
HAL Id: hal-02971326
https://hal.science/hal-02971326v1

Preprint submitted on 19 Oct 2020 (v1), last revised 3 Mar 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating modular polynomials in genus 2
Jean Kieffer

To cite this version:

Jean Kieffer. Evaluating modular polynomials in genus 2. 2020. �hal-02971326v1�

https://hal.science/hal-02971326v1
https://hal.archives-ouvertes.fr

Evaluating modular polynomials in genus 2

Jean Kieffer

October 19, 2020

Abstract

We design algorithms to efficiently evaluate genus 2 modular polyno-
mials of Siegel and Hilbert type over number fields, using complex approx-
imations. Under heuristics related to the computation of theta functions
in quasi-linear time, the output is provably correct. Our algorithms also
apply to finite fields via lifting.

1 Introduction

The Siegel and Hilbert modular polynomials are genus 2 analogues of the clas-
sical, genus 1 modular polynomials. If ℓ ∈ Z is a prime, the Siegel modular
polynomials of level ℓ, denoted by Ψℓ,1,Ψℓ,2,Ψℓ,3 ∈ Q(j1, j2, j3)[X], encode the
presence of ℓ-isogenies between Jacobians of genus 2 curves: if C and C′ are
genus 2 curves over a field k with Igusa invariants (j1, j2, j3) and (j′1, j

′
2, j

′
3)

respectively, and if no division by zero occurs, then the equalities

Ψℓ,1(j1, j2, j3, j
′
1) = 0 and j′k =

Ψℓ,k(j1, j2, j3, j
′
1)

∂XΨℓ,1(j1, j2, j3, j′1)
(k = 2, 3)

hold if and only if the Jacobians Jac(C) and Jac(C′) are ℓ-isogenous over an
algebraic closure of k [14]. Similarly, Hilbert modular polynomials describe
certain cyclic isogenies between Jacobians with fixed real multiplication [12, 15].

From a computational point of view, modular equations are useful to detect
isogenies without prior knowledge of their kernels, and also to compute these iso-
genies explicitly [11]. The drawback is that genus 2 modular equations, of Siegel
type in particular, are very large objects. The degree of the polynomials Ψℓ,k

in each variable is O(ℓ3), and the height of their coefficients is O(ℓ3 log ℓ) [9].
Therefore, merely storing these polynomials costs O(ℓ15 log ℓ) space.

In this paper, we argue that precomputing modular equations in full is not
the correct strategy in higher genus. Indeed, in most contexts, we only need
evaluations of modular equations, and possibly their derivatives, at a given triple
(j1, j2, j3) ∈ F 3, where F is a number field; finite fields reduce to this case via
lifts. Computing these univariate polynomials directly is more much efficient:
we prove the following theorem under heuristics related to the computation of
theta functions in quasi-linear time.

1

Theorem 1.1 (Under hypothesis 4.1). There exists an algorithm which, given

prime numbers p and ℓ, and given (j1, j2, j3) ∈ F3
p where the denominators of the

Siegel modular polynomials Ψℓ,k do not vanish, evaluates Ψℓ,k(j1, j2, j3) ∈ Fp[X]

for 1 ≤ k ≤ 3 within Õ(ℓ3 log2 p+ ℓ6 log p) binary operations.

A similar results holds for Hilbert modular polynomials, with a complexity
of only Õ(ℓ log2 p + ℓ2 log p) binary operations. In both cases, we save a factor
of log p when the input values can be written as quotients of small integers.

Overview of the algorithm. Let C be a genus 2 hyperelliptic curve over F
with Igusa invariants (j1, j2, j3). In every complex embedding of F , we com-
pute a period matrix of C in the Siegel half space H2. Then, we compute
approximations of the numerator and denominator of Ψℓ,k(j1, j2, j3) using ana-
lytic formulas: this is done by computing theta constants at all period matrices
representing Jacobians ℓ-isogenous to Jac(C). At the end, we recognize the co-
efficients as algebraic integers. During the algorithm, we keep track of precision
losses in order to obtain a provably correct result.

Computational model. We use interval arithmetic: given z ∈ C, an ap-

proximation of z to precision N is a complex ball centered in some z′ ∈ C of
radius 2−N containing z. An approximation of a polynomial to precision N
is an approximation to precision N coefficient per coefficient. In this model,
precision losses can be predicted in terms of the size of the operands, and can
also be computed on the fly in a precise way: this is done in the Arb library [8].
In the eventuality that our algorithm runs out of precision during the computa-
tion, we simply double the precision and restart: therefore we only give precision
losses in the big-O notation, which is certainly less cumbersome than computing
constants by hand.

Organization of the paper. In Section 2, we study precision losses in opera-
tions on polynomials appearing in the sequel, namely reconstructing polynomials
from their roots, Lagrange interpolation, and the reconstruction of integers in
number fields from their values in complex embeddings. In Section 3, we re-
call the definition of Siegel and Hilbert modular polynomials and give explicit
formulæ for their denominators. In Section 4, we study the critical part of the
algorithm in terms of running time, namely the computation of theta constants.
For a fixed τ lying in the Siegel fundamental domain F2, a heuristic algorithm
by Dupont [5] computes theta functions at τ in quasi-linear time in the pre-
cision; we make the hypothesis (4.1) that this algorithm is correct and has a
uniform quasi-linear time complexity in a compact subset of F2. Then we de-
scribe an algorithm to compute theta constants at a given τ ∈ F2 with uniform
quasi-linear cost, and analyze the precision losses when reducing other inputs
to F2. In Section 5, we bound the cost of computing the period matrix of a given
algebraic curve in terms of the height of its coefficients. Finally, we detail the
evaluation algorithm in the case of Hilbert modular polynomials in Section 6.

2

2 Precision losses in operations on polynomials

If A is an algorithm taking approximations to precision N as input, we say
that the precision loss in A is M bits if the output of A is an approximation
of the theoretical output to precision N −M . We let M(N) be a quasi-linear,
superlinear function such that two N -bit integers can be multiplied in M(N)
binary operations. We write log for the logarithm in base 2, and for x ∈ R, we
define

log+ x = logmax {1, x} .
We denote the modulus of the largest coefficient in a polynomial P by |P |; we
also use this notation for vectors and matrices.

2.1 Elementary operations

To be short, additions can be done in linear time with a precision loss of O(1),
and multiplications, inversions, and square roots can be done in quasi-linear time
with a precision loss given by the size of the input. We state these standard
facts without proof.

Lemma 2.1. Let z ∈ C× and N ≥ − log |z|+ 1.

1. Given an approximation of z to precision N , the inverse 1/z can be com-

puted within O(M(N + log+ |z|)) binary operations, with a precision loss

of −2 log |z|+O(1) bits.

2. Given an approximation of z to precision N , an approximation of a square

root of z can be computed within O(M(N + log+ |z|)) binary operations,

with a precision loss of − 1
2 log |z|+O(1) bits.

In Lemma 2.1, the assumption on N ensures that the interval approximat-
ing z does not contain zero.

Lemma 2.2. Let P1, P2 ∈ C[X], and N,N1, N2 ≥ 1. Assume that P1, P2 and

their approximations have degree at most d.

1. Given approximations of P1, P2 to precision N , the sum P1 + P2 can be

computed within

O
(
(d+ 1)(N + logmax{1, |P1| , |P2|})

)

binary operations, with a precision loss of O(1) bits.

2. Given approximations of Pi to precision Ni for i = 1, 2, the product P1P2

can be computed within

O
(
M

(
(d+ 1)max{N1 + log |P1| , N2 + log |P2|}

))

binary operations, to precision

min{N1 − log+ |P2| , N2 − log+ |P1|} − log(1 + d)−O(1).

3

2.2 Reconstruction from the roots, interpolation

Lemma 2.3. There exists an algorithm such that the following holds. Let d ≥ 1,
B ≥ 1, C ≥ 1, and let xi, yi, zi for 1 ≤ i ≤ d be complex numbers such that

log+ |xi| ≤ B, log+ |yi| ≤ B, log+ |zi| ≤ C, for all i.

Let N ≥ 1. Then, given approximations of these complex numbers to preci-

sion N , the algorithm computes the polynomials

P =

d∏

i=1

(xiX + yi) Q =

d∑

i=1

zi
∏

j 6=i

(xjX + yj)

within O
(
M

(
d(N + C + dB)

)
log d

)
binary operations, with a precision loss of

O(C + dB) bits.

Proof. We use product trees [3, §I.5.4]. For each 0 ≤ m ≤ ⌈log2(d)⌉, the m-th
level of the product tree for P consists in 2⌈log2(d)⌉−m products of (at most)
2m factors of the form xiX + yi. Hence, for every polynomial R appearing at
the m-th level, we have

deg(R) ≤ 2m, log+ |R| = O(2mB).

Level 0 is given as input. In order to compute leve m + 1 from level m, we
compute one product per vertex, for a total cost of O

(
M

(
d(N + dB

))
binary

operations; the precision loss is O(2mB) bits. Therefore the total precision loss
when computing P is O(dB) bits. The number of levels is O(log d), so the total
cost is O

(
M

(
d(N + dB)

)
log d

)
binary operations.

The computations are similar for the polynomial Q, with a different product
tree. Each vertex at level m + 1 is a polynomial of the form N1P2 + N2P1

where Pi is a vertex of the product tree for P satisfying

deg(Pi) ≤ 2m, log+ |Pi| = O(2mB),

and the polynomials Ni come from the m-th level, and satisfy

deg(Ni) ≤ 2m − 1, log+ |Ni| = O(C + 2mB).

By induction, the m-th level can be computed to precision N − O(C + 2mB)
within O

(
M

(
d(N + C + dB

))
binary operations.

Lemma 2.4. There exists an algorithm such that the following holds. Let P ∈
Z[X] be an irreducible polynomial of degree d ≥ 1, let (αi)1≤i≤d be the roots

of P , and let (ti)1≤i≤d be complex numbers. Let M,C ≥ 1 such that

log+ |P | ≤ M, and log+ |ti| ≤ C for every i.

Let N ≥ 1. Then, given P and approximations of the αi, ti, and 1/P ′(αi) to

precision N , the algorithm computes the polynomial Q of degree at most d − 1
interpolating the points (αi, ti) within O

(
M

(
d(N + C + dM + d log d)

)
log d

)

binary operations. The precision loss is O(C + dM + d log d) bits.

4

Proof. We write

Q =

d∑

i=1

ti
P ′(αi)

∏

j 6=i

(X − αj).

We have log+ |P ′| ≤ M + log d. The discriminant Disc(P) of P is the resultant
of P and P ′, so we can write

UP + V P ′ = Disc(P)

with U, V ∈ Z[X]; the coefficients of U, V have expressions as determinants
involving the coefficients of P and P ′, so by Hadamard’s lemma, we have in
particular

log+ |V | = O(dM + d log d).

We have log+ |αi| ≤ M + log(2) for every i, so

log+
∣∣∣∣

1

P ′(αi)

∣∣∣∣ = log+
∣∣∣∣
V (αi)

Disc(P)

∣∣∣∣ = O(dM + d log d).

Therefore the precision loss when computing the complex numbers zi = ti/P
′(αi)

is O(C + dM + d log d) bits; the total cost to compute the zi is

O
(
dM(N + C + dM + d log d)

)

binary operations. We conclude using Lemma 2.3.

2.3 Recognizing integers in number fields

We conclude this section with estimates on the necessary precision to recognize
integers in number fields.

We give two results according to the description of the number field. In the
first description, the number field is Q(α) where α is a root of some polynomial
P ∈ Z[X] with bounded coefficients, and we want to recognize an element x ∈
Z[α]. This situation arises for instance when lifting from a finite field; not much
is known about the number field itself. In the second description, we assume
that an LLL-reduced basis of ZF is known, and we want to recognize an element
x ∈ ZF . The necessary precision is given in terms of the discriminant ∆F of F
and the absolute logarithmic height h(x) of x.

Lemma 2.5. There exist an algorithm and an absolute constant C such that

the following holds. Let F be a number field of degree d defined by a monic

irreducible polynomial P ∈ Z[X], and let M ≥ 1 such that log+ |P | ≤ M . Let α
be a root of P in F . Let

x =

d−1∑

j=0

λjα
j ∈ Z[α]

5

with λj ∈ Z and log+ |λj | ≤ H for every j. Let N ≥ C(H + dM + d log d).
Then, given P and approximations of x, α and 1/P ′(α) to precision N in every

complex embedding of F , the algorithm computes x within

O
(
M

(
d(H + dM + d log d) log d

))

binary operations.

Proof. Denote the complex embeddings of F by σ1, . . . , σd. Then the polynomial
Q =

∑d−1
j=0 λjX

j interpolates the points (σi(α), σi(x)) for every 1 ≤ i ≤ d. By
assumption, we have for each i

log+ |σi(x)| ≤ H +O(dM).

We are in the situation of Lemma 2.4: we can compute an approximation of Q
with a precision loss of O(H + dM + d log d) bits. Therefore, for some choice of
the constant C that we do not make explicit, the resulting precision is sufficient
to obtain Q exactly by rounding the result to the nearest integers.

Lemma 2.6. There exist an algorithm and an absolute constant C such that

the following holds. Let F be a number field of degree d and discriminant ∆F .

Let (a1, . . . , ad) be an LLL-reduced basis of ZF , let σ1, . . . , σd be the complex

embeddings of F , and let mF be the matrix (σi(aj))1≤i,j≤d. Let x ∈ ZF , and

let H ≥ 1 such that h(x) ≤ H. Let N ≥ C(log∆F + dH + d log d). Then,

given approximations of (σi(x))1≤i≤d and m−1
F to precision N , the algorithm

computes x within O
(
d2M(H + log∆F + d log d)

)
binary operations.

Proof. Since the basis (a1, . . . , ad) is LLL-reduced, we have

log+ |mF | = log∆F +O(d).

Let λj ∈ Z such that x =
∑

λjaj . Then, by definition of mF , we have



λ1

...
λd


 = m−1

F



σ1(x)

...
σd(x)


 .

The determinant of mF is ∆F , so | detmF | ≥ 1. By Hadamard’s lemma, we
have

log+
∣∣m−1

F

∣∣ = log∆F +O(d log d).

Since h(x) ≤ H , we have
∑d

i=1 log
+ |σi(x)| ≤ dH . Therefore, for some choice

of the constant C that we do not make explicit, we can recover the coefficients
λj ∈ Z exactly. On average, we have log+ |σi(x)| ≤ H , so the cost of each mul-
tiplication is on average O

(
M(H +M + d log d)

)
binary operations. Therefore

the total cost of the matrix-vector product is only O
(
d2M(H +M + d log d)

)

binary operations.

6

3 Siegel and Hilbert modular polynomials

In this section, we recall the definition of Siegel and Hilbert modular poly-
nomials in genus 2. When studying their denominators, the structure of the
corresponding rings of modular forms over Z plays a crucial role.

3.1 Siegel modular polynomials

Invariants on the Siegel moduli space. Let H2 be the set of symmetric
2×2 complex matrices τ such that Im τ is positive definite. Our notation for the
action of the symplectic group Sp4(Z) has a natural action on H2 is as follows:
for every γ ∈ Sp4(Z) and τ ∈ H2, write

γτ = (aτ + b)(cτ + d)−1 and γ∗τ = cτ + d, where γ =

(
a b
c d

)
.

We also write Sp4(Z) = Γ(1). For a subring R ⊂ C, we denote by MF(Γ(1), R)
the graded ring of Siegel modular forms of even weight defined over R.

The ring MF(Γ(1),C) is free over four generators h4, h6, h10, h12, where the
subscript denotes the weight. We refer to [20, §7.1] for their explicit expressions
in terms of theta constants. Following [20, §2.1], we define the Igusa invariants
as follows:

j1 =
h4h6

h10
, j2 =

h2
4h12

h2
10

, j3 =
h5
4

h2
10

.

The ring Z[h4, h6, h10, h12] is strictly contained in MF(Γ(1),Z), but is still
reasonably large.

Lemma 3.1. Let f ∈ MF(Γ(1),Z) of weight k. Then 12kf ∈ Z[h4, h6, h10, h12].

Proof. Igusa [7] worked out a set of fourteen generators for the ring MF(Γ(1),Z).
The lowest weight ones are

X4 = 2−2h4, X6 = 2−2h6, X10 = −2−12h10, X12 = 2−15h12.

The result holds for these four generators. Straightforward computations using
the formulas from [7, p. 153] prove that it also holds for the ten others.

Siegel modular polynomials. Let ℓ ∈ Z be a prime. We define the sub-
group Γ0(ℓ) of Γ(1) = Sp4(Z) by

Γ0(ℓ) =

{(
a b
c d

)
∈ Γ(1) | b = 0 mod ℓ

}
.

7

A set Cℓ of representatives for the quotient Γ0(ℓ)\Γ(1) consists of the ℓ3+ℓ2+ℓ+1
following matrices:

T1(a, b, c) =



−I2
a b
b c

0 −I2



 for a, b, c ∈ J0, ℓ− 1K,

T2(a, b, c) =




0 −I2

I2
−a −b
−b −c



 for a, b, c ∈ J0, ℓ− 1K such that ac = b2 mod ℓ,

T3(a) =




−1 −a 0 0
0 0 −a 1
0 0 −1 0
0 −1 0 0


 for a ∈ J0, ℓ− 1K,

T4 =




0 1 0 0
0 1 1 0
1 −1 1 1
−1 1 0 0


 .

The Siegel modular polynomials of level ℓ are the three polynomials

Ψℓ,k ∈ Q(j1, j2, j3)[X], 1 ≤ k ≤ 3

such that for every τ ∈ H2 where everything is well defined, we have

Ψℓ,1(j1(τ), j2(τ), j3(τ)) =
∏

η∈Cℓ

(
X − j1(

1
ℓητ)

)
,

Ψℓ,2(j1(τ), j2(τ), j3(τ)) =
∑

η∈Cℓ

j2(
1
ℓητ)

∏

η′∈Cℓ\{η}

(
X − j1(

1
ℓη

′τ)
)
,

Ψℓ,3(j1(τ), j2(τ), j3(τ)) =
∑

η∈Cℓ

j3(
1
ℓητ)

∏

η′∈Cℓ\{η}

(
X − j1(

1
ℓη

′τ)
)
.

(1)

The degrees of the polynomials Ψℓ,k in X are at most ℓ3 + ℓ2 + ℓ+ 1, and their
total degrees in j1, j2, j3 are at most 10(ℓ3 + ℓ2 + ℓ + 1)/3 by [9, Prop. 4.10].
The height of their coefficients is O(ℓ3 log ℓ) by [9, Thm. 1.1].

The denominator of Siegel modular polynomials. We call a polynomial
Dℓ ∈ Z[j1, j2, j3] a denominator of the Siegel modular polynomials Ψℓ,k if for
each 1 ≤ k ≤ 3, we have

DℓΨℓ,k ∈ Z[j1, j2, j3, X].

Our goal is to construct a denominator for the Siegel modular polynomials,
given by an analytic formula. For every τ ∈ H2, we define

gℓ(τ) =
∏

η∈Cℓ

det(η∗τ)−20h2
10(

1
ℓητ).

8

One can check that the function gℓ is independent of the choice of representatives
of Γ0(ℓ)\Γ(1), and is a Siegel modular form of weight

wℓ = 20(ℓ3 + ℓ2 + ℓ+ 1).

For every τ ∈ H2 and 0 ≤ i ≤ ℓ3 + ℓ2 + ℓ + 1, we define f
(i)
ℓ,k(τ) as the coeffi-

cient of X i in the polynomial gℓ(τ)Ψℓ,k(j1(τ), j2(τ), j3(τ)). These functions are
holomorphic on H2, as is easily seen from the formulæ (1) defining the modular
polynomials, and also are Siegel modular forms of weight wℓ.

Proposition 3.2. The modular forms gℓ and f
(i)
ℓ,k are defined over Z.

Proof. The modular form gℓ has an algebraic interpretation as follows. Start
from a principally polarized abelian surface A and a basis ω of the space of
differential forms Ω1(A) on A, and let Ai be the abelian surfaces ℓ-isogenous
to A. Let fi : A → Ai be an ℓ-isogeny, and let ωi be the basis of Ω1(Ai) such
that f∗

i ωi = ω. Then

gℓ(A,ω) =
∏

h2
10(Ai, ωi).

Since the Hecke correspondence is defined over Q, and the modular form h10 is
also defined over Q, the modular form gℓ is also defined over Q. This is also

the case of f
(i)
ℓ,k, because the coefficients of Siegel modular equations are defined

over Q as modular functions. Therefore we only have to show that their Fourier
coefficients are algebraic integers.

Let f be a Siegel modular form of weight k, defined over Z, and let S ⊂ Cℓ.
Then we claim that the function

h(τ) =
∏

η∈S

det(η∗τ)−kf(1ℓητ)

has a Fourier expansion in terms of

exp(2πiτj/ℓ
2), 1 ≤ j ≤ 3, where τ =

(
τ1 τ3
τ3 τ2

)
.

with coefficients in Z[exp(2πi/ℓ2)]. This implies Proposition 3.2 because gℓ and

the f
(i)
ℓ,k are sums of such functions.

In order to compute the Fourier expansion of h(τ), we compute, for each
η ∈ S, a matrix ηR ∈ Γ(1) such that the transformation τ 7→ ηR(1ℓητ) leaves
the cusp at infinity “invariant”. More precisely, we require that

ηR
(
a b
ℓc ℓd

)
=

(
Aη Bη

0 Dη

)
, where η =

(
a b
c d

)
.

To compute ηR, we proceed as follows. Let u1, u2 ∈ Z4 be the two columns of
the 4×2 matrix

(
−ℓc
a

)
. Then 〈u1, u2〉 = 0, so u1, u2 are contained in an isotropic

subspace V ⊂ Q4 of dimension 2. The two last lines of ηR are given by a basis
of Z4 ∩ V , and we complete them into a symplectic basis of Z4 to obtain ηR.

9

• If η = T1(a, b, c), we take

ηR = I4, Dη = −ℓI2, detDη = ℓ2.

• If η = T2(a, b, c), we take

ηR = J, Dη = I2, detDη = 1.

• If η = T3(a), we take

ηR =




0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0


 , Dη =

(
−a 1
−ℓ 0

)
, detDη = ℓ.

• If η = T4, we take

ηR =




1 0 0 0
0 ℓ 0 1
−ℓ ℓ 1 1
1 −1 0 0


 , Dη =

(
2ℓ ℓ
−1 0

)
, detDη = ℓ.

Then we compute that

h(τ) =
∏

η∈S

det(η∗τ)−k det
(
ηR∗(1ℓητ)

)−k
f
(
(Aητ +Bη)D

−1
η

)

=
∏

η∈S

ℓ2k det(Dη)
−kf

(
(Aητ +Bη)D

−1
η

)
.

We develop f((Aητ + Bη)D
−1
η) using the Fourier expansion of f , and obtain a

Fourier expansion with coefficients in Z[exp(2πi/ℓ2)] in terms of exp(2πiτj/ℓ
2).

Moreover each of the det(Dη)
−kℓ2k is an integer. This proves the claim.

The computations in the proof show that gℓ is divisible by ℓ20(2ℓ
2+ℓ+1), but

we do not need this fact. We finally define

Dℓ(τ) = 12wℓ
h4(τ)

⌊wℓ/6⌋

h10(τ)ah4(τ)b

∏

η∈Cℓ

det(η∗τ)−20h2
10(

1
ℓητ), (2)

where a, b are such that 4⌊wℓ/6⌋+ wℓ = 10a+ 4b with 0 ≤ b ≤ 4. Let us show
that Dℓ is indeed a denominator of the Siegel modular polynomials of level ℓ.

Proposition 3.3. Dℓ ∈ Z[j1, j2, j3], and DℓΨℓ,k ∈ Z[j1, j2, j3, X] for 1 ≤ k ≤ 3.

Proof. By Proposition 3.2 and Lemma 3.1, we know that

12wℓgℓ ∈ Z[h4, h6, h10, h12], and 12wℓf
(i)
ℓ,k ∈ Z[h4, h6, h10, h12] for all k, i.

10

Moreover, the equalities

h4h6 = j1h10, h2
4h12 = j2h

2
10, h5

4 = j3h
2
10

show that for every modular form f ∈ Z[h4, h6, h10, h12] of weight k, we have

h
⌊k/6⌋
4 f

ha
10h

b
4

∈ Z[j1, j2, j3]

where a, b are such that 4⌊k/6⌋+k = 10a+4b and 0 ≤ b ≤ 4. See also the proof
of [9, Lem. 4.7].

3.2 Hilbert modular polynomials

Invariants on Hilbert moduli spaces. Fix a real quadratic field K of dis-
criminant ∆K , and let ZK be its ring of integers. We also fix a real embedding
of K, and denote the other embedding by x 7→ x. Let Z∨

K = (1/
√
∆)ZK be the

dual of ZK with respect to the trace form, and define the group

ΓK(1) =

{(
a b
c d

)
∈ SL2(K) | a, d ∈ ZK , b ∈ (Z∨

K)−1, c ∈ Z∨
K

}
.

Write H1 = {z ∈ C | Im z > 0}. Our notation for the action of ΓK(1) on H2
1 is

the following: for every γ ∈ ΓK(1), every α ∈ K and every t = (t1, t2) ∈ H2
1, we

write

γt =

(
at1 + b

ct1 + d
,
at2 + b

ct2 + d

)
, αt = (αt1, αt2), and γ∗τ = (ct1 + d)(ct2 + d).

Each point of the quotient ΓK(1)\H2
1 corresponds to a principally polar-

ized abelian surface over C with real multiplication by ZK . The involution of
ΓK(1)\H2

1 given by
σ : (t1, t2) 7→ (t2, t1)

exchanges the real multiplication embedding with its Galois conjugate.
One way to define generic invariants on Hilbert moduli spaces consists in

pulling back invariants from the Siegel modular space by the forgetful map. Let
(e1, e2) be a Z-basis of ZK , and write

RK =

(
e1 e2
e1 e2

)
∈ GL2(R).

Then the Hilbert embedding is the map

ΦK : H2
1 → H2

(t1, t2) 7→ Rt

(
t1 0
0 t2

)
R.

(3)

11

One can check that ΦK induces a map ΦK : ΓK(1)\H2
1 → Γ(1)\H2, and that ΦK

is independent of the choice of basis. Generically, the map ΦK is 2-1: for every
t ∈ H2

1, we have ΦK(t) = ΦK(σ(t)). The image of ΦK inside Γ(1)\H2 is
algebraic, and is described in terms of Igusa invariants by the Humbert equation

HK(j1, j2, j3) = 0, HK ∈ Z[j1, j2, j3].

The pullback of Igusa invariants by ΦK are symmetric invariants, and could
be used to define Hilbert modular polynomials. However, we do not know in
general how to relate j1, j2, j3 to a set of generators for the ring MF(ΓK(1),Z)
of symmetric Hilbert modular forms of even weight, so we are unable to give a
general formula for the denominator of Hilbert modular polynomials in Igusa
invariants.

When the structure of MF(ΓK(1),Z) is known, we could in principle de-
rive such a formula, but it is better to design other invariants in terms of the
generating set. For instance, when K = Q(

√
5) (resp. K = Q(

√
2)), the ring

MF(ΓK(1),Z) is generated by four elements G2, F6, F10, F12 (resp. three ele-
ments G2, F4, F6), where the subscripts denote the weights [17]. In these cases
we define the Gundlach invariants g1, g2 as

g1 =
G5

2

F10
, g2 =

G2
2F6

F10

(
resp. g1 =

G2
2

F4
, g2 =

G2F6

F 2
4

)
.

For simplicity, we concentrate on Hilbert modular polynomials in Gundlach
invariants for K = Q(

√
5) in the sequel, and highlight only the differences that

would appear in the case of Igusa invariants. Then, the analogue of Lemma 3.1
is as follows.

Lemma 3.4. Let K = Q(
√
5). Then for every f ∈ MF(ΓK(1),Z) of weight

k, we have 2kf ∈ Z[G2, G6, F10].

Proof. The ring MF(ΓK(1),Z) is generated by G2, F6, F10, and

F12 =
1

4
(F 2

6 −G2F10).

Hilbert modular polynomials. Let ℓ be a prime that splits in K = Q(
√
5)

in two principal ideals generated by totally positive elements β, β ∈ ZK . Define
the subgroup Γ0

K(β) of ΓK(1) by

Γ0
K(β) =

{(
a b
c d

)
∈ ΓK(1) | b = 0 mod β

}
.

A set Cβ of representatives for the quotient Γ0
K(β)\Γ(1) consists of the ℓ + 1

following matrices:

(
0

√
∆K

−1/
√
∆K 0

)
, and

(
1 a

√
∆K

0 1

)
for a ∈ J0, ℓ− 1K.

12

A set of representatives for the quotient Γ0
K(β)\(Γ(1)⋊ 〈σ〉) is Cσ

β = Cβ ∪Cβσ.
The Hilbert modular polynomials of level β in Gundlach invariants are the two
polynomials

Ψβ,k ∈ Q(g1, g2)[X], 1 ≤ k ≤ 2

such that for every t ∈ H2
1, we have

Ψβ,1(g1(t), g2(t)) =
∏

η∈Cσ
β

(
X − g1(

1
β ηt)

)
,

Ψβ,2(g1(t), g2(t)) =
∑

η∈Cσ
β

g2(
1
β ηt)

∏

η′∈Cσ
β
\{η}

(
X − g1(

1
β η

′t)
)
.

The degrees of the polynomials Ψβ,k in X are at most 2ℓ + 2, and their total
degrees in g1, g2 are at most 10(ℓ+ 1)/3 by [9, Prop. 4.11]. The height of their
coefficients is O(ℓ log ℓ) by [9, Thm. 1.1].

The denominator of Hilbert modular polynomials. We call Dβ ∈ Z[g1, g2]
a denominator of the Hilbert modular polynomials Ψβ,k if for each 1 ≤ k ≤ 2,
we have

DβΨβ,k ∈ Z[g1, g2].

We now construct such a denominator in the case K = Q(
√
5); the procedure

is easily copied in the case K = Q(
√
2). For every t ∈ H2

1, we define

gβ(t) =
∏

η∈Cσ
β

(η∗t)−20h2
10(

1
β ηt).

We can show that gβ is independent of the choice of representatives of the
quotient Γ0

K(β)\ΓK(1), and that gβ is a symmetric Hilbert modular form of
weight

wβ = 20(2ℓ+ 2).

As above, for every 0 ≤ i ≤ 2ℓ + 2 and 1 ≤ k ≤ 2, we define f
(i)
β,k(t) as the

coefficient of X i in the polynomial gβ(t)Ψβ,k(g1(t), g2(t)). It is also a symmetric
modular form of weight wβ .

Proposition 3.5. The modular forms gβ and f
(i)
β,k are defined over Z.

Proof. As before, both the Hecke correspondence and h10 are defined over Q,

so gβ is defined over Q. This is also the case of f
(i)
β,k because the coefficients of

Hilbert modular equations are defined over Q as modular functions.
As in Proposition 3.2, it is enough to show the following: if f is a Hilbert

modular form of weight k and S is a subset of Cσ
β , then the function

h(t) =
∏

η∈S

(η∗t)−kf(1β ηt)

has a Fourier expansion in terms of the exp(2πi(nt1 + nt2)/ℓ) for n ∈ ZK such
that n ≫ 0, with coefficients in Z[exp(2πi/ℓ)]. The computations are easier
than in the Siegel case due to the simpler form of coset representatives:

13

• If η =

(
0

√
∆K

−1/
√
∆K 0

)
, then we make η act again, and compute that

(η∗t)−kf(1β ηt) = ℓf(βt).

• If η =

(
1 a

√
∆K

0 1

)
, then we directly have

(η∗t)−kf(1β ηt) = f(1β (t+ (a
√
∆K ,−a

√
∆K)).

Therefore the Fourier expansion of h must have integer coefficients.

For every t ∈ H2
1, we define

Dβ(t) = 2wβ
G2(t)

2⌊wβ/6⌋

F10(t)aG2(t)b

∏

η∈Cσ
β

(η∗t)−20h2
10(

1
β ητ). (4)

where a, b are such that 2⌊wβ/6⌋+ wβ = 10a+ 2b with 0 ≤ b ≤ 4.

Proposition 3.6. Let K = Q(
√
5) and β as above. Then Dβ is a denominator

of the Hilbert modular polynomials of level β.

Proof. By Proposition 3.5 and Lemma 3.4, we know that

2wβgβ ∈ Z[G2, F6, F10], and 2wηf
(i)
β,k ∈ Z[G2, F6, F10] for all k, i.

Moreover, the equalities

G2
2F6 = g2F10, G5

2 = g1F10

show that for every modular form f ∈ Z[G2, F6, F10] of weight k, we have

G
2⌊k/6⌋
2 f

F a
10G

b
2

∈ Z[g1, g2]

where a, b are such that 4⌊k/6⌋+ k = 10a+ 2b and 0 ≤ b ≤ 4.

In the general case of Hilbert modular equations in Igusa invariants where
we are not able do determine a denominator a priori, we will have to recognize
general elements in number fields, instead of integers, from complex approx-
imations. Although the height of these rational numbers is OK(ℓ log ℓ), the
dependence of the implied constant on K is unknown. A possible strategy is
to double the precision until two consecutive rational reconstructions give the
same result: this is guaranteed to terminate within the same runtime bound, up
to constants. However, correctness is subject to the heuristic that the algorithm
will not stop with an incorrect result before reaching the correct precision.

14

4 Computing theta functions

In this section, we study the critical part of the evaluation algorithm in terms of
practical runtime, namely the computation of theta functions at high precision
at various points in H2. Using an algorithm of Dupont [4, §10.2], this can
be heuristically done in quasi-linear time for a fixed τ satisfying the following
conditions:

|xj | ≤
1

2
for each 1 ≤ j ≤ 3,

2 |y3| ≤ y1 ≤ y2,

|zj | ≥ 1 for j ∈ {1, 2},

(5)

where we denote

τ =

(
z1 z3
z3 z2

)
, xj = Re zj , yj = Im zj .

Note that [4, Conjecture 9.1] holds under these conditions by [10]: theta con-
stants at τ can be computed using Borchardt means with good choices of square
roots.

Dupont’s algorithm is based on Newton iterations, but their convergence has
not yet been proved. Here, we make the fundamental assumption that these
Newton iterations do converge, and even converge uniformly on a compact set.
This must be the case if the Jacobian of the Newton system is invertible and
the functions involved are analytic.

Hypothesis 4.1. There exists an algorithm such that the following holds. Let

τ ∈ H2 and N ≥ 1. Assume that τ satisfies conditions (5) together with the

bound

max{y1, y2} ≤ 10.

Then, given an approximation of τ to precision N , the algorithm computes

squares of theta constants at τ in O(M(N) logN) binary operations with a

precision loss of O(1) bits.

The subset of H2 defined by the conditions in hypothesis 4.1 is compact.
Derivatives of theta constants are uniformly bounded on this compact set, hence
the precision loss of O(1) bits.

Using this assumption, we first describe an algorithm to compute theta func-
tions in uniform quasi-linear time at a given τ that belongs to the fundamental
domain F2, using techniques similar to the genus 1 case [5, Thm. 5]. Second, for
any τ ∈ H2, we adapt the classical reduction algorithm to find τ ′ ∈ Γ(1)τ very
close to F2. Put together, this allows us to evaluate theta functions at every
τ ∈ H2, and to bound the precision losses involved.

4.1 Computing theta constants on F2

There are two easy cases:

15

1. If τ belongs to the compact set from hypothesis 4.1, then we use Dupont’s
algorithm directly.

2. If y1 and y2 satisfy min{y1, y2} ≥ CN , where C is an absolute con-
stant, then we use the naive algorithm to compute theta constants at τ
within O(M(N)) binary operations.

For other values of τ ∈ F2, we fall back to one of these two cases using
duplication formulas. For every τ ∈ H2, write

D1(τ) =
τ

2
, D2(τ) =

(
2z1(τ) z3(τ)
z3(τ)

1
2z2(τ)

)
.

Lemma 4.2. Let τ ∈ H2 satisfying conditions (5).

1. If D1(τ) satisfies conditions (5), then (θ2j (τ))j∈{0,1,2,3} is obtained from

(θ2j (D1(τ)))j∈{0,1,2,3} by a Borchardt iteration with good choice of roots.

2. If D2(τ) satisfies conditions (5), except that the real part of z1 is allowed

to be smaller than 1 instead of 1/2, then (θ2j (τ))j∈{0,2,4,6} is obtained from

(θ2j (D2(τ)))j∈{0,2,4,6} by a Borchardt iteration with good choice of roots.

Proof. The first item is the classical duplication formula: the choice of roots is
given by the theta constants θj(D1(τ)) for 0 ≤ j ≤ 3, and they are in good
position by [20, Prop. 7.7]. For the second item, apply the theta transformation
formula [6, Thm. 2 p. 175 and Cor. p. 176] for the symplectic matrix




0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1


 .

The theta constants θj(D2(τ)) for j ∈ {0, 2, 4, 6} also are in good position by
[10, Lem. 5.2].

Proposition 4.3. There exists an algorithm which, given τ ∈ F2 and N ≥ 1,
computes the squares of theta constants at τ to precision N within O(M(N) logN)
binary operations, uniformly in τ .

Proof. First, we let k2 be the smallest integer such that

2k2y1(τ) ≥ min{CN, 2−k2−2y2(τ)}

where C is an absolute constant. Let τ ′ be the matrix obtained after applying k2
times D2 to τ and reducing the real part at each step. In order to compute theta
constants at τ to precision N , we will compute theta constants at τ ′ to some
precision N ′ ≥ N , then apply k2 times the duplication formula from Lemma 4.2.
We have k2 ∈ O(logN), and the total precision loss taken in extracting square
roots is O(N), so the total precision loss is O(N) bits: hence we can choose
N ′ = C′N where C′ is an absolute constant.

16

Two cases arise now. If y1(τ
′) ≥ CN , then we also have y2(τ

′) ≥ CN , so we
can compute theta constants at τ ′ to precision N ′ using O(M(N)) operations
with the naive algorithm. Otherwise, we have

y1(τ
′) ≤ y2(τ

′) ≤ 4y1(τ
′) ≤ 4CN.

Therefore we can find an integer k1 ∈ O(logN) such that Dk1

1 (τ ′) belongs to the
compact set defined in hypothesis 4.1. The total precision loss arising from the
duplication formula for D1 is O(1) bits per step, so we recover theta constants
at τ ′ to precision N within O(M(N) logN) binary operations.

4.2 The approximate reduction algorithm

In order to evaluate theta constants at a given τ ∈ H2, our strategy is to reduce τ
to F2 and to compute theta constants there. However, the classical reduction
algorithm is based on inequalities, and this causes problems on the boundary
when the input is inexact. Therefore, we rather describe reduction algorithms to
neighborhoods of F2; we still write inequalities, but they should be understood
as inclusions of intervals. Then we show the validity of the reduction algorithm
on inexact input provided that the precision remains high enough.

We start by defining neighborhoods of F2. Fix ε > 0, and let

Y =

(
y1 y3
y3 y2

)

be a symmetric 2 × 2 real matrix. Assume that Y is positive definite. We say
that Y is ε-Minkowski reduced if

y1 ≤ (1 + ε)y2 and − εy1 ≤ 2y3 ≤ (1 + ε)y1.

Let Σ ⊂ Γ(1) be the set of 19 matrices defining the boundary of F2. We define
the neighborhood Fε

2 of F2 as the set of all matrices τ ∈ H2 such that

1. Im(τ) is ε-Minkowski reduced.

2. |Re(τ)| ≤ 1/2 + ε.

3. |det(σ∗τ)| ≥ 1− ε for every σ ∈ Σ.

The fundamental domain F2 corresponds to the case ε = 0.
We now describe the approximate reduction algorithm. The input is τ ∈ H2

to precision N ≥ 1, and the output is τ ′ ∈ Fε
2 together with γ ∈ Γ(1) such that

τ ′ = γτ . We assume that the precision is greater than |log ε| + 1 at any time.
If we run out of precision, we stop and output “failure”.

Algorithm 4.4 (Reduction to Fε
2). Start with τ ′ = τ and iterate the following

three steps until τ ′ ∈ Fε
2 , keeping track of a matrix γ ∈ Γ(1) such that τ ′ = γτ :

1. Reduce Im(τ ′) such that it becomes ε-Minkowski reduced.

2. Reduce Re(τ ′) such that |Re(τ ′)| ≤ 1/2 + ε.

17

3. Apply σ ∈ Σ such that |detσ∗(τ ′)| is at most 1− ε/2 and minimal, if such
a σ exists.

4. Update γ ∈ Γ(1) and recompute τ ′ = γτ .

In order to analyze Algorithm 4.4, we mimic Streng’s analysis of the exact
reduction algorithm [20, §II.5.3]. For τ ∈ H2, we define

Λ(τ) = logmax{2, |τ | , det(Im τ)−1}.

Denote by λ1(τ) ≤ λ2(τ) the two eigenvalues of Im(τ), and by m1(τ) ≤ m2(τ)
the successive minima of Im(τ) on the lattice Z2. By [20, (5.4) p. 54], we always
have

3

4
m1(τ)m2(τ) ≤ det Im(τ) ≤ m1(τ)m2(τ), (6)

so that
logmax{λ1(τ)

−1, λ2(τ),m1(τ)
−1,m2(τ)} ∈ O(Λ(τ)).

First, we detail the Minkowski reduction step.

Lemma 4.5. There exists an algorithm and an absolute constant C such that

the following holds. Let τ ∈ H2 and ε > 0. Then, given an approximation of τ
to precision N ≥ C(Λ(τ)+ |log ε|), the algorithm computes a matrix U ∈ SL2(Z)
such that U t Im(τ)U is ε-Minkowski reduced within O(M(N) logN) binary op-

erations.

Proof. Write Im(τ) = RtR, and consider the matrix R′ obtained by rounding
the coefficients of 2NR to the nearest integers. If C is chosen appropriately,
then the matrix R′ is still invertible. We apply a quasi-linear version of the
LLL algorithm to R′ [18], and obtain a reduced basis of the lattice R′Z2 within
O(M(N) logN) binary operations . The base change matrix U ∈ SL2(Z) must
satisfy

log |U | = O(Λ(τ))

by [20, Lem. 5.6]. Therefore, the matrix U t Im(τ)U will be ε-Minkowski reduced
if C is large enough.

Then, we bound precision losses during Algorithm 4.4.

Lemma 4.6. Let τ, τ ′ ∈ H2, and assume that there exists γ ∈ Γ(1) such that

τ ′ = γτ . Then we have

log+ max{|γ∗τ | ,
∣∣(γ∗τ)−1

∣∣} = O(max{Λ(τ),Λ(τ ′)}),
log |γ| = O(max{Λ(τ),Λ(τ ′)}).

Proof. Let R be a real matrix such that RtR = Im(τ). Then we have

Im(τ ′) = (γ∗τ)−t Im(τ)(γ∗τ)−1 = R′tR′

18

with R′ = R(γ∗τ)−1. Since |R| ≤ |Im(τ)|1/2 and |R′| ≤ |Im(τ ′)|1/2, we obtain

|γ∗τ | =
∣∣R′−1R

∣∣ ≤ 2
|R′|

det(R′)
|R|

so log+ |γ∗τ | = O(max{Λ(τ),Λ(τ ′)}), and similarly for (γ∗τ)−1.
It remains to bound |γ|. If c, d denote the two lower blocks of γ, then we

have Im(γ∗τ) = c Im(τ). Therefore log+ |c| = O(max{Λ(τ),Λ(τ ′)}), and in
turn log+ |d| ≤ log+(|cτ | + |γ∗τ |) = O(max{Λ(τ),Λ(τ ′)}). Finally, we bound
the upper blocks a and b of γ using the relation aτ + b = τ ′(cτ + d).

Lemma 4.7. There is an absolute constant C such that the following holds. Let

τ ∈ H2 and ε > 0, and assume that the precision during Algorithm 4.4 remains

greater than |log ε| + 1. Then the number of iterations is O(Λ(τ)). Moreover,

during the algorithm, the quantities |log(|det(γ∗τ)|)|, Λ(τ ′) and log |γ| remain

in O(Λ(τ)).

Proof. The number of iterations is O(Λ(τ)) by [20, Prop. 5.16]: observe that
[20, Lem. 5.14 and 5.15] still apply, because det Im(τ ′) is strictly increasing
in Algorithm 4.4. The proof of [20, Lem. 5.17] also applies to Algorithm 4.4
with slightly worse constants. This shows the bound O(Λ(τ)) on log |τ ′| and
log |det(γ∗τ)|.

During the algorithm, we have log+ m2(τ
′) = O(Λ(τ)) by [20, Lem. 5.12].

Moreover det Im(τ ′) ≥ det Im(τ), so

m1(τ
′)−1 ≤ m2(τ

′)

det Im(τ ′)
≤ m2(τ

′)

det Im(τ)
≤ 4m2(τ

′)

3m1(τ)2

by (6). Therefore we also have Λ(τ ′) = O(Λ(τ)). The remaining bounds follow
from Lemma 4.6.

Proposition 4.8. There is an absolute constant C such that the following holds.

Let τ ∈ H2 and ε > 0. Then, given an approximation of τ to precision N ≥
C(Λ(τ) + |log ε|) as input, Algorithm 4.4 does not run out of precision, and

computes a matrix γ ∈ Γ(1) such that γτ ∈ Fε
2 and log |γ| = O(Λ(τ)). It costs

O(M(N)N logN) binary operations.

Proof. By Lemma 4.7, there is a constant C′ such that log |γ| ≤ C′Λ(τ) during
the execution of Algorithm 4.4 as long as the absolute precision is at least
|log ε| + 1. Therefore, if C is chosen appropriately, step 4 in Algorithm 4.4
ensures that the absolute precision is at least |log ε| + 1 at every step. Hence
the estimate on log |γ| and Λ(τ ′) remains valid until the end of the algorithm,
and we can perform the approximate Minkowski reductions using Lemma 4.5.

By Lemma 4.7, there are O(Λ(τ)) steps in Algorithm 4.4, and by Lemma 4.5,
each step costs O(M(N) logN) binary operations. Hence the cost is overall
O(M(N)N logN) binary operations. When the algorithm stops, the absolute
precision is still greater than |log ε|+ 1, so the final τ ′ must belong to Fε

2 .

19

Given τ ′ ∈ Fε
2 , we can increase the imaginary parts of the coefficients slightly

to obtain τ ′′ ∈ H2 that satisfies conditions (5), and such that

|τ ′′ − τ ′| ≤ Cε |τ ′|

for some absolute constant C.

Corollary 4.9. Under hypothesis 4.1, there exist an algorithm and an absolute

constant C such that the following holds. Let τ ∈ H2 and N ≥ 1. Then, given

an approximation of τ to precision N + CΛ(τ), the algorithm computes

1. a matrix γ ∈ Sp4(Z) such that log |γ| = O(Λ(τ)),

2. a matrix τ ′′ ∈ F2 such that τ ′′ is an approximation of γτ to precision N ,

3. an approximation of squares of theta constants at γτ to precision N ,

within

O
(
M(Λ(τ))Λ(τ) log Λ(τ) +M(N) logN

)

binary operations.

Proof. Fix ε = 0.01, for instance. First, we apply Proposition 4.8 to compute γ
such that γτ ∈ Fε

2 , using O
(
M(Λ(τ))Λ(τ) log Λ(τ)

)
binary operations. Then,

we recompute τ ′ to high precision, and reduce it further if necessary to land
in Fε′

2 where ε′ = 2−N exp(−CΛ(τ)) for some appropriate constant C. This
costs O(M(N+Λ(τ))) binary operations. Finally we compute τ ′′ which satisfies
conditions (5) and is close to τ ′; the matrix τ ′′ is still an approximation of γτ ,
with O(Λ(τ)) bits of precision lost. We output theta constants at τ ′′ to precision
N +O(1), which can be computed in time O(M(N) logN) by Proposition 4.3.

5 Computing period matrices

Let F be a number field of degree d, and fix a complex embedding σ of F . In
this section, we investigate the first step of the algorithm to evaluate modular
polynomials: given Igusa invariants (j1, j2, j3) ∈ F 3, compute a period matrix
τ ∈ F2 with Igusa invariants σ(j1), σ(j2), σ(j3). We may assume that j3 6= 0:
otherwise, modular polynomials are not defined at (j1, j2, j3). Then τ can be
computed in quasi-linear time using Borchardt means [4, §9.2.3]; our goal is to
bound the precision loss in the process.

During the algorithm, we will consider finitely many algebraic complex num-
bers constructed from σ(j1), σ(j2), σ(j3). Let Bσ ≥ 0 such that

|log(|θ|)| ≤ Bσ

for each nonzero θ in this finite family of algebraic numbers. If H denotes the
height of (j1, j2, j3), then we can take Bσ = O(dH); but in fact the sum of these
bounds over all the complex embeddings of F is also O(dH). A typical example
of how we use Bσ is as follows.

20

Lemma 5.1. There exists an algorithm such that the following holds. Let

j1, j2, j3 ∈ F such that j3 6= 0, let σ be a complex embedding of F , and define Bσ

as above. Let N ≥ 1. Then, given approximations of σ(jk) for 1 ≤ k ≤ 3 to

precision N , the algorithm computes a genus 2 hyperelliptic curve C over C with

Igusa invariants σ(j1), σ(j2), σ(j3) within O(M(N + Bσ)) binary operations,

with a precision loss of O(Bσ) bits.

Proof. Use Mestre’s algorithm [13]. This algorithm involves O(1) elementary
operations with algebraic numbers constructed from σ(jk) for 1 ≤ k ≤ 3, hence
the estimates on the running time and the precision loss.

We first prove that the period matrix τ ∈ F2 of C is bounded in terms of Bσ.
This is done by looking at theta quotients at τ . We use the traditional notation
for genus 2 theta constants, used in [4, 20]: the even ones are

θj(τ) for j ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}.

Lemma 5.2. Let C be as in Lemma 5.1, and let τ ∈ F2 be its period matrix.

Then we have

|τ | = O(Bσ).

Proof. The theta quotients θj(τ)/θ0(τ) are algebraic numbers constructed from
the coefficients of C, and are nonzero if j 6= 15. In particular, we have

∣∣∣∣log
(∣∣∣∣

θj(τ)

θ0(τ)

∣∣∣∣
)∣∣∣∣ = O(Bσ) for j ∈ {4, 8}.

Write τ =

(
τ1 τ3
τ3 τ2

)
. By [20, Prop. 7.7], we have

|θ0(τ) − 1| < 0.405,

|θ4(τ)/ exp(iπτ1/4)− 1| < 0.368,

|θ8(τ)/ exp(iπτ2/4)− 1| < 0.368.

Therefore both Im(τ1) and Im(τ2) are in O(Bσ), hence also |Im(τ3)| because
det Im(τ) > 0. Since |Re(τ)| ≤ 1/2, the result follows.

In order to compute τ from its theta quotients, we use Borchardt means [4,
§9.2.3]. Define the matrices J,M1,M2,M3 ∈ Sp4(Z) whose action on τ ∈ H2 is
given by

Jτ = −τ−1, M1τ = τ+

(
1 0
0 0

)
, M2τ = τ+

(
0 0
0 1

)
, M3τ = τ+

(
0 1
1 0

)
.

Let γi = (JMi)
2 for 1 ≤ i ≤ 3. Given theta quotients at τ , we compute the

values of the modular functions

bj = θ2j/θ
2
0, 1 ≤ j ≤ 3

21

at τ and γiτ for 1 ≤ i ≤ 3. We obtain the quantities

1

θ20(γiτ)
, 1 ≤ i ≤ 3

as the limits of Borchardt sequences with good sign choices [10] starting from
the tuples (1, b1(γiτ), b2(γiτ), b3(γiτ)). Finally, we use that

θ20(γ1τ) = −iτ1θ
2
4(τ), θ20(γ2τ) = −iτ2θ

2
8(τ), θ20(γ3τ) = − det(τ)θ20(τ). (7)

In order to bound the complexity of this algorithm, we need estimates on the
convergence of the Borchardt sequences above that are uniform in τ . We use
the fact that theta constants converge quickly as the smallest eigenvalue λ1(τ)
of Im(τ) tends to infinity. Moreover, λ1(γiτ) is bounded from below when
τ ∈ F2 and |τ | is not too large.

Lemma 5.3. For every τ ∈ H2 such that λ1(τ) ≥ 1, we have

|θj(τ)− 1| < 4.18 exp(−πλ1(τ)) for 0 ≤ j ≤ 3.

Proof. Let 0 ≤ j ≤ 3. Using the series expansion of θj , we obtain

|θj(τ)− 1| ≤
∑

n∈Z2\{0}

exp(−πnt Im(τ)n) ≤
∑

n∈Z2\{0}

exp(−πλ1(τ) ‖n‖2).

By splitting the plane into quadrants, we see that this last sum is equal to
4S2 + 4S, with

S =
∑

n≥1

exp(−πλ1(τ)n
2) ≤ exp(−πλ1(τ))

1− exp(−3πλ1(τ))
.

Since λ1(τ) ≥ 1, the conclusion follows.

Lemma 5.4. Let τ ∈ H2 and γ ∈ Sp4(Z). Then

λ1(γτ) ≥
det Im(τ)

8 |γ|2 |τ | (2 |τ |+ 1)2
.

Proof. We have

λ1(γτ) ≥
det Im(γτ)

Tr Im(γτ)
.

By [20, (5.11) p. 57],

Im(γτ) = (γ∗τ)−t Im(τ)(γ∗τ̄)−1

so that

det Im(γτ) =
det Im(τ)

|det(γ∗τ)|2
,

Tr Im(γτ) ≤ 8
∣∣(γ∗τ)−1

∣∣2 |Im(τ)| ≤ 8
|γ∗τ |2 |τ |
|det(γ∗τ)|2

≤ 8
|γ|2 (2 |τ |+ 1)2 |τ |

|det(γ∗τ)|2
.

The result follows.

22

Proposition 5.5. There is an algorithm such that the following holds. Let

τ ∈ F2 and N ≥ 1. Then, given approximations of squares of theta quotients

at τ to precision N , the algorithm computes an approximation of τ within

O
(
M(N + |τ |) log |τ |+M(N) logN

)

binary operations. The precision loss is O(logN + |τ | log |τ |) bits.

Proof. We obtain the quantities

(θ2j (2
nγiτ)/θ

2
0(γiτ))0≤j≤3

after n Borchardt steps. By Lemma 5.4, we know that

|logλ1(γiτ)| = O(log |τ |).

Therefore, we can choose n = O(log |τ |) such that λ1(2
nγiτ) ≥ 10, for instance.

Up to this point, we performed O(log |τ |) elementary operations with complex
numbers z such that log |z| = O(|τ |). Therefore the total cost is

O(M(N + |τ |) log |τ |)

binary operations, and the precision loss is O(|τ | log |τ |) bits. Even if |τ | is not
known explicitly, this moment is detected in the algorithm as when the four
values in the Borchardt sequence get very close to each other.

Then, we normalize so that one of the four values is 1, and continue per-
forming a further O(logN) Borchardt steps: this O-constant and the accuracy
of the result can be made explicit by [4, Prop. 7.2]. This costs O(M(N) logN)
binary operations, and the precision loss is O(logN) bits. This allows us to
compute the quantities θ20(γiτ) for 1 ≤ i ≤ 3; the precision loss up to now is
O(logN + |τ | log |τ |) bits.

Finally, we recover the coordinates of τ using Eq. (7). This final computation
costs O(N + |τ |) binary operations, and the precision loss is O(|τ |) bits. This
ends the proof.

Proposition 5.6. There exists an algorithm such that the following holds. Let

j1, j2, j3 ∈ F , let σ be a complex embedding of F , and choose Bσ as above.

Let N ≥ 1. Then, given approximations of σ(jk) for 1 ≤ k ≤ 3, the algorithm

computes τ ∈ F2 such that the Igusa invariants at τ are the σ(jk) for 1 ≤ k ≤ 3.
This algorithm involves O

(
M(N + Bσ) log(N + Bσ)

)
binary operations, and a

precision loss of O(logN +Bσ logBσ) bits.

Proof. First, we compute a curve C as in Lemma 5.1. Then, by Thomae’s
formula [16, Thm. IIIa.8.1], there is a finite number of possibilities for the values
of squares of theta quotients at τ ; one of them corresponds to an actual τ ∈ F2,
and the others correspond to other elements in the orbit Γ(1)τ . When we run
the algorithm of Proposition 5.5 on these inputs, we may discard all resulting
period matrices that do not belong to F2. In order to distinguish between the
remaining possible values of τ , it is usually enough to compute theta constants

23

to precision O(1) using the naive algorithm, and match with the input. In
extreme cases, we may resort to computing Igusa invariants at all remaining
possible values of τ to precision O(N +Bσ), using O

(
M(N +Bσ) log(N +Bσ)

)

binary operations, by Proposition 4.3.

6 Evaluating Hilbert modular polynomials

In this final section, we give the complete algorithm to evaluate Hilbert mod-
ular polynomials of level β for K = Q(

√
5), given Gundlach invariants (g1, g2)

in a number field F . Let (j1, j2, j3) be the associated Igusa invariants. In
every complex embedding σ of F , we compute a period matrix τ ∈ F2 with
Igusa invariants (j1, j2, j3), and invert the Hilbert embedding to find t ∈ H2

1

such that ΦK(t) is Γ(1)-equivalent to τ . Then we evaluate the numerators and
denominators of Hilbert modular polynomials of level β, by computing theta
constants at ΦK(1β ηt) for η ∈ Cσ

β . Finally, we recognize the coefficients as
algebraic integers.

The case of Siegel modular polynomials is simpler, since we do not have to
invert the Hilbert embedding. We do not detail it and simply point out the
differences in running time.

6.1 Inverting the Hilbert embedding

Recall that for every τ ∈ H2, we denote by λ1(τ) ≤ λ2(τ) the two eigenvalues
of Im(τ).

Lemma 6.1. Let K be a real quadratic field. Then there exists a constant

C > 0 depending only on the choice of Hilbert embedding such that for every

t = (t1, t2) ∈ H2
1, we have

1
Cλ1(ΦK(t)) ≤ min{Im(t1), Im(t2)} ≤ Cλ1(ΦK(t)),
1
Cλ2(ΦK(t)) ≤ max{Im(t1), Im(t2)} ≤ Cλ2(ΦK(t)).

Proof. Use formula (3) describing the Hilbert embedding.

Proposition 6.2. There exists an algorithm and a constant C depending only

on K such that the following holds. Let j1, j2, j3 ∈ F such that j3 6= 0, let σ
be a complex embedding of F , and define Bσ as in §4. Let C be a genus 2
hyperelliptic curve over C with Igusa invariants σ(j1), σ(j2), σ(j3), let τ ∈ F2 be

its period matrix, and assume that Jac(C) has real multiplication by ZK . Then

there exists t = (t1, t2) ∈ H2
1 such that ΦK(t) is a period matrix of C, and

|log(Im ti)| ≤ CBσ for i = 1, 2.

Moreover, given an approximation of τ to precision N + CBσ, the algorithm

computes an approximation of t at precision N within OK(M(N +Bσ) logBσ)
binary operations.

24

The notation OK indicates that the implied constant depends on K.

Proof. By Lemma 5.2, there is an absolute constant C such that

|τ | ≤ CBσ.

The result would be obvious from Lemma 6.1 if there existed t ∈ H2
1 such that

τ = ΦK(t), but this is not always the case. In general, by [2, Lem. 4.1], we know
that there are coprime integers a, b, c, d, e such that

b2 − 4ac− 4de = ∆K and aτ1 + bτ3 + cτ2 + d det(τ) + e = 0. (8)

We claim that the heights of a, b, c, d, e must be in OK(Bσ). Looking at the
complex torus

Aτ = C2/(τZ2 ⊕ Z2),

the rational representation of an endomorphism f in the image of ZK in-
side End(Aτ) is of the form

ρR,τ (f) =




n ma 0 md
−mc mb+ n −md 0
0 me n −mc

−me 0 ma mb+ n


 for some m,n ∈ Z.

by [2, Cor. 4.2]. On the other hand, the analytic representation ρA,τ (
√
∆) of

the endomorphism
√
∆ of Aτ can be computed as follows. Let ω = (ω1, ω2) be a

basis of differential forms on Aτ such that Sym2(ω) corresponds by the Kodaira–
Spencer isomorphism to a deformation of Aτ along the Humbert surface. Then,
the analytic representation of

√
∆ in the basis ω is of the form

±
(√

∆ 0

0 −
√
∆

)
.

Algorithm 4.6 from [11] shows that such a basis ω exists; moreover the base
change matrix m between (dz1, dz2) and ω can be chosen such that

logmax{|m| ,
∣∣m−1

∣∣} = OK(Bσ).

This proves that the analytic representation of the endomorphism
√
∆ on Aτ

satisfies
log+

∣∣∣ρA,τ (
√
∆)

∣∣∣ = OK(Bσ).

For every f ∈ End(Aτ), the rational and analytic representations of f are related
by the formula [1, Rem. 8.14]

ρA,τ (f)(τ I2) = (τ I2)ρR,τ (f).

25

Taking imaginary parts, we find that there exist m,n ∈ Z such that

Im(τ)

(
n ma

−mc mb+ n

)
= Im

(
ρA,τ (

√
∆)τ

)
,

Im(τ)

(
0 md

−md 0

)
= Im

(
ρA,τ (

√
∆)

)
.

Therefore a, b, c, d,m, n must be bounded by OK(Bσ) in height. The same is
true for e by Eq. (8). This proves our claim.

The algorithm to compute t is as follows. We compute the integers a, b, c, d, e
in OK(M(Bσ) logBσ) binary operations with the LLL algorithm, using Eq. (8).
Then, we use the algorithm from [2, Prop. 4.5] to compute a matrix γ ∈ Γ(1)
such that γτ lies in the image of ΦK ; the matrix γ has a simple expression in
terms of a, b, c, d, e, hence we also have

log |γ| = OK(Bσ).

By Lemma 5.4, we also have

Λ(γτ) ∈ OK(Bσ),

so the result follows from Lemma 6.1.

6.2 Analytic evaluation of modular polynomials

Fix K = Q(
√
5). Let F be a number field, let σ be a complex embedding of F ,

and let (g1, g2) ∈ F . Choose β and ℓ as in §3.2, and define Bσ as in §4. In the
following proposition, we detail the algorithm to evaluate the numerator and
denominator of Hilbert modular polynomials at (σ(g1), σ(g2)). We may assume
that g1 6= 0; otherwise, the denominator of modular polynomials vanishes. In
order to avoid complicated expressions, we hide logarithmic factors in the Õ
notation from now on. Actually Õ(T) will always be O(M(T logT) logT).

Proposition 6.3. Under hypothesis 4.1, there exists an algorithm and a con-

stant C such that the following holds. Let N ≥ 1. Then, given approximations

of σ(g1) and σ(g2) to precision N , the algorithm computes σ(Dβ(g1, g2)) and

σ(DβΨβ,k(g1, g2)) for k ∈ {1, 2} within Õ(ℓB2
σ + ℓN) binary operations, with a

precision loss of Õ(ℓBσ + logN) bits.

Proof. We first compute the associated Igusa invariants σ(jk) for 1 ≤ k ≤ 3
using [19, Thm. 1]; see also [15, Thm. 2.13]. Note that j3 6= 0. Using Propo-
sition 5.5, we compute a period matrix τ ∈ F2 having these Igusa invariants
in Õ(N +Bσ) binary operations, with a precision loss of O(logN +Bσ logBσ)
bits. Then, using Proposition 6.2, we compute t ∈ H2

1 such that t has Gundlach
invariants (g1, g2), and

|log(Im ti)| = OK(Bσ), i ∈ {1, 2}.

26

This costs Õ(N+Bσ) binary operations, with a precision loss of O(Bσ) bits. The

next step is to compute the quantities 1
β ηt for η ∈ Cσ

β : this costs Õ(ℓ(N +Bσ))

binary operations, with a precision loss of O(log ℓ) bits. By Lemma 6.1, we have
for every η ∈ Cσ

β :

Λ(ΦK(1β ηt)) = O(Bσ + log ℓ).

We reduce the matrices ΦK(1β ηt) and compute τη ∈ F2 and γη ∈ Γ(1) such that

γη(
1
β ηt) = τη, for every η ∈ Cσ

β .

We also compute squares of theta constants at τ and every τη. By Corollary 4.9,
this can be done within

Õ(ℓB2
σ + ℓN)

binary operations, with a precision loss of O(Bσ+log ℓ) bits. Moreover, we have

log |γη| ∈ O(Bσ + log ℓ).

This yields the values of h4, h6, h10, h12 at the matrices τη using O(ℓ) binary
operations, and a precision loss of O(1) bits.

At the end, we evaluate Dβ(t) using Eq. (4), and the equality

h2
10(

1
β ηt) = (det γ∗

η(
1
β ηt))

−20h2
10(τη),

for every η ∈ Cσ
β . By Lemma 4.6, the total precision loss in this computation

is O(ℓ(Bσ + log ℓ)); the total cost of computing Dβ(t) is Õ(ℓ(N +Bσ)) binary
operations. Up to a similar scalar factor, the polynomials σ(Ψβ,k(g1, g2)) for
k ∈ {1, 2} are given by

∏

η∈Cσ
β

(F10(τη)X +G5
2(τη)) for k = 1,

∑

η∈Cσ
β

G5
2(τη)

∏

η′∈Cσ
β
\{η}

(F10(τη′)X −G2
2(τη′)F6(τη′)) for k = 2.

By Lemma 2.3, these polynomials can be computed in Õ(ℓN) binary operations,
with a precision loss of O(ℓ) bits. We conclude by summing precision losses and
binary costs of each step.

In the case of Siegel modular polynomials, the complexity and precision loss
estimates are similar, with each occurence of ℓ replaced by ℓ3.

6.3 Algebraic evaluation of modular polynomials

Once modular polynomials and their denominators have been computed in every
complex embedding, we only have to recognize their coefficients as algebraic
numbers. We present two results, one in the case of a finite field, and the
second in the case of a number field. Recall that ℓ is a prime that splits in

27

K = Q(
√
5) into two principal ideals generated by totally positive elements, β

and β.
In the case of a finite field, we are given a prime power q = pd, and a monic

polynomial P ∈ Z[X] of degree d, irreducible modulo p. We let M ≥ 1 such
that log |P | ≤ M . We assume that a black box provides us with approximations
of the roots of P to any desired precision. Then, we represent elements of Fq as
elements of Fp[X]/(P).

Proposition 6.4. Under the conditions of the previous paragraph and under

hypothesis 4.1, there exists an algorithm such that the following holds: given ℓ
and g1, g2 ∈ Fq such that Dℓ(g1, g2) 6= 0, the algorithm computes the polynomials

Ψβ,k(g1, g2) ∈ Fq[X] for k ∈ {1, 2} within

Õ(ℓd2 log2 p+ ℓd4M2 + ℓ2d log p+ ℓ2d2M)

binary operations.

If dM = O(log p), and if moreover ℓ = O(log q), then the cost estimate

simplifies to Õ(log3 q) binary operations. If q = p is prime (i.e. d = 1), then the

cost estimate simplifies to Õ(ℓ log2 p+ ℓ2 log p) binary operations. Theorem 1.1
stated in the introduction is the analogue of Proposition 6.4 for Siegel modular
polynomials, where we replace ℓ by ℓ3.

Proof. Let F be the number field Q[X]/(P), and let α be a root of P in F . We
lift g1, g2 to elements of Z[α], with coefficients bounded by log p in height. Then

h(α) ≤ M + log 2,

max{h(g1), h(g2)} ≤ log(p) + dh(α) + log(d) = O(dM + log p).

Since Dβ and the coefficients of Ψβ,k are polynomials in Z[g1, g2] of degree O(ℓ)
and height O(ℓ log ℓ), the algebraic integers we have to recognize all are elements
of Z[α], with coefficients bounded by O(ℓ log ℓ + ℓdM + ℓ log p) in height. By

Lemma 2.5, we can recognize each coefficient within Õ(ℓd2M + ℓd log p) binary
operations, provided that its values in every complex embedding of F are com-
puted to precision at least C(ℓ log ℓ+ℓdM+ℓ log p) in every complex embedding
of F , where C is some absolute constant.

Let σ be a complex embedding of F , and start at precision N ≥ 1. Then
σ(g1), σ(g2) are obtained by replacing α by one of the complex roots of P :

this can be done within Õ(d(M + N)) binary operations, and a precision loss
of O(dM + log p) bits, via Horner’s algorithm. Then we run the algorithm of
Proposition 6.3, for each complex embedding σ of F . It is enough to choose N
in

Õ(ℓdM + ℓ log p+ ℓBσ),

for a cost of Õ(ℓB2
σ + ℓN) binary operations. Since we have

∑

σ

Bσ = O(d log p+ d2M),

28

and each Bσ is in O(d log p + d2M), the total cost of analytic evaluations over
all embeddings is

Õ(ℓd2 log2 p+ ℓd4M2 + ℓ2d log p+ ℓ2d2M)

binary operations, and dominates the cost of algebraic reconstruction.

If g1, g2 ∈ Z are small integers, then the complexity of evaluating modular
equations is quasi-linear in the output size.

Proposition 6.5. There exists an algorithm such that the following holds.

Given the prime ℓ and g1, g2 ∈ Z such that

max{|g1| , |g2|} ∈ O(1) and Dβ(g1, g2) 6= 0 mod p,

the algorithm computes the polynomials Ψβ,k(g1, g2) ∈ Q[X] for k ∈ {1, 2}
within O(M(ℓ2 log ℓ) log ℓ) binary operations.

Proof. In this case, we have Bσ = O(1). It is sufficient to round the result
of Proposition 6.3 with N = Cℓ log ℓ, where C is an absolute constant, to the
nearest integers.

From another point of view, the complexity of evaluating Hilbert modular
polynomials over number fields can be bounded in terms of the discriminant and
the height of the operands. We assume that an LLL-reduced integer basis of the
number field F has been precomputed. Moreover, if mF is the matrix defined in
Lemma 2.6, we assume that a black box provides us with the coefficients of m−1

F

to any desired precision.

Proposition 6.6. Under the conditions from the previous paragraph and hy-

pothesis 4.1, there exists an algorithm such that the following holds. Let H ≥ 1,
and let g1, g2 ∈ F given as quotients of integers of height at most H such that

Dβ(g1, g2) 6= 0. Then the algorithm computes Ψβ,k(g1, g2) ∈ F [X] for k ∈ {1, 2}
within

Õ(d2ℓ log∆F + d3ℓ+ ℓd2H2 + ℓ2d2H)

binary operations.

In the case F = Q, the cost estimate simplifies to Õ(ℓH2 + ℓ2H) binary
operations.

Proof. For simplicity, assume that g1 and g2 are actually integers: in the general
case we multiply Dβ by an appropriate power of a common denominator of g1
and g2 in ZF .

We know that Dβ(g1, g2) and the coefficients of DβΨβ,k(g1, g2) are polyno-
mials in Z[g1, g2] of degree O(ℓ) and height O(ℓ log ℓ): hence they are algebraic

integers of height Õ(ℓH). By Lemma 2.6, we can recognize each coefficient
within Õ(d2ℓH + d2 log∆F + d3) binary operations, provided that complex ap-
proximations are computed at a precision N high enough; it is enough to take
N in Õ(log∆F + dℓH).

29

In order to obtain these approximations, we run the algorithm of Proposi-
tion 6.3 in each complex embedding σ of F , at precision. For each σ, the starting
precision is chosen in Õ(log∆F+dℓH+ℓBσ), so the cost to compute the complex

approximation in the embedding σ is Õ(ℓB2
σ+ℓ log∆F+dℓ2H+ℓ2Bσ) binary op-

erations. The sum of the bounds Bσ is in O(dH), as well as each individual Bσ.

Therefore, the total cost for all embeddings is Õ(ℓd2H2 + ℓd log∆F + ℓ2d2H)
binary operations.

The complexity results of Propositions 6.4 and 6.6 are not entirely satisfac-
tory: the dependence on log p in the finite field case, and on H in the number
field case, is quadratic. This comes from the fact that the reduction algorithm
to the Siegel fundamental domain (Proposition 4.8) is quasi-quadratic in Λ(τ).
Reduction to the fundamental domain in genus 2 is essentially equivalent to
lattice reduction for dimension 4 symplectic lattices, and there are known in-
stances where lattice reduction can be performed in quasi-linear time [18], so
there is certainly some room left for improvement.

References

[1] C. Birkenhake and H. Lange. Complex abelian varieties. Springer-Verlag, Berlin,
second edition, 2004.

[2] C. Birkenhake and H. Wilhelm. Humbert surfaces and the Kummer plane. Trans.
Amer. Math. Soc., 335(5):1819–1841, 2003.

[3] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and E. Schost.
Algorithmes efficaces en calcul formel. Printed by CreateSpace, 2017.

[4] R. Dupont. Moyenne arithmético-géométrique, suites de Borchardt et applica-
tions. PhD thesis, École polytechnique, 2006.

[5] R. Dupont. Fast evaluation of modular functions using Newton iterations and
the AGM. Math. Comp., 80(275):1823–1847, 2011.

[6] J.-I. Igusa. Theta functions. Springer-Verlag, 1972.

[7] J.-i. Igusa. On the ring of modular forms of degree two over Z. Amer. J. Math.,
101(1):149–183, 1979.

[8] F. Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arith-
metic. IEEE Trans. Comput., 66(8):1281–1292, 2017.

[9] J. Kieffer. Degree and height estimates for modular equations on PEL Shimura
varieties. 2020.

[10] J. Kieffer. Sign choices in the AGM for genus two theta constants. 2020.

[11] J. Kieffer, A. Page, and D. Robert. Computing isogenies from modular equations
in genus two. 2019.

[12] C. Martindale. Hilbert modular polynomials. J. Number Theory, 213:464–498,
2020.

[13] J.-F. Mestre. Construction de courbes de genre 2 à partir de leurs modules.
In Effective methods in algebraic geometry (Castiglioncello, 1990), volume 94 of
Progr. Math., page 313–334. Birkhäuser, Boston, 1991.

30

[14] E. Milio. A quasi-linear time algorithm for computing modular polynomials in
dimension 2. LMS J. Comput. Math., 18:603–632, 2015.

[15] E. Milio and D. Robert. Modular polynomials on Hilbert surfaces. J. Number
Theory, 2020.

[16] D. Mumford. Tata lectures on theta. II. Number 43 in Progr. Math. Birkhäuser,
Boston, 1984.

[17] S. Nagaoka. On the ring of Hilbert modular forms over Z. J. Math. Soc. Japan,
35(4):589–608, 1983.

[18] A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-
linear time complexity. In STOC’11 - 43rd annual ACM symposium on Theory
of computing, pages 403–412, San Jose, United States, 2011.

[19] H. L. Resnikoff. On the graded ring of Hilbert modular forms associated with
Q(

√

5). Math. Ann., 208:161–170, 1974.

[20] M. Streng. Complex multiplication of abelian surfaces. PhD thesis, Universiteit
Leiden, 2010.

31

	Introduction
	Precision losses in operations on polynomials
	Elementary operations
	Reconstruction from the roots, interpolation
	Recognizing integers in number fields

	Siegel and Hilbert modular polynomials
	Siegel modular polynomials
	Hilbert modular polynomials

	Computing theta functions
	Computing theta constants on F2
	The approximate reduction algorithm

	Computing period matrices
	Evaluating Hilbert modular polynomials
	Inverting the Hilbert embedding
	Analytic evaluation of modular polynomials
	Algebraic evaluation of modular polynomials

