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Abstract

A novel sparse polynomial chaos expansion (PCE) is proposed in this paper

for global sensitivity analysis (GSA). The proposed model combines variational

Bayesian (VB) inference and automatic relevance determination (ARD) with

the PCE model. The VB inference is utilized to compute the PCE coefficients.

The PCE coefficients are obtained through a simple optimization procedure in

the VB framework. On the other hand, the curse of dimensionality issue of

PCE model is tackled using the ARD which reduces the number of polynomial

bases significantly. The applicability of the proposed approach is illustrated by

performing GSA on five numerical examples. The results show that the proposed

approach outperforms a similar state-of-art surrogate model in obtaining an

accurate sensitivity indices using limited number of model evaluations. For

all the examples, the PCE models are highly sparse, which require very few

polynomial bases to assess an accurate sensitivity indices.

Keywords: Sparse polynomial chaos expansion, Global sensitivity analysis,

Bayesian approach, Automatic relevance determination, Sobol’ indices

1. Introduction

Sensitivity analysis (SA) measures the effect of the input parameters on

the output parameters for a system [1]. SA is globally divided in two distinct
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categories: local SA [1] and global SA (GSA) [2]. The former measures the

local effect of an input parameter on the response through the derivative of

the output with respect to the input parameter [3]. On the other hand, GSA

measures the effect of the whole input space on the output quantity considering

uncertainties [1, 2]. GSA is the point of study for this paper. Various approaches

are available in the literature for GSA such as regression based approach [3],

variance based approach [4, 5], moment independent approach [6, 7] and moment

based approach [8]. Out of all, the variance based approach has attained more

popularity than the others. The variance based approach for GSA was proposed

in [4, 5] for the first time. However, the main idea came from Pearson’s study

[9]. The main idea of the variance based approach is the computation of the

contribution of variance in the output quantity for a single or, a combine effect

of inputs [10]. According to Sobol’ [5], the variance based approach is performed

by decomposing the output variance into the single and the combine effect of

the inputs. Often this method is known as the ANalysis Of VAriance (ANOVA)

[11]. The approach as proposed by Sobol’ [5, 2] is quite simple to use and

is widely acknowledged to compute the sensitivity indices. To perform GSA

for an uncertain system, multidimensional integrals over the input space can

be computed by Monte Carlo simulation (MCS) [12] technique. However, the

overburden computational cost of the MCS limits the technique in applying

for the high-dimensional complex systems. For that reason, meta-model or,

surrogate based approach has been investigated in the last decade for GSA which

includes polynomial chaos expansion (PCE) [13, 14, 15], radial basis function [16,

17], Kriging [18], quasi random sampling-high dimensional model representation

[19].

PCE has been used extensively in the last decade for GSA in different types

of problems [13, 20, 21]. PCE was utilized by Sudret in [13] first time for

GSA. The orthogonal property of PCE has reduced the computational bur-

den substantially to compute the Sobol’ sensitivity indices [2]. However, for

the high-dimensional complex problems, PCE requires high degree polynomials

which increases the number of polynomial bases exponentially. As a result, the
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number of model evaluations for selecting a good enough PCE model increases

drastically. Often all the terms in the polynomial bases do not contribute in the

response quantity. In this context, several researchers have investigated PCE to

reduce the number of polynomial bases [22, 23, 15, 24]. Therefore, a forward-

backward regression based technique has been used in [14] to build up a sparse

PCE for GSA. Further, the `1 minimization technique (least angle regression)

has been utilized in [23] to efficiently capture the most important terms in the

polynomial bases. A weighted `1 minimization approach has been proposed in

[25] to compute the PCE coefficients sparsely based on some prior information

about the PCE coefficients. Further, a gradient enhanced `1 minimization ap-

proach has been studied in [26] for computing the PCE coefficients and it was

efficient as compared to the standard `1 minimization approach. Recently, the

Kashyap information criterion based Bayesian sparse PCE is proposed for GSA

[15]. An expanded sparse Bayesian learning approach has been investigated in

[27] by allocating the priors only for the important polynomial bases. In [24],

a support vector regression based sparse PCE has been proposed based on the

variance contribution in the output and a partial least square based sparse PCE

has been proposed in [28].

A sparse PCE model is developed in this paper by utilizing the variational

Bayesian (VB) inference [29, 30] and automatic relevance determination (ARD)

[31, 32]. More specifically, ARD is used to select the important polynomial bases

and the coefficients of the PCE model are computed using the VB inference. The

usefulness of the proposed approach is that ARD uses the results obtained from

the VB inference to select the important polynomial basis functions. Hence, VB

inference and ARD approach are fully connected to each other. The proposed

approach is utilized in this paper for GSA. Explicitly, the Sobol’ sensitivity

indices [2] are computed for different types of problems using the proposed

approach.

This paper is organized in the following way. The Sobol’ sensitivity in-

dices are explained in the next section and the PCE formulation is described

in section 3. The procedure of computing the PCE coefficients using Bayesian
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inference and the formulation of sparse PCE are explained in section 4. The

procedure of computing the Sobol’ sensitivity indices using the proposed ap-

proach is explained in section 5. Afterwards, the applicability of the proposed

approach is illustrated through some numerical examples in section 6 and the

conclusion of the present study is discussed in section 7.

2. Sobol’ sensitivity indices

For GSA, Sobol’ [2] proposed two different types of sensitivity indices: partial

sensitivity indices (PSI) and total sensitivity indices (TSI). The former takes

care of only the variance contribution due to a particular term in the Sobol’

decomposition whereas the later considers the total sensitivity of a random

variable including the interaction terms for the corresponding variable.

Consider d-dimensional independent input random variables in a vector Ξ =

{ξ1, ξ2, . . . , ξd} and a square integrable model response Y = g (Ξ). For the

independent random variables, the joint probability density function (PDF)

may be represented as:

ρ (Ξ) =

d∏
i=1

ρξi (ξi) (1)

where ρξi is the marginal PDF for the random variable ξi.

The model response is decomposed into the main effect and the composition

effect of the input variables as [5, 2]:

Y = g (Ξ) =g0 +

d∑
i=1

gi (ξi) +
∑

1≤i≤j≤d

gi,j (ξi, ξj) + · · ·

+
∑

1≤i1≤···≤is≤d

gi1,...,is (ξi1 , . . . , ξis) + · · ·+ g1,...,d (ξ1, . . . , ξd) (2)

where g0 is the constant of the expansion which is also the mean of Y . One

of the important properties of the decomposition is that the summand of the

decomposition must satisfy:∫
Ωξk

gi1,...,is (ξi1 , . . . , ξis) ρξk (ξk) dξk = 0

1 ≤ i1 ≤ · · · ≤ is ≤ d; k ∈ {i1, . . . , is}
(3)
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where Ωξk is the support of the random variable ξk. Along with this, the

orthogonality condition is also required to satisfy for all the terms except the

constant which is given by:∫
Ω

gi1,...,is (ξi1 , . . . , ξis) gj1,...,jt (ξj1 , . . . , ξjt) dΞ = 0

∀ {i1, . . . , is} 6= {j1, . . . , jt}
(4)

Each of the terms in Equation 2 can be found by:

g0 =E (Y )

gi (ξi) =EΞ∼i (Y |ξi)− E (Y )

gi,j (ξi, ξj) =EΞ∼i,j (Y |ξi, ξj)− E (Y )

...

(5)

where E (•) is the expectation of the corresponding term. EΞ∼i is the expectation

with respect to all the variables except ξi, and similarly, EΞ∼i,j is the expectation

with respect to all the variables except ξi and ξj . Due to the orthogonal property

between the model terms in Equation 2, the corresponding variance can be

represented as:

V (Y ) =

d∑
i=1

Vi +
∑

1≤i≤j≤d

Vi,j + · · ·+ V1,...,d (6)

where V (Y ) is the total variance of the response quantity Y . Vi is the partial

variance of the response due to the i-th variable and so on. Therefore, after

dividing both sides of Equation 6 by the total variance, the partial sensitivity

indices (PSI) are given by:

d∑
i=1

Si +
∑

1≤i≤j≤d

Si,j + · · ·+ S1,...,d = 1 (7)

In Equation 7, Si is the PSI for the i-th variable and S1,...,d is the combined

PSI for the interaction of the corresponding variables. Often the variance con-

tribution of a single variable is computed (Si) which is also known as the first

order sensitivity index. More explicitly, the PSI can be written as [11]:

Si =
Vξi (EΞ∼i (Y |ξi))

V (Y )
∈ [0, 1] (8)
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where Vξi (EΞ∼i (Y |ξi)) measures the partial contribution of the variance on the

output due to the variable ξi. On the other hand, TSI measures the whole effect

of a variable on the output quantity [33]. TSI considers the PSI along with the

interaction terms for a particular variable. TSI for a variable is given by:

STi =
EΞ∼i (Vξi (Y |Ξ∼i))

V (Y )
= 1− VΞ∼i (Eξi (Y |Ξ∼i))

V (Y )
(9)

where VΞ∼i (Eξi (Y |Ξ∼i)) is the variance contribution of all the terms other than

ξi. PSI and TSI are investigated in the present work. For the MCS computation,

the procedure proposed in [11] are utilized in this paper (refer Appendix A).

Several other approaches can be found in [5, 33, 34, 35].

3. PCE representation

PCE is a surrogate based approach for approximating an unknown function.

Having the d-dimensional random variable Ξ = {ξ1, ξ2, . . . , ξd} ∈ RN×d and the

corresponding response quantities Y = {Y1, Y2, . . . , YN}T ∈ RN×1 at N sample

points, PCE is represented by [36]:

Y (Ξ) =

∞∑
i=1

aiΦ
(i) (Ξ) (10)

where ai are the coefficients of the expansion and i represents the i-th term

in the expansion. Φ(i) are the multivariate orthogonal polynomial bases. The

multivariate orthogonal polynomial bases are constructed by the product of the

univariate orthogonal polynomial bases as:

Φ(i) (Ξ) =

d∏
j=1

φ(i,j) (ξj) (11)

where φ(i,j) is the i-th polynomial basis function for the j-th variable ξj . The

univariate orthogonal polynomial bases are computed via the Askey scheme [37].

Some important polynomials for the commonly used random variables are listed

in [36, 38]. The orthogonality condition for the multivariate polynomials is given

by:

E
[
Φ(i) (Ξ) ,Φ(j) (Ξ)

]
= h2

nδij (12)
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where hn is a constant and hn = 1 for the orthonormal polynomial. δij is the

Kronecker delta which is 1 for i = j and zeros for the other cases.

Remark 1. This study uses the usual way of obtaining the orthogonal polyno-

mial bases based on the known PDF of the input random variables. However,

it may happen in practical cases that the PDFs of the random variables are

unknown. In that case, the polynomial basis functions can be constructed us-

ing the Gram-Schmidt orthogonalization, however, these are not always ‘exact

orthonormal’ [39]. For that reason, a near optimal orthonormal polynomial has

been developed in [39] and this can be used in conjunction with the proposed

approach in this paper.

Often PCE as defined in Equation 10, is terminated with finite number of

terms in the expansion. Therefore, the degree of the orthogonal polynomial

function is terminated at some finite degree p. The truncated PCE is given by:

Y (Ξ) =

n∑
i=1

aiΦ
(i) (Ξ) + εp (13)

where εp is the residual of the truncated PCE, which is assumed as Gaussian

white noise with zero mean and variance κ−1. n is the finite number of terms

in the expansion, which is computed as:

n =
(d+ p)!

d!p!
(14)

Therefore, the multivariate orthogonal polynomial of the truncated PCE and

the coefficients are of dimensions Φ (Ξ) ∈ RN×n and a ∈ Rn×1, respectively.

Remark 2. It is evident from the previous study [40] that the orthogonal

polynomials (e.g. Hermite polynomial) are often not stable and does not satisfy

the condition of orthogonality (Equation 12) for high degree polynomials. For

that reason, the orthonormal polynomials are used in this paper.

The coefficients in Equation 13 are often computed using the ordinary least

square (OLS) approach [38] for the truncated PCE model. However, it has

been found in the literature that all the terms in the truncated PCE model
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underestimate or, overestimate the fitting [14]. Therefore, the most influenced

terms in the polynomial bases are used in the later studies [14, 24, 28] to fit the

PCE model accurately. In this regards, a fully Bayesian approach is utilized in

this paper for computing the PCE coefficients. Along with this, a combination

of Bayesian inference and ARD is used for selecting the most influenced terms

in the polynomial bases.

4. Bayesian sparse PCE

Sparse PCE has already been proposed in many researches [14, 15, 24, 41] to

substantially increase the computational efficiency and the accuracy. Bayesian

inference has already gained interest in the machine learning domain [42, 43,

32, 29]. However, the application of Bayesian inference in the PCE formulation

is very limited in the literature [15].

4.1. Bayesian inference in PCE

A generalized Bayesian inference is formulated in this section for the trun-

cated PCE as defined in Equation 13 which can be written as:

Y (Ξ) = Φ (Ξ) a+ εp (15)

where Φ (Ξ) ∈ RN×n is the orthonormal polynomial basis matrix and a ∈ Rn×1

is the PCE coefficient vector. The main aim of the Bayesian formulation is

to infer the coefficient vector having the known response vector Y (Ξ) ∈ RN×1

and the polynomial basis matrix Φ (Ξ). The posterior of the Bayesian model

parameter is inferred as:

p (H|Y ) =
p (Y |Φ,H) p (H)

p (Y )
(16)

where H is the Bayesian model parameter and p (Y |Φ,H) is the likelihood func-

tion of the Bayesian model. p (H) is the prior of the Bayesian model and p (Y )

is the marginal likelihood which is expressed as:

p (Y ) =

∫
p (Y |Φ,H) p (H) dH (17)
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For the estimation of the posterior in the Bayesian model, the likelihood

function is inferred by the Gaussian distribution which is given by:

p (Y |Φ, a, κ) =

N∏
i=1

p (Yi|Φi, a, κ) (18)

=

N∏
i=1

N
(
Yi|Φia, κ−1

)
(19)

=
( κ

2π

)N
2

exp

(
−κ

2

N∑
i=1

(Yi − Φia)
2

)
(20)

In Equation 19, the response is modelled by the Gaussian distribution with

mean Φia and variance κ−1. i in the subscript denotes the i-th row of the

corresponding matrix/vector. Each of the sample points is modelled as the

product of the Gaussian distribution. As a result, the likelihood function is

given by an exponential function. For that reason, the prior should be expressed

by the exponential function to maintain conjugacy [30] in the formulation. A

joint Gaussian-Gamma distribution is used to express the prior [44] in this

formulation which is given by:

p (a, κ|θ) = p (a|κ, θ) p (κ) (21)

= N
(
a|0, (κΘ)

−1
)

Gam (κ|A0, B0) (22)

= (2π)
−n2 |Θ|

1
2
BA0

0

Γ (A0)
κ
n
2 +A0−1 exp

(
−κ

2

(
aTΘa+ 2B0

))
(23)

An absolute continuity in the formulation is noticed in Equation 23 with the

likelihood function. A0 and B0 are the parameters of the Gamma distribution.

The prior is further parameterized with a hyper-prior θ = {θ1, θ2, . . . , θn}T =

diag (Θ). Θ ∈ Rn×n is a sparse matrix having only the diagonal terms. The

determinant of Θ is given by:

|Θ| =
n∏
i=1

θi (24)

The hyper-prior in Equation 21 is formulated using the independent Gamma

distribution to maintain the conjugacy in the formulation. Therefore, the hyper-
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prior is given by:

p (θ) =

n∏
j=1

Gam (θj |C0, D0) (25)

=

n∏
j=1

DC0
0

Γ (C0)
θC0−1
j exp (−D0θj) (26)

where C0 and D0 are the parameters of the Gamma distribution, and Γ (•)

represents the Gamma function. Therefore, it is clear from Equation 26 that

the number of hyper-priors (n) is same with the number of terms in the trun-

cated polynomial basis function. Consequently, a polynomial basis is directly

dependent on the corresponding hyper-prior in the Bayesian formulation. Fur-

ther, considering the joint probability distribution, the posterior of the Bayesian

inference can be in inferred as:

p (a, κ, θ|Y ) =
p (Y |Φ, a, κ) p (a|κ, θ) p (κ) p (θ)

p (Y )
(27)

The computation of the Bayesian model parameters would compute the PCE

coefficients also. Therefore, the main objective of the Bayesian formulation is

the computation of the Bayesian model parameter H ∈ {a, κ, θ}. However, the

hyper-prior in the Bayesian formulation makes the inference intractable. For

that reason, the Bayesian formulation is solved by approximating the marginal

likelihood of the Bayesian inference. In general, the random sampling schemes

[45, 46] can be used for such approximations. However, due to the large number

of sample points, a variation Bayesian (VB) inference is used in the current

formulation. The VB inference based PCE is formulated in the next section.

4.2. VB inference

4.2.1. Formulation of VB inference for Bayesian model parameter

The VB inference is utilized for the Bayesian formulation such that the

posterior is inferred by approximating the marginal likelihood (Equation 17).

The approximation is made by constructing a variational lower bound (VLB)

on a variational distribution q (H). Therefore, the VLB is given by [30]:

L [q (H)] =

∫
H

q (H) ln
p (Y |H) p (H)

q (H)
dH (28)
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After manipulating and imposing the condition of the proper probability

distribution with respect to the Bayesian model parameter (
∫

H
q (H) dH = 1),

the log-marginal likelihood function is expressed in term of the VLB as:

ln p (Y ) = L [q (H)]−
∫

H

q (H) ln
p (H|Y)

q (H)
dH (29)

= L [q (H)] + KL (q (H) ‖ p (H|Y)) (30)

where KL (•) is the Kullback-Leibler (KL) divergence from q to p which is

represented more explicitly as:

KL (q (H) ‖ p (H|Y)) = −
∫

H

q (H) ln
p (H|Y)

q (H)
dH (31)

The log-marginal likelihood is represented by the VLB and KL divergence

in Equation 30. The approximate solution of the log-marginal likelihood is

achieved either by minimizing the KL divergence [30, 47] or, by maximizing

the VLB L with respect to q (H). To have an appropriate solution, the family

of variational distribution is required to be restricted. For that reason, the

variational distribution is partitioned using a factorized distribution [48, 49].

The Bayesian model parameters are represented by the factorized distribution

as follows [30]:

q (H) =

Nb∏
i=1

q (Hi) (32)

In Equation 32, Nb indicates the number of Bayesian model parameters. Consid-

ering the joint probability distribution, the variational distribution is depicted

by the multiplication of the two distributions as follows:

q (H) = q (a, κ) q (θ) (33)

The above-mentioned factorized distribution depicts Nb = 2. Therefore, the

VLB is maximized with respect to each of the factorized distribution parame-

ters for assessing an appropriate solution of the variational distribution. The

factorized distribution based VLB is formulated in Appendix B: it suggests that

the VLB is maximized when each of the Bayesian model parameters is approx-

imated by Equation 74. The factorized VB inference based PCE is formulated

in the next section.
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4.2.2. Factorized VB inference based PCE

The PCE coefficients of the truncated PCE model are computed here by the

factorized VB (FVB) formulation. The Bayesian model parameters H ∈ {a, κ, θ}

are computed using the FVB inference. For that reason, two components of

the variational distribution (Equation 33) are formulated separately. The first

component of the variational distribution q (a, κ) is represented by Equation 74

as follows:

ln qr (a, κ) = ln p (Y |Φ, a, κ) + Eθ [ln p (a, κ|θ)] (34)

Therefore, after substituting ln p (Y |Φ, a, κ) and ln p (a, κ|θ) from Equation 20

and Equation 23 respectively, Equation 34 is represented by:

ln qr (a, κ) =

(
n

2
+A0 − 1 +

N

2

)
lnκ

− κ

2

(
aT

(
Eθ [Θ] +

N∑
i=1

ΦTi Φi

)
a+

N∑
i=1

Y 2
i − 2

N∑
i=1

YiΦia+ 2B0

)
+ const (35)

The terms independent of a and κ are considered in the constant term. In a

similar way to the formulation of Bayesian inference, the prior is formulated in

the FVB inference using the conjugate Gaussian-Gamma distribution:

qr (a, κ) = N
(
a|ar, κ−1χr

)
Gam (κ|Ar, Br) (36)

Now, Equation 36 can be compared with Equation 35 taking the natural loga-

rithm on the both sides. Therefore, after expanding Equation 36 in a similar way

to Equation 20 and comparing the coefficients of −κ2a
Ta (between Equation 36

and Equation 35), the unknown term χr is given by:

χ−1
r =

N∑
i=1

ΦTi Φi + Eθ [Θ] (37)

The most important unknown term in this formulation ar can be computed by

comparing the coefficients of a between Equation 36 and Equation 35 as follows:

ar = χr

N∑
i=1

ΦTi Yi (38)
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In Equation 36, the part of Gaussian distribution can be computed having the

updated ar and χr. However, to update the variational distribution qr (a, κ),

the updated parameters of the Gamma distribution are also required to be

computed. For that reason, only expanding the part of Gamma distribution

with natural logarithm, Equation 36 is given by:

ln qr (a, κ) = lnN
(
a|ar, κ−1χr

)
− κ

2

(
N∑
i=1

Y 2
i + 2B0 − aTr χ−1

r ar

)

+

(
A0 − 1 +

N

2

)
lnκ (39)

In Equation 36, κ follows Gamma distribution with parameters Ar and Br.

After equating the coefficients of κ between Equation 39 and the PDF of Gamma

distribution, the parameter Br is given by:

−κBr = −κ
2

(
N∑
i=1

Y 2
i + 2B0 − aTr χ−1

r ar

)

Br = B0 +
1

2

(
N∑
i=1

Y 2
i − aTr χ−1

r ar

)
(40)

The other parameter Ar is computed by comparing the coefficients of lnκ:

Ar = A0 +
N

2
(41)

Having the updated parameters of the respective distributions, the part of the

variational distribution q (a, κ) can be updated during the optimization proce-

dure.

The second part of the variational distribution i.e. the hyper-prior q (θ) is

also required to optimize for the variational distribution q (H). Therefore, in a

similar way to the first part, the second part is also given by Equation 74 as

follows:

ln qr (θ) = ln p (θ) + Ea,κ [ln p (a, κ|θ)] (42)

=

n∑
j=1

(C0 − 1) ln θj −D0θj +
1

2
ln θj −

θ

2
Ea,κ

[
κa2

j

]
+ const (43)

In Equation 42, p (θ) and p (a, κ|θ) are replaced by Equation 26 and Equation 23

respectively. In this case also, we follow the conjugacy in the formulation.
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Therefore, the variational distribution for the hyper-prior is given by the Gamma

distribution:

ln qr (θ) =

n∑
j=1

ln Gam
(
θj |Cr, Drj

)
(44)

Equation 44 can be compared with Equation 43. Therefore, the parameters of

the Gamma distribution Cr and Dr are computed by comparing the coefficients

of ln θj and θj respectively. The parameters are given by:

Cr = C0 +
1

2
(45)

Drj = D0 +
1

2
Ea,κ

[
κa2

j

]
(46)

The factorized distribution is often called the expectation-maximization (EM)

formulation [50]. The expectation parts in Equation 37 and Equation 46 are

computed through the standard moments [30] and are given by:

Eθ [Θ] = Θr (47)

Ea,κ
[
κa2

j

]
= a2

rj

Ar
Br

+ χrjj j = 1, . . . , n (48)

where each term in the diagonal matrix Θ can be computed directly by using

the updated Gamma distribution parameters as follows:

Eθ [θj ] =
Cr
Drj

j = 1, . . . , n (49)

and Equation 47 is expressed more explicitly as:

Eθ [Θ] = diag (Eθ [θ]) (50)

The above-mentioned FVB formulation is used to compute the coefficients

of the truncated PCE model. The FVB inference is ultimately optimizing the

VLB. Therefore, a truncation criterion is required to be imposed for converging

the optimization process. The error value for the VLB must satisfy the threshold

value, which is defined as:

εL =
L [q (H)]r − L [q (H)]r−1

L [q (H)]r−1

× 100 ≤ TL (51)
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where TL is the threshold value for the error εL. The threshold value for the

VLB is decided as TL = 0.001% to have a good convergence. As a result, the

VLB value is required to compute in each iteration during the optimization

process. An explicit expression for computing the VLB is given in Appendix C.

4.3. ARD based FVB-PCE

The sparse PCE is formulated here using the Automatic Relevance Deter-

mination (ARD) [31, 51]. Therefore, the most important terms contributing in

the stochastic response are identified here by the ARD. This identification leads

the PCE more accurate as compared to the truncated PCE. For the sparse PCE

formulation, the hyper-prior of the FVB formulation is utilized. It should be

noted that the hyper-priors are computed corresponding to each of the terms in

the PCE polynomial bases. Therefore, the diagonal terms in Θ are taken into

account for the sparse PCE formulation.

Having Θ for the multivariate orthonormal polynomial basis matrix Φ, the

one to one correspondence between the polynomial basis and the hyper-prior is

achieved. The ARD values [52, 53] for all the multivariate orthonormal polyno-

mial bases are computed as follows:

λβ = diag
(
Θ−1

)
(52)

where λ is the vector containing the ARD values for all the orthonormal poly-

nomial bases. β in the subscript denotes the iteration number during the con-

struction of the sparse PCE (refer Figure 1). Therefore, on converging the VLB

L, the ARD value is computed for the n number of orthonormal polynomial

bases and a few orthonormal bases are pruned at this step which are below

some threshold ARD value. The threshold ARD value is defined as:

lnTβ = min (lnλβ) +
max (lnλβ)−min (lnλβ)

ε
(53)

where ε is an adjustable parameter for the threshold value. The threshold value

(T ) is computed taking the natural logarithm of the ARD values. Therefore,

after the convergence of the VLB, the orthonormal polynomial bases having less
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ARD values than the threshold (lnλ < lnT ) are discarded. In the next iteration

(β + 1), nβ+1 < nβ number of orthonormal polynomial bases are considered for

the PCE and the corresponding coefficients are computed by the FVB formula-

tion. This process continues until n = 1 orthonormal polynomial basis remains

in Φ. Therefore, the selection of the most important sparse polynomial set is

made by the VLB value. The one sparse set of orthonormal bases are selected

which yields highest VLB value. The sparse orthonormal basis matrix and the

corresponding PCE coefficients are given by:

Φ̂ = Φβm (54)

â = aβm (55)

βm = ind

(
max
β
L (H)β

)
(56)

where Φ̂ is the sparse orthonormal polynomial basis matrix and βm is the index

of β having the highest VLB value. Therefore, the final sparse PCE is con-

structed using the sparse polynomial basis matrix, which is regarded as AFVB-

PCE (ARD based FVB-PCE) model.

Remark 3. To reduce the chances of pruning the minor important terms (but

important for the PCE model), the natural logarithm of the ARD value is

utilized in Equation 53.

Remark 4. The number of pruning terms in each iteration (β) is highly de-

pendent on the adjustable parameter ε in Equation 53. A large number of

terms may be pruned in each iteration with a low value of ε which may lead the

AFVB-PCE model erroneous. Therefore, it is useful to set a high value for the

adjustable parameter. ε = 1000 is used in the present study.

5. AFVB-PCE based global sensitivity analysis

The AFVB-PCE model is used here for the computation of the Sobol’ indices.

The final AFVB-PCE model can be defined as:

Ŷ =

nf∑
j=1

âjΦ̂j (57)
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where nf is the number of terms in the AFVB-PCE model which must be less

than n (i.e. nf < n). âj are the computed coefficients corresponding to the

sparse polynomial bases Φ̂j and Ŷ is the approximate response. Therefore, with

the analogy of Equation 2, the AFVB-PCE can be expressed more explicitly as:

Ŷ =

nf∑
j=1

1≤i1≤···≤is≤d

âjΦ̂j (ξi1 , . . . ξis) (58)

The multivariate polynomial bases Φ̂j (ξi1 , . . . ξis) are orthonormal. There-

fore, from the orthonormal property, the total variance is given by:

V
(
Ŷ
)

=

nf∑
j=2

â2
j (59)

and the partial contributing variance is given by:

Vξi =

nf∑
j=1

pξi,j 6=0&pξ∼i,j=0

â2
j (60)

where pξi,j 6= 0&pξ∼i,j = 0 defines the j-th multivariate polynomial correspond-

ing to the j-th coefficient should not have the zero degree univariate polynomial

for the i-th variable and should have the zero degree univariate polynomials for

the other variables. Therefore, the PSI for each of the random variables can be

computed by directly substituting Equation 59 and 60 in Equation 8 (replacing

V (Y ) with V
(
Ŷ
)

). Similarly, the TSI for each random variable is given by:

STi =
1

V
(
Ŷ
) nf∑

j=1
pξi,j 6=0

a2
j (61)

The Sobol’ sensitivity indices are computed by post-processing the coefficients

from the AFVB-PCE model which requires very less computational cost. There-

fore, an accurate prediction of the PSI and the TSI depends on the accuracy of

the coefficients and the important terms in the AFVB-PCE model. A flowchart

for computing the AFVB-PCE model and for computing the sensitivity indices

is shown in Figure 1.
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Remark 5. This study has been conducted considering the input random vari-

ables as independent. GSA for the correlated random variables is performed

using ANalysis Of COVAriance (ANCOVA) [54]. The computation of the co-

variance based sensitivity indices by PCE approach has been described in [55]

for the correlated random variables.

6. Numerical examples

In this section, GSA is performed on five numerical examples using the

AFVB-PCE model. Out of the five examples, the first two examples are non-

linear test functions and the last three examples are engineering problems. All

the results are compared with the MCS (see Appendix A) results which are

considered as the benchmark solutions. Along with this, GSA is also performed

using the sparse PCE [23, 56] model for all the examples and the results are

compared with the proposed model. As the sparse PCE [23] model uses LARS

algorithm, it is denoted by L-PCE in this paper. For the construction of the

surrogate models, Sobol sequence [57] is utilized to generate the initial samples.

6.1. Ishigami function

Ishigami function [13] is one of the commonly used test functions for GSA.

The functional form of this function is given by:

Y = sin ξ1 + a sin2 ξ2 + bξ4
3 sin ξ1 (62)

where ξi are the independent random variables uniformly distributed in [−π, π].

a and b are the constants which are considered as 7 and 0.1 respectively. The PSI

and the TSI for the three random variables are computed here by the AFVB-

PCE and L-PCE. The analytical expressions for computing Sobol’ indices are

also available for this problem [58]. The Sobol’ indices are also computed by the

MCS using 5× 106 Sobol sequence samples (refer Appendix A). All the results

are shown in Table 1.

First of all, the robustness of the distribution parameters used in the Bayesian

formulation is investigated. For that reason, the PSI and the TSI are computed
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Figure 2: Predicted sensitivity indices for the Ishigami function with B0 = D0 = 1 × 10−4

and varying A0, C0

by the AFVB-PCE model using N = 35 and p = 8. The Legendre polynomial

is used for computing the PCE bases. The distribution parameters are varied

from 1× 10−4 to 1× 10−1. The predicted sensitivity indices by the AFVB-PCE

model along with the analytical results for all the variables are presented in

Figure 2 and Figure 3. In Figure 2, B0 = D0 = 1 × 10−4 are constant, while

A0, C0 are varied altogether. It is seen that there is no significant effect of

A0, C0 on the predicted PSI and TSI: the sensitivity indices are predicted quite

well by the AFVB-PCE model. On contrary, Figure 3 depicts an influence of

B0, D0 on the predicted PSI and TSI for the variables ξ1 and ξ2 is noticed when

A0 = C0 = 1 × 10−1 are constant. Indeed some discrepancy is noticed in the

results predicted using B0 = D0 = 1×10−1 and A0 = C0 = 1×10−1. Although

A0 = C0 = 1×10−2 and B0 = D0 = 1×10−4 has been suggested in [53] for sys-

tem identification problem, the present study depicts A0 = C0 = 1× 10−1 and

B0 = D0 = 1× 10−4 are reliable for the PCE model formulation and therefore,

these values of the distribution parameters are used for all the examples in this

paper.

A convergence study is then performed for both the surrogate models varying

the number of samples with p = 8. The variation of the predicted PSI and TSI

with the increase of sample points is shown in Figure 4. It is seen the PSI and
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Figure 3: Predicted sensitivity indices for the Ishigami function with A0 = C0 = 1 × 10−1

and varying B0, D0

the TSI for all the variables are converged with the analytical results using less

samples by the AFVB-PCE model (N = 35) than the L-PCE model (N = 40).

It is noticeable that the predicted TSI for all the random variables are much

accurate by the AFVB-PCE model with the increase of samples as compared

to the L-PCE predicted results.

As the good results have been achieved by the AFVB-PCE model using

N = 35 samples, the sensitivity indices computed by the surrogate models using

N = 35 are listed in Table 1. The sensitivity indices are computed by the AFVB-

PCE model using only nf = 13 terms in the polynomial bases, while the full

PCE model have n = 165 terms in the polynomial basis. Therefore, the PSI and

the TSI for the Ishigami function are computed using only 13 PCE coefficients.

On contrary, L-PCE requires nf = 14 terms in the polynomial bases. It is seen

clearly from the table that the PSI and the TSI for all the random variables are

assessed using the AFVB-PCE more accurately as compared to the L-PCE using

same number of model evaluations. The CPU time for all the approaches are

also reported in Table 1: it is quite low for the MCS because of a mathematical

function. Noticeably the L-PCE model requires less time as compared to the

AFVB-PCE model, however, the CPU time for the AFVB-PCE model is not so

high.
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Figure 4: Convergence study for the predicted sensitivity indices by the surrogate models for

the Ishigami function

Table 1: GSA results for the Ishigami function

Sensitivity indices Analytical results [58] MCS L-PCE [23] AFVB-PCE

S1 0.3138 0.3139 0.2789 0.3075

S2 0.4424 0.4424 0.5128 0.4431

S3 0.0000 0.0000 0.0044 0.0000

ST1 0.5574 0.5576 0.4749 0.5576

ST2 0.4424 0.4424 0.5207 0.4424

ST3 0.2436 0.2437 0.2084 0.2437

N − 5× 106 35 35

p − − 8 8

nf − − 14 13

CPU time (s) − 0.65 0.66 1.33
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6.2. Sobol’ function

The Sobol’ function [59] is considered for the illustration as the second ex-

ample. The function is given by:

Y =

d∏
i=1

|4ξi − 2|+ ai
1 + ai

(63)

where ξi are the uniformly distributed random variables over [0, 1] and ai are

the constants. For the present illustration, d = 8 is chosen. The constants are

given by a = [1, 2, 5, 10, 20, 50, 100, 500] [13]. For this function, the analytical

PSI and TSI are computed by the expressions given in [59, 13]. The MCS is

also performed using 10 × 106 number of model evaluations to compute the

sensitivity indices.

In a similar way to the previous example, a convergence study is performed

for this problem also. The convergence of sensitivity indices for the first four

random variables ares shown in Figure 5. The sample points are varied from

N = 80 to N = 120 at a step of 5 samples. The degree of the Legendre

polynomial is selected as p = 3. Therefore, n = 165 terms are found in the

PCE polynomial basis matrix. It is noticeable that a good results have been

achieved by the AFVB-PCE model using N = 90 samples and a little divergence

is noticed for S2 after N = 110 sample points. On contrary, the discrepancies

are much higher for the results predicted by the L-PCE model even with the

increase of sample points.

The PSI and the TSI for all the random variables are listed in Table 2 using

N = 90 samples. It is noticeable that a more accurate results are computed

by the AFVB-PCE model as compared to the L-PCE model. Although L-PCE

is capable to compute a desirable result for the second random variable (with

nf = 9), the results for the rest of the random variables are very poor. On

contrary, AFVB-PCE model uses very less number of PCE coefficients (nf = 8)

and predicts much better results for all the random variables. This result is

suggesting that an accurate PCE bases are selected using the ARD algorithm

and the corresponding coefficients are computed more accurately using the VB
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Figure 5: Convergence study for the predicted sensitivity indices of first four random variables

by the surrogate models for the Sobol’ function

inference. The CPU time for all the approaches are also obtained, which is quite

low for both the surrogate models.

6.3. A roof truss

In this example, a roof truss [60] is considered for GSA. The roof truss is

shown in Figure 6. The length of the truss is L and the height is L/6. A

uniformly distributed load qN m−1 is acting on the truss. The truss members

have two different cross sectional areas Ac and As. The corresponding elastic

modulus are Ec and Es. All the parameters are considered normally distributed

for the roof truss. All the random variables along with the parameters of the

distribution are given in Table 3. The vertical deflection at point C is considered

the response quantity for the roof truss. The response can be computed from

the structural mechanics [60] which is given by:

Y = ∆C =
qL2

2

(
3.81

AcEc
+

1.13

AsEs

)
(64)

For this problem, no analytical solution is available. Therefore, the reference

solution is computed by the MCS using 8×106 model evaluations. A convergence

study is also performed for this problem. The degree of the Hermite polynomial

is chosen as p = 3. As a result, n = 28 terms are found in the full PCE model.

The evaluation of the sensitivity indices with the increase of model evaluation

24



Table 2: GSA results for the Sobol’ function

Sensitivity indices Analytical results [59] MCS L-PCE [23] AFVB-PCE

S1 0.6037 0.6038 0.6698 0.6027

S2 0.2683 0.2683 0.2587 0.2877

S3 0.0671 0.0671 0.0366 0.0663

S4 0.0200 0.0200 0.0000 0.0272

S5 0.0055 0.0055 0.0000 0.0028

S6 0.0009 0.0009 0.0000 0.0000

S7 0.0002 0.0002 0.0000 0.0000

S8 0.0000 0.0000 0.0000 0.0000

ST1 0.6342 0.6342 0.6819 0.6227

ST2 0.2945 0.2945 0.2600 0.3038

ST3 0.0756 0.0756 0.0471 0.0663

ST4 0.0227 0.0226 0.0229 0.0272

ST5 0.0062 0.0062 0.0127 0.0103

ST6 0.0011 0.0011 0.0172 0.0008

ST7 0.0003 0.0002 0.0164 0.0058

ST8 0.0000 0.0000 0.0054 0.0000

N − 10× 106 90 90

p − − 3 3

nf − − 9 8

CPU time (s) − 1.35 1.06 1.95

25



Figure 6: Geometrical view of the roof truss

Table 3: Description of the random variables for the roof truss

Variable number Random variable Distribution Mean Coefficient of variation Unit

1 q Normal 2× 104 0.08 N m−1

2 L Normal 12 0.02 m

3 As Normal 9.82× 10−4 0.06 m2

4 Ac Normal 0.04 0.20 m2

5 Es Normal 2× 1011 0.07 N m−2

6 Ec Normal 3× 1010 0.08 N m−2
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Figure 7: Convergence study of the predicted sensitivity indices by the surrogate models for

the roof truss

is shown in Figure 7. It is noticeable that the sensitivity indices are almost

constant with the increase of sample points by the L-PCE model. A good

accuracy is achieved by the AFVB-PCE model for all the variables with the

increase of model evaluations, however, the accuracies for the sensitivity indices

of q and Ac have not increased by the L-PCE model.

As the AFVB-PCE model obtained a good result using N = 220 model

evaluations, the sensitivity indices assessed by the L-PCE and the AFVB-PCE

model are listed in Table 4 using N = 220. It is seen from the table that a

higher accuracy is achieved by the AFVB-PCE model as compared to the L-PCE

model for all the random variables. Along with this, ARD algorithm selects very

small number of polynomial bases (nf = 8) for assessing an accurate sensitivity

indices. Therefore, the coefficients corresponding to the important polynomials

are computed much accurately using the VB inference in the AFVB-PCE model.

The CPU time for this example is significantly less by the AFVB-PCE model

as compared to the other approaches.

From the GSA results it is clear that the PSI and the TSI for each of the

random variables are very close to each other which suggest the interaction

between the random variables are much less for this example. It is seen that q

and Ac are highly sensitive to the response ∆C . The sensitivities of {L,As, Es}

are not so high, but are sensitive too. A low sensitivity is noticed for Ec.
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Table 4: GSA results for the roof truss

Sensitivity indices MCS L-PCE [23] AFVB-PCE

S1 0.3747 0.3860 0.3740

S2 0.0935 0.0939 0.0935

S3 0.1189 0.1186 0.1258

S4 0.2178 0.2010 0.2186

S5 0.1632 0.1662 0.1627

S6 0.0257 0.0265 0.0254

ST1 0.3785 0.3909 0.3747

ST2 0.0950 0.0948 0.0935

ST3 0.1205 0.1207 0.1215

ST4 0.2206 0.2048 0.2190

ST5 0.1651 0.1685 0.1630

ST6 0.0274 0.0280 0.0254

N 8× 106 220 220

p − 2 2

nf − 20 8

CPU time (s) 6.25 0.65 0.12
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Table 5: Description of the random variables for the HYMOD model

Variable number Random variable Description Distribution Bounds

1 SM Maximum soil moisture capacity (mm) Uniform [0,400]

2 β Exponent in soil moisture routine (-) Uniform [0,2]

3 α Partition coefficient (-) Uniform [0,1]

4 Rs Slow reservoir coefficient (-) Uniform [0,0.1]

5 Rf Fast reservoir coefficient (-) Uniform [0.1,1]

6.4. A hydrological model

The hydrological models are often used to predict the run-off, climate change

scenario and flood. The hydrological model considered in this example is called

HYMOD model [61] which is used for the run-off simulation accounting several

modules such as snow module, soil-moisture accounting module and routing

module. The study area considered in the present study is the Leaf river catch-

ment (1950 km2) [62] which is situated in the north of Collins, Mississippi, USA.

The HYMOD model has five uncertain parameters which affects the model

performance such as flow. All the uncertain parameters are uniformly dis-

tributed and the distribution parameters of all the random variables are given

in Table 5. This example aims at investigating the sensitivities of the random

variables on the Nash-Sutcliffe efficiency. This example has also been studied

in [24] for GSA. The HYMOD model is obtained by the SAFE toolbox [63] in

this paper.

In a similar way to the previous examples, a convergence study is performed

for the sensitivity indices. The reference results are obtained by the MCS using

7 × 105 model evaluations. The polynomial degree for the surrogate models is

considered as p = 4. Hence, n = 126 terms are found in the full PCE model.

The variation of the sensitivity indices with the model evaluation is shown in

Figure 8. It is seen clearly that the accuracies of the predicted sensitivity indices

by the AFVB-PCE model are increased with the increase of model evaluations.

On contrary, the converging nature is not noticed by the L-PCE model.
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Figure 8: Convergence study of the predicted sensitivity indices by the surrogate models for

the HYMOD model

All the GSA results for the HYMOD model by the surrogate models using

N = 150 model evaluations are listed in Table 6. The PSI and the TSI are

predicted quite well by the AFVB-PCE model using less number of significant

terms in the polynomial basis as compared to the L-PCE model. On the other

hand, L-PCE has predicted only S2, S4, S5, ST4 quite well. The PSI and the

TSI for the Partition coefficients and the fast reservoir coefficient are quite high

as compared to the other random variables. It is also noticeable that the TSI

for these two random variables are quite higher as compared to the PSI which

suggest there is a strong significance of the interaction terms in the predicted

TSI. The independent effect of SM and β can be neglected due to much low PSI,

however, the total effect of these two variable can not be neglected. Hence, the

interaction terms have a strong impact for these two variables also. The CPU

time for this problem is quite high by the MCS, whereas the CPU times by the

surrogate models are significantly less.

6.5. A multi-storied frame structure

In the last example, a multi-storied frame structure is investigated for GSA.

The frame is shown in Figure 9. Eight horizontal point loads are acting on

the frame at the eight floors. All the loads follow gumbel distribution. The

cross-sectional area of the each member is considered square and the sides of
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Table 6: GSA results for the HYMOD model

Sensitivity indices MCS L-PCE [23] AFVB-PCE

S1 0.0061 0.0023 0.0039

S2 0.0072 0.0060 0.0067

S3 0.2698 0.3202 0.2510

S4 0.0298 0.0290 0.0305

S5 0.2399 0.2287 0.2496

ST1 0.0811 0.0306 0.0763

ST2 0.0257 0.0432 0.0267

ST3 0.6844 0.7102 0.6665

ST4 0.0542 0.0569 0.0690

ST5 0.6313 0.5875 0.6447

N 7× 105 150 150

p − 4 4

nf − 45 43

CPU time (s) 505.49 1.23 0.97
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Figure 9: Geometrical view of the multi-storied frame structure

squares are considered lognormally distributed (bi; i = 1, 2, . . . , 16 in Figure 9).

The corresponding elastic modulus (Ei; i = 1, 2, . . . , 16) are also lognormally

distributed. As a result, d = 40 random variables are present in this frame.

All the random variables along with their distribution parameters are listed in

Table 7.

For GSA, the response is considered as the horizontal deflection at the top

right corner of the frame (u in Figure 9). The reference PSI and TSI are com-

1The subscript in each random variable corresponds to the element number in Figure 9
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Table 7: Description of the random variables for the multi-storied frame structure

Variable number Random variable 1 Distribution Mean Standard deviation Unit

1, . . . , 8 E1, . . . , E8 Lognormal 3× 1010 2× 109 N m−2

9, . . . , 16 b1, . . . , b8 Lognormal 0.4 0.015 m

17, . . . , 24 E9, . . . , E16 Lognormal 3× 1010 2× 109 N m−2

25, . . . , 32 b9, . . . , b16 Lognormal 0.2 0.01 m

33 P1 Gumbel 1× 104 3× 103 N

34 P2 Gumbel 1.5× 104 3.5× 103 N

35, . . . , 40 P3, . . . , P8 Gumbel 2× 104 4× 103 N

puted by the MCS using 42 × 106 model evaluations. Each of the models is

evaluated using finite element method in a MATLAB framework.

For the surrogate models, the PSI and the TSI are computed using N = 250

model evaluations. The maximum degree of the polynomial is considered as

p = 2. As a result, n = 861 polynomial bases are found in the truncated PCE

model. The PSI and the TSI for all the random variables are plotted in Figure 10

and Figure 11 respectively. It is seen that the elastic modulus of all the members

(E1−E16) and the cross-sectional areas of the columns (b2−b8) are less sensitive.

Only b2 is little sensitive for the lateral displacement. On the other hand, PSI

and TSI for the cross-sectional areas of beams i.e. {b9, b10, b11, b12, b13, b14} are

sensitive to the lateral displacement, however, b15, b16 are not so sensitive. The

sensitivities of the loads increase with the height of the building. It is seen from

the figures that the loads P1 and P2 are less sensitive, however, the other loads

have higher sensitivity on the lateral displacement. It is also noticeable that the

PSI and the TSI for each of the random variables are very close to each other.

Hence, the dependency on the other random variables is much less for a TSI.

For the most of the random variables, the PSI and the TSI are computed

more accurately by the AFVB-PCE model as compared to the L-PCE model.

One important aspect is that the AFVB-PCE requires only nf = 30 polyno-

mial bases to compute the sensitivity indices. In contrast, L-PCE assesses the
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Figure 10: PSI for all random variables using different approaches
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Figure 11: TSI for all random variables using different approaches

35



sensitivity indices using nf = 45 polynomial bases and an erroneous result is no-

ticed for the sensitivity indices of b10, P3, P4, P5, P7, P8. Therefore, the accuracy

level in computing the sensitivity indices for this high-dimensional problem is

maintained using a very few model evaluations and using much less polynomial

bases by the AFVB-PCE model. The CPU time for this example by MCS is

quite high (45 002.71 s). On contrary, the CPU time for the AFVB-PCE and

the L-PCE are 2.67 s and 1.79 s, respectively.

7. Conclusion

A novel sparse methodology is developed for PCE to perform GSA in this

paper. The main contributions of this paper are the computation of the PCE

coefficients using VB inference and the selection of the important polynomial

bases using ARD algorithm. The proposed approach is called AFVB-PCE. GSA

is performed on five numerical examples to check the adequacy of the AFVB-

PCE model. Out of all the examples, the first two are mathematical functions

and the last three are the real life engineering problems. A promising accuracy

has been achieved for all the numerical examples in assessing the PSI and the

TSI using the AFVB-PCE model. Moreover, the sensitivity indices are predicted

quite well using low order polynomials by the AFVB-PCE model for the real

engineering problems. Along with this, the ARD algorithm selects very few

polynomial bases for all the examples. For a high-dimensional system (having

40 random variables), AFVB-PCE requires only 3.48% terms in the polynomial

bases to compute the PSI and the TSI for all the random variables. Therefore,

the AFVB-PCE model selects the most useful polynomial bases for a system

accurately.

Appendix A Computation of Sobol’ indices by MCS

The MCS computation of the Sobol’ indices is performed by the approach

suggested in [11]. For the MCS, the approach proposed in [11] requires a single

loop simulation for each variable to compute both the sensitivity indices (PSI
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and TSI). However, a two set of independent random variable are required with

NMCS samples. Therefore, the two set of random variables can be denoted by

Ξ1 ∈ RNMCS×d and Ξ2 ∈ RNMCS×d. According to [11], Vξi (EΞ∼i (Y |ξi)) in

Equation 8 is given by:

Vξi (EΞ∼i (Y |ξi)) =
1

NMCS

NMCS∑
j=1

g(Ξ2)j

[
g
(
Ξ1iΞ2

)
j
− g(Ξ1)j

]
(65)

where j in the subscript represents the j-th simulation. Ξ1iΞ2 denotes that all

the variables are taken from the matrix Ξ1 but the i-th variable is considered

from the matrix Ξ2. For computing the TSI, EΞ∼i (Vξi (Y |Ξ∼i)) is given by [11]:

EΞ∼i (Vξi (Y |Ξ∼i)) =
1

2NMCS

NMCS∑
j=1

[
g(Ξ1)j − g

(
Ξ1iΞ2

)
j

]2
(66)

Therefore, substituting the expressions from Equation 65 and Equation 66 in

Equation 8 and Equation 9 respectively, PSI and TSI can be computed with

a single loop simulation process. The single loop simulation process requires

NMCS (d+ 2) number of model evaluations for obtaining both the sensitivity

indices.
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Appendix B Formulation of VLB by factorized distribution

The VLB in Equation 28 is formulated using the factorized distribution as

follows:

L [q (H)] =

∫
H

q (H) (ln p (Y,H)− ln q (H)) dH (67)

=

∫ Nb∏
i=1

q (Hi)

(
ln p (Y,H)−

Nb∑
i=1

ln q (Hi)

)
dH (68)

=

∫
q (Hj)

∫ ln p (Y,H)
∏
i6=j

q (Hi)dHi

 dHj

−
∫
q (Hj) ln q (Hj)dHj + const (69)

=

∫
q (Hj) ln p̃ (Y,Hj)dHj −

∫
q (Hj) ln q (Hj)dHj + const (70)

= −KL (q (Hj) ‖ p̃ (Y,Hj)) (71)

In Equation 70, a new probability distribution is introduced (p̃ (Y,Θj)) which

is also represented as [30]:

ln p̃ (Y,Hj) = Ei6=j [ln p (Y,H)] (72)

where Ei 6=j [•] defines the expectation with respect to all the distribution q (Hi6=j)

which is a part in the first integral of Equation 69 i.e.

Ei 6=j [ln p (Y,H)] =

∫
ln p (Y,H)

∏
i6=j

q (Hi)dHi (73)

We need to maximize the VLB to have a good approximation for the varia-

tional distribution q (H). The VLB is represented in Equation 71 by the negative

KL divergence. Therefore, minimizing the KL divergence would maximize the

VLB and the minimum of KL divergence occurs at q (Θj) = p̃ (Y,Θj). The op-

timum solution for the j-th distribution occurs at the minimum KL divergence

for the j-th distribution, while the others q (Hi 6=j) are fixed, which is given by:

ln qr (Hj) = Ei 6=j [ln p (Y,H)] (74)

The j-th Bayesian model parameter is approximated using Equation 74. The

subscript r denotes the iteration number in the optimization procedure.
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Appendix C Computation of VLB

The VLB is computed in each iteration during the optimization procedure to

follow the convergence of the variational distribution q (H). The VB inference

for the PCE model is formulated using the factorized distribution in section

4.2.2. Therefore, it is important to formulate the VLB using the factorized

distribution as well. The VLB in Equation 67 is formulated using Equation 74:

L [q (H)] = EH [ln p (Y,H)]− EH [ln q (H)] (75)

= Ea,κ [ln p (Y |Φ, a, κ)] + Ea,κ,θ [ln p (a, κ|θ)] + Eθ [ln p (θ)]

− Ea,κ [ln q (a, κ)]− Eθ [ln q (θ)] (76)

All the terms in Equation 76 are found by taking the moments from the

previous expressions. The first term in Equation 76 is found by taking the

moment of Equation 20 [30]:

Ea,κ [ln p (Y |Φ, a, κ)] =
N

2
(ψ (Ar)− lnBr − ln 2π)

− 1

2

N∑
i=1

(
Ar
Br

(Yi − Φia)
2

+ ΦiχrΦ
T
i

)
(77)

where ψ (•) is the Digamma function. Similarly, the second component of Equa-

tion 76 is computed by taking the moment of Equation 23 [30]:

Ea,κ,θ [ln p (a, κ|θ)] =
n

2
(ψ (Ar)− lnBr + ψ (Cr)− ln 2π)−B0

Ar
Br

− 1

2

n∑
j=1

(
lnDrj +

Cr
Drj

(
Ar
Br

a2
rj + χrjj

))
− ln Γ (A0) +A0 lnB0 + (A0 − 1) (ψ (Ar)− lnBr) (78)

The rest of the terms of Equation 76 are computed similarly by taking the

moments of Equation 26, 36 and 39 [30] and are given by:

Eθ [ln p (θ)] =− n (ln Γ (C0) + C0 lnD0)

+

n∑
j=1

(
(C0 − 1)

(
ψ (Cr)− lnDrj

)
−D0

Cr
Drj

)
(79)
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Ea,κ [ln qr (a, κ)] =
n

2
(ψ (Ar)− lnBr − ln 2π − 1)− 1

2
ln |χr| − ln Γ (Ar)

+Ar lnBr + (Ar − 1) (ψ (Ar)− lnBr)−Ar (80)

Eθ [ln qr (θ)] =

n∑
j=1

(
(Cr − 1)ψ (Cr) + lnDrj

)
− n (ln Γ (Cr) + Cr) (81)

The final expression for computing the VLB is given by substituting Equa-

tion 77 to 81 in Equation 76:

L [q (H)] =− N

2
ln 2π +

1

2
ln |χr| −

1

2

N∑
i=1

(
Ar
Br

(Yi − Φiar)
2

+ ΦiχrΦ
T
i

)
+ ln Γ (Ar) +Ar

(
1− lnBr −

B0

Br

)
− ln Γ (A0) +A0 lnB0

−
n∑
j=1

(
Cr lnDrj

)
+ n

(
1

2
− ln Γ (C0) + C0 lnD0 + ln Γ (Cr)

)
(82)

The VLB is computed in each iteration using Equation 82 during the opti-

mization procedure. The convergence of the optimization procedure is observed

through a threshold value of the VLB as defined in Equation 51.
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