a logarithmic scale. The cloud
around the average line represents the 10% and 90%
percentiles.

The basic DDQN agent without improvements and the
agent with only CER capability fail early, not reaching a time
step above 25–30 in any episode; hence, they can not learn a
good strategy. CER alone does not help the learning agent and
performs equivalently to the basic DDQN‐EMS. The red
curve shows the performance of DDQN‐EMS equipped with
MemC: this agent enhances significantly the performance of
the basic DDQN‐EMS agent with 410 steps performed on
average at the 1400th episode. Finally, combining both MemC
and CER, DDQN‐EMS outperforms MemC by 75%, an
average of about 720 steps being reached at each episode at the
end of the learning/training phase. We conclude that the
combine experience replay improves significantly the MemC
capability. Hence, their combination performs very well.

Finally, Figure 6 illustrates how many times an agent is
stuck in the microgrid environment. We consider that an agent
is stuck if during the last 10 episodes, the agent fails at the same
time step. We show that both the basic DDQN‐EMS and the
agent with only CER are stuck and do not manage rare events.
The agent with the MemC mechanism is able to get unstuck.
With regards to the basic DDQN‐EMS agent, we obtain
impressive results with an enhancement of 686% and 1042%

TABLE 1 Specifications for microgrid components

Energy capacity (kWh) Rated power (kW)

PVs ‐ 15

Batteries 90 42

Genset ‐ 12

Load ‐ 22

TABLE 2 Specifications for microgrid components

DDQN‐EMSa DDQN‐EMSp

Learning rate α 0.001 0.00025

Epsilon max ϵ 1.0 1.0

Epsilon min ϵ 0.001 0.001

Gamma γ 0.5 0.5

Memory size R 500 20,000

Batch size N 32 32

Number of episodes 3500 50,000

Q̂¼Q every τ (step) Episode 5000

Step memory size G 10 10

Ratio limit ρ 0.8 0.8

Epsilon MemC ϕ 0.99 0.99
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for the agents equipped with MemC and MemC þ CER,
respectively. We notice that the CER agent obtains the larger
variance during its learning phases, which is greatly reduced
with MemC.

6.3 | Training phase

Now that we have studied and found mechanisms to have the
agent able to learn during whole episodes, we focus on its
performance to control a microgrid. First, we consider the

training phase of the DDQN‐EMS agents and we compare the
two types of action sets. Then in the next section, we compare
DDQN‐EMS agents with other algorithmic approaches.

Each version of the DDQN‐EMS agent (DDQN‐EMSa
without the priority list of actions and DDQN‐EMSp with it)
has a training phase to find a good estimate of Q. Each version
is equipped with both MemC and CER mechanisms. To deal
with the exploration‐exploitation dilemma, the agent uses the
ϵ‐decreasing greedy strategy, explained in Section 2. To validate
that the agent is learning correctly, we examine the learning
curve: Figure 7 shows how the performance of DDQN‐EMSa

F I GURE 5 Comparison of the learning performance of the basic ouble deep Q‐network (DDQN)‐energy management system (EMS) and the three
proposed variants of DDQN‐EMSa: with combined experience replay (CER), with the memory counter (MemC), with both (MemC þ CER)

F I GURE 6 ouble deep Q‐network (DDQN)‐energy management system (EMS) performance improvement with regards to the used mechanism: average
number of times the learning agent is stuck. The lower, the better. The minima (red squares) and the maxima (green squares) show the variability in the
performance of the agent during a learning phase
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improves along training episodes, averaged over 100 episodes.
The computation time (with an Nvidia GeForce GTX 1080)
for a training phase of DDQN‐EMSa is around 30 min and
more than 7 h for the DDQN‐EMSp. This time gap is relative
to the number of episodes. Figure 7 illustrates the average
performance and its variability for agent DDQN‐EMSa: 100
trainings are performed, each one giving a learning curve. The
cloud around the red line represents the 10% and 90% per-
centiles. Only the DDQN‐EMSa is illustrated in this work
because it requires too much time (more than 700 h) to have
the same figure for DDQN‐EMSp. The shape of the learning
curve function is common for RL agents and validates their
ability to learn: initially, the agent explores its environment and
does not perform well at all; then, after a while, there is a rapid
improvement of the performance, leading to a phase during
which the performance stagnates again. At this point, the agent
has learnt a good (if not optimal) policy. By doing ‘test and
error’ over a lot of hyper‐parameter combinations, we have
succeeded to have a low variance around the average. With all
the tests we have done for DDQN‐EMSp, we can be pretty
sure that we have the same type of learning curve than the one
obtained with DDQN‐EMSa.

6.4 | Testing phase

In the testing phase, the trained agents are facing a new dataset,
that is new conditions under which to control the microgrid.
We measure their performance on these new conditions. The
cumulative cost obtained to control our off‐grid hybrid
microgrid is reported. At test time, the agent does not perform
exploration: actions are selected greedily. To assess DDQN‐
EMSa and the DDQN‐EMSp agents, we compare their per-
formance with those obtained by other methods. The first of

these methods is a RL Decision Tree (RL‐DT) algorithm,
proposed in Reference [14]. This method is a combination of a
Q‐Learning and a CART decision tree. The second method is a
hand‐crafted rule‐based control algorithm. The third method is
a DP algorithm called Value Iteration, as proposed in Refer-
ence [9]. DP algorithms give an optimal policy given a perfect
model of the environment. We provide the DP agent with the
real net demand PNet of the next 24 h. The implemented DP
algorithm does not have a priority list of actions.

Figure 8 represents the cumulative cost for an episode
horizon T ¼ 1248 averaged over 10 runs. This plot shows that
the two versions of the DDQN‐EMS outperform both the
RL‐DT algorithm (6491.8€) and the hand‐crafted rule‐based
(6498.5€). DDQN‐EMSa obtains an average cost of 6463.5€,
while the DP approach obtains a lower average cost of 6452.5
€. Thanks to its priority list of actions, DDQN‐EMSp out-
performs all the methods, with an average cumulative cost of
6436.5€. DDQN‐EMSa has a standard deviation of 0.81€ and
DDQN‐EMSp 3.9€. The two versions of DDQN‐EMS exhibit
very small variation of the final performance, hence a high
robustness.

Table 3 illustrates the computational time to take each
decision during the testing phase. The rule‐based, RL‐DT
and DDQN‐EMS algorithms take a decision almost instantly
(with best time performance for the rule based), while it
takes DP method 1000 more time to select an action. It is
worth mentioning that DP is relatively fast in this simple
case. However, the method will not scale to a more complex
system (more generators and possible actions) at a smaller
time step. The advantage of the DDQN‐EMS method is
once trained, it obtains better results with almost equivalent
or less computational time to take actions than the bench-
mark methods. The second advantage is that even if the
microgrid complexity increases by adding further generators,

F I GURE 7 Learning curve of the DDQN‐EMSa algorithm
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the computation time will not change for the DDQN‐EMS
and RL‐DT. In addition, the DDQN‐EMS does not use a
forecaster and a model to take decisions, whereas the DP
method needs predictions and a solver, which means that if
the system changes, the DP controller needs to be design
again, which is not effective. Finally, it is important to notice
that the DDQN‐EMS learns its environment in an offline
way with simulations and afterward implements its knowledge
during a testing phase in an online fashion: the process is
simulated in our case but it could be implemented in a real
off‐grid hybrid microgrid.

7 | CONCLUSION AND FUTURE
WORKS

In this paper, we have optimised the operational cost of an off‐
grid hybrid microgrid. We assume that no forecaster is
available. This choice is motivated by the difficulty of the
forecasting task. We investigate RL algorithms in this context.
The specificity of this study is by nature associated with rare
events during an episode. We have noticed that rare events
create problems during the learning phase of an agent. As a
result, we have proposed a novel approach by merging an
existing method called CER and a new method called MemC.
We have experimentally demonstrated that this approach is
efficient to unstuck the agent during the learning phase. We

show experimental results for our proposed algorithms and
standard algorithms for energy management (including rule‐
based and dynamic programming). Experiments are based on a
simulated microgrid with real data. As usual in machine
learning, the data used for training is different from the data
used to assess the performance of the algorithms: they have to
generalise their knowledge from the training data and hence be
able to cope with unseen situations. We have demonstrated
that our proposed DDQN‐EMS agents succeed to adapt
themselves in a new testing year with good performances,
outperforming standard methods. The proposed algorithm
could be used without modification for an other off‐grid
hybrid microgrid. Nevertheless, an improvement of this work
would be to design different microgrid architectures (islanded
and connected to the grid with different dataset), with more or
less complexity, in order to study the scalability and the
robustness of this method. Regarding the different compo-
nents of a microgrid, the MDP has to be transformed to match
the new power system environment. Another next step would
be to validate the performance of the proposed method in a
physical test. New perspectives should be explored by adapting
the agent action into multiple actions like we have proposed
with the priority list mechanism. Comparing DDQN with
Policy Gradient methods is an other interesting track for
further research.
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F I GURE 8 Performance of the competing algorithms: see text for details

TABLE 3 Computational performance to select one action

Time (s)

Rule‐based 8.5 � e4

RL‐DT 1.7 � e3

DP 0.3

DDQN 1.0 � e3

Abbreviations: DDQN, double deep Q‐network; DP, dynamic programming; RL‐DT;
reinforcement learning decision tree.
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