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ABSTRACT
This paper provides insights on how to perceptually characterize
colored 3D Graphical Contents (3DGC). In this study, pre-defined
viewpoints were considered to render static graphical objects.
For perceptual characterization, we used visual attention complex-
ity (VAC) measures. Considering a view-based approach to exploit
the perceived information, an eye-tracking experiment was con-
ducted using colored graphical objects.
Based on the collected gaze data, we revised the VAC measure,
suggested in 2D imaging context, and adapted it to 3DGC. We also
provided an objective predictor that highly mimics the experimen-
tal attentional complexity information. This predictor can be useful
in Quality of Experience (QoE) studies: to balance content selection
when benchmarking 3DGC processing techniques (e.g., rendering,
coding, streaming, etc.) for human panel studies or ad hoc key
performance indicator, and also to optimize the user’s QoE when
rendering such contents.
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1 INTRODUCTION
Three-dimensional graphics are commonplace in applications such
as digital entertainment, cultural heritage and architecture simu-
lation. These data are increasingly rich and detailed; containing
geometric primitives, enriched with various appearance attributes
such as texture maps designed to produce a realistic material ap-
pearance. While interacting with 3D Graphical Contents (3DGC)
is possible, one should notice that visual characteristics, as well
as visual interest, might change along with the viewpoint from
which colored graphics are rendered. Figure 1 illustrates the ren-
dering of two graphical objects under a predefined fixed viewpoints.

With novel multimedia technologies and optimized 3D mod-
elling tools (e.g., Unity3D, Unreal Engine, Maya, Blender, etc), we
can construct and design high-resolution 3DGCs. Interacting with
3DGC represents a further step towards immersion [10]. Appropri-
ate content characterization is crucial in order to design relevant
subjective visual quality tests and evaluate algorithms that impact
human visual attention when perceiving colored 3D objects.

Despite its importance, when building a dataset, content selection
has been often done based on convenience or content availability
[8]. This is partly due to the lack of clear and straightforward guide-
lines for appropriate content characterization and selection.
Assuming that users are able to interact with the 3D objects, what
they perceive during 3DGC visualization has an important impact
on the way they interact with such objects [2]. Among used tools
for 3DGC characterization, geometric features are commonly used
[22, 23, 27]. It is however important to also take into account the
perceived elements of 3D objects and not be limited by the geomet-
rical characterization and intrinsic object representation in order
to conduct relevant studies.

Visual content characterization can be based on the way the
content is generated (e.g., synthetic vs. natural), its technical prop-
erties (e.g., duration, resolution, frame rate, etc.), and its semantic
category (e.g., sports, news, movies, etc.). Ad hoc measures have
been suggested and used for various Quality of Experience (QoE)
use cases: spatial and temporal complexity of a 2D video sequence
[21], colorfulness of the visual information [9], depth features [29]
and disparity [16] for stereoscopic 3D video, dynamic range fea-
tures or gamut characterisation for HDR [20] and wide color gamut
contents [18].
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Figure 1: Illustration of the pre-defined viewpoints of two 3DGC
from our dataset.

In this study, we focus on visual patterns to characterize the
graphical contents.
Particularly crucial to our understanding is the measurement of
Visual Attention Complexity (VAC). The VAC concept has been de-
fined as a proxy for the variation in human gaze fixation or measure
observers’ agreements for 2D content [15, 30]. It is supposed to re-
flect how contents catch observers’ visual attention, distinguishing
for example "exploratory" from "focused" contents.
We defined the VAC indicator at view-grain level, offering 3DGCs
the possibility to measure the VAC along with different views. Such
design was motivated by two use cases in mind:
- Providing criterion of 3DGC selection when building datasets for
QoE subjective experimental studies and 3D processing algorithms
evaluation .
- Enabling the application of adequate viewpoint-wise simplification
strategies, thus ensuring a pleasant QoE during content rendering.

In this work, two research questions are addressed:
1. How can graphical objects be characterized based on attentional
complexity measurement?
2. Can visual attention models be used to predict the attentional
complexity of 3DGC?
In order to answer these two questions, we ran an eye-tracking ex-
periment and used the collected data to evaluate VAC measures and

visual attention models ability to predict such measure. Next sec-
tion presents our proposal of a visual attention complexity measure
adapted to 3DGC.

2 PROPOSED METHOD
2.1 Characterization based on visual attention

patterns
When interaction with 3DGCs is possible, users are able to get
around within the environment in order to obtain different views
of the scene. This process of getting around a virtual environment
while keeping track of one’s moves is often referred to by naviga-
tion and camera/viewpoint control. There are several challenges
faced when developing an effective technique for navigation for
interactive 3D environments [10] such as viewpoint control in the
context of free viewing task as well as technological constraints
among which change of FoV and ensuring an optimal quality of
rendered views.3DGCs could be rendered under various viewpoints
as long as the user is moving through an environment.

In litterature, we distinguish four types of viewpoint movement
for interactive 3D workspaces [19]: General movement, Targeted
movement, Specified coordinate movement, and Specified trajec-
tory movement. The latter is a movement along a position and
orientation trajectory, such as a cinematographic camera move-
ment, unlike the other techniques where users are free to navigate
and explore. Specified trajectory movement category empowers the
author to bring structure to the conducted subjective experience
[10]. Although viewpoint control limits the user’s freedom while
navigating through a virtual environment, it ensures the repro-
ducibility of the subjective experiment, empowers the choice of
relevant viewpoints of the scene.

Viewpoints are usually static - a viewpoint is simply a specific
camera position and orientation defined by a pair of x, y, z coordi-
nates, that is, a specific view of a 3D scene.
In this work, we adopt a view-based approach to characterize col-
ored 3DGC based on the perceived information. We considered a
constrained navigation as detailed: For a given graphical object,
four plausible viewpoints (examples on figure 1) have been gen-
erated corresponding to the 4 faces of a cube when the object is
in its center. By rendering a view of the virtual 3D scene from a
particular viewpoint, a 2D image can be shown on the display.
Having four viewpoints of a given 3D object, we designed an eye-
tracking experiment that enables us to evaluate the disparity of
saliency once human gaze data collected. Note that visual saliency
information represents the density probability of gazing at a given
pixel in a given image [12].



2.2 Eye-tracking experiment - data collection
To compute VAC-3DGC, we need saliency information associated to
the rendered 3DGC. However, in the context of colored 3D graphics,
there are very few available datasets. The lack of such 3D datasets
is an additional obstacle in investigating saliency prediction mech-
anisms for colored 3D graphical contents.
In this work, we contributed to the field by conducting an eye-
tracking experiment on colored 3DGCs rendered under pre-defined
viewpoints.

2.2.1 Dataset - Stimuli generation. We selected twenty-one high-
resolution colored 3D graphical objects that belong to four different
semantic categories (human/character, animal, statue, object) and
have different shapes (number of visible point clouds/meshes per
viewpoint, occupancy of the object both horizontally, vertically,
etc) and different colors (Monocolor, warm cool and dull colors).
The number of vertices of these models are in range [250k, 600k].
Figure 1 shows two graphical objects belonging to two different
semantic categories.
More details about the dataset could be found here 1.

The visible surface of a 3D object changes along with the view-
point from which the 3D object is rendered [28]. This leads to a
different visual information depending on the visible side of the 3D
object. Based on the constrained navigation defined earlier, virtual
cameras were placed around the 3D object every 90 degrees at the
equator. We therefore obtain 21 × 4 = 84 rendered images from the
selected 3D graphical objects.

2.2.2 Apparatus & protocol design. Materials and apparatus
To build the eye-tracking dataset, EyeLink 1000 Plus 2 device was
used in remote mode (i.e. head free-to-move). It allows binocular
tracking with a spatial accuracy between 0.25 and 0.50 degrees of
visual angle. A computer monitor display with full HD resolution
(1920 x 1080) was used as an experimental display. It was placed
at a distance of approximately 110 cm from the observer’s eyes. In
line with literature recommendation [4], the visual angle in each
dimension is equal to 64𝑝𝑥/𝑑𝑒𝑔𝑟𝑒𝑒 in our experimental settings.
The display resolution is about 30 × 17 visual degrees.

ParticipantsWe recruited 23 male and 11 female participants
who were naive to eye-tracking experiments. The 34 participants
had normal/corrected-to-normal vision with no color blindness
issues.

Methodology The conducted eye-tracking experiment consists
on free-viewing task. Participants were asked to look freely to the
rendered views without any specific task.
In remote tracking mode, a target sticker is put on the forehead
of the participants so that head movements can be compensated
during tracking. Stimuli were displayed on a monitor with a refresh
rate of 60𝐻𝑧. The distance between the observer and the experi-
mental display which is a computer monitor display with full HD
resolution (1920 x 1080) was approximately 110 cm. This distance
was defined in such a way as to guarantee an accurate recording

1https://gitlab.univ-nantes.fr/E18E421U/3dgc-dataset
2https://www.sr-research.com/

while also ensuring comfortable viewing for the observer1.
The total time of the experiment was 15 minutes including vision
check, calibration and 21 x 4 = 84 stimuli visualization during 3
seconds each (which is sufficient to cover both bottom-up and top-
down visual attention behaviors in a balanced manner). A trial
session was performed to ensure the understanding of the proce-
dure. The four used stimuli in this session don’t belong to the 84
generated ones. To minimize eventual "memory effect", the 84 stim-
uli were displayed in a random order. By dividing the experiment
into 3 sessions, we were able to check if the calibration was always
valid, if not a 13-points eye-tracker calibration was done.

2.3 Data processing
From the collected gaze data, we derived fixations using three
thresholds1: motion (◦), velocity (◦/𝑠𝑒𝑐), and acceleration (◦/𝑠𝑒𝑐2) .
Afterwards, we computed ground-truth (GT) saliency maps, rep-
resenting the probability of gazing for each pixel recorded from
human data. This has been done with the usual technique: con-
volving raw aggregated fixation data with a 2-D Gaussian kernel.
𝜎 of the Gaussian distribution was set to 1◦ of visual angle, which
roughly estimates the fovea radius of the human visual system.

Before exploiting saliency maps, an important step was inte-
grated in order to make sure that there is no bias introduced by
occupancy of the 3D objects. A gray background was applied, dur-
ing rendering, for its neutral attention-wise (i.e. does not contain
any salient information). To take into account the visible surface of
rendered 3D object, we considered a mask that changes from one
content to another based on the visible surface of the 3D object.

To take into account gaze data collected in the border of the
visible surface of the 3D object, we enlarged the mask size by ap-
plying a morphological dilatation on it. A disk-shaped structuring
element was used for this morphological operation. Its diameter
size corresponds to 1◦ of visual angle; equal to 64 pixels in our
experimental conditions. An illustration of the mask enlargement
applied on the GT saliency information for the bike object is shown
in figure 2.

Figure 2: Illustration of GT saliency information on themaskwith-
out (a) and with (b) morphological dilatation.

2.3.1 View-based attentional complexity analysis. Each 3D object
was represented by a set of 2D views. Having the saliency informa-
tion corresponding to each 2D view and based on the tools used in
2D imaging, we chose to evaluate the visual attention complexity
(VAC) of different contents based on the method suggested in [30]
which assess saliency dispersion to improve saliency-based image
quality metric. Inter-Observer Congruency [15] method could have
also been used. It characterizes the degree of agreement between
observers freely viewing the same visual stimulus.

https://gitlab.univ-nantes.fr/E18E421U/3dgc-dataset
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But in our use case, it is desirable to be able to predict VAC from
visual attention computational model outputs. When computing
Inter-Observer Congruency, one should use generative computa-
tional models that produce plausible scanpaths (a.k.a saccadic mod-
els). Whereas for the other indicator, one can use saliency map
resulting from computational models. Given the fact that saliency
models are more explored in the research field, we consider in this
paper saliency dispersion tool [30] to evaluate the VAC. It consists
on applying Shannon entropy on saliency information. Saliency
maps are considered as realizations of a random variable. The entropy
of the saliency map is defined as follows:

𝐸 = −
𝑛∑
𝑖=1

𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖 (1)

with 𝑝𝑖 = ℎ𝑖/𝐾 , where ℎ(𝑖)is the histogram entry for intensity value
i in the saliency map S, and K is the total number of pixels in S.

In 2D imaging, when the entropy value is low, saliency is con-
centrated in certain parts of the content (“focused images”). On the
contrary, when entropy is high, saliency is more diffused, repre-
senting “exploratory images”.

2.3.2 Adapting VAC measure to 3DGCs. There are 3 possible ways
of computing entropy-based VAC on saliency information associ-
ated to rendered 3DGC views:
1. Computing entropy on the mask that covers the visible surface
of the graphical object as detailed above. In this case, the shape of
the visible surface of the 3DGC is taken into consideration but not
its size.
2. Computing entropy on the whole saliency map including the
gray background. In this case, the size of the visible surface of the
3DGC is taken into consideration but not its shape.
3. Applying a normalization on the entropy value computed on
the whole saliency map. This normalization takes into account the
size of the visible surface of 3DGC. It consists on dividing the en-
tropy value by a surface-wise ratio equal to 𝑚𝑎𝑠𝑘 𝑠𝑖𝑧𝑒 (𝑝𝑥)

𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑝𝑥) where
𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 is equal to the monitor screen size.
In this case, both shape and size information of 3DGC’s visible
surface are taken into consideration. If the visible surface of the
3DGC covers the whole rendering screen, both entropy values are
equal.

The first two computation ways (1. + 2.) do not allow relevant
conclusions because they partially neglect saliency information
either by omitting the background (which is a part of the eye-
tracking experiment ) or by ignoring the surface ratio (representing
the 3D object’s visible surface on the screen). We therefore consider
the computation 3. as our VAC-3DGC for the following analysis.

3 EXPERIMENTAL RESULTS
3.1 Subjective results analysis
In our dataset, the surface ratio varies from an object to another in
the range [0.12 , 0.45] and for the same 3DGC, ratio values vary
from one view to another.For each of the twenty-one graphical
objects, VAC-3DGC was computed across the 4 views. The obtained
VAC values were reported in figure 4. They vary in range [ 7 , 19.3 ].

Figure 3: Saliency information of the 4 viewpoints of the "Girl".

For each 3D object, the values corresponding to the 4 views are
plotted on the same x-axis where the object name is mentioned.
Each scatter is labeled by an indexed viewpoint. It can be noticed
that graphical objects have overall different VAC values. Moreover,
in some graphical objects, there is a higher dispersion in terms of
VAC values across views and others that have quite close values.

For each graphical object, we analyze the VAC values associated
with the 4 different views. The view associated with the highest
VAC value indicates that salient regions are spread out all over
the saliency map. Thus, the view contains the fewest regions with
strong saliency (i.e., the least semantically salient information).
In this context, it has the lowest attentional complexity. On the
contrary, the view associated with the lowest entropy value indi-
cates that saliency is concentrated in certain part of the content
(i.e., there are regions with strong saliency information). The view
has highest attentional complexity.
Considering the object "Girl" shown in figure 1; v1, v2, v3 and v4
are illustrated in the order from right to left.

Based on figure 4, the scatters show that v1 and v2 have higher
VAC values compared to v3 and v4. In fact, v3 and v4 both show the
face of the "Girl" which corresponds to a strong salient region. In
fact, when the face of a human model is visible it is always gazed by
observers (leading to strong salienct regions). Whereas less salient
regions are noticed when considering other viewpoints.
The saliency information obtained from the gaze data is illustrated
for the "Girl" in figure 3.



To take into account the variability of the VAC values (over the
views), we divide them into two clusters based on the k-nearest
neighbors algorithm. Having 2 clusters per object indicate that
small VAC values (corresponding to red colored scatters) have a
lower visual attention complexity (i.e., perceptually concentrated
attraction) than the high VAC values (corresponding to blue colored
scatters).

Eye-tracking experiments are costly and time consuming thus,
obtaining gaze data to compute saliency is not always possible.
We therefore questioned the visual attention models’ ability to pre-
dict saliency. Afterwards, we computed VAC-3DGC on correspond-
ing saliency information of rendered views. Visual saliency models
are traditionally used to predict where people gaze [6]. But, our aim
is not to evaluate these models’ performance to predict saliency. We
rather aim to evaluate their ability to predict attentional complexity
based on our key performance indicator: VAC-3DGC (and therefore
be used as predictors of VAC).

3.2 Saliency models as VAC objective predictors
3.2.1 Overview. In our context, visual information of the 3D graph-
ics is crucial. When constructing a visual attention model, computer
graphics community focuses on geometric patterns in saliency al-
gorithms [17, 26] which seems sufficient for the application behind
such as compression [26] or better object detection [13, 25]. How-
ever, visual information remains important. In fact, recent works
[14, 24] acknowledge the importance of visual information when
computing saliency on 3D graphics, however a common guideline
has yet to be done.
We suggest to get benefit from view-based visual attention models
as they have extensively been explored in the research field and

showed impressive results [3].

We considered the best models resulting from MIT/Tuebingen
Saliency Benchmark3 restricted to those that provide executable
code. Three among state-of-the-art models were investigated: SALI-
CON [11], SAM-VGG [7], SAM-ResNet [7]. Based on deep learning
architectures, these models were designed for natural images (i.e.
not synthetic contents).
Traditionally, saliency models are evaluated based on their perfor-
mances to predict where people look in different visualized contents
(images, videos, stereo, 360°, etc).
Several metrics exist to measure the alignment between model pre-
dictions and human eye fixations [5]. Such study was addressed on
computer generated contents in [1].
In this paper saliency models performance is not detailed. We rather
evaluate how well saliency models are aligned with the ground-
truth in terms of visual attention complexity quantification on 3D
graphics.

3.2.2 Evaluation of computed saliency results. To evaluate the aligne-
ment of VAC values computed on the groud-truth saliency maps
and the predicted ones resulting from saliency models, we consider
a statistical measure by applying the Pearson Correlation Coeffi-
cient (PCC).

We first computed saliency models on different 84 images. Once
output saliency maps obtained - from the three computational mod-
els -, we computed the view-wise VAC-3DGC (i.e. on the 84 rendered
views).
Table 1 reports the PCC on view-wise level by considering the over-
all 84 rendered views, belonging to 21 different objects as well as
the PCC on object-wise level.
3https://saliency.tuebingen.ai
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Figure 4: VAC values along different 3D graphics across the 4 viewpoints
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The latter was defined as follow: for each graphical object, we com-
puted the mean VAC measure along object’s different views.

Table 1: PCC of VAC-3DGC between the GT saliency maps
and the ones resulting from the 3 saliency models.

VAMs SALICON SAM-RESNET SAM-VGG
View-wise PCC 0.72 0.52 0.49
Object-wise PCC 0.81 0.52 0.45

Based on table 1, SALICON model has the highest correlation score
in terms of view-wise VAC. The level of correlation (view-wise
𝑃𝐶𝐶 = 0.72) while fair and encouraging could be improved with
more ad hoc efforts according to the considered use case.
As we are investigating a criteria that enables content selection, we
also performed an object-wise analysis.
As reported in table 1, SALICON model has the highest correlation
score in terms of object-wise VAC with a high level of correlation
(object-wise 𝑃𝐶𝐶 = 0.81) compared to other saliency models.
Based on preliminary results, it is possible to perceptually charac-
terize 3DGC by using SALICON model as an objective predictor
based on the VAC-3DGCmeasure. As it is highly correlated with the
experimental VAC information. A detailed look in the VAC values
obtained from SALICON model shows that the range of variation
of VAC values is wider (between 10 and 29) and the VAC values
are overall higher than the ones obtained from human gaze data
(between 7 and 19).

4 CONCLUSION
In this work, we extended the concept of visual attention complex-
ity (VAC) indicator, already introduced in 2D imaging context, by
adapting it to the perceptual characterization of 3D graphical con-
tent (3DGC). Based on gaze data resulting from the eye-tracking
experiment, we proposed a method to compute VAC suitable for
3DGC. We also investigated the ability of state-of-the-art compu-
tational saliency prediction models to correlate with ground-truth
VAC. This evaluation suggests that some saliency models (such as
SALICON model) can achieve sufficient performances to predict
VAC-3DGC measure. These saliency models could be used to bal-
ance content selection in Quality of Experience (QoE) experiment
or 3DGC rendering optimization.
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