N

HAL

open science

Cloud simulation

Julien Gossa

» To cite this version:

‘ Julien Gossa. Cloud simulation. 2020. hal-02971511

HAL Id: hal-02971511
https://hal.science/hal-02971511

Preprint submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02971511
https://hal.archives-ouvertes.fr

Cloud simulation

Julien Gossa

1 Introduction

The problem of allocating cloud resources in performant, robust and energy-
efficient ways is of paramount importance in today’s usage of computing in-
frastructures. Cloud resources proposed to clients as Infrastructure as a Ser-
vice (IaaS) open a large field of investigation regarding how automatic tools can
help users to better provision the resources and schedule their computation or
storage tasks with regard to the trade-off between rental cost and performance.
Indeed it rapidly becomes very difficult for users to manually handle the pro-
visioning and scheduling decisions when the workloads involve numerous tasks,
which are potentially dependent on others — and such complex workloads are
the focus in this paper. In the last decade a number of research papers have
contributed new allocation techniques to address this issue. A pitfall of research
on IaaS lies in the validation of the models and algorithms proposed, as vali-
dation on actual clouds requires infrastructures that are difficult to set up for
individual researchers. As a consequence, many researchers evaluate their work
through simulation. A number of simulators have been developed for that pur-
pose as reviewed in the related work section hereafter. They are typically based
on discrete-event simulation, using models for each elementary component of
the infrastructure, which are then composed to simulate the whole system and
applications running on it.

However, such an ab initio construction poses a significant problem regarding
the calibration and validation of the composed model against real-world mea-
surements. We show in this paper that a precise modeling of each component
may not be sufficient to yield accurate predictions of the whole system’s behav-
ior. Yet, from the client-side (or equivalently, from the application perspective),
the validaty of the simulation is evaluated against macros-metrics, such as the
makespan and the rental cost of the application executions. It means that the
interactions betweens all components must be taken into account in the simu-
lation, including the lower level components such as the network sharing or the
higher level components such as the scheduler. For instance, a decision which
starts simultaneously a large number of Virtual Machines (VMs) may result in
trashing [13] affecting the expected performance.

This work’s objective is to study how an actual cloud setup behavior can be
predicted through simulation on practical use-cases. To that end, we propose a
simulation framework called SCHiaaS! which specializes in IaaS clouds model-
ing. This is an extension to the SimGrid simulation toolkit [4], which provides
in particular the discrete event simulator engine and the operating-system level
operations (e.g messaging, virtual machines management). Using SCHIaaS, we

1SCHIaa$ stands for Simulation of Cloud, Hypervisor and IaaS.

focus in this article on the modeling of a cloud-brokering system. This client-
side broker, on behalf on its users, makes scheduling and provisioning decisions,
and automates jobs’ execution on the real infrastructure. We have used this bro-
kering system to experiment the impact of scheduling and provisioning policies
when running two scientific applications using cloud computing resources. The
exact setting for this experiment is described in Section 4. The question that
this article addresses is: can this brokering system be modeled and predicted ac-
curately through simulation? We have collected numerous execution logs traces
when running these scientific applications through the broker, and these provide
us with a valuable basis to validate our candidate simulation model.

The broker, called Schlouder [14], has been developped by our team, and
our effort to build a simulator of it is called SimSchlouder. This co-development
approach makes this study original as allmost all the previous cloud simulation
software proposed have put forward first the design of their software library,
leaving the precise validation to future experiments. By contrast, we have been
able to add all the necessary instrumentation in the broker and in the simulator
to help us understand how accurate were the predictions for indivual simulated
components, especially for higher level components such as the modeling of VM
boot times and the scheduling policies. This continuous analysis has allowed us
to fine tune the simulation software.

This paper’s contributions is therefor twofold. First, we propose a new sim-
ulation tool extending SimGrid with an interface capable of modeling of TaaS
clouds by providing a new interface for that field. This interface is publicly
available as open-source software. Above this interface, we also developed Sim-
Schlouder to demonstrate how a client-side cloud broker can be modeled using
this interface. Secondly, as we advocate that a precise assessment of simulation
should be carried out against real execution figures to better understand the
limits of simulation applicability, we make an in-depth analysis of the factors
that impact the simulation accuracy, and in this regard go further than the re-
lated works. We analyze the sensitivity of several parameters, among which the
impact of the job submission management overheads, the effect of inaccuracies
in the job execution times specified by the user, or the boot time of VMs. The
study is carried out on several use cases which comprise two different types of
applications (workflow and bag-of-tasks), with several size instances for each
of them, and each application operated on two different types of infrastructure
(private and public).

The paper is organized as follows. We first present the related work regarding
simulation in Section 2. Section 3 presents the design of SCHIaaS. Section 4
describes the system we seek to simulate), which includes the cloud management
system Schlouder, the real platforms on which experiments are run, and the
applications that serve as test-cases. The last section presents the simulation.
It first sketches the main design issues for modeling Schlouder. The second part
is a thorough evaluation of the simulation accuracy against real observations on
the applications test-cases presented earlier.

2 Related Work

In the past decade, a number of research works have proposed simulation tools
for clouds. Some of them have a longer history as they build upon the experi-

ence of researchers in the simulation of computing grids. Most cloud simulators
are based on discrete event simulation (DES). In discrete event simulations
the simulation is a serie of events changing the state of the simulated system.
For instance, events can be the start (or end) of computations or of commu-
nications. The simulator will jump from one event to the next, updating the
times of upcoming events to reflect the state change in the simulation. Such
DES-based simulators require at least a platform specification and an applica-
tion description. The platform specification describes both the physical nature
of the cloud, e.g. machines and networks, and the management rules, e.g. VM
placement and availability. Depending on the simulator, the platform specifica-
tion can be done through user code, as in CloudSim [2] for example, or through
platform description files, as is mostly the case in SimGrid [3]. The applica-
tion description consists in a set of computing and communicating jobs, often
described as an amount of computation or communication to perform. The
simulator computes their duration based on the platform specification, and its
CPU and network models. An alternative approach is to directly input the job
durations extrapolated from actual execution traces.

The available cloud DESs can be divided in two categories. In the first
category are the simulators dedicated to study the clouds from the provider
point-of-view, whose purpose is to help evaluating the design decisions of the
datacenter. Examples of such simulators are MDCSim [12], which offers specific
and precise models for low-level components including network (e.g InfiniBand
or Gigabit ethernet), operating system kernel and disks. It also offers a model for
energy consumption. However, the cloud client activity that can be modeled is
restricted to web-servers, application-servers or data-base applications. Green-
Cloud [10] follows the same purpose with a string focus on energy consumption
of cloud’s network apparatus using a packet-level simulation for network com-
munications (NS2). In the second category are the simulators targeting the
whole cloud ecosystem, including client activity. In this category, CloudSim [2]
(originally stemming from GridSim) is the most broadly used simulator in aca-
demic research. It offers simplified models regarding network communications,
CPU or disks. However, it is easily extensible and serves as the underlying sim-
ulation engine in a number of projects (e.g [1], see section ??). Simgrid [3] is the
other long-standing project, which when used in conjunction with the SchlaaS
cloud interface provides similar functionnalities as CloudSim. Among the other
related projects, are iCanCloud [15] proposed to address scalability issues en-
countered with CloudSim (written in Java) for the simulation of large use-cases.
Most recently, PICS [9] has been proposed to specifically evaluate simulation
of public clouds. The configuration of the simulator uses only parameters that
can be measured by the cloud client, namely inbound and outbound network
bandwidths, average CPU power, VM boot times, and scale-in/scale-out poli-
cies. The data center is therefore seen as a black box, for which no detailed
description of the hardware setting is required. The validation study of PICS
under a variety of use cases has nonetheless shown accurate predictions.

At the core of DES is the solver. The solver considers the states of the
system generated by the platform and previous events to compute the timing
of the future events. In most cases, simulators have a bottom-up approach: the
modeling concerns low-level components (machines, networks, storage devices),
and from their interactions emerge the high-level behaviours. Working on dis-
joint low level components make it easier to tune the precision of the model to

the wanted accuracy or speed trade-off.

FIXME: next paragraph to be adapted depending on wether stochas-
tic simulation is mentioned. However, when the simulated system is subject
to variability, it is difficult to establish the validity of simulation results formally.
Indeed, given some defined inputs, a DES outputs a single deterministic result,
while a real system will output slightly different results at each repeated exe-
cution. Hence, in practice the simulation is informally regarded as valid if its
results are “close” to one or some of the real observations. Notice however that
in the field of grid or cloud computing, published results in terms of validation
against real settings are scarce relatively to the number of projects.

3 SCHIaaS

3.1 Overview

The first contribution of this paper is the simulation framework called SCHI-
aaS, that we propose as an extension to SimGrid to model [aaS clouds. SimGrid
was originally developped 20 years ago to evaluate scheduling algorithms in dis-
tributed computing environments such as grids. Since then, it has been largely
extended and has become a framework able to tackle new fields of distributed
computing. Its layered design, depicted on Figure 1, offers three interfaces to
access the simulation layer (SIMIX on figure) which in turn relies on the sim-
ulation core engine (SURF). Each interface implements a different concurrent
programming model: MSG offers a CSP-like programming model [6], SMPI
enables MPI programs, and SimDag is best suited to represent graphs of depen-
dent tasks. User code may built directly upon one of these interfaces to model
a field of interest, e.g peer-to-peer systems [16] or MapReduce applications [11].

User Code
Srelilli SMPI SimDag
run MPT apps in simulate DAGs
MSG virtual platform of parallel tasks
SURF
(virtual platform simulator)

XBT
(grounding feature, data structures, portability)

SimGrid

Figure 1: The layered architecture of SimGrid, with the additionnal SchlaaS
interface

In this general picture, SCHIaaS is a new interface upon MSG. SCHIaaS
entities use MSG to communicate with the core functions of SimGrid, which
handles the operating system level objects, such as network communications,
running processes, and virtual machines. SCHIaaS entities are mainly instances.

We use the term instance, as popularized by AWS, to designate the virtual
machine when seen from the client side. Accordingly, the SchlaaS API offers
cloud level functionalities, that is the operations usually provided by public
cloud providers: run, terminate, suspend, resume and describe instances and
operations regarding cloud storage. For sake of modeling a cloud, SchlaaS also
allows the user to describe the available resources, the image and instance types
management, the VM placement policy on the clusters and operating-system
levels parameters such as boot and other VM life-cycle processes. By constrast,
SimGrid implements hypervisor level functionalities such as starting or stoping
a VM.

3.2 SCHIaaS’s design

Developped in Java, SCHIaaS has been designed as a modular and extensible
framework, allowing modelers to plugin their own code in all the key components
which model the cloud or application behavior under study. Figure 2 zooms in
the SCHIaaS box of Figure 1. It shows the components making up SCHIaaS (in
the red box). The boxes with dashed frames indicate that these can be replaced
with user-provided code.

Load Injector SimSchlouder 3 User Made App

Figure 2: Zoom on the SCHIaaS framework

SCHIaaS Core contains all the management code necessary to set up the
data structures corresponding of the cloud described in the configuration file,
and to reflect the effects on the data structures of all the operations triggered
though the Compute and Storage engines.

The Compute Engine provides an interface for the management of VMs.
It expects an implementation of the way the cloud controller controls the in-
stances, through the definition of start, shutdown, suspend, resume and reboot
commands. It also expects an implementation of the scheduling policies used to
map instances onto physical machines.

© 00~ U WN -

The Storage Engine offers an interface for the management of block stor-
age, through the definition of put, get, delete, and list operations.

In order to model a system SimGrid requires two configuration files:

e a plaform file describing the available hardware, including hosts capabil-
ities (e.g number of cores, CPU power) and a description of the network
(e.g interconnection topology and network link performances),

e a deployment file which maps the applicative processes to some of the
hosts described in the platform.

SCHIaaS adds to these a third configuration file to describe one or several
clouds. An example configuration is shown in Figure 3, in which the default
implementations that come with the SCHIaaS distribution are used. The storage
and compute sections correspond to the storage and compute engines listed
above. Each of these component are handled by a controller bound to some
host in the SimGrid platform file. Implementations of the controller’s behavior,
that is the storage and compute engine instanciations, appear line 2 and 6. For
the compute engine, the specific scheduling policy which computes how VMs
are mapped to PMs is implemented in the attached scheduler module line 10.
Note that each request that the controller sends to the cluster nodes, be it a
simple command or a data transfer, generates network communications that are
simulated by SimGrid.

<cloud id= >
<storage id= engine= >
<config controller= />
</storage>
<compute engine= >
<config controller= image_storage=
image_caching= inter_boot_delay= />

<scheduler name=

type=

controller=

delay= />
<instance_type id= core= memory= disk= />
<instance_type id= core= memory= disk= />
<instance_type id= core= memory= disk= />
<image id= size= />
<cluster id= prefix= suffix= radical= />

</compute>

</cloud>

Figure 3: An example cloud.xml file describing the environment of a given
cloud, including the custom java classes used to implement the cloud controller
behavior.

4 Case Study

As mentioned in introduction, handling complex workloads on a distributed
computing infrastructure requires scheduling and provisionning tools. In this
section, we present the following use case: two scientific applications (one is
a bag-of-tasks and the other a workflow) are run on different clouds, and the
executions is controlled by a resource management system in charge of resource
provisionning and scheduling. This section details this experimental setting,
which we have used to collect real execution traces. The paper’s goal is to show
that we can model this experimental setting and produce accurate simulations
of the observed behavior. The way the simulator is build and the evaluation of
the simulation is the object of the next section (Section 5).

4.1 Schlouder

The resource management system used, developed by our team, is called Schlouder
[14]. Tt is a client-side cloud resource broker which automates the provisioning
of resources needed to execute a workflow, the scheduling of tasks to the pro-
visioned resources and monitors the proper execution of tasks. Schlouder was
chosen because we have a deep knowledge of its internals, and hence the capa-
bility to finely monitor the execution events, which is a key issue when tracking
down the discrepancies between reality and simulation.

Schlouder is actually a frontend which orchestrates the real resource manage-
ment system of the targeted cloud, sometimes referred to as cloud kit, including
OpenStack or Eucalyptus, as depicted on Figure 4. Schlouder can be interfaced
with all cloud kits accepting the EC2 API. While the cloud kit is in charge
of starting or stopping the VMs on the physical machines, tasks execution is
monitored using SLURM [17] which connects to the available VMs, sends the
jobs, and monitors job’s states. To account for the pricing of commercial IaaS,
Schlouder views provisioning in fixed increments of time, referred to as billing
time unit (BTU), machines idle when arriving at the end of a time increment
being automatically shut off. While classical scheduling algorithm have long
mainly considered the makespan minimization as sole objective, Cloud com-
puting adds to the client-side problem statement the economic cost of renting
the resources as another objective. Hence, provisionning and scheduling is a
bi-objective optimization problem. Schlouder makes its decisions based on the
workload submitted and some strategy specified by the user. A strategy is de-
fined by a provisioning (how much instances to start or stop) and scheduling
(when and where assign the tasks) algorithm, and a goal reagarding the cost and
makespan objectives. Schlouder provides a few basic strategies and new ones
can be trivially added. Strategies can affect the workload’s makespan, the VMs
usage rate, and the number of opened BTUs (i.e. the price of the experiment on
a commercial cloud). The experiments in our archive mainly use two strategies,
as soon as possible (ASAP) and as full as possible (AFAP)

ASAP will attempt to execute tasks as early as possible by booting a new VM
unless a VM is already idle or one is predicted to become idle faster than
a VM can boot.

AFAP will favor scheduling tasks on already opened VM unless doing is pre-
dicted extend the VM runtime by an additional BTU, in which case it will

Slurm

| —
.
Schlouder Strategy

| —

S
CloudKit Openstack
interface frontend

L J L J L)
Cloud Broker Cloud

Figure 4: The Schlouder cloud broker and its components relating to an Open-
stack cloud.

boot a new VM.

To compute the schedule, predicted tasks runtimes, as well as tasks depen-
dencies, are user-provided. Scheduling is done dynamically, as soon as tasks
are submitted and all their dependencies have been completed. Once assigned
to a designated VM jobs are not rescheduled. However, if a VM fails to boot
Schlouder will provision a new one to replace it.

4.2 Hardware Setup

Our case study encompasses both a private cloud with no perturbation from
other users and a public cloud which is multi-tenant.

Private Cloud Our private cloud is based on two local nodes sporting dual
2.64GH = Intel Xeon processors (X5650), for a total of 96 cores. Nodes oper-
ated on Ubuntu 12.04 distributions and virtualisation is achieved using KVM.
Openstack 2012.1.3 was used as a cloud interface. This cloud was build on
perfectly homogeneous nodes and devoid of other users. For data storage these
experiments rely on a Network File-System (NFS). Special attention was taken
to not overbook VMs by caping the number of single core VMs to 25. Due to
the experimental nature of this cloud, two configurations were used overtime.
Table 1 regroups configurations of all cloud versions. We will referrer to this
cloud as openstack-icps. version.

Public Cloud BonFire [8] is a public multi-cloud distributed all over Europe.
Our experiments were run over three sites of BonFire: de-hlrs based in Stuttgart,
uk-epcc in Edinburgh, and fr-inria in Rennes. BonFIRE clouds were accessed
through an OCCI based API and the clouds were controlled throught software
derived from OpenNebula 3.6. Each site provided different hardware?.Resource
quotas limited most experiment 20 VMs, not far from the limits generally im-
posed on public clouds. Centralized storage was provided through a NFS based
on the be-ibbt site in Ghent. Due to network acces restriction the Schlouder

2Comprehensive information available at http://www.bonfire-project.eu/infrastructure/testbeds

Cloud #cores | Hypervisor | Network | version | #VM | Storage
. 100mb 1-3 25 NFS
openstack-icps 48 KVM iGh TF 10 NFS
de-hlrs 344 Xen 3.1.2 n/a v1-3 20 NFS
fr-inria 96 Xen 3.2 n/a v1-3 20 NF'S
uk-epcc 176 Xen 3.0.3 n/a v1-2 20 NFS

Table 1: Characteristics of our cloud testbeds, version numbers also account for
changes in measured boot times not presented in this table.

server was brought in the BonFIRE WAN through a VPN. Due to the ex-
perimental nature of this cloud configurations have change overtime. Table 1
regroups configurations of all cloud versions. In this article we refer to experi-
ment run on the BonFire clouds by the name of the cloud site followed by the
version number.

4.3 The Applications

Our study is based on the experimentation with two test-case applications that
cover a variety of application profiles in terms of computation intensity, data
load, and task dependency.

4.3.1 OMSSA

The Open Mass-Spectrometry Search Algorithm (OMSSA) [5] comes from the
field of biology, it is used in tandem mass spectrometry analysis (also known
as MS/MS analysis) to identify peptides from the mass and fragment ions ob-
tained by a mass spectrometer. OMSSA matches measurements from the mass
spectrometer, called spectra, to a protein database. The OMSSA workload
features fully independent tasks, making it a Bag of Tasks (BoT), since ev-
ery spectra within a set can be submitted independently to OMSSA. With a
communication-to-computation ratio comprised between 20% and % OMSSA is
considered an CPU-intensive workload. This application was run with 4 differ-
ent workload covering 2 different mass spectrometer resolutions of two different
protein solutions, denoted brs,hrs,brt and hrt.

4.3.2 Montage

The Montage Astronomical Image Mosaic Engine [7] is designed to gather as-
tronomical images into a mosaic. This application is a workflow designed to
reproject, normalize, and collate source images into a single output image. The
montage workflow is presented figure 5. Working on images Montage is an
extremely data intensive workflow with a communication-to-computation ratio
superior to 90%. This application was run on images of the Pleiade star cluster
at 3 different output sizes, 1X1, 2X2 and 3X3.

project

overlap

diff

bgmodel

backgrounf

add

gather

Figure 5: Illustration of the Montage workflow. Each node represents a tasks
and each arc represents a data dependency between two tasks. Every task on
a specific row run the Montage command indicated on the left hand side of the
graph.

5 Simulation

5.1 Using SCHIaaS to simulate Schlouder

Ici, raconter comment SimSchlouder a été écrit.

provisioning provisioning VM jobs shut-down
events decision request start assigned request
time I I ‘ T I ‘
‘ FUTURE ‘ PENDING ‘ BoorinGg ‘[ULE‘ Busy ‘ SHUT-DOWN ‘ TERMINATED

state

metrics boot time jobs walltimes

uptime
Figure 6: Nodes’ states

The actual behavior of a ressource management system in a distributed
environment is much more complex than the description sketched in Section 4.1
and on Figure 4. In a real setting, a number of idle periods appear, which can
be communications between the controler and the nodes or system delays due
to incoming requests processing. Figures 6 and 7 below show the possible states
of nodes and tasks respectively.

For instance regarding the nodes’ state, we can evidence from the obser-
vations a FUTURE state which is the time between the provisioning decision is
computed and the time the controler actually sends the request to the node, this

10

last action being managed in a separate execution thread. Another example is
the PENDING state, which is the time between the controler request the node to
start a VM and the time the VM actually starts booting on the node. Similarly,
a submitted task goes through several steps until it can actually be run on a
node: once received by the controler it stays PENDING until it is SCHEDULED
on a node, to which is SUBMITTED (involving communication) and evenutally
starts on the compute node.

A key question is then: which of those details can be abstracted from our
modeling, reflected by the simulator we build, while keeping an acceptable ac-
curacy of the simulation?

task node task sent task starts task ends
events reception assigned to node on node on node

| | I I | | I |

‘ PENDING ‘ SCHEDULED ‘ SUBMITED ‘ INPUTTING ‘ RUNNING ‘ OUTPUTTING ‘ FINISHED ‘ COMPLETE

time

state
. inputtime runtime outputtime
metrics
managementtime
walltime

Figure 7: Tasks’ states

5.2 Evaluation

Evaluation of simulation is done by comparing simulation logs, against logs gen-
erated by running actual scientific workflows on multiple platforms. During this
study we gathered traces for 274 experimental executions on two significantly
different environments that are described hereafter.

The evaluation of the simulation accuracy of such a system is both a complex
and tedious task. It is complex because the simple comparison of the observed
and predicted walltimes is not sufficient for the experimenter to be aware of
which parts of the execution are correctly or wrongly simulated and how much
each part impacts the whole simulation. During the process of comparison,
the experimenter often has to add extra watch points into the application and
re-run the experiment to eventually obtain the relevant measurements. This
is a tedious back and forward process which generally increases the number of
observed parameters and makes execution log traces heterogeneous over time.

5.2.1 Lab

éléments concrets pour le lab (c.f Renpar).

Le lab est un ensemble de scripts permettant d’automatiser ’exécution des
simulations, la collecte des observations, ainsi que leur analyse. Il permet donc
d’exécuter de bout-en-bout ’étude par simulation, de la définition des différentes
simulations, a la production des graphiques.

Au dela de I'aspect pratique et du gain de temps de mise en ceuvre de 1’étude,
le lab a pour vocation de “standardiser” 1’étude. Cette standardisation assure sa
reproductibilité, ainsi qu'une comparaison équitable entre solutions & un méme
probleme.

Mais le lab permet également une approche systématique permettant a
I'expérimentateur de ne pas rater de phénomene. En effet, il est fréquent de faire

11

un grand lot de simulations, puis d’observer plus finement celles qui présentent
des particularités. Ce faisant, ’expérimentateur exclu les autres simulation de
ces observations plus précises, a moins de les refaire entierement. En rendant
plus pratique la définition des observations directement au niveau du work-
flow de simulations, le lab assure que tous les cas seront observés de la méme
maniere, ce qui évite de rater un phénomene, ou de différencier le traitement
des simulations au risque d’arriver a des conclusions abusives.

5.2.2 Procedural Analysis

Démarche expérimentale de validation du simulateur.
Process de simulation : choisir 'application, définir les métriques, executer
Voici la procédure expérimentale que nous avons employé: Sur ce type
d’application nous avons besoin des informations

1. Real executions (xp) to test Schlouder and provisioning/scheduling strate-
gies. Schlouder/SimSchlouder input:

e Nodes: boottime prediction, amount of instances limit, standard
power

e Tasks: walltime prediction
2. Normalization of xp traces (4 versions of schlouder, missing data)
3. Extraction of information about each xp:

e Instance: provisioning date, start date, end date, boottimes, instance
type

e Tasks: submission date, scheduling date, start date, end date, wall-
time, input time and size, runtime, output time and size, manage-
ment time

Simulation of each xp, injecting different information from real xps
Comparison of Schlouder and SimSchlouder outputs (python)

Statistical analysis of all traces (R) : distribution de I'erreur

N o

Close analysis of each outlier to understand the differences.

5.2.3 life-cycles and observed times
e Execution: e € &
e Node of execution e: n € N,
e Task of execution e: ¢t € T,
e Task handled by node n: t € T},
e The node running the task t is denoted n; € N
e v denotes the value v in the rality

e v° denotes the value v in the simulation

12

5.3 Discussion of Results

5.4 Definitions
4 metrics m € M for each execution e € E:

e uptime: amount of rented resources, cost

uptime(e) = Z uptime,
ne N,

e makespan: duration of the xp from the submission of the first task to the
end of the last task, user experience

makespan(e) = maxier, complete;
e usage: runtime / uptime, efficiency of the provisioning

(© > ier, walltime,
usageie) = > nen, uptime,

e schederror: number of tasks that are not assigned to the same node in the
simulation compared to the reality, accuracy of the scheduling decisions

schederror(e) = [tVt € T/t # 7]

Absolute errors are computed for each metric m € M:

_ [m%(e) —mP(e)|
m.ae(e) = (o)

Results are shown as frequencies and statistics (stat = min, mean, median,
max) of absolute errors occurrences. Frequencies are weighted so that the two
applications weigth the same, and the two platforms weigth alos the same (i.e.
each couple application x platform represents 1/4th of the frequencies).

To compare absolute errors between set of simulations S and S’ S being the
reference:

'

o Sstat(m.ae(E)) = stateep(m.ae¥ (e)) — statoer(m.ae’(e))

o Astat(m.ae(E)) = stateep(m.aeS (e) — m.aeS(e))

5.5 Simulator accuracy

Best simulation we can do.

Assess the raw simulator accuracy, injecting all real-life hazards that can be
captured : boottimes, walltimes and scheduling dates.

Scheduling dates allow to simulate some internal threaded mechanisms of
Schlouder. Schlouder uses two threads: the node manager and the task man-
ager. At settled intervals, the node manager interrupts the task manager to
start and stop new nodes. This changes the state of nodes, which influence
provisioning and scheduling decisions. However, simulating the exact moment
of this interruption is utterly difficult, leading to differences between simulation
and reality.

13

1.00- 1.00-

0.75- 0.75-
=3 =3
; 0.50- .g 0.50-
S @
0.25- 0.25-
0.00- 0.00-
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
uptime.ae makespan.ae
1.00- 1.00-
0.75- 0.75-
=3 3
g 050~ S o050~
[‘ K
0.25- 0.25-
0.00- i S 0.00-
0.00 025 050 075 100 0.00 0.25 0.50 0.75 1.00
usage.ae schederror.ae
uptime.ae makespan.ae usage.ae schederror.ae
min -1.000 0.000 -25050.707 0.000
mean 0.022 0.030 -101.751 0.130
median 0.001 0.000 0.002 0.000
max 0.840 0.357 0.483 0.935

Figure 8: Frequencies and statistics about absolute error of best simulations
(274 xp)

14

e uptime: 86% show less than 0.05 of absolute error, 92% less than 0.10, 2
simulations exceed 0.30, ranging from 0.00 to 0.50, for a mean of 0.025
and a median of 0.001

e makespan: 76% show less than 0.05 of absolute error, 90% less than 0.10,
0 simulations exceed 0.30, ranging from 0.00 to 0.62, for a mean of 0.042
and a median of 0.018

e usage: 59% show less than 0.05 of absolute error, 91% less than 0.10, 2
simulations exceed 0.30, ranging from 0.00 to 0.60, for a mean of 0.043
and a median of 0.002

e schederror: 70% show less than 0.05 of absolute error, 72% less than 0.10,
59 simulations exceed 0.30, ranging from 0.00 to 0.965, for a mean of 0.155
and a median of 0.000

If global metrics are quite accurately assessed by the simulator, the schedul-
ing decisions can be very different between simulation and reality. One part of
the explanation is that scheduling decisions are interdependent: any error leads
to several others.

5.6 Simulator accuracy according to platforms and appli-
cations

e openstack-icps / omssa (107 xp):

uptime.ae makespan.ae usage.ae schederror.ae

min -1.000 0.000 -25050.707 0.000
mean -0.009 0.001 -180.952 0.022
median 0.000 0.000 0.001 0.000
max 0.029 0.079 0.029 0.749

All metrics are almost perfectly assessed (mean AR from 0.001 to 0.002)
except scheduling error (mean 0.04 and max 0.75, 13% of xp show at least
one error), leading to small makespan and usage errors.

We looked at each single case of scheduling error and all those errors comes
from ambiguities in the scheduling algorithms.

This is a first limitation of simulation: Whenever heuristics lead to several
equivalent solutions, the decision is made by the implementation and relies
on data structures (e.g. selection of the first encountered suitable solution)
or clocks (e.g. the solution differs from a second to the next, which depends
on threads activations and timers). While we made sure to use the same
structures and timers, some clocks-related events can not be captured
nor simulated: Processing the nodes and tasks queues for scheduling and
provisioning decisions take time. Consequently, if those decisions rely on
clock, they change during the decision process in reality, as clocks advance
by itself, but not in simulation, as clocks advance only explicitly.

Thus, the simulation is not mistaken, but only different from reality. Ac-
tually, the decisions made by the simulator are exactly those that one
can expect, while the decisions made by the real scheduler are sometimes
difficult to understand.

15

0.75-

0.50-

ratio of xp

0.25-

0.00-

1.00-

0.75-

0.50-

ratio of xp

0.25-

1
|
|
o
x
ks
pel
s
0.00 0.25 0.50 0.75 1.00
openstack-icps / omssa
o
x
ks
2
s
> |
0.00 0.25 0.50 0.75 1.00

bonfire / omssa

1.00-

0.75-

0.50-

0.25-

W

'
0.00

0.00-

' ' ' '
0.25 0.50 0.75 1.00

openstack-icps / montage

1.00-

0.75-

0.50-

—~

' ' ' '
0.25 0.50 0.75 1.00

bonfire / montage

Figure 9: Absolute error frequencies of best simulations according to platforms
and applications

16

1.00- 1.00-
0.75- 0.75-
3 3
goso So.so-
8 8
0.25- 0.25-
0.00- 0.00-
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
uptime.ae makespan.ae
1.00- 1.00-
0.75- 0.75-
3 53
Eoso ~2050-
g g
0.25- 0.25-
0.00- 0.00-
0.00 025 0.50 0.75 1.00 0.00 0.55 0.50 0.75 1.00
usage.ae schederror.ae
uptime.ae makespan.ae usage.ae schederror.ae
min -1.000 0.000 -25050.707 0.000
mean -0.010 0.000 -198.186 0.000
median 0.000 0.000 0.001 0.000
max 0.003 0.058 0.011 0.000
(<] Q [}
R S
g 3 g % o v S 3
gt 3 A g &
= 3 g < Z 3 3 <
min -1.000 0.000 0.000 0.000 -25050.707 0.000 0.000 0.000
mean -0.010 —0.001 0.000 —0.000 -198.186 —17.234 0.000 —0.022
median 0.000 +40.000 0.000 -+0.000 0.001 +40.000 0.000 0.000
max 0.003 —0.027 0.058 —0.021 0.011 -0.018 0.000 —0.749

Figure 10: Frequencies and statistics about absolute error of best simulations

for openstack-icps / ommssa, without scheduling error cases (91 xps)

17

Filtering the xps showing clocks-related issues (16 xps), the results are
perfect: all metrics present a mean ae of at most 0.001.

The less accurate simulation shows a makespan absolute error of 0.010.
Actually, the makespan of the simulation is 94s, whereas it is 955 in reality.
This small difference is due to one lag between two consecutive tasks in
the middle of the simulation. Such lags are not injected in our simulations.

This shows that, providing that one can inject the right information, the
only limitation of our simulator are micro clock-related hazards.

openstack-icps / montage (36 xps):

uptime.ae makespan.ae usage.ae schederror.ae

min 0.000 0.000 0.000 0.000
mean 0.041 0.045 0.049 0.230
median 0.001 0.003 0.031 0.000
max 0.501 0.283 0.346 0.790
gy 5%
g3 g 3 g g -
= g 3 5 s 2
£ = 2 3 g 3 g 3
= < E < 2 3 2 <
min 0.000 +1.000 0.000 +0.000 0.000 +25050.707 0.000 0.000
mean 0.041 +0.050 0.045 +0.044 0.049 +181.001 0.230 +0.208
median 0.001 +0.001 0.003 +0.003 0.031 +0.030 0.000 0.000
max 0.501 +0.472 0.283 +0.204 0.346 +0.317 0.790 +0.041

With a work-flow, scheduling errors are more numerous (ae mean of 0.24
for a max of 0.79), leading to less accurate assessments of uptime, makespan
and usage (mean ae of 0.01, 0.05, and 0.01), that is ten times more than
with a BoT.

First, montage has much more tasks (from 43 to 1672) than omssa (from
33 to 223). Consequently, queues are much longer, which increases the
clock-related issues.

Second, BoT scheduling are actually made offline (i.e. scheduling decisions
are taken before any actual execution), while WF scheduling implies de-
cisions during the execution, every time dependencies are satisfied. Those
decisions rely on the system state (predicted end date of nodes for in-
stance). Consequently, divergences between simulation and reality have
more important impacts with WF than with BoTs.

For instance, the worst case shows a very large amount of scheduling
errors (0.954). A close examination of this case shown that the simulation
behave as expected : After the first dependencies were satisfied, three
newly ready tasks t1, 2, and t3 were scheduled on the node n. However
in reality, scheduling takes time. During this time, the last task scheduled
to node n was completed between the scheduling of ¢2 and t3, but before
t1 were actually submitted to n. This lead to mistakingly set the state of
node n to idle, impacting the scheduling decision of ¢3.

Those kind of complex and unforeseeable events are actually frequent when
confronted to reality. However, they are utterly difficult to detect (1672

18

jobs were scheduled for the presented case). Comparing real execution
with simulation allow the detection of such case, without having to look
at each scheduling decision.

the last task assigned to node n was completed during the scheduling of
the tasks which dependencies were satisfied first. But those tasks were
intended to This completion lead Schlouder to mistake the state of the

e bonfire / omssa (75 xp):

uptime.ae makespan.ae usage.ae schederror.ae

min 0.000 0.002 0.021 0.000
mean 0.005 0.044 0.049 0.032
median 0.001 0.047 0.050 0.000
max 0.038 0.169 0.063 0.857
5y -
5 3 = < 2 3 5 <
min 0.000 +1.000 0.002 +0.002 0.021 +25050.727 0.000 0.000
mean 0.005 +0.014 0.044 +0.043 0.049 +181.001 0.032 +0.010
median 0.001 +0.001 0.047 +40.047 0.050 +40.049 0.000 0.000
max 0.038 +0.009 0.169 +0.090 0.063 +0.034 0.857 +0.108

On a public shared heterogeneous cloud, scheduling errors are more nu-
merous (AR mean of 0.03 for a max of 0.86), leading to less accurate
assessments of uptime, makespan and usage (mean AR of 0.005, 0.045,
and 0.053).

More interesting, usage are never perfectly assessed: 16% of xp show less
than 0.05 of AR, while 86% show an AR between 0.05 and 0.10

This show the impacts of public heterogeneous platforms on simulation
accuracy: It is not possible to precisely simulate the vm-to-pm scheduling
algorithm of public cloud, as they are generally not public, and their
decisions impacts performances, as one can not predict the power of the
VM one get.

e bonfire / montage (56 xp):

uptime.ae makespan.ae usage.ae schederror.ae

min 0.000 0.004 0.000 0.000
mean 0.151 0.110 0.134 0.605
median 0.081 0.062 0.076 0.787
max 0.840 0.357 0.483 0.935

19

gy =

g 8 g o o S 8

- 2 5 < 3 g 5

g 9 24 © ¢ R

S g £ 23 S 3

SIS SEIS SRS &
min 0.000 +1.000 0.002 +0.002 0.021 +25050.727 0.000 0.000
mean 0.005 +0.014 0.044 +0.043 0.049 +181.001 0.032 40.010
median 0.001 40.001 0.047 +40.047 0.050 +0.049 0.000 0.000
max 0.038 +0.009 0.169 +0.090 0.063 +0.034 0.857 40.108

On a public shared heterogeneous cloud, scheduling errors are even more
numerous (AR mean of 0.48 for a max of 0.96), leading to less accurate
assessments of uptime, makespan and usage (mean AR of 0.10, 0.115, and
0.48).

This is simply explained by the cumulation of inaccuracies from both
platform and applications.

5.7 Boottime impacts

Assessing the impact of efficient boottimes simulation.

Same simulations, without injecting the boottimes observations. Thus, boot-
times are only predictions, based on linear regressions of previously observed
boottimes.

The worst case show a makespan ae of 0.816 (3141s instead of 17076s). This
is due to boottimes on BonFire that were completely of charts: 5 boots were
normal (ranging from 232s to 311s), the 17 others ranged from 3281s to 11084s.
Whereas BonFire were intended to deliver 22 simultaneous VMs, only 5 were
available at the time of the experiment. Instead of refusing the following 17 VMs,
the provisioning system of BonFire put them in pending state, waiting for the
delivered ones to stop. The VMs being provisioned for one hour, following the
5 normal boots, 5 boots took approximatively 1 hour, then 5 other boots took
2 hours, and 5 another more took 3 hours. Finally, 2 boots took 1 hour after
the last dependencies were satsified.

This illustrates that defective clouds can not be efficiently simulated without
proper information capture. However, once captured, this kind of defection is
perfectly simulated by SchlaaS. Consequently, it can be used to assess behavior
and robustness of solutions facing these defections.

Some case are surprisingly improved without the real boot times injection:
For instance, one xp shows a real makespan of 25788s, for 35106s with boot
times injection and 24266s without.

5.7.1 No-threads

Injection of: real boot times and some times due to Schlouder internal threads,
such as lapses after a node become ready and the start of the first job.
Assess the impact of efficient internal threads simulation

5.7.2 Communications

Injection of: real boot times, some times due to Schlouder internal threads,
such as lapses after a node become ready and the start of the first job, and, real

20

1.00-

0.75-

ratio of xp
o
(9]
o

1.00-

0.75-

ratio of xp
o
a
o

0.25- 025- W
0.00- S e 0.00- \ky\ —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
uptime.ae makespan.ae
1.00- 1.00-
0.75- 0.75-
% 2
S 050 S 550 |
0.25- 0.25- “\
0.00- — 0.00- -\‘L_ M&,JA
0.00 0.25 0.50 0.75 1.00 0.00 0.95 0.50 0.75 1.00
usage.ae schederror.ae
uptime.ae makespan.ae usage.ae schederror.ae
min -1.000 0.000 -25050.707 0.000
mean 0.026 0.062 -101.743 0.141
median 0.001 0.016 0.003 0.000
max 0.914 0.822 1.591 0.956
Q Q ©
R S
g 3 g S o v S ¢
‘- 3 s s R
=< R Z < 2 <
min -1.000 0.000 0.000 +40.000 -25050.707 0.000 0.000 0.000
mean 0.026 +0.004 0.062 40.032 -101.743 40.008 0.141 +0.012
median 0.001 40.000 0.016 +0.015 0.003 +0.001 0.000 0.000
max 0.914 +0.073 0.822 +40.465 1.591 +1.109 0.956 +0.021
Au;lotime‘ae An@ak:espan‘ae Ausage.ae Aschede'r‘ror.ae
min —0.497 —0.264 —0.312 —0.117
mean +0.004 +0.032 +0.008 +0.012
median 0.000 +0.003 0.000 0.000
max +0.412 +0.808 +1.372 +0.650

Figure 11: Frequencies, statistics, and comparison with best of simulations with

no real boot times injection

21

1.00- 1.00-

0.75- 0.75-

ratio of xp
o
(9]

o
ratio of xp
o
a
o

0.25- 0.25-

ooo- MRS - 0,004 —

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
uptime.ae makespan.ae

1.00- 1.00-

0.75- 0.75-

ratio of xp
o
(o))

o
ratio of xp
o
(o))

o

0.25-

0.00-
O.IOO O.I25 O.I50 0.‘75 l.IOO 0_‘00 0_‘25 O.:5O O_I75 1_‘00
usage.ae schederror.ae
uptime.ae makespan.ae usage.ae schederror.ae
min -1.000 0.000 -26121.668 0.000
mean 0.030 0.046 -104.658 0.261
median 0.001 0.017 0.002 0.092
max 0.913 0.484 0.503 0.966
g 3 58
¥y g3 S s 3
53 g 5 s £ 3
2 i 2 3 g 3 -
=3 I 2 3 g

min -1.000 +0.000 0.000 +0.000 -26121.668 —1070.961 0.000 0.000
mean 0.030 +40.008 0.046 +0.016 -104.658 —2.907 0.261 +0.132

median 0.001 +0.000 0.017 +0.017 0.002 +0.000 0.092 +0.092
max 0.913 40.072 0.484 40.127 0.503 40.020 0.966 +40.031
Auptirne‘ae Amakespan.ae Ausage.ae Aschederror‘ae
min —0.167 —0.226 —1070.961 —0.601
mean +0.008 +0.016 —2.907 +0.132
median 0.000 +0.003 —0.000 +0.037
max +0.249 +0.274 +0.251 +0.870

Figure 12: Frequencies, statistics, and comparison with best of simulations with
no real thread times injection

22

runtimes and real data size for jobs input and output communications.
Assess the impact of efficient communications

5.7.3 Prediction

Injection of nothing from the real xp, except the xp description as submitted to
schlouder.
Assess the efficiency of using a simulator as a predictor of a cloud.

6 Open-science

git clone https://git.unistra.fr/gossa/schlouder-traces.git

git clone https://scm.gforge.inria.fr/anonscm/git/schiaas/schiaas.git
cd schiaas

cmake .

make

cd lab

./lap.py -p2 setup/simschlouder/validation.cfg

cd setup/simschlouder/validation-results

1s

References

[1] Zhicheng Cai, Qianmu Li, and Xiaoping Li. Elasticsim: A toolkit for sim-
ulating workflows with cloud resource runtime auto-scaling and stochastic
task execution times. J. Grid Comput., 15(2):257-272, 2017.

[2] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,
and Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and experience, 41(1):23-50, 2011.

[3] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and
Frédéric Suter. Versatile, scalable, and accurate simulation of distributed
applications and platforms. J. Parallel Distrib. Comput., 74(10):2899-2917,
2014.

[4] Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: A generic
framework for large-scale distributed experiments. In Proceedings of the
10th EUROS/UKSim International Conference on Computer Modelling
and Simulation, Cambridge University, Emmanuel College, Cambridge,
UK, 1-3 April 2008, pages 126-131. IEEE Computer Society, 2008.

[5] L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xuand D. M.
Maynard, X. Yang, W. Shi, and S. H. Bryant. Open mass spectrometry
search algorithm. J Proteome Res., 3(5):958-964, Sep-Oct 2004.

[6] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666-677, 1978.

23

1.00- 1.00-

0.75- 0.75-

ratio of xp
o
(9]

o
ratio of xp
o
a
o

0.25- 0.25-

0.00- LA

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
uptime.ae makespan.ae

oop- MRS

1.00- 1.00-

0.75- 0.75-

ratio of xp
o
(o))

o
ratio of xp
o
(o))

o

0.25- 0.25-
0.00- —— 000- M _A
O.IOO O.I25 O.I50 0.‘75 l.IOO 0_‘00 0_‘25 o_:g,o O_I75 1_‘00
usage.ae schederror.ae
uptime.ae makespan.ae usage.ae schederror.ae
min -1.000 0.000 -26175.045 0.000
mean 0.068 0.082 -104.675 0.144
median 0.001 0.025 0.038 0.000
max 2.692 1.163 0.981 0.940
Q Q ©
R S
g 3 g ¢ e S
< “§ a8 < 3 ¢ 3
=3 I 2 3 g

min -1.000 0.000 0.000 +0.000 -26175.045 —1124.339 0.000 0.000
mean 0.068 +40.046 0.082 +0.052 -104.675 —2.924 0.144 +0.014

median 0.001 +0.000 0.025 +0.025 0.038 +40.036 0.000 0.000
max 2.692 +1.852 1.163 +0.805 0.981 +40.499 0.940 +40.005
Auptirne‘ae Amakespan.ae Ausage.ae Aschederror‘ae
min —0.283 —0.331 —1124.339 —0.301
mean +0.046 +0.052 —2.924 +0.014
median 0.000 +0.002 +0.006 0.000
max +2.015 +0.879 +23.428 +0.759

Figure 13: Frequencies, statistics, and comparison with best of simulations with
simulation of communications

24

openstack-icps regular openstack-icps regular

x 600- e x 1250~ .
@ @ 1000-
£ 400- $ £ 750- . ¢
< oo- / 5 s00- ¢ ——
5 200- . T e« B 20- .
c . ° 5 ~
= o- . 5 o- : ¢
0e+00 1e+09 2e+09 3e+09 4e+09 5e+09 0e+00 1e+09 2e+09 3e+09 4e+09
input_size.x output_size.x
openstack-icps walrus openstack—-icps walrus
.o x .
E 20- . . g 15- . “ o
£ 15- £
;| 10- 1 —— Ceate,, ot 5| 10 =
g_ 5- . 0 o® 0. . % 5- 3 ,. ..:‘:. o
= NI ST 1T 11§ T AT ve———
0-, } , © o- ! g . :
0e+00 le+06 2e+06 0.0e+00 5.0e+06 1.0e+07 1.5e+07
input_size.x output_size.x
openstack—icps regularlgb openstack—-icps regularlgb
1.25- . x 0.6- . . 0 .
:j‘ 1.00- 3 z o : E [0} . e o ® o ® o
E 0.75- : s Stel= g 0.4- Aot o
= . o mosess I . o - oo
._,l 0.50- . . 000 00 00 oun =
g_ 0.25- ** oo . - . - oo ol g— 0.2- @ o T
c - < =333 =1 e
= 0.00- e] L e e e © 0.0- ssemimme } t
2.0e+07 2.1e+07 2.2e+07 0e+00 2e+06 4e+06 6e+06
input_size.x output_size.x
openstack—icps remoteio openstack—-icps remoteio
x e o 4
N (0]
g 2000- oi £ w0o- .
= “ o®
l d = S N
a 1000 g_ 200 - . s
c 5 ° o
- O- [' ' ' © O- ' ' ' '
0e+00 2e+08 4e+08 6e+08 0e+00 1e+08 2e+08 3e+08
input_size.x output_size.x

Figure 14: Linear regressions of communication times vs. data size, according
to platform, storage, and communication direction on openstack-icps

25

fr=inria regular fr=inria regular

H
1500- . 1500-
x x
@ [0}
g 1000~ -gl 1000~
I =
= 3
2 a
g 500- 5 500~
= o
0- [l [l [l [l [l [l 0- [l [l [l [l [l [l
0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+0¢ 0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+0¢
input_size.x output_size.x
uk—epcc regular uk—epcc regular
] °
* 2000~ :
< x o ¢
& 2000-] °]
g £ 1500-
= 5 1000- :
3 1000- a i :
£ 3 500- 5
O- l l l l l l 0- l l l l l l
0.0e+00 5.0e+08 1.0e+09 1.5¢+09 2.0e+09 2.5e+0¢ 0.0e+00 5.0e+08 1.0e+09 1.5¢+09 2.0e+09 2.5e+0¢
input_size.x output_size.x
de-hlrs regular de-hlrs regular
s] .
4000- . 4000 .
x
x .] ;
: d @ 3000- s
g 3000 £
= Z i [
‘5' 2000- ! 2000- ¢
o =3
£ 1000- 3 1000-
O- Ll Ll Ll Ll Ll Ll O- Ll Ll Ll Ll Ll Ll
0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+0¢ 0.0e+00 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+0¢
input_size.x output_size.x

Figure 15: Linear regressions of communication times vs. data size, according
to platform, storage, and communication direction on BonFire

26

1.00-

0.75-

ratio of xp
o
(9]
o

1.00-

0.75-

ratio of xp
o
a
o

0.25- 0.25-
0.004 L‘A“!_L; N 0.004 k‘kh
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
uptime.ae makespan.ae
1.00- 1.00-
0.75- 0.75-
3 53
Eoso Eoso
g g
0.25- 0.25-\
"‘
0.00- S L 0.00- EMM
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
usage.ae schederror.ae
uptime.ae makespan.ae usage.ae schederror.ae
min -1.000 0.001 -27953.710 0.000
mean 0.120 0.223 -110.119 0.275
median 0.003 0.125 0.126 0.108
max 1.601 1.772 2.729 0.965
Q Q v
c 3 R
g ¢ g % o v S ¢
S F | = .
= 3 g < Z 3 g <
min -1.000 —0.000 0.001 +0.001 -27953.710 —2903.003 0.000 0.000
mean 0.120 +0.097 0.223 +40.193 -110.119 —8.368 0.275 +0.145
median 0.003 +0.002 0.125 +40.124 0.126 +0.125 0.108 +0.108
max 1.601 +0.760 1.772 +41.414 2.729 +2.247 0.965 +0.030
Auptime.ae Amakespan.ae Ausage.ae Aschederror.ae
min —0.283 —0.331 —1124.339 —-0.301
mean +0.046 +0.052 —2.924 +0.014
median 0.000 +0.002 +0.006 0.000
max +2.015 +0.879 +23.428 +0.759

Figure 16: Frequencies, statistics, and comparison with best of simulations with
no injection

27

[7]

[10]

[11]

[14]

[15]

[16]

Joseph C Jacob, Daniel S Katz, G Bruce Berriman, John C Good, Anas-
tasia Laity, Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su,
Thomas Prince, et al. Montage: a grid portal and software toolkit for
science-grade astronomical image mosaicking. International Journal of
Computational Science and Engineering, 4(2):73-87, 2009.

Konstantinos Kavoussanakis, Alastair Hume, Josep Martrat, Carmelo Ra-
gusa, Michael Gienger, Konrad Campowsky, Gregory Van Seghbroeck,
Constantino Vazquez, Celia Velayos, Frédéric Gittler, et al. Bonfire: the
clouds and services testbed. In 5th IEEE International Conference on Cloud
Computing Technology and Science, Cloudcom, 2013.

In Kee Kim, Wei Wang, and Marty Humphrey. PICS: A public iaas cloud
simulator. In Calton Pu and Ajay Mohindra, editors, 8th IEEE Interna-
tional Conference on Cloud Computing, CLOUD 2015, New York City,
NY, USA, June 27 - July 2, 2015, pages 211-220. IEEE Computer Society,
2015.

Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. Greencloud: a
packet-level simulator of energy-aware cloud computing data centers. The
Journal of Supercomputing, 62(3):1263-1283, 2012.

Wagner Kolberg, Pedro de B. Marcos, Julio C. S. dos Anjos, Alexandre
K. S. Miyazaki, Claudio Fernando Resin Geyer, and Luciana Arantes.
MRSG - A mapreduce simulator over simgrid. Parallel Computing, 39(4-
5):233-244, 2013.

Seung-Hwan Lim, Bikash Sharma, Gunwoo Nam, Eun-Kyoung Kim, and
Chita R. Das. Mdcsim: A multi-tier data center simulation, platform. In
Proceedings of the 2009 IEEE International Conference on Cluster Com-
puting, August 81 - September 4, 2009, New Orleans, Louisiana, USA,
pages 1-9. IEEE Computer Society, 2009.

Paul Marshall, Kate Keahey, and Timothy Freeman. Elastic site: Using
clouds to elastically extend site resources. In CCGRID’10, pages 43-52,
2010.

Etienne Michon, Julien Gossa, Stéphane Genaud, Léo Unbekandt, and Vin-
cent Kherbache. Schlouder: A broker for iaas clouds. Future Generation
Comp. Syst., 69:11-23, 2017.

Alberto Nuniez, José Luis Vdzquez-Poletti, Agustin C. Caminero,
Gabriel G. Castané, Jesus Carretero, and Ignacio Martin Llorente. ican-
cloud: A flexible and scalable cloud infrastructure simulator. J. Grid Com-
put., 10(1):185-209, 2012.

Martin Quinson, Cristian Daniel Rosa, and Christophe Thiery. Parallel sim-
ulation of peer-to-peer systems. In 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa,
Canada, May 13-16, 2012, pages 668-675. IEEE Computer Society, 2012.

Andy B. Yoo, Morris A. Jette, and Mark Grondona. Slurm: Simple linux
utility for resource management. In JSSPP, pages 44—60, 2003.

28

