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Billions of years ago, the Northern Hemisphere of Mars may have been covered by at least one ocean and thousands of lakes and
rivers. These findings, based initially on telescopic observations and images by the Mariner and Viking missions, led investigators
to hypothesize that stromatolite fashioning cyanobacteria may have proliferated in the surface waters, and life may have been
successfully transferred between Earth and Mars via tons of debris ejected into the space following bolide impact. Studies
conducted by NASA’s robotic rovers also indicate that Mars was wet and habitable and may have been inhabited in the ancient
past. It has been hypothesized that Mars subsequently lost its magnetic field, oceans, and atmosphere when bolides negatively
impacted its geodynamo and that the remnants of the Martian seas began to evaporate and became frozen beneath the surface. As
reviewed here, twenty-five investigators have published evidence of Martian sedimentary structures that resemble microbial mats
and stromatolites, which may have been constructed billions of years ago on ancient lake shores and in receding bodies of water,
although if these formations are abiotic or biotic is unknown. These findings parallel the construction of the first stromatolites on
Earth. The evidence reviewed here does not prove but supports the hypothesis that ancient Mars had oceans (as well as lakes) and
was habitable and inhabited, and life may have been transferred between Earth and Mars billions of years ago due to powerful solar
winds and life-bearing ejecta propelled into the space following the bolide impact.

1. The Oceans, Lakes, and Search for
Stromatolites on Mars

In 1784, 1882, and 1895, and based on ground-based tele-
scopic observations, several prominent astronomers sug-
gested that Mars may have had oceans and rivers [1-3]; a
hypothesis later supported by evidence was provided by the
Mariner, Viking, and Mars Global Surveyor missions [4-10].
These findings led to suggestions, beginning in the 1970s,

that water-dwelling algae (cyanobacteria) may have con-
structed stromatolites on the Red Planet [9, 11, 12] and thata
“search for stromatolites on Mars” should be undertaken
[13]. In 2002, DiGregorio reported what he believed to be
biosignatures compatible with stromatolite-building cya-
nobacteria in an ancient paleolake; a hypothesis was based
on the detailed analysis of images from the Viking landers
photographed at Utopia Planitia and Chryse Planitia.
Subsequent orbital observations and ground level studies



conducted by NASA’s Mars rovers [14-20] also indicate that
water repeatedly flowed and pooled upon the surface
[21-26], possibly providing a habitable environment billions
of years ago [16, 27-31]; a time period which coincides with
the fashioning, 3.7 bya, of what may be the first stromatolites
on Earth [32, 33] and Mars was reported by Noftke [34].
Specifically, Noftke [34] reported the discovery of what
appear to be Martian stromatolites, constructed 3.7 bya, in a
receding body of water; a finding was consistent with the
observations of other investigative teams who have observed
Martian sedimentary structures that resemble stromatolites
that may have been fashioned in ancient paleolakes and
ocean shorelines [34-43]. Many of these putative Martian
stromatolites are domical and concentric in shape [38]
similar to those of Lake Thetis in Western Australia
(Figures 1-4) which is 2 kilometers from the Indian Ocean.
If Mars had an ocean, or if there was one ocean or two, is
largely based on observations of a smooth flat lowland basin
circling the Northern Hemisphere bordered by rugged
highlands in the Southern Hemisphere [5, 7, 8, 44]. There is
also evidence of hundreds of paleolakes and paleoshorelines
in the northern lowlands [4, 45-48] and evidence of cata-
strophic floods [47, 49] and prograding channels, which
suggest rapidly receding bodies of water [15]. The overall
pattern of geologic evidence, particularly the valley networks
that abound in the Noachian highlands and the fluvial and
erosion pathways, is indictive of Noachian ocean [50].

2. Bolide Impact, the Martian
Geodynamo, and the Waters of Mars

What became of the oceans and lakes of Mars is unknown. It is
believed they may have become periodically frozen
[8, 47, 51-53] or assimilated as ice sheets beneath the surface
and deep within the crust [8, 54, 55], a consequence, perhaps, of
the slowing and stoppage of its “geodynamo” and loss of its
magnetic field around 3.7 bya (Acuiia et al. [10, 56]), though the
actual cause and date are unknown. It has been hypothesized
that massive and repeated bolide impacts may have impacted
that “geodynamo” [57], thereby, causing a substantial reduc-
tion in the planet’s heat flow, resulting in cooling and aridi-
fication of the climate and the loss of the magnetic shield
followed by the loss of atmosphere due to powerful solar winds
and UV rays [58-61]. Hence, the waters of Mars may have
become frozen, and these sheets of water-ice were subsequently
buried by debris [8, 51, 54, 55]. Periodically, however, some of
these underground reservoirs of water may percolate to the
surface and saturate the atmosphere during the warmer
summer months [62-64]. There is no consensus, however, and
it is unknown if an ocean of water covered the Northern
Hemisphere only to be replaced by lakes or if oceans and lakes
coexisted, which in turn evaporated and/or seeped beneath the
surface [49].

3. The Martian Solar Habitable Zone

That ancient Mars was wet and habitable has been docu-
mented by NASA’s robotic rovers [16, 28]. Also consistent
with habitability are the presence of organics and sufficient
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sunlight, which could provide energy to innumerable or-
ganisms [65-67]. The ancient geochemical environment of
Mars would have also provided a chemolithoautotrophic
energy source [16, 68, 69]. In fact, all the necessary elements
for life (i.e., C, H, N, O, P, and S) have been detected [70, 71].

The existence of liquid surface water on ancient Mars, as
on Earth, is also evidence of habitability [72]. The habitable
zone of a stellar system is usually defined as a circumstellar
belt, inside which water can be maintained in the liquid state
on the surface of a terrestrial planet orbiting that star,
thereby, creating conditions favorable to life [73-75], i.e.,
referred to as the “Temperate Zone of the Solar System” [72].
Taking into account the influence of solar luminosity and
irradiance on surface planetary temperatures [76-78], it has
been estimated that the inner and outer edges of the hab-
itable zone of the solar system are located within 0.836 and
1.656 AU from the sun [79], though the exact parameters
have yet to be determined. Mars has an orbit with a sem-
imajor axis of 1.524 AU and an eccentricity of 0.0934 AU
[80], which means that the Red Planet orbits within the
habitable zone.

The width of the continuously habitable zone since the
formation of the solar system, 4.6 billion years ago, has been
estimated as between 0.95 and 1.15 AU [74, 81, 82]. If Mars
had a less eccentric orbit billions of years ago and/or prior to
whatever cataclysm may have negatively affected its “geo-
dynamo” is unknown. Nevertheless, even with an axis of
1.524 AU and an eccentricity of 0.0934 AU [80], the Red
Planet would have orbited within the habitable zone for
much of the year, conditions which may also help explain the
evidence of catastrophic flooding and what may be the
receding and freezing of Martian oceans and lakes, i.e., a
freeze-thaw cycle due to the eccentric orbit. And yet, the
early atmosphere of Mars was probably much denser than at
present (1.3-4bar) and composed of CO, and H,0O in ad-
dition to 5-20% H, [83-85], and these gasses could have
created a greenhouse effect and raised the mean annual and
global surface temperature above the freezing point of water
[83, 86]. As summed up by Ramirez [87], “Although most
investigators believe that the geology indicates the presence
of surface water, disagreement has persisted regarding how
warm and wet the surface must have been and how long such
conditions may have existed. The geologic evidence is most
easily explained by a persistently warm climate. Requiring
only ~1% H, and 3 bar CO, or ~20% H, and 0.55 bar CO..
Such thata warm and semi-arid climate remains the simplest
and most logical solution to Mars paleoclimate.”

Hence, although the sun may have been 20-25%
weaker [88], ancient Mars—like ancient Earth—due to its
position in the circumstellar habitable zone, coupled with
the presence of water on the surface and the composition
of its CO,-rich atmosphere, would have been warm, wet,
and habitable over 3 billion years ago [16, 61, 89-91]. A
warm, wet Mars with lakes and possibly oceans upon the
surface would account for the observations of twenty-five
investigators who have provided evidence of Martian
sedimentary structures that resemble fossilized stromat-
olites fashioned by cyanobacteria in ancient lakes and
shorelines [35, 37-40, 42, 43], at least one of which may
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FIGURE 1: (a) Lake Thetis under water stromatolite (permission to reproduce photo granted by Lyn Lindfield and The-
TravellingLindfields.com). (b) Sol 529: Martian specimen with evidence of concentric lamination and fossilized fenestrae (reproduced with

permission from [38]).

have been constructed 3.7 bya [34], and thus, at the same
time, stromatolites may have been the first formed on
Earth [32, 33].

4. Stromatolites

The formation, growth, and structure of laminated cyano-
bacterial mats and their calcification and photosynthetic
properties have been described in detail by previous workers
[92-94]. Cyanobacteria are often assisted or accompanied by
other microbes including sulfate reducing and purple bac-
teria, which form bacterial communities that collectively
precipitate CaCOj; in shallow waters, which in turn enables
them to cement together sedimentary structures [93, 95, 96].
As cyanobacteria also produce oxygen as a photosynthetic
byproduct, fenestra and apertures are commonly formed in
the matrix by gas bubbles; and features similar to these
(Figures 5 and 6) have been observed within or adjacent to
stromatolite- and bacterial mat-like formations on Mars
[34, 38, 41, 42].

Stromatolites may take the form of stratified and layered
mounds, columns, and sheet-like sediments that are conical,
domal, stratiform, or branching—and similar sedimentary
structures have been observed on Mars [38, 97]. These
sediments are usually cemented together via the mucous and
biofilm secretions and intertwined filaments and tendrils of
cyanobacteria that bind together sand and sedimentary
grains [94, 98-102].

Stromatolites are also constructed by lichens, via the alga
photobiont of the lichen symbiotic consortium; and these
sediments are generally formed above water, atop rocks
inhabited by endolithic lichens [103, 104], and specimens
resembling endolithic lichens have been observed in the
paleolake beds of Eagle and Gale Crater [38, 105]. By
contrast, those typically fashioned by cyanobacteria are
formed along shorelines and shallow waters [106, 107]. As
algae and stromatolite-building lichens are photo-
synthesizing organisms, deriving their energy via sunlight
[104, 108-110], water-dwellers colonize sediments and
orient and clump together and on top of each other forming
layers and growing towards the light [94, 103, 111, 112], thus
forming sedimentary structures that rise above the water;

and formations resembling those formed in shallow waters
have been observed on Mars [34, 35, 38, 40, 42, 113].

A similar pattern of cementation and construction is also
a characteristic of thrombolites [98-101]. Thrombolites are
thick microbial mats [106] consisting of calcified cyano-
bacteria sheaths [107, 114-116] and which are cemented
together via the precipitation of carbonate minerals within
the mucilage [93]. These photosynthesizing microbes mi-
grate toward the sunlight, thereby, forming layers of mi-
crobial mats [98-101]. Fossilized thrombolites/bacterial
mats have also been observed on Mars [34, 38, 41, 42].

On Earth, the first evidence of stromatolites has been
dated to 3.7 bya [32, 33] —though not all investigators accept
these dates. However, stromatolites and thrombolites con-
tinue to be fashioned in the present day, having been found
along sea shores and reefs, fresh water lakes [117, 118], and
in lagoons and hypersaline lakes [119-122]. Lake Thetis and
other Western Australian lakes are hosts to fossilized and
living domical conical stromatolites and thrombolites [112]
and are believed to be analogs to Martian paleolakes lakes
[123, 124] and the lakes of Gale Crater [38]. Specimens
resembling and nearly identical to the concentric domical
stromatolites of Lake Thetis have also been tentatively
identified in the dried lake beds of Gale Crater [38, 113].

5. Lakes in Gale Crater

Most investigators directly involved in the exploration of
Gale Crater by the rover Curiosity agree that this area was
habitable early in the history of Mars and was flush with
water, rivers, streams, and lakes [125-127]. Gale Crater is
marked by numerous fluvial valleys, gullies, and water
pathways [58, 128-130] and has all the characteristics of a
series of dried lakes [16] that may be periodically replenished
with water [20]. Based on morphological observations,
Fairen et al. [58] described what they believed to be “evi-
dence for ancient glacial, periglacial and fluvial (including
glacio-fluvial) activity within Gale crater, and the former
presence of ground ice and lakes.” However, Grotzinger et al.
[125] did not find periglacial evidence. Based on mor-
phology, Oechler [130] argued that landforms indicate a
“major history of water and ice in Gale crater, involving
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FIGURE 2: (a) The remains of a Lake Thetis underwater stromatolite. Photo credit: government of Western Australia department of mines
and petroleum. (b) Sol 308 water pathways leading down and curving around a Martian specimen resembling a Lake Thetis stromatolite.

Reproduced with permission from [38].

FIGURE 3: (a) Submerged Lake Thetis stromatolite. Photo credit: government of Western Australia department of mines and petroleum. (b)
Sol 122: Martian specimen with collapsed dome and evidence of fossilized fenestrae within the upper portion of the walls. This specimen
appears to be fossilized and displays the vertical and inward orientation typically caused by upward-migrating microbial colonies at the
sediment-water interface (Figure 4). Several “peanut-brittle” specimens resembling thrombolite mats appear in the bottom portion of the

photo.

permafrost, freeze-thaw cycles, and perhaps ponded surface
water.” Masson et al. [131] have come to similar conclusions.

There are gullies, water pathways, and deltas which are
most likely formed following heavy rains or the melting of ice
and snow which released rivers of water, which often flowed
from north to south and deposited sediment in the numerous
lakes on the crater floor [20, 125]. These lakes may have pe-
riodically dried out, only to be replenished [63], in a cycle that
may have lasted billions of years [132-135]. Water may have
continued to flow into and perhaps partially filling the Gale
Crater lakes, thereby replenishing the water supply repeatedly,
until 145 million to a few million years ago. As summed up by
Rampe et al. [20], “Evidence for a long-lived lake or lake system
in Gale crater is compelling “possibly” up to the present day.”

That those waters were leached from rocks, melting
subsurface ice sheets, percolating upward from underground
aquifers, and raining down upon the surface is also evi-
denced by the numerous fluvial gullies and pathways, which
appear to have been fashioned by flowing liquid across the
surface of Mars ([136, 137]). For example, as detected by the

rover Curiosity’s suite of sampling instruments, clays,
mudstones, and a variety of minerals have been repeatedly
hydrated [16, 27, 68, 125, 138, 139]. Therefore, Gale Crater
appears to have undergone mineralization due to the
presence of large amounts of water [128] and has likely
repeatedly filled with water [58, 140-146].

At a minimum, therefore, the evidence indicates that
ground and subsurface water may have been continuously or
at least intermittently present beginning around 3.8-3.6 bya
and continuing for the following 1.5 billion years
[20, 26, 63, 147] and intermittently thereafter. Gale Crater
therefore provided a habitable environment [16, 125].
Moreover, that environment may have been colonized by
photosynthesizing cyanobacteria 3.7 bya [34].

6. Stromatolites in Gale Crater

If the waters and lakes that continuously or periodically filled
Gale Crater were alkaline or saline is unknown, though it has
been argued, based on an analysis of hydrated minerals, that
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FIGURE 4: (a) Gale crater/sol 528 (close up of sol 122 (Figure 3). (b) Close up of sol 529. Note. Features resembling apertures, open cone-like
structures, gas domes, and fenestrae. These gale crater specimens may be hundreds, thousands, or hundreds of thousands of years in age.
Both appears to be fossilized and weathered. Contrast with (c) Lake Thetis living stromatolite photographed beneath the water and featuring
numerous gas domes, apertures, and fenestra.



these lakes were more alkaline than saline and similar to the
lakes of Western Australia [110, 123, 124], Lake Thetis in
particular [38], although if one or more of these lakes were
saline or hyposaline is also a possibility [148].

Consistent with the evidence of repeated episodes of
hydration followed by drying, Noffke [34] has found evi-
dence of microbial mats in the Gale Crater, which may have
formed 3.7bya in regressive bodies of water. Specifically,
Noftke [34] reported that these mats have the microstructure
and morphologies and stratigraphic successions typically
produced by colonies of microorganisms, i.e., “centimeter-to
meter-scale structures similar in macroscopic morphology”
that include “mat chips,” “erosional remnants and pockets,”
“desiccation cracks,” “roll-ups,” and “gas domes” that are
arranged in spatial and temporal successions similar to the
“growth of a microbially dominated ecosystem that thrived
in pools that later dried completely.”

The microstructure of a putative Martian stromatolite
photographed in the Gale Crater (Sol 506) was also found to
be comparable to a terrestrial stromatolite from Lagoa
Salgada, Brazil [37]. Highly organized microspherules,
thrombolytic microfacies, voids, fenestrae, intertwined fil-
aments, and layer deformation were common to both
(Figures 4, 5, and 7).

In 2019, a team of 14 experts conducted an extensive
search of NASA’s rover Curiosity Gale Crater image de-
pository for macrostructures, which resemble the stromat-
olites of Lake Thetis, and subsequently, published pictorial
evidence of six concentric domical specimens, four of which
are nearly identical to those of Lake Thetis [38]. Two
specimens were photographed adjacent to features which
resemble thrombolite bacterial mats, and a third concentric
dominical formations was determined to consist of five
layers of crinkly and wavy nodular laminae with several
orders of curvature, an abundance of detrital material, the
presence of what appears to be numerous fenestrae/gas
bubbles, a central (albeit collapsed) axial zone, and features
that resemble the preferential vertical, upward, and inward
growth, which is typically caused by upward-migrating
microbial colonies at the sediment-water interface
[112, 121, 122]. Moreover, extensive nodular biological mats
and thrombolites were identified on and adjacent to this
specimen (Figures 40-43 in [38]), thereby, fulfilling the
criteria for a biological vs. an abiogenic formation [149-152].
Rizzo [97], in a work published by the International Journal
of Astrobiology, replicated some of the findings of Joseph
etal. [38] and also found evidence of fenestrae and what may
be fossilized algae.

A common attribute of stromatolite-like formations
observed in Gale Crater is the presence of open apertures,
fenestrae, and what appear to be gas domes [34, 38, 97].
Open cone-shaped apertures were also observed adjacent to
formations resembling algae and lichens [38]; though if these
latter specimens are alive, fossilized, or abiotic is unknown.
On Earth, gas domes similar to those observed on Gale
Crater (Figures 4-7) serve to vent oxygen and other gasses
produced during photosynthesis [153, 154]. Therefore, it
could be argued that these open apertures and fenestrae were
produced via venting of oxygen produced by photosynthesis.
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This evidence is consistent with orbital and ground level
studies indicating that Gale Crater was home to numerous
lakes and supports the hypothesis put forth by numerous
investigators in the last century that stromatolites may have
been fashioned in the paleolakes of the Red Planet. More-
over, formations resembling stromatolites have been ob-
served in other areas of the Northern Hemisphere of Mars.

7. Stromatolites and Gusev Crater Lake

Gusev Crater may have been an ancient ice covered lake,
which was fed by aquifers and subject to flooding from
surrounding areas, and this watery environment may have
persisted from 4.6 bya to 3.5 bya [155] followed by episodes
of filing, evaporation, and drying until about 2bya [156].
Subsequent analyses by the rover Spirit’s suite of instru-
ments found evidence of an “unequivocal interaction” be-
tween water and the rocks in the Gusev plains [157], and it
was hypothesized that rain, ice, and snow have been re-
peatedly produced by precipitation and condensation from
the atmosphere [158]. Melting of ice from beneath the
surface may have also repeatedly covered the surface with
water [159].

Analyses of surface rocks and regolith at Gusev Crater
and the adjacent Columbia Hills indicate obvious evidence
of water erosion, ranging from mild to severe [157, 160-164].
Although no current evidence of moisture, ice, or snow has
been detected, it has been concluded that “Gusev Crater”
may have been conducive to life on Mars in the past [165].

Gusev Crater, therefore, was an ancient habitable lake,
which may have been filled or periodically filled with water
from 4.6 to 3 billion years ago [156]. Those living creatures
which may have dwelled in the lake may have also included
stromatolite-building cyanobacteria [40].

Ruff and Farmer [40] reported evidence of what appear
to be “microbially mediated micro-stromatolites” photo-
graphed by the rover Spirit. They detected biofilms, sheaths,
and microstructures organized as intertwined microspherule
filaments. Additional morphological analyses of sedimen-
tary specimens resembling Gusev Crater stromatolites have
also revealed microstructures organized as intertwined
microspherule filaments nearly identical to those observed
in Earthly microbialites [41, 42]. Like the stromatolites
observed in Gale Crater, Rizzo and Cantasano [41, 42] also
detected evidence of gas domes within these putatative
Gusev microbialites similar to those fashioned by cyano-
bacteria for the venting of oxygen produced via photo-
synthesis. If these are in fact stromatolites, it is likely they
may have been constructed over 3 billion years ago when
Gusev Crater was a lake filed with water.

8. Meridiani Planum, Water, and Stromatolites

Investigation of Meridiani Planum soil and regolith, via the
rover opportunities suite of sampling instruments, also
detected considerable evidence that sediments had been
deposited by flowing water [166]. The observation of sand
ripples, centimeter scale cross-stratification, and festoon
geometry of cross-lamination of surface features has also
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FI1GURE 5: Gale crater/sol 232. (a) Specimens similar to open cone and gas-vent apertures formed via the release of oxygen secondary to
photosynthesis. Photosynthesizing organisms respire oxygen and release gas bubbles into the surrounding matrix, thereby, fashioning these
vents. Surrounding green substance may be algae/cyanobacteria ([38]; reproduced with permission). (b) Open globular structures,
interpreted as formed by gas bubbles via cyanobacteria oxygen respiration within microbial mats ([153]; reproduced with permission).

FIGURE 6: Sol 232 (a): cone-like formations that resemble gas-vent apertures for the release of oxygen secondary to photosynthesis by algae/
cyanobacteria and which appear to be moist. If they are alive, fossilized, or abiotic is unknown. (b) Cone-like tubes for the venting of oxygen
produced by photosynthesizing water-dwelling algae (reproduced with permission from [31]).
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FIGURE 7: Microanalyses of a Martian stromatolite-like formation (a) photographed by the rover curiosity (sol 506) in gale crater compared
with (b) a terrestrial stromatolite from Lagoa Salgada, Brazil. Voids, apertures, and highly organized microspherules and thrombolytic
microfacies are common to both. Earthly cyanobacteria typically form voids, intertwined filaments, and layer deformation within stro-

matolites (reproduced with permission from [37]).

been interpreted as due to the flow of water [18, 28].
Likewise, the presence of channels indicates that water from
melting snow and “massive ice deposits” [138, 167] may have
flowed downward into local basins forming numerous pools
of standing water [168] between dunes of sand and which

saturated the soil [169]. There have been repeated episodes of
ground water inundation in Meridiani Planum [170].
Moreover, it appears that pools of water were formed from
the upwelling of underground aquifers followed by evapo-
ration, and that global groundwater flow may have been



driven by precipitation [140, 171]. Thus, there is considerable
evidence for the flow and pooling of a significant amount of
ground water at various times in the history of Meridiani
Planum, including the possible formation of transient lakes
in Endurance Crater [29, 172].

Squyers and Knoll [169] in summing of the data from
Meridiani Planum have argued that there is “a rich record of
past aqueous processes on Mars, including both subsurface
and surface water. Conditions there may have been suitable
for some forms of life.”

Rizzo and Cantasano were the first to identify possible
stromatolites/microbialites on Mars and performed a de-
tailed microanalysis of this structure located in what they
believed to be an ancient lake bed within Meridiani Planum.
They observed and provided evidence of segmented sedi-
mentary structures bordered by lamina similar to micro-
bialites on Earth [41, 42]. Bianciardi, Rizzo, and Cantasano
[35, 42] performed a detailed statistical, comparative,
quantitative analysis of these stromatolite microstructures
and which they compared to terrestrial stromatolites and
microbialites. These scientists found microdomes, fenestrae,
and extensive morphometric similarities in texture and
organization almost identical to stromatolites constructed
by cyanobacteria/algae.

In addition, formations resembling fossilized algae have
been identified by Kazmierczak [173] along the shoreline of
Endurance Crater, which billions of years ago is believed to
be one of the many lakes in Meridiani Planum [29].

Water-dwelling-rock colonizing lichens also construct
stromatolites [103, 104], and thousands of mushroom-
shaped lichen-like formations have been also been observed
in Meridiani Planum, within Eagle Crater [105], which some
investigators believe may have been small lake [169]. These
lichen-like formations form vast colonies and are attached to
rocks by thin stems and oriented skyward similar to pho-
tosynthesizing organisms. If these lichen-like specimens are
abiotic, living, or fossilized is unknown.

9. The Waters of Utopia and Chryse Planitia

The Viking Landers touched down at Utopia Planitia and
Chryse Planitia, in 1976. Condensation and sublimation of
ground frost was observed [174], and water within regolith
was a detected via Viking’s mass spectrometers [175]. The
presence of frost and water indicates that Utopia and Chryse
Planitia could provide a habitable environment for
extremophiles adapted to extremely cold environments,
including fungi, lichens, and a variety of archae and bacteria.
Utopia and Chryse Planitia are also believed to be ancient
paleolakes [142] and may have and may still provide a
habitable environment for algae [176].

DiGregorio [177], upon examining the 1976 Mars
Viking images, observed what he interpreted to be “rock
varnish” typically produced by a wide variety of mi-
croorganisms “including epilithic and endolithic cya-
nobacteria.” DiGregorio hypothesized that
cyanobacteria may have cemented sediments together,
fashioning microbial mats and stromatolites in these
ancient Martian lakes.
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10. Early Life on Earth: Parallels with Mars

Although considered controversial [178, 179], evidence of
biological residue, carbonates, chains of magnetite, and
fossilized polycyclic aromatic hydrocarbons (PAHs) have
been discovered in ALH 84001 [12, 180, 181]. It has been
argued that at least 25% of the organic residue is biological
[30] and can be dated to at least 3.8 bya to 4.2 bya [30, 182].

Prior to ejection into the space, ALH likely originated in
a watery environment [30, 183] and was subject to numerous
episodes of aqueous activity [184], with wet followed by dry
spells and with water levels “gradually evaporating” [183]. As
noted, sedimentary structures similar to stromatolites, dated
to 3.7 billion years in age and which was fashioned in and
exposed to a receding volume of water, have also been re-
ported [34].

These findings—which are by no means con-
clusive—indicate that life may have appeared on Mars,
between 3.7 bya and 4.2 bya, thus paralleling the emergence
of Earthly life as indicated by the high concentrations of
carbon 12 [185], the presence of graphite [186, 187] and
carbon-isotopes and organic carbon discovered in apatite
and quartz-pyroxene, and carbon-related evidence inter-
preted as the residue of photosynthesis, oxygen secretion,
and biological activity dated to 3.8 bya to 4.2 bya [188-192].
Additional probable isotopic biosignatures have been
identified in sulfur [188], nitrogen [193], and iron forma-
tions [194, 195], all dated to at least 3.8 bya.

Evidence indicative of fossilized fungi [196] and
eukaryotic algae [197] have also been observed in sediments
dated 3.8 bya—though not all investigators accept this evi-
dence. In addition, remnants of ancient stromatolites that
were fashioned in shallow water have been found in met-
acarbonate rocks aged 3.7 bya [33]. On Earth, the first
stromatolites, therefore, may have been fashioned beginning
around 3.7bya [32, 33] most likely by algae
(cyanobacteria)—though not all investigators agree with
these dates.

11. The Interplanetary Transfer of Life

As reviewed in this report, there is evidence that life took
root on a watery Earth and, possibly, on a warm watery
Mars, early in the history of both planets, and these life forms
may have been building stromatolites beginning 3.7 bya. The
evidence suggestive of parallels in the origins of life on both
planets supports the hypothesis that life on Earth and Mars
may have originated from outside this solar system
[198-200], and that these planets may have been colonized
when first forming as protoplanets [113]. These scenarios
would account for why there are chemical fossils on both
planets suggesting that even as the earliest rocks were so-
lidifying during the heavy bombardment, 4.2 bya, there was
already evidence of life ([113]. It is also equally likely that life
was delivered via meteors, asteroids, comets, and oceans of
frozen water, during the heavy bombardment phase between
3.8 bya and 4.2 bya [201, 202], and/or that life-infested rocks,
boulders, and mountains of soil were repeatedly ejected and
transferred between Earth and Mars via meteor strikes
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[192, 203-207] and powerful solar winds blowing upper
atmospheric spores into the space [201, 208]—conditions
under which algae, fungi, lichens, spores, and other microbes
can survive [209-212].

Therefore, Mars and Earth may have been repeatedly
seeded with life from outside this solar system and/or re-
peatedly exchanged life early in the history of both planets.
This would account for evidence that life may have appeared
simultaneously on Mars and Earth 4.2 bya, why stromato-
lites may have been constructed on both worlds 3.7 bya, and
why specimens similar to algae, fungi, and lichens may be
common to both planets.

12. Conclusions

Mars may have been a wet, habitable planet billions of years
ago. In the last century, a number of scientists hypothesized
that stromatolite-constructing cyanobacteria may have
colonized Mars and urged that a search for these sedi-
mentary structures should be undertaken. Subsequently,
twenty-five investigators have published evidence of mi-
crostructures and macrostructures, photographed on Mars,
which resemble stromatolites fashioned on Earth and in
Lake Thetis in particular. If these Martian specimens are
biological in origin is not known with absolute certainty as
not all terrestrial stromatolites and thrombolites are bio-
logical [151, 152, 213, 214]. Therefore, the evidence reviewed
here does not prove but supports the hypothesis that ancient
Mars had oceans and lakes and was habitable and inhabited
by organisms, which may have constructed stromatolites.
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